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Abstract

In this paper we define the notion of frame based formulas. We show that the
well-known examples of formulas arising from a finite frame, such as the Jankov-de
Jongh formulas, subframe formulas and cofinal subframe formulas, are all particular
cases of the frame based formulas. We give a criterion for an intermediate logic to
be axiomatizable by frame based formulas and use this criterion to obtain a simple
proof that every locally tabular intermediate logic is axiomatizable by Jankov-de Jongh
formulas. We also show that not every intermediate logic is axiomatizable by frame
based formulas.

1 Introduction

Intermediate logics are the logics in between the classical propositional calculus CPC and
the intuitionistic propositional calculus IPC. One of the main tools for studying intermediate
logics are formulas that arise from finite frames. The first such formulas were constructed by
Jankov [12] and de Jongh [15]. Although syntactically different, both types of formulas have
the same semantic properties. We call them the Jankov-de Jongh formulas. The Jankov-de
Jongh formula of a finite rooted frame F is valid on a frame G if and only if G does not
have F as a p-morphic image of a generated subframe. Jankov [13] used these formulas
to prove that there are continuum many intermediate logics, and de Jongh [15] applied
them to show that intuitionistic logic is the only intermediate logic that satisfies a syntactic
condition formulated in terms of the Kleene slash. In modal logic analogues of Jankov-de
Jongh formulas were introduced by Fine [10]. They are called the Jankov-Fine formulas [5].
Jankov [13] also used his formulas to construct intermediate logics without the finite model
property and to introduce the so-called splitting technique for lattices of intermediate logics.
In fact, using these formulas Jankov [12] proved that every finite subdirectly irreducible
Heyting algebra generates a splitting variety. McKenzie [20] developed splitting techniques
for varieties of lattices. Blok [6] used the splitting technique to obtain powerful results on
the degree of incompleteness of modal logics. Further investigations of splittings in modal
and intuitionistic logics were carried out by Rautenberg [21, 22, 23], Kracht [16, 17, 18] and
Wolter [26, 27].

The main application of Jankov-de Jongh formulas is that they provide a useful tool for
axiomatizing intermediate logics. Large classes of intermediate logics are axiomatizable by
these formulas. However, it turns out that there are logics that cannot be axiomatized by the
Jankov-de Jongh formulas. Fine [11] and Zakharyaschev [30] defined another type of frame
based formulas, the subframe formulas, originally for modal logic. Zakharyaschev [28, 29, 31]
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defined an analogous notion for intermediate logics. Zakharyaschev [28, 29, 31, 33] also
defined the cofinal subframe formulas for intermediate and modal logics. Subframe formulas
and cofinal subframe formulas are quite closely related to the Jankov-de Jongh formulas and
are also used to axiomatize modal and intermediate logics. There are intermediate logics that
cannot be axiomatized by the Jankov-de Jongh formulas, but are axiomatizable by subframe
and cofinal subframe formulas and vice versa. Finally, Zakharyaschev [29, 30, 32] defined
the so-called canonical formulas and proved that every intermediate and modal logic above
K4 is axiomatizable by canonical formulas. Canonical formulas, however, are fundamentally
different from the formulas discussed above. They have two parameters, the finite rooted
frame and a set of its antichains, whereas the Jankov-de Jongh formulas, subframe formulas
and cofinal subframe formulas have only one parameter — a finite rooted frame.

In this paper we define the notion of a frame based formula which generalizes the notions
of the Jankov-de Jongh, subframe and cofinal subframe formulas. We define frame based
formulas for every order � on the class of descriptive frames. We call � a frame order.
The Jankov-de Jongh formulas, subframe formulas and cofinal subframe formulas become
examples of the frame based formulas for particular frame orders. We also give a general
criterion when a given logic is axiomatizable by frame-based formulas. This gives us as a
corollary criteria for a logic to be axiomatizable by the Jankov-de Jongh formulas, subframe
formulas and cofinal subframe formulas. As a result, we derive simple proofs that every
locally tabular logic is axiomatizable by Jankov-de Jongh formulas, and that every tabular
logic is finitely axiomatizable by Jankov-de Jongh formulas. At the end of the paper we
prove that there exist logics that are not axiomatizable by frame based formulas. This also
explains that in order to axiomatize all the intermediate logics by formulas arising from
finite frames we need to consider frame based formulas with an additional parameter, as in
Zakharyaschev’s canonical formulas. We note that the results presented in this paper are
formulated for intermediate logics, but they can be generalized to transitive modal logics.

2 Descriptive frames for intuitionistic logic

For the basic facts about intuitionistic propositional calculus IPC including its Kripke and
algebraic semantics we refer to [7], [9] and [4]. Let F = (W, R) be a partially ordered set
(i.e., an intuitionistic Kripke frame). For each w ∈ W and U ⊆ W let

R(w) = {v ∈ W : wRv},

R−1(w) = {v ∈ W : vRw},

R−1(U) =
⋃

w∈U R−1(w).

Recall also that a subset U ⊆ W of a Kripke frame F = (W, R) is an upset if w ∈ U and
wRv imply v ∈ U . Next we recall from [7, §8.1 and 8.4] the definitions of general frames
and descriptive frames.

