MATHEMATICAL STRUCTURES IN LOGIC EXERCISE CLASS 5

Priestley and Esakia duality

March 6, 2018

1. Draw the poset dual to the Heyting algebra drawn below.

- 2. Let (X, τ, \leq) be a Priestley space. Show that
 - (a) the set $\uparrow x$ is closed for each $x \in X$;
 - (b) the sets $\uparrow F$ and $\downarrow F$ are closed for each closed subset F of (X, τ) .
- 3. Let **D** be a bounded distributive lattice and let $X_D = (X, \tau, \leq)$ be its dual Priestley space. Show that for every clopen upset U of $X_{\mathbf{D}}$ there exists $a \in D$ such that $U = \varphi(a)$, where $\varphi(a)$ is the set of prime filters on **D** containing a (*Hint:* You will most likely have to use compactness twice, first for a cover of U^c and then for a cover of U.)
- 4. (a) Let $h : A \to B$ be a Boolean homomorphism between Boolean algebras A and B. Show that if h is surjective, then its dual $h_* = h^{-1} : X_B \to X_A$ is injective.
 - (b) Let $f: X \to Y$ be a continuous map between Stone spaces X and Y. Show that if f is surjective, then its dual $f^* = f^{-1}: \operatorname{Clop}(Y) \to \operatorname{Clop}(X)$ is injective.
- 5. Let (X, τ, \leq) be a Priestley space. Let Y be a closed subset of X.
 - (a) Show that (Y, τ_Y, \leq_Y) where τ_Y is the subspace topology¹ and \leq_Y is the induced order is also a Priestley space.
 - (b) If (X, τ, \leq) is an Esakia space and Y is a closed upset, then (Y, τ_Y, \leq_Y) is also an Esakia space.
 - (c) (Additional.) Show that there exists an Esakia space (X, τ, \leq) and a closed non-upset $Y \subseteq X$ such that (Y, τ_Y, \leq_Y) is not an Esakia space. (*Hint:* consider the Alexandroff compactification of the natural numbers, find a suitable ordering on it so it becomes an Esakia space (there are several such orderings and not all of them will work), and find such a Y.)

¹If (X, τ) is a topological space and Y is a subset of X, the subspace topology τ_Y is defined as $\tau_Y := \{U \cap Y : U \in \tau\}$.