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This paper is dedicated to Kit Fine, a prominent pioneer in mathematical modal
logic. Several of his classical themes shine through in the course of the paper.

Abstract The filtration method for proving decidability in a focused minimal man-
ner is a highlight of modal logic, widely used, but also posing a bit of a challenge
as to its scope and what makes it tick. In this paper, we bring together a number
of modern perspectives on filtration, including model-theoretic and proof-theoretic
ones. We also include a few more unusual recent connections with dynamic logics of
model change and logics of issues. Finally, we analyze where the filtration method
fails in full first-order logic, and what is still has to say there.

1 Introduction

The classical filtration method is a typical modal tool, widely used, but also posing a
bit of a challenge to understand what makes it tick. It has been used to prove decid-
ability of a wide variety of modal logics, couched in a variety of formal languages,
and its field of application is stil expanding. We will provide some general perspec-
tives on the filtration method, drawing mainly on recent literature, and adding a few
new observations of our own. We hope that this presentation is useful, since no such
story seems to exist so far. Even so, this is not a self-contained introduction. The
reader is assumed to have some basic knowledge of modal logic and filtration.
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In Section 2, the original basic results about filtration are stated, followed by im-
pressions of the state of the art in filtration for a range of modal logics, and a range of
modal languages. The section concludes with a discussion of what a filtration really
is, a question to which new answers keep emerging. In Section 3, more constructive
versions of filtration are presented that establish completeness at the same time, by
now perhaps the method favored by working modal logicians. This style relates to
the use of normal forms and issues of computational complexity for modal logics,
that will be discussed as well.

After this more survey-style first part, we turn to new topics and results. Section
4 presents a recent development: a dynamic modal logic that axiomatizes the basic
properties of filtration, thus drawing the meta-theory of filtration into modal logic.
Behind this logic is the view that filtration is one member of a wider family of nat-
ural notions of model change, and in Section 5, the interaction is analyzed between
filtration and other modal logics of model change, in particular, dynamic-epistemic
logic of information update. A further general aspect of filtration is discussed in
Section 6: its relation to choosing a set of issues that focus inquiry. Connections are
found with logics of questions and issues, and as a result, a new open problem is
identified about the complete logic of filtration with varying vocabularies. In Sec-
tion 7, the boundaries of filtration are discussed, since the method clearly does not
work for first-order logic, which is undecidable. However, filtration still works par-
tially in the first-order realm, and connections are brought to light with generalized
semantics for decidable versions of first-order logic.

Thus the reach of filtration is wider than might be thought. Finally, Section 8
wraps up and suggests further directions arising from looking at filtration in its gen-
erality. Many of these directions are technical, but there is also an interesting con-
ceptual issue. Many philosophical models of partiality restrict an atomic vocabulary,
but then consider any formula in that vocabulary. In contrast with this, filtration is
‘super-partial’: it also restricts the shapes of assertions that are considered. We be-
lieve that this makes it of wider interest than just a technical tool for decidability.

2 Basic theory of filtration

2.1 The initial paradigm

We start by recalling the model-theoretic approach to filtrations (see, e.g., [23,
Sec. 2.3] or [27, Sec. 5.3]). Let M = (W,R,V ) be a relational model and let Σ

be a set of formulas closed under subformulas. For our purposes, Σ will always be
assumed to be finite. Define an equivalence relation ∼Σ on the set of worlds W by

x∼Σ y iff (∀ϕ ∈ Σ)(M,x |= ϕ ⇔M,y |= ϕ).
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We introduce a new model structure M f = (W f ,R f ,V f ). Let W f =W/∼Σ and let
V f (p) = {[x] : x∈V (p)}, where [x] is the equivalence class of x with respect to∼Σ .1

Definition 2.1 For a binary relation R f on W f , the model M f = (W f ,R f ,V f ) is a
filtration of M through Σ if the following two conditions are satisfied:2

(F1) xRy⇒ [x]R f [y].

(F2) [x]R f [y]⇒ (∀♦ϕ ∈ Σ)(M,y |= ϕ ⇒M,x |= ♦ϕ).

Evidently, if Σ is finite, then the new set of worlds W f is finite. In fact, if Σ

consists of n elements, then W f consists of no more than 2n elements.
There are several ways of meeting the filtration conditions. In particular, the

‘smallest filtration’ of M = (W,R,V ) through Σ is Ms = (W f ,Rs,V f ) and the
‘largest filtration’ is Ml = (W f ,Rl ,V f ), where

[x]Rs[y] iff (∃x′,y′ ∈W )(x∼Σ x′ & y∼Σ y′ & x′Ry′).

[x]Rl [y] iff (∀♦ϕ ∈ Σ)(M,y |= ϕ ⇒M,x |= ♦ϕ).

If M f = (W f ,R f ,V f ) is a filtration of M= (W,R,V ), then indeed Rs ⊆ R f ⊆ Rl .

Theorem 2.2 (Filtration Theorem) Let M f = (W f ,R f ,V f ) be a filtration of the
model M= (W,R,V ). Then for every formula ϕ ∈ Σ and w ∈W, we have

M,w |= ϕ iff M f , [w] |= ϕ.

This fundamental fact follows by a simple induction on the formula ϕ .

Corollary 2.3 (Decidability) Satisfiability in the basic modal logic is decidable.

A brute force decision method starts from a given formula ϕ , and checks whether
at any point in any modal model whose domain has at most 2|Sub(ϕ)| points ϕ is true.
In Section 3, we will return to the actual complexity of satisfiability.

This argument depends on the fact that the relevant finite models form a finite
set, since the filtration method as stated above gave an upper bound on the size of
the models. This is sometimes called the ‘Effective Finite Model Property’. Without
it, a modal logic can have the FMP and still be undecidable, [61]. We will discuss
further potential subtleties with decidability below.

Filtration in this sense is purely model-theoretic, working on models.

Variants of the method are used when more structure needs to be preserved. For
instance, a filtration of a transitive model may not be transitive. Therefore, we intro-
duce two further notions of filtration (see, e.g., [27, Sec. 5.3] or [23, Sec. 2.3]).

1 The valuation makes most sense if p occurs in Σ , but we can also interpret the whole language.
2 Strictly speaking, we should indicate the set Σ used in creating the filtrated model, but an explicit
notation M f

Σ
will not be needed, since the relevant Σ will usually be clear from the context.
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The transitive or Lemmon filtration of M= (W,R,V ) through Σ is given by [x]Rt [y]
iff (∀♦ϕ ∈ Σ)(M,y |= ϕ ∨♦ϕ ⇒M,x |= ♦ϕ). The smallest transitive filtration
relation Rst is obtained by the transitive closure of the smallest filtration. It is well
known that if M = (W,R,V ) has R transitive, then Mt = (W f ,Rt ,V f ) and Mst =
(W f ,Rst ,V f ) are filtrations of M whose relations Rt and Rst are transitive.

The filtration method as presented here follows the model-theoretic line of the pi-
oneering publications [53, 59]. However, there are also early algebraic perspectives
on filtration, [55, 56], and we discuss some modern versions in Section 3.5 below.

Remark 2.4 There are in fact two common methods of proving the finite model
property for modal logics: filtration or ‘standard filtration’ and ‘selective filtration’.
The method of selective filtration was developed by Dov Gabbay in [40, 37, 42]
and, in a version for transitive modal logics, by Kit Fine [35]. The latter version
also led to new axiomatization methods (see the next section for more details) and
to the important notions of ‘subframe logics’ and ‘cofinal subframe logics’ (see [27,
Ch. 9] for a comprehensive overview).

The filtration technique has proved remarkably extendable, in two directions:

2.2 Stronger modal axioms

Staying within the old modal language, extended filtration methods guarantee more
frame properties for logics with additional axioms. Given a normal modal logic L
(an extension of the basic modal logic K), the filtration theorem gives us that, if a
filtration of an L-model results in a model based on a frame of L (such logics are
said to admit filtration), then L has the FMP. This yields the FMP for many well-
known modal logics e.g., K, KT, KB, K4, S4, S4.2 and many more. We refer to
[23] and [27, Sec. 5.3] for the details. An interesting example is the modal logic
S4.3. Not only does it enjoys the FMP, which can easily be shown via filtration, but
Bull [25] algebraically, and Fine [33] model-theoretically, proved that every normal
extension of S4.3 also has the FMP. In fact, Fine’s proof provides an interesting
synergy of filtration and selection, [33], see also [23, Sec. 4.9]. An alternative proof
is given in [66], see also [27, Ch 11], where it is shown that every normal extension
of S4.3 is a cofinal subframe logic.

The above definition of a logic admitting filtration involves many parameters:
models, frames, filtrations. In an attempt to obtain a uniform theory of filtrations,
stable logics were introduced in [16] and investigated further in [17] and [49] as
modal logics whose class of rooted frames is closed under order-preserving images.
[17] and [49] also study K4 and S4-stable logics (more generally L-stable logics).
Every stable, K4-stable or S4-stable logic admits filtration in the above sense and
hence enjoys the FMP. In a way stable logics are those logics that admit all filtrations
(all transitive filtrations in case of K4-stable or S4-stable logics).
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However, filtration and selective filtration are not only techniques for proving the
FMP—they can also be turned into axiomatization methods. For transitive modal
logics this approach via selective filtration was pioneered by Kit Fine [33, 35]. With
each transitive rooted frame F , Fine associated its subframe formula which is refuted
on a frame G iff there is a subframe of G bounded morphically mapped onto F .
Then every subframe logic above K4, i.e., a logic whose frame class is closed under
taking subframes, is axiomatized by such formulas [35]. Canonical formulas were
introduced in [65] (see also [27, Ch. 9]) as generalizations of subframe formulas and
it was shown that every logic above K4 is axiomatized by canonical formulas. The
proof of this result essentially relies on a version of selective filtration.