Definition 2.1. An intuitionistic general frame or simply a general frame is a triple F =
(W, R,P), where (W, R) is an intuitionistic Kripke frame and P is a set of upsets such that
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∅ and W belong to P, and P is closed under ∪, ∩ and → defined by

U1 → U2 := {w ∈ W : ∀v(wRv ∧ v ∈ U1 → v ∈ U2)} = W \ R−1(U1 \ U2).

Note that every Kripke frame can be seen as a general frame, where P is the set of all upsets
of F.

Definition 2.2. Let F = (W, R,P) be a general frame.

1. F is called refined if for each w, v ∈ W : ¬(wRv) implies that there is U ∈ P such that
w ∈ U and v /∈ U .

2. F is called compact if for each X ⊆ P and Y ⊆ {W \U : U ∈ P}, if X ∪Y has the finite
intersection property (that is, every intersection of finitely many elements of X ∪ Y is
nonempty) then

⋂
(X ∪ Y) 6= ∅.

3. F is called descriptive if it is refined and compact.

We call the elements of P admissible sets.

Definition 2.3. A descriptive frame F = (W, R,P) is called rooted if there exists w ∈ W
such that R(w) = W and W \ {w} ∈ P.

We recall that a descriptive frame F = (W, R,P) is finitely generated if the (Heyting)
algebra (P,∪,∩,→, ∅) is finitely generated. The detailed description of the structure of
finitely generated descriptive frames can be found in e.g. [7, Section 8] or [4, Section 3.2].
The main property of finitely generated descriptive frames is that every intermediate logic
is complete with respect to them; see, e.g. [7, Theorem 8.36].

Theorem 2.4. Every intermediate logic L is complete with respect to its finitely generated
rooted descriptive frames.

Definition 2.5. Let L be an intermediate logic.

1. A descriptive frame F is called an L-frame if F validates all the theorems of L.

2. Let FG(L) denote the set of all finitely generated rooted descriptive L-frames modulo
isomorphism.

3. Let FL denote the set of all finite rooted L-frames modulo isomorphism.

Then FIPC is the set of all finite rooted frames modulo isomorphism and every logic L is
complete with respect to FG(L).

For the definition of p-morphisms, subframes, generated subframes and cofinal subframes
of descriptive frames we refer to e.g. [7] or [4]. Next we recall the Jankov-de Jongh theorem.
We refer to e.g. [7, Proposition 9.41] and [4, Theorem 3.3.3] for two different proofs of this
theorem.
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H1 H2 H3

Figure 1: The frames H1, H2, H3

Theorem 2.6. For every finite rooted frame F there exists a formula χ(F), which we call
the Jankov-de Jongh formula of F,1 such that for every descriptive frame G:

G 6|= χ(F) iff F is a p-morphic image of a generated subframe of G.

Example 2.7. We recall few examples of intermediate logics axiomatizable by the Jankov-
de Jongh formulas, for the proofs we refer to e.g., [7, Section 9.4]. Recall that KC is an
intermediate logics of all directed frames and LC is the logic of all linear frames. For every
intermediate logic L, we let L+ϕ denote the smallest intermediate logic containing L∪{ϕ}.
Then

CPC = IPC + χ(H1), KC = IPC + χ(H2), LC = IPC + χ(H2) + χ(H3),

where H1, H2, H3 are the frames shown in Figure 1 and CPC is the classical propositional
calculus. For more examples of intermediate logics axiomatizable by the Jankov-de Jongh
formulas we refer to [7, Section 9.4] (see also Section 3.2 below).

Next we discuss subframe and cofinal subframe formulas. For two different proofs of the
next theorem we refer to [7, Section 9.4] and [4, Section 3.3.3].

Theorem 2.8. Let G = (W ′, R′,P ′) be a descriptive frame and let F = (W, R) be a finite
rooted frame. Then

1. G 6|= β(F) iff F is a p-morphic image of a subframe of G.

2. G 6|= γ(F) iff F is a p-morphic image of a cofinal subframe of G.

The formulas β(F) and γ(F) are called the subframe formula of F and cofinal subframe
formula of F, respectively. For an overview on subframe and cofinal subframe formulas we
refer to [7, §9.4]. In [4, Section 3.3.3] the subframe and cofinal subframe formulas are defined
differently from [7] and are connected to the NNIL formulas of [24], i.e., the formulas that
are preserved under submodels. For an algebraic approach to subframe formulas we refer to
[2].

Example 2.9. The logic LC of all linear frames can be axiomatized by adding to IPC

a single subframe formula. In fact, LC = IPC + β(H2), where H2 is the frame shown in

1In fact, the Jankov formulas and de Jongh formulas have a different syntactic shape. For the similarities
and differences between Jankov and de Jongh formulas we refer to [4, Remark 3.3.5].
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Figure 1. (Note that in order to axiomatize LC by Jankov-de Jongh formulas we need to
use two Jankov-de Jongh formulas, see Example 2.7). Moreover, for each n ∈ ω the logic of
all frames of depth n and the logic of all frames of width n are axiomatizable by subframe
formulas; see, e.g., [7, Section 9.4] for details. We also note that the logic KC of all directed
frames cannot be axiomatized by subframe formulas.

