MATHEMATICAL STRUCTURES IN LOGIC EXERCISE CLASS 6

Varieties

March 13, 2018

1. Let A and B be the following Heyting algebras:

- (a) Compute the lattice of subvarieties of $V_1 = Var(\{A\})$.
- (b) Compute the lattice of subvarieties of $V_2 = Var(\{B\})$.
- (c) Compute the lattice of subvarieties of $V_3 = Var(\{A, B\})$.
- 2. Show that the set of superintuionistic logics $\Lambda(\mathbf{IPC})$ forms a bounded lattice with respect to \subseteq . Describe the bounds, meets and joins in this lattice.
- 3. Show that the subvarieties of the variety of Heyting algebras $\Lambda(\mathsf{HA})$ form a lattice with respect to \subseteq . Describe the bounds, meets and joins in this lattice.

Additional exercises

4. Let L be a superintuitionistic logic. Recall that V_L is the variety axiomatized by $\{\varphi \approx 1 : L \vdash \varphi\}$. Show that for superintuionistic logics L, L' the following holds

$$L \subseteq L'$$
 implies $V_L \supseteq V_{L'}$.

and

$$L \not\subseteq L'$$
 implies $V_L \not\supseteq V_{L'}$.

(Hint: use that L is complete wrt V_L . That is, for each formula φ we have

$$L \vdash \varphi \text{ iff } V_L \models \varphi \approx 1.)$$

5. Let V be a variety of Heyting algebras. Recall that L_{V} is the least superintuionistic logic containing the set $\{\varphi \leftrightarrow \psi : V \models \varphi \approx \psi\}$. Show that for each variety of Heyting algebras V and each superintuionistic logic L we have

$$V_{L_V} = V$$
 and $L_{V_L} = L$.

6. Deduce that the lattice of superintuionistic logics $(\Lambda(\mathbf{IPC}), \subseteq)$ is dually isomorphic to the lattice $(\Lambda(\mathsf{HA}), \subseteq)$ of varieties of Heyting algebras.