1. Let X be a Stone space. Consider the map $\varepsilon : X \rightarrow X_{\text{Clop}(X)}$ (where $X_{\text{Clop}(X)}$ is the Stone space dual to $\text{Clop}(X)$) defined by $\varepsilon(x) = \{U \in \text{Clop}(X) : x \in U\}$.

(a) Show that ε is well-defined.
(b) Show that ε is continuous, i.e., that for each clopen in $X_{\text{Clop}(X)}$ its ε-pre-image is clopen in X.
(c) Show that ε is injective.
(d) Show that ε is surjective.
(e) Deduce that ε is open (i.e. $\varepsilon[U]$ is open for each open set U) and hence a homeomorphism.

(Hint for surjectivity: The following characterization of compactness might be useful: a space X is compact if and only if for any family \mathcal{C} of closed sets with the finite intersection property we have $\bigcap \mathcal{C} \neq \emptyset$. Note that $\mathcal{C} = \{C_i : i \in I\}$ has the finite intersection property iff for any finite $J \subseteq I$ the intersection $\bigcap \{C_i : i \in J\} \neq \emptyset$.)

2. Let B be a Boolean algebra and X_B its dual Stone space. Let $(\text{Fil}(B), \subseteq)$ be the poset of filters on B and let $(\text{Cl}(X_B), \subseteq)$ be the poset of closed subsets of X_B. Show that there is an order-reversing bijection between $(\text{Fil}(B), \subseteq)$ and $(\text{Cl}(X_B), \subseteq)$. Can you say something similar about the poset of ideals on B?

3. Let X be a topological space. A set $U \subseteq X$ is called regular open if $U = \text{Int}(\text{Cl}(U))$. Let $\mathcal{RO}(X)$ be the set of all regular open subsets of X.

(a) Show that $\mathcal{RO}(X)$ is a BA where
 - $U \wedge V = U \cap V$,
 - $U \vee V = \text{Int}(\text{Cl}(U \cup V))$,
 - $\neg U = \text{Int}(X \setminus U)$.

 You may assume that $\mathcal{RO}(X)$ is a distributive lattice.
(b) Show that $\mathcal{RO}(X)$ is complete. (Hint: $\bigwedge_{i \in I} U_i = \text{Int}(\text{Cl}(\bigcap_{i \in I} U_i))$).
(c) Show that $\mathcal{RO}(\mathbb{R})$ has no atoms, \mathbb{R} is the real line with the standard interval topology.

Additional exercises

4. The aim of this exercise is to understand a duality of complete and atomic Boolean algebras and sets. This duality is closely related to Stone duality, but still differs from it.
A Boolean algebra B is called atomic, if given $a \neq 0$ in B, there exists an atom $b \in B$ such that $b \leq a$. Let CABA be the class of complete and atomic Boolean algebras. Let also Set be the class of all sets. To each set X we associate the powerset Boolean algebra $\mathcal{P}(X)$. To each complete and atomic Boolean algebra B we associate the set $\text{At}(B)$ of its atoms. Show that

(a) For every atomic B and every $a \in B$ we have $a = \bigvee \{ x \in \text{At}(B) : x \leq a \}$.

(b) Every complete and atomic Boolean algebra B is isomorphic to $\mathcal{P}(\text{At}(B))$.

(c) Every set X is bijective to $\text{At}(\mathcal{P}(X))$.

5. For people who know (want to learn a bit more) category theory. Let Set be the category of sets and functions and let CABA be the category of complete atomic Boolean algebras and complete Boolean algebra homomorphisms. Prove that the correspondence between Set and CABA from (4), is part of a dual equivalence $\text{Set}^{\text{op}} \cong \text{CABA}$, i.e.

(a) Show that $\mathcal{P} : \text{Set} \to \text{CABA}$ and $\text{At} : \text{CABA} \to \text{Set}$ are contravariant functors. (What are the action on morphisms?)

(b) Show that the this isomorphisms from HW 4, exercise 1 are natural, i.e. show that for complete atomic Boolean algebra B the isomorphisms $\eta_B : B \to \mathcal{P}(\text{At}(B))$ are components of a natural transformation $\eta : \text{Id}_{\text{CABA}} \Rightarrow \mathcal{P} \circ \text{At}$ and similarly, for every set X, the bijections $\mu_X : X \to \text{At}(\mathcal{P}(X))$ are components of a natural transformation $\mu : \text{Id}_{\text{Set}} \Rightarrow \text{At} \circ \mathcal{P}$.

So you need to show that for every complete Boolean homomorphism $f \in \text{Hom}_{\text{CABA}}(B,C)$ and every map $g \in \text{Hom}_{\text{Set}}(X,Y)$ the following diagrams commute.

\[
\begin{array}{ccc}
B & \xrightarrow{f} & C \\
\downarrow{\eta_B} & & \downarrow{\eta_C} \\
\mathcal{P}(\text{At}(B)) & \xrightarrow{\mathcal{P}(\text{At}(f))} & \mathcal{P}(\text{At}(C))
\end{array}
\quad
\begin{array}{ccc}
X & \xrightarrow{g} & Y \\
\downarrow{\mu_X} & & \downarrow{\mu_Y} \\
\text{At}(\mathcal{P}(X)) & \xrightarrow{\text{At}(\mathcal{P}(g))} & \text{At}(\mathcal{P}(Y))
\end{array}
\]