A parallel approach of axiomatizing modal logics via filtration was undertaken
recently. For each transitive rooted frame one can define its stable formula and show
that every K4-stable logic is axiomatizable by such formulas [16, 17]. Moreover, for
each rooted frame one defines its stable canonical rule, when this frame is transitive,
then this rule is equivalent to a formula, called a stable canonical formula.

To illustrate this dense survey, we display one typical modern result. For a proof
of the following theorem, which uses essentially filtrations, we refer to [16].

Theorem 2.5 Every normal modal logic is axiomatizable by stable canonical rules.
Moreover, every normal modal logic above K4 is axiomatizable by stable canonical
formulas and every K4-stable logic is axiomatizable by stable formulas.

This result yields immediately that there exist continuum many stable logics and
continuum many K4 and S4-stable logics [17, 49]. All these logics admit filtration.
Since there are only countably many decidable logics, uncountably many stable log-
ics must be undecidable. Thus, there are uncountably many undecidable modal log-
ics that admit filtration and hence have the FMP with an effective bound. Crucially,
none of these logics can be finitely axiomatizable – the earlier simple argument de-
riving decidability from effectively bounded filtration breaks down as checking the
truth of infinitely many axioms, even in a given finite space of potential counter-
models, is not an effective decision method. However, each logic axiomatized by
finitely many stable formulas will admit filtration and hence be decidable.

2.3 Richer modal languages

The second direction in which filtration methods have been generalized concerns
extensions to richer languages. We start with a simple case, where we just add a
universal modality to the basic modal language.

Fact 2.6 The filtration theorem also holds with the universal modality added.

The proof is similar to the proof of Theorem 2.2, except that a straightforward
additional inductive step for universal formulas needs to be verified.
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In general, filtration sets may have to be chosen with great care and imagina-
tion, when a modal language gets extended. We briefly discuss an influential case:
propositional dynamic logic PDL, a running example in several sections to follow.

Definition 2.7 The dynamic language PDL is defined by the grammar:

π :=a | ?ϕ | π;π | π ∪π | π∗ and

ϕ := p | ¬ϕ | ϕ ∧ϕ | 〈π〉ϕ,

Here, a is an element of the set of basic programs Π0. Note the mutually recursive
set-up of this syntax with formulas and program expressions on a par.

Definition 2.8 A PDL model is a standard model for a poly-modal lnguage, i.e., a
tuple M= (W,{Ra}a∈Π0 ,V ), where each Ra is a binary relation.

To define the semantics, two things must happen in tandem: giving the denota-
tions of program expressions and of formulas. For program expressions we set:

Rπ1∪π2 := Rπ1 ∪Rπ1

Rπ1;π2 := Rπ1 ◦Rπ1

Rπ∗ := (Rπ)
∗

R?ϕ := {(s,s) |M,s |= ϕ}

Note that this depends on the truth definition of formulas in the clause for tests.
Simultaneously, therefore, we define truth of a PDL formula ϕ in a model M, which
can be done in the standard way, noting that the clause for the general program
modality depends on our semantics for program expressions:

M,w |= 〈π〉ϕ iff there is v such that wRπ v with M,v |= ϕ .

Definition 2.9 Let Σ be a set of PDL-formulas. Then Σ is Fisher-Ladner closed if it
is closed under sub-formulas and under taking single negations,3 and which satisfies
the following additional closure conditions:

1. If 〈π1;π2〉ϕ ∈ Σ , then 〈π1〉〈π2〉ϕ ∈ Σ .
2. If 〈π1∪π2〉ϕ ∈ Σ , then 〈π1〉ϕ ∨〈π2〉ϕ ∈ Σ .
3. iI 〈π∗〉ϕ ∈ Σ , then 〈π〉〈π∗〉ϕ ∈ Σ .

The Fisher-Ladner closure of Σ is the smallest set of formulas containing Σ that is
Fisher-Ladner closed.

It is a well-known fact that the Fisher-Ladner closure of a finite set Σ is still finite.

Fact 2.10 If a PDL formula ϕ is satisfiable in a PDL model, then it is also satisfi-
able in a finite PDL model.

3 Double negations ¬¬ψ are identified here with the original formulas ψ .
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Proof. Let ϕ be a formula satisfied in a PDL-model M = (W,{Ra}a∈Π0 ,V ). We
take the smallest filtration M f = (W f ,{Rs

a}a∈Π0 ,V
′) of M via FL(Σ), for Σ = {ϕ}.

By the above observation, W f is finite. Recall that, in this model, we have [w]Rs
a[v]

iff there are w′ ∈ [w] and v′ ∈ [v] such that w′Rav′.

To prove the filtration theorem, we show two things in a simultaneous induction,
for all programs π and formulas ϕ:

• For any two w′ ∈ [w] and v′ ∈ [v] with w′Rπ v′, we also have [w]Rs
π [v]

• M,w |= ϕ iff M f , [w] |= ϕ .

The first fact is a straightforward induction on program operations, where the
case of test programs appeals to the second clause. As for the second clause, we
display only the crucial case when ψ has the form 〈π〉ψ .

Claim 2.11 For every w ∈W and 〈π〉ψ ∈ FL(Σ), we have

M,w |= 〈π〉ψ iff M f , [w] |= 〈π〉ψ .

From left to right, the proof is immediate by an appeal to the first clause about
preservation of program relations under filtration and the inductive hypothesis.

From right to left, we show by induction on the complexity of programs π that
the assertion holds for each π with respect to all formulas ϕ in the Fisher-Ladner
set. The case when π ∈ Π0 is as for the standard filtration theorem. Thus, we only
need to consider the cases (1) π = π1∪π2, (2) π = π1;π2, and (3) π = ρ∗.

Cases (1), (2) involve straightforward appeals to the inductive hypothesis. Now,
let M f , [w] |= 〈ρ∗〉ψ . Then there are w1, . . . ,wn with [w] = [w0]Rs

ρ [w1]Rs
ρ . . .R

s
ρ [wn],

and M f , [wn] |= ψ . By the inductive hypothesis, M,wn |= ψ . Then also M,wn |=
〈ρ∗〉ψ – which takes care of sequences of length 1. Longer finite sequences can be
treated as finite relational compositions, noting that we do not need to talk about
truth of ever larger iterated formulas 〈π〉 . . .〈π〉ψ (which may not be in the Fisher-
Ladner set) along the sequence, but can stick with formulas 〈ρ∗〉ψ – using the fact,
in each step, that 〈ρ〉〈ρ∗〉ψ is in the Fisher-Ladner set and implies 〈ρ∗〉ψ . 4

Many extended modal languages interact with filtration in interesting ways. For
instance, a ‘transfer result’ in [22] says that, if a modal logic L admits filtration,
then various desirable meta-properties of L also hold for a suitable defined hybrid
companion to L adding expressive devices from hybrid logic.

4 It should be pointed out that in the above proof, while for an atomic program a it is the case that
[w]Rs

a[v] implies that there are w′ ∈ [w] and v′ ∈ [v] such that w′Rav′, this may no longer be true for
an arbitrary program π . This can be shown with an easy example involving π = a∗. Thus, in this
sense, the filtrated relations correspond to the smallest filtration only for basic programs.
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2.4 Coda

But what is filtration? What we really require from the filtrated model is just that
it satisfies the filtration theorem. This can be considered as a definition, and going
further, we can even replace condition (F1) with the condition:

(F1′) M,x |= ♦ϕ ⇒∃y ([x]R f [y] & M,y |= ϕ).

This condition is again equivalent to the following symmetric version of (F2):

(F1′′) xRy⇒ (∀♦ϕ ∈ Σ)(M f , [y] |= ϕ ⇒M f , [x] |= ♦ϕ).

Thus, by considering (F1′′) and (F2), the definition of filtration can be made fully
symmetric. We call this new notion weak filtration. It is easy to check that any of
(F1′) and (F1′′), together with other clauses, guarantees the filtration theorem to
hold. In fact, any of (F1′) and (F1′′) is equivalent to the left to right direction of the
♦-clause of the filtration theorem. On the other hand, condition (F2) is equivalent to
the right to left direction of the ♦-clause of the filtration theorem.5

One can naturally ask whether there are any logical systems which admit weak
filtration but not the standard one. The answer to this question is positive. The well-
known systems of modal logic GL, K4.Grz and S4.Grz all admit weak filtration in
the preceding sense, but they do not admit standard filtration [24].

Weak filtration also appears to be a natural concept from a co-algebraic point of
view. In co-algebraic modal logic, the theory map restricted to a subformula-closed
set of formulas can be seen to satisfy a certain universal property. For the type of
co-algebras that correspond to Kripke models, the filtration condition (F1′) is then
precisely what is needed for a diagrammatic proof of the Truth Lemma.6

But there are also drawbacks to this new notion of filtration. There need not be a
weakest filtration – and more importantly, we lose the appealing quotient intuition.

2.5 Conclusion

Filtration is a wide-ranging method, and its range still continues to expand.7

5 In this format, filtration looks like a form of bisimulation restricted to back-and-forth behavior
w.r.t. only a finite set of relevant formulas – a perspective that we will not explore further here.
6 This point is due to personal communication with Clemens Kupke and Jurriaan Rot.
7 Filtration also works on other similarity types than the relational models for modal logic discussed
here. For instance, filtration on neighborhood semantics can be found in [28, 46, 58, 60].
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3 Constructive versions of filtration

3.1 Semantic or proof-theoretic

Filtration can be a purely semantic method working on models. But it also provides
results on proof-theoretic canonical Henkin models, yielding FMP and decidability
plus completeness. In this section, we consider versions of filtration over syntactic
Henkin models that have come into wide use. While a new term might be preferable
in this setting of proof and consistency, we follow practice in the field and just speak
about ‘filtration’, as the context will always disambiguate which sense is meant.

To demonstrate the above ideas, we will first give a warm-up result. Recall that
a logic L enjoys the finite model property (the FMP) if there is a class C of finite
frames validating the formulas in L such that, for each formula ϕ , we have

L ` ϕ iff C |= ϕ .

It is easy to see that the above is equivalent to the fact that every L-consistent formula
ϕ is satisfied in a model based on an L-frame in C.