Example 2.10. The logic KC of all directed frames is an example of a logic axiomatizable
by a single cofinal subframe formula. In fact,

KC = IPC + β ′(H2),

where H2 is the frame shown in Figure 1. Moreover, there are continuum many logics ax-
iomatizable by cofinal subframe formulas that cannot be axiomatized by subframe formulas;
see, e.g., [7, Corollary 11.23] for details.

3 Frame based formulas

This section is the main part of the paper. In it we will treat the Jankov-de Jongh formulas,
subframe formulas and cofinal subframe formulas in a uniform framework. . We give a
definition of frame based formulas and show that these three types of formulas are particular
cases of frame based formulas. We prove a criterion for recognizing whether an intermediate
logic is axiomatizable by frame based formulas. Using this criterion we show that every
locally tabular intermediate logic is axiomatizable by the Jankov-de Jongh formulas. We also
give a simple proof of a well-known result that every tabular logic is finitely axiomatizable by
these formulas. We also recall the definitions of subframe logics and cofinal subframe logics
and as a corollary of the main criterion obtain that a logic is axiomatizable by subframe
formulas iff it is a subframe logic and that a logic is axiomatizable by cofinal subframe
formulas iff it is a cofinal subframe logic. At the end of the section we show that there are
intermediate logics that are not axiomatizable by frame based formulas.

3.1 Axiomatizations

We define three relations on descriptive frames.

Definition 3.1. Let F and G be descriptive frames. We say that

1. F ≤ G iff F is a p-morphic image of a generated subframe of G.

2. F 4 G iff F is a p-morphic image of a subframe of G.

3. F 4′ G iff F is a p-morphic image of a cofinal subframe of G.

We write F < G, F ≺ G and F ≺′ G if F ≤ G, F 4 G and F 4
′ G, respectively, and F is not

isomorphic to G. The next proposition discusses some basic properties of ≤, 4 and 4′. The
proof is simple and we will skip it.

Proposition 3.2.
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1. Each of ≤, 4 and 4′ is reflexive and transitive.

2. If we restrict ourselves to finite frames, then each of ≤, 4 and 4′ is a partial order.

3. In the infinite case none of ≤, 4, 4′ is in general anti-symmetric.

4. Let F and F′ be two finite rooted frames. Let G be an arbitrary descriptive frame. Then

(a) F ≤ F′ and G |= χ(F) imply G |= χ(F′).

(b) F 4 F′ and G |= β(F) imply G |= β(F′).

(c) F 4′ F′ and G |= γ(F) imply G |= γ(F′).

Note that Theorems 2.6 and 2.8 can be formulated in terms of the relations ≤, 4 and 4′ as
follows:

Theorem 3.3. For every finite rooted frame F there exist formulas χ(F), β(F) and γ(F)
such that for every descriptive frame G:

1. G 6|= χ(F) iff F ≤ G.

2. G 6|= β(F) iff F 4 G.

3. G 6|= γ(F) iff F 4′ G.

Proposition 3.2 and Theorem 3.3 clearly indicate that these three types of formulas can be
treated in a uniform framework. Next we give a general definition of frame based formulas
and show that the Jankov-de Jongh formulas, subframe formulas and cofinal subframe for-
mulas are particular cases of frame based formulas. Let � be a relation on FG(L). We write
F � G if F � G and F and G are not isomorphic.

Definition 3.4. We call a reflexive and transitive relation � on FG(IPC) a frame order if
the following two conditions are satisfied:

1. For every F, G ∈ FG(L), G ∈ FIPC and F � G imply |F| < |G|.

2. For every finite rooted frame F there exists a formula α(F) such that for every G ∈
FG(IPC)

G 6|= α(F) iff F � G.

We call the formula α(F) the frame based formula for � of F.

Obviously, the Jankov-de Jongh formulas, subframe formulas and cofinal subframe formulas
are frame based formulas for ≤, 4 and 4′, respectively. Next we prove some auxiliary
lemmas.

Lemma 3.5.

1. The restriction of � to FIPC is a partial order.

6



2. FIPC is a �-downset, i.e., F ∈ FIPC and F
′
�F imply F

′ ∈ FIPC.

Proof. The relation � is reflexive and transitive by definition. That the restriction of � is
anti-symmetric on finite frames follows from Definition 3.4(1). That FIPC is a �-downset,
also follows immediately from Definition 3.4(1).

Lemma 3.6. Let F and F′ be finite rooted frames.

If F�F′, then IPC + α(F) ⊢ α(F′).

Proof. Let G ∈ FG(IPC) and G 6|= α(F′), then F′�G. By the transitivity of � we then have
that F�G and G 6|= α(F). By Corollary 2.4 we get that IPC + α(F) ⊢ α(F′).

Definition 3.7. Let L be an intermediate logic and let � be a frame order on FG(IPC).
We say that L is axiomatizable by frame based formulas for � if there exists a family {Fi}i∈I

of finite rooted frames such that L = IPC + {α(Fi) : i ∈ I}.

Let F = (W, R) be a (descriptive) frame. We call a point w of F maximal (minimal) if for
each v ∈ W we have that wRv (vRw) implies w = v. For every frame F we let max(F)
and min(F) denote the sets of all maximal and minimal points of F, respectively. For every
subset U of FG(L) we let min�(U) denote the set of the �-minimal elements of U .

