MATHEMATICAL STRUCTURES IN LOGIC EXERCISE CLASS 4

Dualities for Boolean algebras

February 27, 2018

- 1. Let X be a Stone space. Consider the map $\varepsilon : X \to X_{\mathsf{Clop}(X)}$ (where $X_{\mathsf{Clop}(X)}$ is the Stone space dual to $\mathsf{Clop}(X)$) defined by $\varepsilon(x) = \{U \in \mathsf{Clop}(X) : x \in U\}.$
 - (a) Show that ε is well-defined.
 - (b) Show that ε is continuous, i.e., that for each clopen in X_{Clop(X)} its ε-pre-image is clopen in X.
 - (c) Show that ε is injective.
 - (d) Show that ε is surjective.
 - (e) Deduce that ε is open (i.e. $\varepsilon[U]$ is open for each open set U) and hence a homeomorphism.

(*Hint for surjectivity*: The following characterization of compactness might be useful: a space X is compact if and only if for any family \mathcal{C} of closed sets with the finite intersection property we have $\bigcap \mathcal{C} \neq \emptyset$. Note that $\mathcal{C} = \{C_i : i \in I\}$ has the finite intersection property iff for any finite $J \subseteq I$ the intersection $\bigcap \{C_i : i \in J\} \neq \emptyset$.)

- 2. Let B be a Boolean algebra and X_B its dual Stone space. Let $(\mathsf{Fil}(B), \subseteq)$ be the poset of filters on B and let $(\mathsf{Cl}(X_B), \subseteq)$ be the poset of closed subsets of X_B . Show that there is an order-reversing bijection between $(\mathsf{Fil}(B), \subseteq)$ and $(\mathsf{Cl}(X_B), \subseteq)$. Can you say something similar about the poset of ideals on B?
- 3. Let X be a topological space. A set $U \subseteq X$ is called *regular open* if U = Int(Cl(U)). Let $\mathcal{RO}(X)$ be the set of all regular open subsets of X.
 - (a) Show that $\mathcal{RO}(X)$ is a BA where
 - $U \wedge V = U \cap V$,
 - $U \lor V = \operatorname{Int}(\operatorname{Cl}(U \cup V)),$
 - $\neg U = \operatorname{Int}(X \setminus U).$

You may assume that $\mathcal{RO}(X)$ is a distributive lattice.

- (b) Show that $\mathcal{RO}(X)$ is complete. (Hint: $\bigwedge_{i \in I} U_i = \operatorname{Int}(\operatorname{Cl}(\bigcap_{i \in I} U_i))$.
- (c) Show that $\mathcal{RO}(\mathbb{R})$ has no atoms, \mathbb{R} is the real line with the standard interval topology.

Additional exercises

4. The aim of this exercise is to understand a duality of complete and atomic Boolean algebras and sets. This duality is closely related to Stone duality, but still differs from it. A Boolean algebra B is called *atomic*, if given $a \neq 0$ in B, there exists an atom $b \in B$ such that $b \leq a$. Let **CABA** be the class of complete and atomic Boolean algebras. Let also **Set** be the class of all sets. To each set X we associate the powerset Boolean algebra $\mathcal{P}(X)$. To each complete and atomic Boolean algebra B we associate the set At(B) of its atoms. Show that

- (a) For every atomic B and every $a \in B$ we have $a = \bigvee \{x \in \operatorname{At}(B) : x \leq a\}$.
- (b) Every complete and atomic Boolean algebra B is isomorphic to $\mathcal{P}(\operatorname{At}(B))$.
- (c) Every set X is bijective to $At(\mathcal{P}(X))$.
- 5. For people who know (want to learn a bit more) category theory. Let **Set** be the category of sets and functions and let **CABA** be the category of complete atomic Boolean algebras and complete Boolean algebra homomorphisms. Prove that the correspondence between **Set** and **CABA** from (4), is part of a dual equivalence **Set**^{op} \cong **CABA**, i.e.
 - (a) Show that $\mathcal{P} : \mathbf{Set} \to \mathbf{CABA}$ and $\mathrm{At} : \mathbf{CABA} \to \mathbf{Set}$ are contravariant functors. (What are the action on morphisms?)
 - (b) Show that the this isomorphisms from HW 4, exercise 1 are natural, i.e. show that for complete atomic Boolean algebra B the isomorphims $\eta_B : B \to \mathcal{P}(\operatorname{At}(B))$ are components of a natural transformation $\eta : \operatorname{Id}_{\mathbf{CABA}} \Rightarrow \mathcal{P} \circ \operatorname{At}$ and similarly, for every set X, the bijections $\mu_X : X \to \operatorname{At}(\mathcal{P}(X))$ are components of a natural transformation $\mu : \operatorname{Id}_{\mathbf{Set}} \Rightarrow \operatorname{At} \circ \mathcal{P}$.

So you need to show that for every complete Boolean homomorphism $f \in \text{Hom}_{\mathbf{CABA}}(B, C)$ and every map $g \in \text{Hom}_{\mathbf{Set}}(X, Y)$ the following diagrams commute.