Fact 3.1 The basic modal logic K is complete and has the FMP.

Proof. This result has already been proved purely semantically in Section 2.1. We
sketch the main argument in the current setting. Let ϕ be a K-consistent formula.
Then the canonical model MC

K satisfies ϕ . Obviously, as all relational frames are
K-frames, MC

K is based on a K-frame. We now take the filtration of MC
K via the set

Σ = Sub(ϕ) of subformulas of ϕ . By Theorem 2.2, the filtrated model satisfies ϕ

and is clearly based on a K-frame. This finishes the proof.

Remark 3.2 Our presentation followed what most modal logicians have in mind:
they start from the complete infinite Henkin model that they know and love, and
filtrate it down to a finite model. However, there is an alternative which is also in
wide use. One restricts the ‘language’ of the whole Henkin construction to the finite
filtration set, and thus immediately obtains a finite Henkin model – noting that the
usual completeness proof goes through in this rectricted setting. This may not yet
be the model one wants, so further surgery may be needed, as we shall see below.

In the current style, filtration connects with the analysis of proof principles for
modal logics that support its success. The above proof generalizes to every modal
logic L that is canonical (i.e., the canonical model of L is based on a frame for L) and
admits filtration. However, the path towards the FMP via filtration may work even
for logics that are not canonical. Sometimes, the canonical frame of a logic is not in
a ‘right’ class, but its filtrations are, yielding FMP and decidability after all. We will
demonstrate this for the case of Propositional Dynamic Logic PDL, discussed earlier
in a purely semantic setting. Other non-canonical systems for which this method
works are the well-known modal logics GL, K4.Grz and S4.Grz, but in these cases
one needs to work with the notion of weak filtration discussed in Section 2.4.

Recall that the system PDL is axiomatized by the following principles:
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(CPC) Axioms and rules of classical propositional logic
(Ax-Kπ ) [π](ϕ → ψ)→ ([π]ϕ → [π]ψ)

(Ax-(?ϕ)) [?ϕ]ψ ↔ (ϕ → ψ)

(Ax-(π;π ′)) [π;π ′]ϕ ↔ [π][π ′]ϕ

(Ax-(π ∪π ′)) [π ∪π ′]ϕ ↔ ([π]ϕ ∧ [π ′]ϕ)
(Ax-(π∗)-1) [π∗]ϕ ↔ (ϕ ∧ [π][π∗]ϕ)
(Ax-(π∗)-2) [π∗](ϕ → [π∗]ϕ)→ (ϕ → [π∗]ϕ)

(Nec[π]) if ϕ is provable, then [π]ϕ is provable

Table 1: Axioms and rules of PDL

Theorem 3.3 PDL is complete and enjoys the finite model property.

Proof. We show that, if a formula ϕ is PDL-consistent, then it is satisfiable.
For convenience, we follow the second view outlined above, and just consider the

finite Henkin model MC = (WC,{RC
a }a∈Π0 ,V

C) consisting of all maximally consis-
tent sets where the language of available formulas is just the filtration set.8 Note that
we can view the conjunctions of all formulas in these sets Σ as single formulas Σ̂ .

Next, in defining the relations ΣRC
a ∆ for atomic programs, we still refer to prov-

ability and consistency in the complete language beyond the filtration set:

ΣRC
a ∆ iff Σ̂ ∧〈a〉∆̂ is consistent in the logic PDL.

More generally, we define relations ΣSπ ∆ as consistency of Σ̂ ∧〈π〉∆̂ . However,
we also define a second family of relations, starting from the atomic relations RC

a
and then lifting these to Rπ for all programs π via the usual semantics for PDL. We
also use the notation MC for the standard model arising in this second way.

Claim 3.4 For all programs π and formulas ψ occurring in FL(Σ), and all maxi-
mally consistent sets ∆ in the finite Henkin model MC, we have

1. Sπ∗ ⊆ (Sπ)
∗

2. Sπ ⊆ Rπ

Claim 3.5 For all programs π and formulas ψ occurring in FL(Σ), and all maxi-
mally consistent sets ∆ in the finite Henkin model MC, we have

ψ ∈ ∆ iff MC,∆ |= ψ .

These three claims are proved by a simultaneous induction on formulas and pro-
grams, where the second claim is the one that appeals essentially to the Induction
Axiom. In following the steps, one will use each direction of the PDL axioms once,
as well as each clause in the definition of FL(Σ). For details, we refer to [23].

8 This sparse approach bypasses non-standard infinite consistent sets of formulas such as
{〈a∗〉ϕ,¬p, [a]¬p, [a]2¬p, . . . ,} that do not admit of an interpretation in standard models.
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From the claims we obtain the desired finite model that satisfies ϕ . Thus, on top
of its completeness, PDL has the finite model property.

Remark 3.6 The following observations throw some further light on the preceding.
Let W be the set of all maximal PDL consistent sets. Then it is immediate that
WC = {Γ ∩FL(Σ) : Γ ∈W}. For each program π , we define the canonical relation
RC

π on W by setting ΓRC
π ∆ if, for each formula ϕ , ϕ ∈ ∆ implies 〈π〉ϕ ∈ Γ . Next

we show that for each Γ ,∆ ∈W with ΓRC
π ∆ , we have ASπ B, where A =Γ ∩FL(Σ)

and B=∆ ∩FL(Σ). To see this, note that B̂∈∆ . So 〈π〉B̂∈Γ . Hence, Â∧〈π〉B̂∈Γ ,
which implies, by consistency of Γ that Â∧〈π〉B̂ is consistent. So we have ASπ B.
But then, the finite canonical model can be seen as the smallest filtration of the full
canonical model of PDL; just identify the equivalence class [Γ ] with Γ ∩FL(Σ).9

Question Can we use the filtration proof to automatically find the axioms for PDL,
just as the Henkin proof suggests the axioms for the minimal modal logic?

We continue with a discussion of some further aspects of this setting.

3.2 Normal forms

The syntactic aspect of filtration may also be connected to the use of normal forms in
modal logic, discovered by Fine [34] and revisited many times by different authors,
e.g., Bellissima [5], Ghilardi [43] and Moss [57].

For example, in the basic modal logic K normal forms of formulas with variables
in Pn = {p0, . . . , pn} of degree 0 are formulas of the form∧

pi∈T

pi∧
∧

pi∈Pn\T
pi

for T ⊆ Pn. Normal forms of degree k+ 1 are formulas in the following form, for
T ⊆ Pn and S a set of normal forms of degree k:∧

pi∈T

pi∧
∧

pi∈Pn\T
¬pi∧

∧
ψ∈S

♦ψ ∧�
∨

S.

Remark 3.7 These normal forms are also reminiscent of model description formu-
las for given pointed models up to bisimulation. There one starts with enumerating
the true literals at the point, and then, inductively, at each next level α +1, describes
the types of successors of the point that can be stated at description level α .

9 The above also shows that the finite canonical model WC with the relations Sπ is the least filtra-
tion of the (big) canonical model. However, as Sπ ⊆ Rπ , the ‘real’ finite canonical model is also
a filtration of the big canonical model. Condition (F1) follows from the fact that Sπ ⊆ Rπ , and
condition (F2) follows from the truth lemma for canonical models and the above Claim 3.5.
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One can think of normal forms as follows. Finite canonical models for a given
modal logic L are essentially filtrations of the canonical model for L via the finite set
of formulas of fixed finite modal depth k. Moreover, ‘model description formulas’,
a finite-depth variant of modal Scott sentences describing given pointed models up
to bisimulation, then describe worlds in these finite canonical models. Since every
formula has finite modal depth, it corresponds to a subset of the finite canonical
model, and its normal form is a finite disjunction of model description formulas.

In algebraic terms, finite canonical models correspond to Lindenbaum-Tarski al-
gebras of formulas of finite modal depth. Note that these algebras are not modal
algebras in the standard sense. Applying a modal operator, say, � to a formula of
modal depth less than k gives us a formula of modal depth less than k+ 1. Thus,
for a modal logic L if we let Bk be the algebra of formulas of modal depth less than
or equal to k, modulo L-equivalence, then we can view the modal operator � as a
meet-preserving map from Bk into Bk+1. Then the limit of the sequence of these par-
tial algebras is the Lindenbaum-Tarski algebra of a given logic L. Model description
formulas can be seen as formulas describing atoms of such Bk’s and as each Bk is
finite, every formula of modal depth k will be a finite disjunction of these formulas,
providing Fine normal forms. We refer to [43, 57, 21, 20] for more details on this
algebraic and coalgebraic analysis of finite canonical models and normal forms.

The connection of normal forms and finite canonical models with the so-called
universal models of modal and intermediate logics [27, 19] remains to be clarified.
It is known that, for transitive modal logics, the model description formulas define
exactly the singletons of universal models (atoms of the corresponding free alge-
bras) leading to an alternative description of Jankov-Fine formulas [5, 27]. A similar
characterization in the intuitionistic setting via join-irreducible elements gives rise
to Jankov-de Jongh formulas for intuitionistic logic [19].

Remark 3.8 The Henkin model is one unique countermodel for all non-valid for-
mulas. In fact, for modal formulas of depth k, it suffices to take the finite k-cut-off
Henkin model. The semantic FMP seemed to go model by model. However, we
only need finitely many types of finite countermodel: their disjoint union, too, is a
universal counter-model, and we can even contract equivalent types via bisimula-
tion inside that model. It is easy to show, using the completeness theorem, that this
semantically generated model is in fact isomorphic to the finite Henkin model.

More can be said on the topic of normal forms and model description formulas,
also for our running example PDL, but we ignore this here, cf. [7, Section 5].

3.3 Complexity

The proof-theoretic road to the FMP also suggests a comparison with what is known
about the computational complexity of satisfiablility and validity for modal logics.
For instance, for the minimal modal logic, the satisfiability problem is known to
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be Pspace-complete. But the filtration method as explained in Section 2.1 gives an
exponential size for countermodels, and hence it overshoots widely.