Definition 3.8. Let L be an intermediate logic. We let

M(L, �) = min�(FG(IPC) \ FG(L))

We give a criterion recognizing whether an intermediate logic is axiomatizable by frame
based formulas.

Theorem 3.9. Let L be an intermediate logic and let � be a frame order on FG(IPC).
Then L is axiomatizable by frame based formulas for � iff the following two conditions are
satisfied.

1. FG(L) is a �-downset. That is, for every F, G ∈ FG(IPC), if G ∈ FG(L) and F � G,
then F ∈ FG(L).

2. For every G ∈ FG(IPC) \ FG(L) there exists a finite F ∈ M(L, �) such that F � G.

Moreover, if L is axiomatizable by frame-based formulas for �, then

L = IPC + {α(F) : F ∈ M(L, �)}.

Proof. Suppose L is axiomatizable by frame based formulas for �. Then L = IPC+{α(Fi) :
i ∈ I}, for some family {Fi}i∈I of finite rooted frames. First we show that FG(L) is a �-
downset. Suppose, for some F, G ∈ FG(IPC) we have G ∈ FG(L) and F�G. Assume
that F /∈ FG(L). Then there exists i ∈ I such that F 6|= α(Fi). Therefore, by Definition
3.4(2), Fi�F. By the transitivity of �, we have that Fi�G, which implies G 6|= α(Fi), a
contradiction. Thus, FG(L) is a �-downset.
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Suppose there exist i, j ∈ I such that i 6= j and Fi�Fj. Then by Lemma 3.6, IPC +
α(Fi) ⊢ α(Fj). Therefore, we can exclude α(Fj) from the axiomatization of L. So it is
sufficient to consider only �-minimal elements of {Fi}i∈I . (By Definition 3.4(1), the set of
�-minimal elements of an infinite set of finite rooted frames is non-empty.) Thus, without
loss of generality we may assume that ¬(Fi � Fj), for i 6= j. To verify the second condition
suppose G ∈ FG(IPC) \ FG(L). Then G 6|= α(Fi) for some i ∈ I, which implies Fi � G.
Hence, if we show that Fi ∈ M(L, �), then condition (2) of the theorem is satisfied.

We now prove that every Fi belongs to M(L, �). By the reflexivity of �, we have
Fi 6|= α(Fi) for all i ∈ I. Therefore, Fi ∈ FG(IPC) \ FG(L). Now suppose F � Fi. By
Definition 3.4(1), |F| < |Fi| implying that F is finite. By Lemma 3.5, � is anti-symmetric on
finite frames, therefore ¬(Fi�F). If Fj�F, for some j ∈ I and j 6= i, then by the transitivity
of � we have Fj�Fi, which is a contradiction. Therefore, ¬(Fj�F), for all j ∈ I. So
F |= α(Fj), for all j ∈ I, which implies that F ∈ FG(L) and that Fi is a minimal element of
FG(IPC) \ FG(L). Thus, Fi ∈ M(L, �), condition (2) is satisfied.

For the right to left direction, first note that, by our assumption, M(L, �) consists of only
finite frames. We show that L = IPC + {α(F) : F ∈ M(L, �)}. We prove this by showing
that the finitely generated rooted descriptive frames of L and of IPC+{α(F) : F ∈ M(L, �)}
coincide. Let G ∈ FG(L), then since FG(L) is a �-downset, for each F ∈ M(L, �) we have
that ¬(F � G) and hence G |= α(F). On the other hand, if G ∈ FG(IPC) \ FG(L), then
by our assumption, there exists F ∈ M(L, �) such that F � G. Therefore, G 6|= α(F) and G

is not a frame for IPC + {α(F) : F ∈ M(L, �)}. Since every intermediate logic is complete
with respect to its finitely generated rooted descriptive frames (Theorem 2.4), we obtain
that L = IPC + {α(F) : F ∈ M(L, �)}. This also shows that if L is axiomatizable by frame
based formulas for �, then L = IPC + {α(F) : F ∈ M(L, �)}.

Next we apply this criterion to the Jankov-de Jongh formulas, subframe formulas and cofinal
subframe formulas.

Theorem 3.10. Let L be an intermediate logic. Then

1. FG(L) is a ≤-downset.

2. For every G ∈ FG(IPC) \ FG(L) there exists a finite F ∈ M(L, 4) such that F 4 G.

3. For every G ∈ FG(IPC) \ FG(L) there exists a finite F ∈ M(L, 4′) such that F 4′ G.

Proof. (1) is trivial since generated subframes and p-morphisms preserve the validity of
formulas. The proofs of (2) and (3) are quite involved, we will skip them here. For the
proofs we refer to [7, Theorem 11.15].

These results allow us to obtain the following criterion.

Corollary 3.11. Let L be an intermediate logic.

1. L is axiomatizable by the Jankov-de Jongh formulas iff for each frame G in FG(IPC)\
FG(L) there exists a finite F ∈ M(L,≤) such that F ≤ G.

2. L is axiomatizable by subframe formulas iff FG(L) is a 4-downset.
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3. L is axiomatizable by cofinal subframe formulas iff FG(L) is a 4′-downset.

Proof. The result is an immediate consequence of Theorems 3.9 and 3.10.

Definition 3.12. Let L be an intermediate logic.