The reason for the mismatch is that we do not need to display counter-models
explicitly in order to test for their existence. A finer analysis is via semantic tableaus
which faithfully test the existence of satisfying models for a given formula branch
by branch, [36], and a closer analysis of the tableau method reveals that it only uses
polynomial space. Semantic tableaus lie in between model theory and proof theory,
and they fit well with filtration. Indeed, there exist versions of filtration [40, 37,
42] that read-off counter-models by tableau-like recipes. A further comparison of
tableau methods and filtration methods is beyond the scope of this article.

Another basic feature of modal languages, and the reason behind many of their
practical applications, is their low model-checking complexity. Unlike first-order
logic, whose model-checking problem is Pspace-complete, while model checking
for the basic modal language is known to be in low Ptime. Interestingly, the efficient
algorithm which shows this computes truth values for the given formula and all its
subformulas in all worlds of the given model. The reason why this suffices, suggests
analogies with filtration, but again, we forego a further discussion.10

All this suggests that filtration can be constructivized even further, as a way of
getting at the minimal complexity of basic tasks associated with modal logics.

3.4 Conclusion

The method of filtration can also be used in a proof-theoretic setting, and then it
adds additional constructive insights into axiomatization.

3.5 Digression: Algebraic versions

This section was about merging semantic and proof-theoretic aspects of filtration.
A standard setting for such a two-sided perspective is the algebraic approach to
modal logic. We briefly discuss an algebraic version of filtration which goes back to
[55, 56]. For recent accounts, see [16, 44, 30] – while we will follow [16].

Recall that a modal algebra is a pair A = (A,♦), where A is a Boolean algebra
and ♦ is a unary function on A that commutes with finite joins. As usual, the dual
operator � is defined as¬♦¬. A modal homomorphism between two modal algebras
is a Boolean homomorphism h satisfying h(♦a) = ♦h(a). Let MA be the category
of modal algebras and modal homomorphisms.

Definition 3.9 Let A= (A,♦) and B= (B,♦) be modal algebras and let h : A→ B
be a Boolean homomorphism.

10 The low complexity also implies that computing filtrated models can be done efficiently.
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1. A map h is a stable homomorphism provided ♦h(a)≤ h(♦a) for each a ∈ A.
2. A map h satisfies the closed domain condition (CDC) for D⊆ A if

h(♦a)≤ ♦h(a) for each a ∈ D.

It is easy to see that h : A→ B is stable iff h(�a) ≤ �h(a) for each a ∈ A. A
valuation on a modal algebra (A,♦) is a map V from propositional variables to A.
Each valuation can be extended to a map from the set of all formulas into A in a
standard way. We write (A,♦,V ) |= ϕ if V (ϕ) = 1.

Definition 3.10 Let A = (A,♦) be a modal algebra, V a valuation on A, and Σ a
set of formulas closed under subformulas. Let A f be the Boolean subalgebra of A
generated by V (Σ)⊆ A and let D = {V (ϕ) : ♦ϕ ∈ Σ}. Let ♦ f be a modal operator
and V f a valuation on A f . Then (A f ,♦ f ,V f ) is called an algebraic filtration of
(A,♦,V ) through Σ if V f (p) =V (p) for each p ∈ Σ and

1. the inclusion (A f ,♦ f ) � (A,♦) is a stable homomorphism, i.e., ♦ f a ≤ ♦a, for
each a ∈ A;

2. the inclusion (A f ,♦ f )� (A,♦) satisfies (CDC) for D, i.e., ♦a ≤ ♦ f a, for each
a ∈ D.

Using a duality of modal algebras one can show that algebraic filtration is dual
to standard model-theoretic filtration, [51, 52]. In fact, condition (1) is an algebraic
analogue of condition (F1) of filtration and condition (2) is the analogue of (F2).
The next theorem is an algebraic analogue of the basic filtration theorem.

Theorem 3.11 (Algebraic filtration theorem) Let (A,♦) be a modal algebra, V a
valuation on A and Σ a set of formulas closed under subformulas. Let (A f ,♦ f ,V f )
be a filtration of (A,♦,V ) through Σ . Then for every ϕ ∈ Σ we have

V (ϕ) =V f (ϕ).

For recent general algebraic accounts of filtration, see [44, 30, 16].

Weak filtrations introduced in Section 2.4 then correspond to algebras (A f ,♦ f ,V f )
such that the inclusion (A f ,♦ f )� (A,♦) satisfies ♦a = ♦ f a, for each a ∈D. Thus,
algebraic filtration can be seen as a way of ‘twisting’ the standard denotation of the
standard modal operator in such a way that we do not get full, potentially infinite,
subalgebras, but finite subalgebras whose modal operator is just enough like the
standard one to satisfy the relevant formulas.

Remark 3.12 The algebraic approach links naturally to later topics in this article.
In particular, it lends itself to the dynamics of model update discussed in Sections
4 and following. Given a set of formulas Σ and a modal algebra with a valuation
(A,♦,V ) we can define a dynamic operation [Σ ]ϕ by putting (A,♦,V ) |= [Σ ]ϕ iff
(A f ,♦ f ,V f ) |= ϕ , where (A f ,♦ f ,V f ) is a filtration of (A,♦,V ) via Σ . This sug-
gest an algebraic version of filtration dynamics. From this perspective ‘filtration as
abstraction’ is encoded in the fact that we are generating A f from V (Σ). Thus, alge-
braically, generating a subalgebra corresponds to filtering information through Σ .
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Many further dynamic operations make sense on algebras. For example, given
(A,♦,V ) and a formula ψ , let (A,♦,V ) |= [!ψ]ϕ iff (Aψ ,♦ψ ,Vψ) |= ϕ , where
(Aψ ,♦ψ ,Vψ) is obtained from (A,♦,V ) by relativizing its domain to the element
V (ψ). This is then an algebraic analogue of public announcement.11

4 The modal logic of filtration

4.1 Filtration modalities

The basic theory of filtration as explained in Section 2 itself has a modal flavor.
Filtration is a form of model change, and we can describe this change by introducing
a new modal operator for it. This suggests an extension of the basic modal language
with modalities [\Σ ]ϕ saying that ϕ is true at the image of the current world in the
result of filtrating the current model with respect to the set of formulas Σ .

If we fix the standard filtration, then this extension of the basic language of modal
logic already adds expressive power. The following is easy to see.

Example 4.1 The formula [\{>}]♦> is equivalent to ∃x∃yRxy. But ∃x∃yRxy is not
definable in the basic modal language since it is not invariant under bisimulation.

The latter statement is definable with a universal modality in the language, as
¬U�⊥. Conversely, the universal modality is not definable in terms of the filtration
modality, see [49, Chapter 8]. However, as we shall see soon, the basic modal lan-
guage with added filtration modalities is closely related to the basic modal language
with a universal modality added.

But we can go much further in this style of analysis. As we have seen, there are
many variants of filtration, where relations in the filtrated model can be defined in
various ways. One general format for defining new relations in a modal setting is
the ‘program format’ of van Benthem & Liu [12], where new relations are given by
programs in the language of propositional dynamic logic PDL, that we have used
on several occasions already. We will see further examples in a moment.

The results that follow can be found in Baltag et al. [4] and Ilin [49]. We consider
a language for the logic of filtration [4, 49] 12 which arises by extending the language
of propositional dynamic logic PDL with abstraction modalities [−→π /Σ ]ϕ .

11 One can also consider more purely algebraic operations. E.g., let f : A→ A be any map, with A f
the set of fixed-points of f , and set A |= [ f ]ϕ iff A f |= ϕ . Here A could be a Heyting algebra and
f a nucleus on it, say, the double negation ¬¬. Then A f is a Boolean algebra of regular elements
of A, cf. [18]. Algebraic machinery of this sort fits well with various later topics in this article, but
we must leave the exploration of algebraic perspectives to another occasion.
12 The cited works call this general system a ‘logic of abstraction’, emphasizing the fact that
filtration stands for a very general procedure.
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Definition 4.2 The dynamic language PDL[−→π /Σ ] is defined by the grammar:

π :=r | ?ψ | 1 | π;π | π ∪π | π∗ and

ϕ := p | ¬ϕ | ϕ ∧ϕ | 〈π〉ϕ | [−→π /Σ ]ϕ,

where r is an element of the set of basic programs Π0, ψ ∈PDL[−→π /Σ ],
−→
π = (πr)r∈Π0

is a sequence of PDL-programs, and Σ is a finite13 subset of PDL.

Next we define the relevant (multi-relational) models.

Definition 4.3 (Quotient model) Let M= (W,(Rr)r∈Π0 ,V ) be a relational model.
For any finite Σ ⊆ PDL and any sequence −→π = (πr)r∈Π0 of programs, the quotient
model M

−→
π
Σ

, is M
−→
π
Σ

= (WΣ ,(R
πr
Σ
)r∈Π0 ,vΣ ), where

• WΣ := {|w|Σ | w ∈W},
• vΣ (p) := {|w|Σ | there is w′ ∼Σ w with w′ ∈V (p)}, and
• For each r ∈Π0,

|w|Σ Rπr
Σ
|v|Σ iff there is w′ ∼Σ w and v′ ∼Σ v with w′Rπr v

′,

where the relation ∼Σ is the equivalence relation induced by Σ defined just as in
Section 2.1 and Rπ denotes the relation induced by the program π .

Recall the notions of smallest, largest, transitive, and smallest transitive filtration
in Section 2.1, for which we use the abbreviations s, l, t, st, respectively. To fit these
into our program format, for each f ∈ {s, l, t,st}, we define a program π f in the
language PDL−∗ (∗-free PDL) whose quotient models coincide with f -filtrations.
Let Σ be a finite set of formulas in the language LE . For Ψ ⊆ Σ , we set

• Ψ♦ :=
∧

♦ϕ∈Σ ,ϕ∈Ψ ♦ϕ ,

• Ψ♦,∨ :=
∧

♦ϕ∈Σ ,ϕ∈Ψ (♦ϕ ∨ϕ),

• ¬Ψ := {¬ϕ | ϕ ∈Ψ}.

while we also let Ψ̂ =
∧

Ψ ∧
∧
¬(Σ \Ψ),

Then we define the following programs:

πs = r, πl =
⋃

Ψ⊆Σ

(?Ψ♦;1;?Ψ̂), πt =
⋃

Ψ⊆Σ

(?Ψ♦,∨;1;?Ψ̂).

Now let πΣ =
⋃

Ψ⊆Σ (?Ψ̂ ;1;?Ψ̂), and for k ∈ N, let π1 = r and πk+1 = r;πΣ ;πk,
while for the smallest transitive filtration, we set

πst =
⋃

1≤k≤2|Σ |
πk.

13 The finiteness is essential for obtaining reduction axioms for the corresponding dynamic logic.
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Lemma 4.4 Let f ∈ {s, l, t,st}, Σ a finite subformula closed set, and M any model.
The quotient model MΣ w.r.t. the program π f matches the f -filtration of M via Σ .

For a proof we refer to [4] and [49, Chapter 8].

Definition 4.5 (Semantics for PDL[−→π /Σ ]) Let M= (W,(Rr)r∈Π0 ,v) be a relational
model and w in W. The truth of PDL[−→π /Σ ]-formulas is defined recursively as for
PDL, now with the additional clause:

M,w |= [−→π /Σ ]ϕ iff M
−→
π
Σ
, |w|Σ |= ϕ

where the model M
−→
π
Σ

is as described in Definition 4.3.

4.2 Completeness theorem

One can axiomatize the theory of filtration in the above sense as a quotient logic.

For a start, for every formula χ ∈ PDL[−→π /Σ ] and finite Σ ⊆ PDL we set:

〈∼Σ 〉χ :=
∨

Ψ⊆Σ

(
Ψ̂ ∧〈1〉

(
Ψ̂ ∧χ

))
.

The following lemma shows that the modality 〈∼Σ 〉 is in fact the standard dia-
mond modality for the binary relation ∼Σ .

Lemma 4.6 For a modal model M and world x ∈M, we have

M,x |= 〈∼Σ 〉χ iff there is x′ ∼Σ x with M,x′  χ .

Next, the logic QPDL is determined by the axioms and rules in Table 2.

(PDL) Axiom-schemes and rules of PDL (see Table 1)
(Ax-〈1〉) S5-axioms for 〈1〉, 〈π〉ϕ → 〈1〉
(Ax-K[−→π /Σ ]) [−→π /Σ ](ϕ → ψ)→ ([−→π /Σ ]ϕ → [−→π /Σ ]ψ)

(Ax-p) [−→π /Σ ] p↔ 〈∼Σ 〉p
(Ax-¬) [−→π /Σ ]¬ϕ ↔¬[−→π /Σ ]ϕ

(Ax-∧) [−→π /Σ ](ϕ ∧ψ)↔ [−→π /Σ ]ϕ ∧ [−→π /Σ ]ψ

(Ax-〈1〉) [−→π /Σ ]〈1〉ϕ ↔ 〈1〉[−→π /Σ ]ϕ

(Ax-〈r〉) [−→π /Σ ]〈r〉ϕ ↔ 〈∼Σ 〉〈πr〉[−→π /Σ ]ϕ for all r ∈Π0

(Ax-∗) [−→π /Σ ]〈α∗〉ϕ ↔ [−→π /Σ ]
∨

0≤n≤2|Σ |〈α〉
nϕ

(Nec[−→π /Σ ]) From ϕ infer [−→π /Σ ]ϕ

Table 2: The logic QPDL
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We can now formulate the main result.

Theorem 4.7 (Soundness and completeness) The logic QPDL is sound and com-
plete with respect to the semantics of the modal language of filtration.

The key observation in the proof of this result is that the stated reduction axioms
enable us to show that every formula in PDL[−→π /Σ ] is provably equivalent in the
system QPDL to a formula in the language PDL.

Theorem 4.8 (Expressivity) For every ϕ ∈PDL[−→π /Σ ] there is a ψ ∈PDL such that
`QPDL ϕ ↔ ψ .

The latter result is proved by repeating the following procedure. Start with any
innermost occurrence of a filtration modality in ϕ , with no such modalities in its
scope, and use the axioms displayed to push this occurrence inside until it reaches
atomic formulas. Using our axiom for this base case, each of these last modalized
subformulas can be replaced by a formula without filtration modalities.14

4.3 Discussion

There are several things to note about the results obtained here, since the above
analysis has several interesting consequences.

Inside and outside the filtration set. First, we note that the original filtration theorem
is a special case. The logic QPDL is complete with respect to formulas [\Σ ]ϕ where
ϕ is arbitrary, and need not occur inside the set Σ . In the special case that ϕ ∈ Σ ,
however, we can get something much stronger. For instance, suppose that all rela-
tions are treated via the coarsest filtration, then the standard filtration equivalence

[\Σ ]ϕ ↔ ϕ

will be provable. This can be shown by induction on ϕ , where the case for the
existential modality ♦ involves a non-trivial appeal to the principles of QPDL.15

But our results also apply to well-known further topics in classical modal logic.

Subframe logics and stable logics. Fine’s special modal logics mentioned in Sec-
tion 2.1 reappear in this setting. Call a modal logic L closed under updates if, given
any model M based on a frame for L, for each formula ϕ , the updated model M|ϕ ,
i.e., the relativization of M to ϕ , is also based on a frame for L. It is easy to verify
that a modal logic L is closed under updates if and only if it is a subframe logic.

In a similar way we can define a modal logic L to be closed under abstraction
if given a model M based on a frame of L, for each set of formulas Σ , the updated

14 The precise version of this procedure requires a non-trivial termination argument in terms of a
syntactic measure on formulas whose details can be found in [49, Chapter 8].
15 The reader may find of interest to trace the details of this proof, and see how it literally matches
the usual argument for the filtration theorem stated in the meta-language.
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model M f ,Σ is also based on a frame of L. These are the logics for which it is
meaningful to consider the abstraction/filtration dynamics. It follows from [17, 49]
that stable logics (in the language with the universal modality), mentioned in Section
2.1, are exactly the logics that are closed under abstraction.

Next we turn to some less standard perspectives.

Schematic validity. A third interesting point is that there are natural schematically
valid principles (all their substitution instances are universally valid) concerning fil-
tration that do not occur in the above axiomatization. One example is Idempotence:

[\Σ ]ϕ ↔ [\Σ ] [\Σ ]ϕ

Not all principles of our logic QPDL are schematically valid: e.g., it is easy to
see that the above Axiom (Ax-p) is not. This leaves us with an interesting

Open problem 4.9 Can the schematic validities of the modal logic of filtration be
axiomatized, and if so, how?

Fixed-point logic. Another interesting open problem concerns the cavalier treatment
of iteration via brute enumeration in the logic QPDL, which used the finiteness of
filtrated models with a bound given by the set Σ . There is an obvious problem of
how to generalize this to arbitrary settings with infinite sets Σ , in itself a natural
generalization of the filtration setting.16

Limits to axiomatizing meta-theory. Despite the above success, how much meta-
modeltheory can one axiomatize in modal logic? For the case of first-order logic, a
striking mismatch was pointed out in [54]: the elementary metatheory of first-order
predicate logic encodes True Arithmetic, and hence it is non-arithmetical, and hence
undecidable and non-axiomatizable. A similar mismatch may well occur for modal
logic. For instance, the Lindström-style analysis of modal logic in [14] shows how
the crucial notion of a bisimulation is not itself modally definable.17

4.4 Conclusion

This section has shown that ‘modalizing filtration’ is a feasible strategy. The basic
theory of this method is so simple that it can itself be absorbed into modal logic.
This points the way to a more ambitious issue of formalizing ‘quotient dynamics’
that we will return to in Section 6. It also raises the further background issue to
which extent modalizing the meta-theory of modal logic is possible, something that
will be considered briefly in Section 8.

16 A modal logic with ‘ceteris paribus’ riders expressed as arbitrary sets formulas whose truth
values are to be kept constant when comparing worlds is studied in [11]. Its connection to the
above logic of filtration remains to be understood.
17 The general modal logic of bisimulation over universes of relational models seems undecidable,
since bisimulation imposes a form of commutation that can encode grid structure, [23].
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5 Filtration and Information Update

In the preceding section, we saw how, in a semantic perspective, filtration is a nat-
ural form of model change that might be described as ‘definable quotienting’. But
many other definable transformations of models are studied in modal logic today, in
particular, in the tradition of dynamic-epistemic logic where information update is
represented by model change, [63]. In fact, the above axiomatization of modal filtra-
tion logic used a well-known dynamic-epistemic technique, describing the behavior
of the additional dynamic modalities in terms of ‘recursion axioms’.

These two ways of studying model change do not live in isolation, it makes sense
to compare and combine them, and in this section, we will explore how this works.18

5.1 Public announcement logic

The simplest information update arises when new information comes in as a true
proposition ϕ , shrinking the current range of options for what the actual world is
like. Technically, this is update by relativization to a definable submodel: a current
epistemic model M= (W,R,V ),s with actual world s is transformed into

M|ϕ,s

that is, the submodel consisting only of those points that satisfied ϕ in M. This up-
date is a partial function: the transformation is only defined when M,s |= ϕ: that is,
the new information is true. These actions are often called ‘public announcements’,
though they can also result from observation, or any signal that the agent decides to
treat as completely reliable.

The modal language of public announcement logic PAL consists of the standard
modal language with action terms !ϕ for any formula of the language, and dynamic
modalities [!ϕ]ψ for announcements interpreted as follows:

M,s |= [!ϕ]ψ iff (if M,s |= ϕ , then M|ϕ,s |= ψ)

The existential modality 〈!ϕ〉ψ makes the same assertion about the relativized sub-
model, but now in conjunction with M,s |= ϕ . We will use this version occasionally.