1. L is called a subframe logic if for every L-frame G, every subframe G′ of G is also an
L-frame.

2. L is called a cofinal subframe logic if for every L-frame G, every cofinal subframe G′

of G is also an L-frame.

For the next theorem consult [7, Theorem 11.21].

Corollary 3.13. Let L be an intermediate logic.

1. L is axiomatizable by subframe formulas iff L is a subframe logic.

2. L is axiomatizable by cofinal subframe formulas iff L is a cofinal subframe logic.

Proof. Since every intermediate logic L is complete with respect to FG(L), it is easy to see
that L is a subframe logic iff FG(L) is a 4-downset and L is a cofinal subframe logic iff
FG(L) is a 4′-downset. The proof now follows from Corollary 3.11.

It turns out that not every intermediate logic is axiomatizable by Jankov-de Jongh formu-
las and (cofinal) subframe formulas. Moreover, there exist logics axiomatizable by (cofinal)
subframe formulas that are not axiomatizable by Jankov-de Jongh formulas and vice versa.
For an example of an intermediate logic axiomatizable by (cofinal) subframe formulas that
are not axiomatizable by Jankov-de Jongh formulas we refer to [7, Proposition 9.50] (see also
[4, 3.4.31 and 3.4.32]). In Section 3.2 we will construct a simple example of a logic that is
axiomatizable by Jankov-de Jongh formulas but is not axiomatizable by (cofinal) subframe
formulas.

Next we discuss a method for constructing continuum many intermediate logics using
frame based formulas. Let � be a frame order on FG(IPC). A set of frames ∆ is called an
�-antichain if for every distinct F, G ∈ ∆ we have ¬(F�G) and ¬(G�F). For every set Γ
of frames let Log(Γ) be the logic of Γ, that is, Log(Γ) = {φ : F |= φ for every F ∈ Γ}. We
also write Log(F) instead of Log({F}).

Theorem 3.14. Let ∆ = {Fi}i∈ω be an �-antichain of finite rooted frames. For all Γ1, Γ2 ⊆
∆, if Γ1 6= Γ2, then Log(Γ1) 6= Log(Γ2).

Proof. Without loss of generality we may assume that Γ1 6⊆ Γ2. This means that there is
F ∈ Γ1 such that F /∈ Γ2. Consider the frame based formula α(F). Then, by the reflexivity
of �, we have F 6|= α(F). Hence, α(F) /∈ Log(Γ1). Now we show that α(F) ∈ Log(Γ2).
Suppose α(F) /∈ Log(Γ2). Then there is G ∈ Γ2 such that G 6|= α(F). This means that F�G,
which contradicts the fact that ∆ forms an �-antichain. Therefore, α(F) /∈ Log(Γ1) and
α(F) ∈ Log(Γ2). Thus, Log(Γ1) 6= Log(Γ2).
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F0 F1 F2

Figure 2: The sequence ∆

There are many examples of ≤-antichains. Here we give a simple example of a ≤-antichain
first observed by Jankov [13] and de Jongh [15]. Consider the sequence ∆ of finite rooted
frames shown in Figure 2. For a short direct proof of the next lemma we refer to [4, Theorem
3.4.19].

Lemma 3.15. ∆ forms an ≤-antichain.

As a direct corollary of Theorem 3.14 and Lemma 3.15 we obtain that there are continuum
many intermediate logics; a fact first observed by Jankov [13]. For the examples of infinite
4 and 4

′-antichains of finite rooted frames consult [7, Lemma 11.18 and Theorem 11.19].

3.2 Locally tabular and tabular intermediate logics

Next we show that every locally tabular intermediate logic is axiomatizable by the Jankov-
de Jongh formulas, and that every tabular logic is finitely axiomatizable by the Jankov-de
Jongh formulas. We recall that an intermediate logic L is locally tabular if for every n ∈ ω
there are only finitely many pairwise non-L-equivalent formulas in n variables. We note that
for transitive modal logics the notion of local tabularity coincides with the notion of finite
depth; that is, a transitive modal logic is locally tabular iff it is of finite depth; see, e.g., [7,
Theorem 12.21]. Moreover, a transitive modal logic is locally tabular iff the 1-generated free
algebra of the corresponding variety is finite; see e.g., [7, Corollary 12.22]. Also a normal
extension L of the modal logic S4 is not locally tabular iff the modal logic Grz.3 of all
linear posets contains L; see e.g., [7, Theorem 12.23]. This means that Grz.3 is the only
pre-locally tabular normal extension of S4. The notion of local tabularity becomes much
more complex for intermediate logics. Although every intermediate logic of finite depth is
locally tabular, there exist logics of infinite depth (e.g., the logic LC of linear frames) that
have infinite depth and still are locally tabular. Mardaev [19] showed that, unlike extensions
of S4, there are continuum pre-locally tabular intermediate logics. G. Bezhanishvili and
Grigolia [3] gave a characterization of locally tabular intermediate logics using coproducts of
three element Heyting algebra. They also conjectured that an intermediate logic L is locally
tabular iff the 2-generated free algebra in the corresponding variety is finite.