A complete proof system for PAL consists of the axioms and rules for the mini-
mal modal logic, together with the four recursion axioms displayed in Table 3.

Reduction laws:
(Rp) [!θ ]p↔ (θ → p)
(R¬) [!θ ]¬ψ ↔ (θ →¬[!θ ]ψ)

(R∧) [!θ ](ψ ∧ϕ)↔ ([!θ ]ψ ∧ [!θ ]ϕ)

18 This section is discursive, putting a topic on the map, rather than presenting deep new results.
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(RKi ) [θ ]Kiψ ↔ (θ → Ki[θ ]ψ)

(RU ) [θ ]Uϕ ↔ (θ →U [θ ]ϕ)

(R[!]) [θ ][ρ]χ ↔ [!(θ ∧ [!θ ]ρ)]χ
(Nec!) from ϕ , infer [θ ]ϕ .

Table 3: Axioms and rules of PAL

Theorem 5.1 The displayed proof system for PAL is sound and complete.

Proof. The method is like that used in Section 4 for the modal logic of filtration.
Working iteratively, innermost occurrences of dynamic modalities can be pushed
inside using the recursion axioms and the proof rule of Replacement of Equivalents,
until they attach to atoms, where the dynamic modality can be removed by the axiom
for atoms. For the remaining valid formulas without dynamic modalities, there must
be a proof given the completeness of basic modal logic.

This reduction method also establishes decidability, since validity in PAL can
now be decided by applying the transformation and then testing for validity of the
resulting formula in basic modal logic.19 20

While this reduction method is convenient, there are also more general complete-
ness proofs that work in more standard Henkin-style. These also work for variations
of the system that no longer support recursion axioms of the above kind.

There are many further dynamic logics of this kind, covering updates with private
as opposed to public information, belief revision, preference change, issue change,
and in fact, any activity of rational agents that can be affected by new information.
In this broader setting, more common than the domain change in the above is a
transformation of ‘definable relation change’ on an unchanged domain. In Section
4, we already used the ‘program format’ that is often used in dynamic-epistemic
logic for definable relation change.

5.2 Quotient dynamics and update dynamics

In handling information, both perspectives make sense: update as changing a current
range of options, and quotienting as redescribing that range for some special purpose
at hand. What happens when we combine the two?

19 This method involves potential exponential blow-up, and does not establish the complexity of
satisfiability for PAL, which is in fact Pspace-complete.
20 Incidentally, a direct semantic filtration argument for the decidability of PAL is not easy to give.
Could the results that follow provide a principled solution?
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In what follows, unless explicitly mentioned, we assume that the sets of formulas
used for filtration are closed under subformulas.21

Fact 5.2 The following commutation principle holds: !ϕ ; \Σ ' \Σϕ ; !ϕ , with
Σϕ = {〈ϕ〉α |α ∈ Σ} and with ; for relational composition. That is, when applied
to the same model M,s, the two operator sequences yield isomorphic models.

M

M f , Σϕ

M | ϕ

(M | ϕ) f , Σ ∼= (M f , Σϕ ) | ϕ

!ϕ

!ϕ

Proof. Here is the key observation in showing that the two routes to the bottom-
right corner of the diagram are the same. In the model M|ϕ after update with ϕ ,
points s, t that are Σ -equivalent are mapped onto the same point in (M|ϕ) f , Σ . But
by the semantics of PAL, these same points s, t were equivalent in M with respect
to the formulas 〈!ϕ〉α for each α ∈ Σ . We can also assume that 〈!ϕ〉> is among
the relevant formulas 22: in M, this formula marks the points satisfying ϕ . By the
closure under subformulas, and the basic filtration theorem, the images of these
points are exactly the points that satisfy ϕ in the filtrated model M f , Σϕ . And the
latter are the points that are preserved in the bottom-right model (M f , Σϕ ) | ϕ .

The final part of the proof shows that the bijection between (M | ϕ) f , Σ and
(M f , Σϕ ) | ϕ found in this way is an isomorphism. This requires a routine argument
chasing the diagram and using two main features: (i) the relational definition of the
coarsest filtration, and (ii) the fact that updates !ϕ lead to submodels, structures that
inherit the old ordering among their points. We suppress the details here.

This result says that updates at the richer level of the original models can be
mimicked faithfully at the coarser level of filtrated models.

What cannot work, however, is finding a commuting diagram as above, but now
with the filtration set Σ kept fixed.

Example 5.3 Consider a model M with two points s, t with just one R-arrow, run-
ning from s to t. Now filtrate with respect to the set Σ = {>}. The result is one-point
reflexive model. Next, consider the public announcement !♦> on M: the result is a
one-point irreflexive model. Filtrating the latter model with Σ = {>} just yields the
same model. But there is no public announcement that takes a one-point reflexive
model into a one-point irreflexive one.23

21 Even so, we will allow arbitrary announcements of new information, without considering what
happens when we restrict new information to formulas inside or close to the filtration set.
22 This follows from subformula closure, or just by putting > ∈ Σ .
23 This argument no longer works if we allow a richer set of dynamic-epistemic model transfor-
mations such as changing relations. We leave an analysis of this broader setting to further work.
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Background: Tracking. The general background for the preceding observations is
the subject of ‘tracking’ information at various levels of structure, in the sense of
validating commuting diagrams of the sort discussed above, cf. [8]. Tracking is im-
portant, since it connects and compares different approaches to information struc-
ture, for instance, intensional or more hyper-intensional. We refer to the cited paper
for further concrete examples, and general results on when, given some projection
functor from the finer to the coarser level of models, model transformations at richer
levels are trackable by matching transformations at the coarser level. It is also shown
there that, going in the opposite direction from coarser to finer, tracking is always
possible in principle, but see below.

However, interestingly, our discussion involved a new feature: even when track-
ing in the strict sense of [8] is impossible, it may become possible by also varying
the projection map, as we did above by adjusting the sets one filtrates with.24

Even so, issues remain in the present setting. Consider the inverse of the above
scenario: \Σ ; !ϕ gives an update on the coarser filtrated model, and we ask for a
matching update on the richer original model. In principle, as we said, this is always
possible: one just defines an abstract update function on the points of M by taking
those points s for which s \Σ satisfies ϕ . But the more relevant issue is whether there
is a definable matching update, produced by modifying the formula that is publicly
announced. Here a natural candidate would be the following isomorphism:

\Σ ; !ϕ ' ![\Σ ]ϕ ;\Σ .

But this principle is not valid. To refute it, consider a modal model M with
domain W = {s, t,u}, relation R = {(s,s),(t, t),(t,u),(u, t),(u,u)}, and valuation
V (p) = {s, t}. Let the filtration set be Σ = {p,♦¬p}. The filtrated model is isomor-
phic to the model M itself. If we then update this model with !p, we arrive at the
submodel M|p whose domain is {s, t}. But if we first update the initial model M
with !p and only then filtrate that model with respect to Σ , a one-point model results
where p holds, clearly not isomorphic to the two-element model obtained before.

We believe there are ways around this problem, but have not yet found one.25

5.3 Merging filtration logic with dynamic logic

The preceding results can be formulated in terms of a relative completeness result,
in the combined language of filtration dynamics and public announcement.

24 Notice that, since formulas can change truth values under model change, our Σ -dependent notion
of filtration makes our functor context-dependent in a way not envisaged in [8].
25 One option might be to relax the notion of isomorphism in our diagrams to modal bisimulation.
Moreover, one should note that solutions need not be unique. Another approach would keep the
update the same, but change the filtration set, as in: \Σ ; !ϕ = !ϕ ; \Σ ϕ with Σ ϕ = {α|〈ϕ〉α ∈ Σ}.
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Let UFL be the proof system resulting from combining the axioms and rules of
the systems PAL and QPDL, together with the following axiom:

〈!ϕ〉 [\Σ ] ψ ↔ [\Σ ϕ ] 〈!ϕ〉ψ,

with Σ ϕ = {〈ϕ〉α |α ∈ Σ} as above.

Theorem 5.4 The logic UFL is complete relative to its static base logic.

The proof is a dynamic-epistemic-style reduction argument, where the new recur-
sion axioms helps push announcement modalities inside across filtration modalities.

Note that this theorem does not immediately settle the decidability of UFL,
since we end up in a modal filtration logic allowing different vocabularies inside
its modalities. We will return to this setting in the next section.

5.4 Conclusion

This section contains no definitive new results, but it has put a new general issue on
the map that makes sense in practice: interleaving filtration dynamics and modal up-
date dynamics. Of course, we have considered just a few scenarios. It would also be
natural, for instance, to let new announcements raise new issues that would change
the current filtration set. We leave such scenarios to further investigation.

6 Issues and questions

6.1 Issues and questions

Fltration may be said to answer the question why a given formula ϕ is true at a given
point s in a model M. In other words, ϕ is the issue to be resolved, and we do this
by looking at a number of closely connected issues. This setting is very similar to
one known from the semantics of questions [45]. In general, questions raise issues,
and at any stage, the current issue can be seen as a partition of the current model.
Resolving the issue means finding out in which partition cell we are, for instance,
through information updates of the sort discussed in the preceding section.26

Admittedly, the analogy is not perfect. In the semantics of questions, one usually
keeps the whole domain of worlds unchanged, since these worlds represent the total
relevant informational setting. In filtration, one reduces that model to a bare mini-
mum with as few worlds as possible needed for resolving the current issue. Even so,
it makes sense to look into some connections between logics of questions, logics of
filtration, and the dynamics of refining partitions.

26 Inquisitive logics [29], use generalized partitions, but this feature is orthogonal to our discussion.
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6.2 Modal logic of issues and filtration

A modal logic for representing information and issues is presented in [13]. It works
on S5-models where one relation ∼ stands for an information partition, or an S5-
style epistemic equivalence relation, and another equivalence relation≈ for the cur-
rent issue. There are two matching standard modalities:

• a standard modality �ϕ stands for the agent’s information or knowledge at a
world: it says that ϕ is true in all ∼-accessible worlds,

• a new ‘issue modality’ Qϕ that stands for truth of ϕ in all ≈-accessible worlds,
describing the actual issue cell that inquiry should, ideally, get us to.

This logic can be axiomatized in a standard manner, as a modal logic with two
S5 modalities. On this basis, one can reformulate the earlier logic of filtration in
Section 4 in more abstract, and perhaps more elegant, terms as a modal logic of
quotient formation. The following result is taken from [4].

Models M = (W,(Rr)r∈Π0 ,Q,v) consist of a relational model (W,(Rr)r∈Π0 ,v)
and an equivalence relation Q on W . We then define a language PDLQ,−→π /Q as:

π := r | Q | ?ψ | 1 | π;π | π ∪π | π∗, and

ϕ := p | ¬ϕ | ϕ ∧ϕ | 〈π〉ϕ | [−→π /Q]ϕ,

where r is an element of the set of the basic programs Π0 and ψ is a formula of PDL
(the language PDLQ,−→π /Q without occurrences of [−→π /Q]ϕ).

Next, for a model M = (W,(Rr)r∈Π0 ,Q,v) and a sequence of programs −→π , we
define a model M

−→
π
Q := (WQ,(R

πr
Q )r∈Π0 , Id,vQ), where WQ := {|w| | there is w′Qw

with w′ ∈ v(p)}, vQ(p) := {|w| | w ∈ v(p)}, Id denotes the identity relation, and

|w|Rπr
Q |v| iff there is w′Qw and there is v′Qv such that w′Rπr v

′,

where |w| is the equivalence class of w wrt Q. The crucial step in the semantics is:

M,x |= [−→π /Q]ϕ iff M
−→
π
Q , |x| |= ϕ.

To obtain a convenient representation of the key axioms in our issue/quotient logic,
we define functions fQ,−→π on programs by the following clauses:

f−→
π ,Q(Q) =?>,

f−→
π ,Q(r) = Q;−→π ,

f−→
π ,Q(α1 ◦α2) = f−→

π ,Q(α1)◦ f−→
π ;Q(α2) for ◦ ∈ {∪, ;}

f−→
π ,Q(π

∗) =
(

f−→
π ,Q(π)

)∗
.

The recursion axioms matching these stipulations are listed in Table 4.
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(PDL) Axiom-schemes and rules of PDL
(Q) S5-axioms and rules for Q

(Ax-p) [−→π /Q]p↔ 〈Q〉p
(Ax-¬) [−→π /Q]¬ϕ ↔¬[−→π /Q]ϕ

(Ax-∧) [−→π /Q](ϕ ∧ψ)↔ [−→π /Q]ϕ ∧ [−→π /Q]ψ

(Ax-〈α〉) [−→π /Q]〈α〉ϕ ↔ 〈 fQ,−→π (α)〉[−→π /Q]ϕ

(Ax-〈Q〉) [−→π /Q]〈Q〉ϕ ↔ [−→π /Q]ϕ

(DR-Nec) From ϕ infer [−→π /Q]ϕ

Table 4: The logic PDLQ

It is easy to see that this logic is sound and complete for its intended semantics.27

6.3 Issue dynamics

But as in Section 5, a natural further topic arises. Issues are intrinsically ephemeral,
they change over time, and so, they must be updated. This dynamics is the key
theme of [13], and we state some relevant facts. A Yes/No question ϕ ? is a typical
instance of issue dynamics. Given a current issue relation ≈, the question triggers a
refinement to a new relation that cuts all links between ϕ-points and ¬ϕ-points, an
operation that can be written as follows in our earlier PDL program format:

((?ϕ);≈;(?ϕ))∪ (?¬ϕ);≈;(?¬ϕ))

This definable update again satisfies recursion axioms in the earlier dynamic-
epistemic format. For instance, here are two characteristic valid equivalences,

〈?ϕ〉�ψ ↔ �〈?ϕ〉ψ

〈?ϕ〉Qψ ↔ (ϕ ∧Q(ϕ → 〈?ϕ〉ψ))∨ (¬ϕ ∧Q(¬ϕ → 〈?ϕ〉ψ))

The cited paper also studies other natural updates on current issues, including
deleting agenda items. And there are also natural updates mixing the agents’ infor-
mation with the goal of their inquiry, such as taking the intersection of the epistemic
partition and the issue partition.

Remark: partition algebra. The update triggered by a question can also be described
differently, in terms of an algebra of partitions. Each formula ϕ induces a partition

27 In Section 4, the analogue of the modality 〈Q〉 was definable in the language PDL[−→π /Σ ] (cf.
Lemma 4.6), and therefore, it was not needed in the syntax.
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≈ϕ of the domain into the set of all worlds satisfying ϕ and those satisfying ¬ϕ .
The above update is nothing but the intersection of this relation with the current ≈,
or in partition terms, their ‘joint refinement’. Another natural operations on parti-
tions is their joint coarsening. This is not the union of two equivalence relations: if a
partition is needed, one needs to take the reflective transitive closure of the union.28

Another option is just freely using the regular operations of PDL on partitions, in-
cluding relational composition, now working with ‘generalized partitions’.

It would be an interesting task to axiomatize the equational validities of partition
algebra for the relations∼\Σ used in filtration. In Section 4 we observed that∼\Σ is
idempotent, but many obvious validities fail. For instance, for different sets Σ ,Θ , the
composition∼\Σ ;∼\Θ is not commutative, or even associative. A counter-example
to commutativity is easily extracted from Example 5.3 above. 29

6.4 Filtration logic with varying vocabularies

The perspective of partition algebra suggests a different look at our earlier modal
logic of filtration. Different partitions may come from different sets of formulas, so
we get a question that was not really pursued in Section 4, namely, what are valid
principles of a filtration logic with dynamic modalities for different vocabularies?

It is interesting to see that intuitions need not always be clear here, even for
simple questions. For instance, it seems natural to expect a form of ‘monotonic-
ity’: refining a partition should not change conclusions already changed. But it is
immediate that this principle is not valid:

Example 6.1 The implication [\Σ ]ϕ → [\(Σ ∪Θ)]ϕ is not valid.

Consider our earlier model M consisting of one arrow, that is, two points s, t such
that Rst. Filtration with Σ = {>} compresses this to one reflexive point. So, at t in
M, the formula [\Σ ]♦> holds. But filtrating with the larger set {>,♦>} leaves the
model the same, and hence at t in M, the formula [\Σ ]♦> does not hold.

As can be seen in the preceding model, the converse implication [\(Σ ∪Θ)]ϕ→
[\Σ ]ϕ is not valid either. Retreating to coarser filtrations, too, is a complex move.

Thus, filtrating with different sets raises intuitive challenges.30 Perhaps the truly
valid laws are different. For instance, does filtrating with two sets of formulas that
both contain Σ make the same formulas from Σ true?

Example 6.2 The following composition law is valid:

[\Σ ][\Θ ]ϕ ↔ [\[\Σ ]Θ ]ϕ .

28 For the partitions induced by filtrations, this union will often, trivially, be the universal relation.
29 One difficulty is that, after filtration by a set Σ , filtration by an arbitrary other set Θ makes no
sense, as the similarity type of the filtrated model has become that of the vocabulary of Σ only.
30 Other non-valid principles include the putative equivalence of \Σ ; \Θ and \(Σ ∪Θ ).
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The proof is a straightforward verification of two ways of describing an equiv-
alence between worlds in the original model. In all, the preceding discussion, pre-
liminary and inconclusive as it is, may have shown the interest in the following

Open problem 6.3 Axiomatize modal filtration logic with varying vocabularies.

Moreover, as a subsidiary question, one would want a complete dynamic logic
over this with public announcement and natural notions of issue change.

6.5 Conclusion

Like the previous one, this section has mainly suggested a perspective, this time,
that of merging logics of filtration with logics of issues, in both dynamic and static
varieties. No major new technical result has been found, but we have seen how
filtration combines well with current semantic trends toward adding what might be
called focus or purpose to standard structures.

7 Exploring the Boundaries

The filtration method has its boundaries: it cannot work universally, since not all
logics are decidable. In particular, one expects its reach to stop at first-order logic.
But more can be said, and we will explore the boundaries more precisely.

7.1 Finite type models for first-order logic

Finding finite types, the hallmark of filtration, still works for a first-order language.
Look at any first-order formula ϕ and take the finite set of its subformulas Sub(ϕ).
Any first-order model M and variable assignment s induces a set

Type(M, s) = { ψ ∈ Sub(ϕ) |M |= ψ}.

In the same way one can define induced X-types for any finite set of formulas X .
Note that there are only finitely many X-types realized in the universe of all models.

Definition 7.1 An X-type is a finite set Σ of formulas from X satisfying the following
properties for all formulas in the set X:

¬ϕ ∈ Σ iff ϕ /∈ Σ ,

(ϕ ∨ψ) ∈ Σ iff ϕ ∈ Σ or ψ ∈ Σ .

if [u/x]ψ ∈ Σ , then ∃xψ ∈ Σ .
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Definition 7.2 A type model M for X is a finite set of X-types Σ satisfying the
following existential witness property:

if ∃xψ ∈ Σ , then there is a type ∆ in M with (i) ψ ∈ ∆ and (ii) Σ and ∆ have
exactly the same formulas who free variables do not include x (written: Σ =x ∆).

It is easy to see that each first-order model induces a type model.

Since there are only finitely many type models, it is decidable whether a given
first-order formula has a type model. However, unlike in the case of modal logic,
it should not (and in fact, it does not) follow that first-order logic is decidable. The
reason is that not all type models as defined above come from standard models.

In this light, the filtration method as usually presented does two things at the
same time: (a) it provides a finite ‘certificate’ for satisfiability in standard models,
(b) the certificate is itself a standard model – something not needed for decidability.