Here we apply our criterion from Corollary 3.11 to prove that every locally tabular in-
termediate logic is axiomatizable by the Jankov-de Jongh formulas. We will use the fol-
lowing criterion of local tabularity established in [1]. We recall that a descriptive frame
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F = (W, R,P) is n-generated if the algebra (P,∪,∩,→, ∅) is an n-generated Heyting alge-
bra.

Theorem 3.16. A logic L is locally tabular iff the class of rooted finitely generated descriptive
L-frames is uniformly locally tabular. That is, for every natural number n there exists a
natural number M(n) such that for every n-generated rooted descriptive L-frame F we have
|F| ≤ M(n).

We will use the following well-known property of infinite finitely generated descriptive
frames. For the proof we refer to e.g. [7, Section 8.7] or [4, Section 3.1].

Lemma 3.17.

1. For every infinite finitely generated descriptive frame G, the set {|H| : H is a finite
rooted generated subframe of G} is unbounded.

2. For every n-generated descriptive frame G, its every generated subframe H is also n-
generated.

We will also need the following auxiliary lemma.

Lemma 3.18. Let L be an intermediate logic. Then

1. (FL,≤) is well-founded.

2. For every finite rooted frame G ∈ FG(IPC) \ FG(L), there exists a finite rooted F ∈
M(L,≤) such that F ≤ G.

Proof. (1) The proof follows immediately from the fact that if F, G ∈ FL then F < G implies
|F| < |G|.

(2) The proof is similar to the proof of (1).

Theorem 3.19. Every locally tabular intermediate logic is axiomatizable by Jankov-de Jongh
formulas.

Proof. Let L be a locally tabular intermediate logic. By Corollary 3.11(1), we need to show
that for every G ∈ FG(IPC) \ FG(L) there exists a finite F ∈ M(L,≤) such that F ≤ G.
Suppose G ∈ FG(IPC) \ FG(L). If G is finite, then by Lemma 3.18(2), there exists a finite
rooted F ∈ M(L,≤) such that F ≤ G. Now assume that G is infinite. Let H be a finite
rooted frame such that H < G. If H ∈ FG(IPC) \ FG(L), then by Lemma 3.18(2), there
exists F ∈ M(L,≤) with F ≤ H. Since ≤ is transitive, we obtain that F ≤ G. Now suppose,
for every finite rooted H such that H < G we have H ∈ FG(L). By Theorem 3.17(1), the
set {|H| : H is a finite rooted generated subframe of G} is unbounded. Since G is finitely
generated, there exists n ∈ ω such that G is n-generated. Since H is a generated subframe of
G, by Theorem 3.17(2), H is also n-generated. This means that the set of all rooted finitely
generated descriptive L-frames is not uniformly locally finite. By Theorem 3.16, L is not
locally tabular, which is a contradiction. Thus, by Corollary 3.11(1), L is axiomatizable by
the Jankov-de Jongh formulas.
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Remark 3.20. We note that the fact that every locally tabular transitive modal logic is
axiomatizable by the Jankov-Fine formulas (modal logic analogues of the Jankov-de Jongh
formulas) is much easier to prove. As we mentioned above every locally tabular transitive
modal logic has the finite depth and therefore has the finite model property [7, Theorem 8.85].
Therefore, in Corollary 3.11, instead of considering all finitely generated frames, it suffices
to consider only finite ones. This immediately implies that the condition of Corollary 3.11 is
automatically satisfied. Thus, we derive that all locally tabular transitive modal logics are
axiomatizable by the Jankov-Fine formulas.

As a direct corollary to Theorem 3.19 we obtain a criterion for a locally tabular intermediate
logic to be finitely axiomatizable. This criterion was first established in [8, Theorem 3].

Corollary 3.21. Let L be a locally tabular intermediate logic. Then L is finitely axiomati-
zable iff M(L,≤) is finite.

Proof. It follows from Theorems 3.19 and 3.9 that L = IPC + {χ(F) : F ∈ M(L,≤)}.
Therefore, L is finitely axiomatizable iff M(L,≤) is finite.

Recall that an intermediate logic L is tabular if there exists a finite (not necessarily rooted)
frame F such that L = Log(F). Since every tabular logic is locally tabular, it follows from
Theorem 3.19 that every tabular logic is also axiomatizable by the Jankov-de Jongh formulas.
Next we show that every tabular logic is in fact finitely axiomatizable by the Jankov-de Jongh
formulas. For an alternative proof of the theorem consult [7, Theorem 12.4]. First we prove
two auxiliary lemmas.

Lemma 3.22. For every finite rooted frame F, consisting of at least two points, there exists
a frame G and a p-morphism f : F → G such that f identifies only two points.

Proof. If max(F) contains more than one point, we consider the map that identifies two
distinct maximal points of F. It is easy to check that such a map is a p-morphism. If
max(F) is a singleton set, we consider the second layer of F. By our assumption the second
layer is not empty. If the second layer of F consists of one point, then consider the map that
identifies the point of the second layer with the maximal point. It is easy to verify that such
a map is a p-morphism. If the second layer of F consists of at least two points, we consider
a map that identifies two points from the second layer. It is a again easy to check that this
map is a p-morphism.

Lemma 3.23. Let � be a frame order on FG(IPC). Suppose that F is a finite rooted
L-frame, where L = Log(G), for some G ∈ FG(IPC). Then F�G.