7.2 Representation theorems for type models

To see how special it is to have a certificate for satisfiability that is itself a model,
consider first-order logic. When can the above type models be represented as stan-
dard models? This may be a hard problem. Since first-order logic is undecidable,
it must be undecidable whether a given type model is representable as having been
induced by a standard model.31

But could not representability hold for suitable decidable fragments of first-order
logic? This is indeed the case. The ‘guarded fragment’ GF of the first-order language
was introduced in [3], who prove the following result for type models adapted to GF.

Theorem 7.3 Type models for the guarded fragment can always be represented as
standard models.

The analogy with filtration is one of the many ways in which GF behaves like a
modal logic. Even so, guarded type models are not standard first-order models them-
selves: crucially, they lack objects and assignments, and these have to be produced
in the representation argument. This difference illustrates the earlier point about a
finite certificate being good enough.32

At this point, a natural question arises. Even for the whole language, since the
property of having a type model is decidable, what is the decidable first-order logic
of all type models? Could not this logic be analyzed by broadening the class of
standard models? The answer is positive, in terms of a broader semantic class of

31 An interesting problem is determining the precise computational complexity of this notion.
32 In fact, GF does have the FMP, [47, 48], but the argument establishing that is much more graph-
theoretic and combinatorial.
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‘generalized assignment models’, [6, 2], which have only a special subset of admis-
sible assignments to be used in evaluation of quantifiers, not necessarily the family
of all functions from variables to objects. 33

Theorem 7.4 Every type model is representable as a generalized assignment model.

Proof. Consider any type model as described above. Define a path π as a finite
sequence of types from the model, separated by variables x in such a way that each
immediate x-transition in the path is from some type Σ to some type ∆ with Σ =x ∆ .
Here Last(π) is the last type on the path π . Then define objects as pairs (π,x) of a
path π and a variable x such that the last change on the path was via =x. Next, for
predicates P, set I(P)((π1,x1), ...,(πk,xk) iff π1, ...,πk all lie on one sequence where
one is the longest, and no variables for the mentioned objects changed their variables
later on along this longest path. Finally, the associated assignment Ass(π) for a path
assigns to each variable x the object (π ′,x), where π ′ is an initial subpath of π and
x did not change its value at some stage on the path π . Taken together, this gives a
set of objects, an interpretation function, and a special set of assignments that form
a generalized assignment model M for first-order logic.

Here is the crucial property of this construction.

Fact 7.5 M, Ass(π) |= ϕ iff ϕ ∈ Last(π).

Proof. The proof is by induction on the formulas ϕ , where the two Boolean steps
are routine by the properties of types. The atomic step plus the inductive step for the
existential quantifier explain our choice of objects in M.

For a concrete illustration of the base case, consider an atom Rxy. Let the values
of Ass(π) on x,y be the objects (π1,x) and (π2,y), where by the linearity condition
on admissible assignments, π1,π2 are subpaths of π . If M, Ass(π) |= Rxy, then
I(R)((π1,x),(π2,y)). By definition, this means that the formula Rxy is an element
of the last type on the longest of π1,π2, and also, none of the variables x,y changed
their value on π afterwards. It follows that Rxy ∈ Last(π). The argument in the
opposite direction is similar.

Next, consider the inductive step for an existential quantifier ∃xψ .

Case (i). If ∃xψ ∈ Last(π), then by the closure condition for existential quan-
tifiers in type models, there exists a type Σ which contains ψ and which agrees
with Last(π) on all x-free formulas. Consider the path π+ consisting of π with Σ

appended. By the inductive hypothesis, it holds that M, Ass(π+) |= ψ . Therefore,
M, Ass(π+) |= ∃xψ . Moreover, given the condition on equality of formulas, no
changes in the other free variables y have taken place from the last type of π+ to the
last change made to these free variables from where they were last changed in π .
Therefore, Ass(π) and Ass(π+) agree on the values for these variables, and so we
have that M, Ass(π) |= ∃xψ .

33 In such models, with a variable assignment s, M,s |= ∃xϕ iff there exists an object d in the
domain of M such that (i) the assignment s[x := d] is admissible, and (ii) M,s[x := d] |= ϕ .



Some Recent Perspectives on Filtration 31

Case (ii). If M, Ass(π) |= ∃xψ , then there is an object d such that (a) M,
Ass(π)[x := d] |= ψ , and (b) the assignment Ass(π)[x := d] is admissible in the
model. The latter fact means that it is of the form Ass(π ′) for some path π ′, where d
is an object of the form (π ′′,u) for some subsequence π ′′ of π ′, where the variable u
does not change its value any more towards the end.34 By the inductive hypothesis,
we have that [u/x]ψ ∈ Last(π ′). It follows that also [u/x]ψ ∈ Last(π) by carefully
analyzing which variables do not change their values along the paths π ′ and π .35

Finally, by the relevant closure condition on types, if [u/x]ψ ∈ Last(π), then ∃xψ ∈
Last(π) – and we are done.36

Corollary 7.6 The complete decidable logic of type models is the logic of general-
ized assignment models, which is known to consist of the following principles:

1. the minimal modal logic part of first-order logic, [62],
2. S5 for each quantifier ∃x, plus
3. all implications (¬)Px→∀y(¬)Px with x,y disjoint sequences of variables. 37

This may be viewed as modalizing the whole semantics of the complete first-
order language. Cf. [2, 9] for more on this perspective.

Remark 7.7 Generalized assignment semantics also works for extended first-order
languages with irreducible polyadic quantifiers and substitution operators. This may
reflect the flexibility in extending basic modal filtration to richer modal languages.

7.3 Conclusion

Filtration as a method for establishing decidability finds its boundaries in first-order
logic. But filtration as a semantic style of thinking has a broader reach, suggesting
even a new take on first-order semantics.

8 Summary and further directions

Filtration is an old method in modal logic which is still very much alive, and which
keeps suggesting new perspectives and open problems. In this paper, we have sur-
veyed the state of the art in classical filtration methods for various modal logics in

34 This is the crucial point in the proof where we use the restriction to admissible assignments.
35 In particular, none of the paths π and π ′ needs to be a continuation of the other: they can fork off
at some shared initial subpath. However, the argument about variables not changing their values,
and the matching preservation of formulas in these variables also works in this extended setting,
by going down to the forking point and then back up.
36 The representation argument would also work, with some obvious modifications, for polyadic
quantifiers ∃x over tuples of objects. On general assignment models, these are not reducible to
iterated single-variable quantifiers.
37 This result can also be proved by a reduction to the Guarded Fragment in the style of [3].
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various modal languages, pointing out its semantic and proof-theoretic aspects. Af-
ter that, we discussed three more recent and perhaps unusual perspectives, namely,
modalizing the theory of filtration, placing filtration inside a broader family of
model updates, and connecting it to modal logics of questions and issues. Finally,
we explored some boundaries, showing what filtration still has to say about gener-
alized semantics for a first-order language. In the process, we found interesting new
perspectives on filtration, as well as a large number of new open problems.

We elaborate a bit on the latter aspect. The technical themes presented here have
by no means been exhausted. For instance, it should be possible to describe the
syntactic formula sets used in filtration in more abstract terms, perhaps in terms
of well-founded orderings on formulas that admit inductive analysis of the filtrated
models. We also did not deeply explore other abstract takes on filtration, such as the
analysis in [16], [15] using locally finite reducts and partial subalgebras.

Finally, in the realm of modal fixed-point logics, filtration seems close to the
powerful automata techniques employed in the modal µ-calculus and related sys-
tems [64, 31], see also Gabbay’s early use of Rabin’s Theorem in modal logic
[38, 39, 41]. 38 The modal µ-calculus and its fragments are interesting systems
for analysing the boundaries of the filtration method. As we have seen, PDL, a frag-
ment of the µ-calculus, admits filtration, and [26] shows that filtration is applicable
to non-trivial fragments of the modal µ-calculus other than PDL. 39 However, to
prove the Finite Model Property for the full language of the modal µ-calculus, as
shown by Kozen [50], filtration-like methods need to be considered together with
the mathematical theory of well-quasi-orderings, suggesting another border line to
be understood. For a recent analysis, cf. [1] on well-quasi-orderings and tree-like
properties of infinitary proof systems for modal fixed-point logics.

The results in this paper also suggest interesting issues about understanding the
scope of modal logic. For instance, we noted that filtration should fail for an un-
decidable system like first-order logic. But as we saw, that is not the end of the
story. Modal perspectives are resilient, and filtration re-emerges in new forms when
we tame complexity by remodeling the semantics of first-order logic, cf. [2]. As
another example, consider the complexity of the meta-theory of modal logic dis-
cussed in Section 4. Working on the full meta-universe of modal models is working
on a standard model whose complete theory can be very complex, but there could
be principled reasons for restricting updates to ‘available ones’, as in the ‘protocol
models’ of [10], thereby lowering complexity again in the style of [2].

But filtration is also attractive for general reasons beyond mathematical theory.
Conceptually, it suggests going in the direction of ‘relevance’: representing just
what is needed in semantic models, clearly a theme of general importance. And
since what is needed may shift, there is also a need for connection between dif-

38 Given that, by the Janin-Walukiewicz Theorem, the µ-calculus is the bisimulation-invariant
fragment of Monadic Second-Order Logic, there may also be connections here with Fine’s early
work on second-order modal propositional logic, [32].
39 The existence of a filtration method can even be seen as a criterion for simplicity of a logic.
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ferent levels of representation, suggesting a general quotient dynamics on different
representation levels for information, or for reality.

In the latter vein, a technical ‘old school’ topic like filtration may even have a
message for Kit Fine’s current work on partiality and ‘exact fit’ in semantic mod-
eling. The partiality used by many philosophical logicians concerns vocabulary, all
infinitely many formulas over that restricted atomic vocabulary are allowed. In con-
trast, filtration may be called super-partial: it restricts the atoms, but also the rel-
evant complex assertions one can make about them, and in doing so, it strikes an
interesting balance between syntax and semantics.40

Acknowledgment We thank Bahareh Afshareh, Alexandru Baltag, Sebastian En-
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