Proof. Suppose ¬(F�G). Then G |= α(F), where α(F) is the frame based formula for �.
Therefore, since F is an L-frame, F |= α(F). This is a contradiction since � is reflexive.

We are ready to give a simple proof of a well-known result that every tabular logic is finitely
axiomatizable by the Jankov-de Jongh formulas.

Theorem 3.24. Every tabular logic is finitely axiomatizable by Jankov-de Jongh formulas.
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Proof. Let L be tabular. Then L = Log(F) for some finite frame F. By Lemma 3.23, for
every rooted L-frame F′ we have F′ ≤ F. Therefore, if F′ ∈ FL, then |F′| ≤ |F|. Hence, every
finite rooted L-frame contains at most |F| points. We will show that M(L,≤) is finite.

Claim 3.25. For every H ∈ M(L,≤) we have |H| ≤ |F| + 1.

Proof. Assume H ∈ M(L,≤). If |H| = 1, then trivially |H| ≤ |F| + 1. Now suppose H is
such that |H| > 1. Then by Lemma 3.22, there exists a frame H′ such that H′ < H and
|H| = |H′| + 1. If H

′ /∈ FL, then H is not a minimal element of FG(IPC) \ FG(L), that is,
H /∈ M(L,≤), which is a contradiction. Now assume H

′ ∈ FL. Then as H
′ is an L-frame,

|H′| ≤ |F|. Thus, |H| ≤ |F| + 1.

There are only finitely many non-isomorphic frames consisting of m points for m ∈ ω.
Therefore, M(L,≤) is finite. Let M(L,≤) = {G1, . . . , Gk}. Then, by Theorem 3.9, we have
L(F) = IPC + χ(G1) + · · ·+ χ(Gk).

Now we are ready to give a simple example of a tabular logic that is not axiomatizable by
subframe and cofinal subframe formulas.

Theorem 3.26. There are intermediate logics that are axiomatizable by Jankov-de Jongh
formulas but not axiomatizable by subframe formulas or by cofinal subframe formulas.

Proof. Let ∆ be as in Lemma 3.15. Consider Fi ∈ ∆ such that i > 0. Then L = Log(Fi) is
tabular and by Theorem 3.24, L is finitely axiomatizable by the Jankov-de Jongh formulas.
Now we show that L is neither a subframe nor a cofinal subframe logic. It is easy to see
that F0 is a subframe of Fi, moreover it is a cofinal subframe. By Lemma 3.23, if F0 is an L-
frame, then F0 ≤ Fi. This is a contradiction because by Theorem 3.14, ∆ is an ≤-antichain.
Therefore L is neither a subframe nor a cofinal subframe logic and by Corollary 3.13, it is
not axiomatizable by subframe formulas and cofinal subframe formulas.

3.3 Splittings and the finite model property

In this section we overview the connection between frame based formulas, the so-called
splittings of lattices of logics and the finite model property. First we recall the definition of
a splitting, which was introduced in lattice theory by Whitman [25].

Let A be a lattice and a, b ∈ A. We say that a pair (a, b) splits A, if a � b and for each
c ∈ A we have

a ≤ c or c ≤ b.

Then a is called a splitting element and b is called a co-splitting element.

Theorem 3.27. Let � be a frame order on FG(IPC) such that for every intermediate
logic L condition (1) of Theorem 3.9 is satisfied. That is, FG(L) is �-downset for every
intermediate logic L. Then for every finite rooted frame F, the pair (IPC+α(F), Log(F)) is
a splitting pair in the lattice of all intermediate logics.
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Proof. Since F 6|= α(F), we have that α(F) /∈ Log(F) and therefore IPC + α(F) 6⊆ Log(F).
Now let L be an intermediate logic. If α(F) ∈ L, then IPC+α(F) ⊆ L. So suppose α(F) /∈ L,
then there exists a finitely generated rooted L-frame G ∈ FG(L) such that G 6|= α(F). By
Definition 3.4, we obtain that F�G. By our assumption, FG(L) is a �-downset, therefore F

is an L-frame. Thus, Log(F) ⊇ L. So for every intermediate logic L we have IPC+α(F) ⊆ L
or L ⊆ Log(F). This finishes the proof of the theorem.

Corollary 3.28. For every finite rooted frame F, the pair (IPC+χ(F), Log(F)) is a splitting
pair in the lattice of all intermediate logics.

Proof. The result follows immediately from Theorems 3.27 and 3.10(1).

Remark 3.29. In fact, the converse to Corollary 3.28 also holds; that is, for every splitting
pair (L1, L2) there exists a finite rooted frame F such that L1 = IPC+χ(F) and L2 = Log(F);
see, e.g., [7, 10.47(2)]. This result was originally proved by Jankov [12, 13, 14]. McKenzie
[20] proved a more general result that if a variety of algebras is congruence distributive and
finitely approximable (i.e., generated by its finite members), then every splitting variety in
its lattice of subvarieties is generated by a finite subdirectly irreducible algebra. McKenzie
[20] also gave an example of a finite subdirectly irreducible lattice that does not generate
a splitting variety. Blok [6] obtained the same result for modal algebras. In fact, a rooted
finite frame splits a lattice of normal extensions of the basic modal logic K iff F is cycle free.
For the details we refer to e.g., [7, Theorem 10.53].

As we saw in Theorem 3.26, there exist intermediate logics not satisfying condition (1)
of Theorem 3.9. Therefore, Theorem 3.27, in general, does not apply to logics axiomatizable
by a single subframe formula. Moreover, an analogue of Corollary 3.28 does not hold, in
general, for subframe logics. The intermediate logic LC of all linear frames provides a simple
counter-example. As follows from Example 2.7, LC = IPC + β(H2). But by Example 2.9,
LC = IPC + χ(H2) + χ(H3). Therefore, LC cannot be axiomatized by a single Jankov-de
Jongh formula and thus by Remark 3.29, LC is not a splitting logic. We also recall that an
intermediate logic L is a union-splitting if it is a join of splitting logics in the lattice of all
intermediate logics. Therefore, an intermediate logic is a union-splitting iff it is axiomatizable
by Jankov-de Jongh formulas. Thus, LC provides an example of a union-splitting that is
not a splitting.

Next we discuss the finite model property of the logics axiomatizable by frame based
formulas. We recall that an intermediate logic L has the finite model property, the fmp
for short, if every non-L-theorem is refuted in a finite L-frame. Note that in the normal
extensions of the modal logic K each union-splitting has the finite model property; see, e.g.,
[7, Theorem 10.54]. However, this is not the case for transitive modal logics. For an example
of a normal extension of K4 that is a splitting but does not have the finite model property
we refer to e.g., [7, Example 10.56]. An example of an intermediate logic axiomatizable
by Jankov-de Jongh formulas that lacks the finite model property was first constructed
by Jankov [13] (see also Kracht [18]). Next we discuss the result that intermediate logics
axiomatizable by subframe and cofinal subframe formulas enjoy the finite model property.

Theorem 3.30. Let � be a frame order on FG(IPC) such that for every intermediate logic
L condition (2) of Theorem 3.9 is satisfied. Then every intermediate logic axiomatizable by
frame based formulas for � enjoys the finite model property.
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Proof. Let L be an intermediate logic axiomatizable by frame based formulas for �. Suppose
L 6⊢ φ. Then there exists F ∈ FG(L) such that F 6|= φ. Consider L + φ. If it is inconsis-
tent, then every finite L-frame refutes φ. Thus, assume L + φ is consistent. Then it is an
intermediate logic, and by our assumption, there is F

′ ∈ M(L + φ, �) such that F
′
�F. As

L is axiomatizable by frame based formulas for �, by Theorem 3.9, FG(L) is a �-downset.
Therefore, F

′ ∈ FL. Since F
′ ∈ M(L + φ, �) we have F

′ 6|= φ. Thus, L has the fmp.

For a direct proof of the next corollary we refer to [7, Theorem 11.20]. An algebraic proof
of the result can be found in [2].

Corollary 3.31. All subframe logics and cofinal subframe logics enjoy the finite model prop-
erty.

Proof. The result follows immediately from Theorems 3.30, 3.10(2),(3) and Corollary 3.13.

We note that an analogue of Corollary 3.31 does not hold, in general, for logics axiomatizable
by Jankov-de Jongh formulas. As we pointed out above, unlike (cofinal) subframe logics,
there are logics that are axiomatizable by Jankov-de Jongh formulas that lack the finite
model property.

We will close this paper by showing that for every frame order � there are intermediate
logics that are not axiomatizable2 by frame based formulas for �. Note that this proof is
very non-constructive.

Theorem 3.32. For every frame order � on FG(IPC) there are intermediate logics that
are not axiomatizable by frame based formulas for �.

Proof. We assume that every intermediate logic is axiomatizable by frame based formulas
for � and show that this implies that every intermediate logic has the fmp. This contradicts
the fact that there are continuum many intermediate logics without the fmp; see, e.g., [7,
Theorem 6.3]. If every intermediate logic is axiomatizable by frame based formulas for �,
then by Theorem 3.9, every intermediate logic satisfies condition (2) of Theorem 3.9. There-
fore, by Theorem 3.30, every intermediate logic axiomatizable by frame based formulas for �

has the finite model property. By our assumption, every intermediate logic is axiomatizable
by frame based formulas for �. Thus, every intermediate logic has the finite model property.
This contradiction finishes the proof of the theorem.

Thus, it is impossible to axiomatize all the intermediate logics by frame based formulas for
one given frame order �. This raises the question (which we leave open) whether for every
intermediate logic L there exists a frame order �L such that L is axiomatizable by frame
based formulas for �L.

In order to axiomatize all intermediate logics by formulas arising from finite frames one
has to generalize frame based formulas by introducing a new parameter. Zakharyaschev’s
canonical formulas are extensions of the Jankov-de Jongh formulas and (cofinal) subframe
formulas with a new parameter. Instead of considering just finite rooted frame F we need to

2Michael Zakharyaschev pointed out to the author that this result also follows from the fact that inter-
mediate logics do not admit an axiomatic bases.
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consider a pair (F, D), where D is some set of antichains of F. We would also need to modify
the definition of � to take this parameter into account. Formulas arising from such pairs are
called “canonical formulas”. They provide axiomatizations of all intermediate logics. We do
not discuss canonical formulas here. For a systematic study of canonical formulas the reader
is referred to [7, §9].
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