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Abstract

The Goldblatt-Thomason theorem is a classic result of modal definability of Kripke
frames. Its topological analogue for the closure semantics has been proved by ten Cate
et al. (2009). In this paper we prove a version of the Goldblatt-Thomason theorem
for topological semantics via the Cantor derivative. We work with derivative spaces
which provide a natural generalisation of topological spaces on the one hand and of
weakly transitive frames on the other.
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1 Introduction

The Goldblatt-Thomason theorem [9] is one of the classic results in modal
logic. It states that an elementary class of Kripke frames is modally definable
iff it is closed under generated subframes, bounded morphic images, disjoint
unions and reflects ultrafilter extensions. In [15] van Benthem gave a model
theoretic proof of this theorem. Since then a number of Goldblatt-Thomason
theorems have been proved in different contexts. Van Benthem provided a
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version of this result for finite Kripke frames [14]. Ten Cate [13] investigated
Goldblatt-Thomason theorems for hybrid languages. Gabelaia [8] gave a topo-
logical version of this theorem for c-semantics (and [12] proved it for extended
languages). The Goldblatt-Thomason theorem for coalgebraic modal logic was
established in [10].

In this paper we prove the Goldblatt-Thomason theorem for the topological
derived set semantcis (d-semantics). If in the topological c-semantics the modal
diamond ♦ is interpreted as the closure c, in the derived set semantics the
diamond ♦ is interpreted as the Cantor derivative d. Recall that in a topological
space a derived set d(A) of a set A consists of the point x such that for every
open neighbourhood Ux of x the intersection A ∩ (Ux \ {x}) 6= ∅. It is well
known that the logic of all topological spaces for c-semantics is S4 [11] and
that the logic of all topological spaces for the d-semantics is the logic wK4 of
all weakly transitive frames (see, e.g., [16]), where a relation is weakly transitive
if

∀x∀y∀z(Rxy ∧Ryz)→ (Rxz ∨ x = z)).

Recall that the ultrafilter extension of a Kripke frame (X,R) is the ultrafilter
frame of the modal algebra (P(X),♦R). In the case of topological c-semantics
the role of ultrafilter extensions is played by the Alexandroff extensions [8,12].
The Alexandroff extension of a topological space (X, τ) is the Alexandroff space
associated with the ultrafilter frame of the S4-algebra (P(X), c). The topologi-
cal version of the Goldblatt-Thomason theorem states that an elementary class
(i.e., an Lt-definable class, see below) of topological spaces is modally defin-
able in the c-semantics iff it is closed under open subspaces, interior images
(i.e., images under continuous and open maps), topological sums and reflects
Alexandroff extensions [8,12].

We define the d-Alexandroff extension of a topological space (X, τ) as the
ultrafilter frame of the wK4-algebra (P(X), d). However, while the Alexandroff
extension of a topological spaces is an Alexandroff topological space, the d-
Alexandroff extension of a topological space, may not be a topological space,
which complicates the matter. In order to overcome this difficulty, instead of
topological spaces we work with derivative spaces introduced in [6,1]. Deriva-
tive spaces generalize topological spaces on the one hand and weakly transitive
Kripke frames on the other. We show that the d-Alexandroff extension of a
derivative space is a derivative space (in fact, it is always a weakly transitive
frame).

The original Goldblatt-Thomason theorem, as well as its topological variant,
gives a characterization of modally definable classes that are elementary. We
introduce an appropriate first-order language for studying derivative spaces.
Similarly to the language L2 and its fragment Lt used to study model theory
of topological spaces [7,12], the language L2 is a two sorted first-order language
with two sorts of variables, where one ranges over points of the space and the
other ranges over basic subsets.

We also work with d-analogues of generated subframes, p-morphic images
and disjoint unions—d-subspaces, bounded morphic images and d-sums. Our
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main result (Theorem 5.2) states that an L2-definable class of derivative spaces
is modally definable iff it is closed under d-subspaces, d-morphic images and
d-sums and reflects the d-Alexandroff extensions.

For proving the result we use the model-theoretic approach of [14,12]. In
order to do this we develop some model theory of derivative spaces. We in-
troduce an equivalent presentation of derivative spaces, which we call based
spaces as they resamble the presentation of topological spaces in terms of their
bases. Based space presentation enables us to apply model-theoretic technique
to derivative spaces more easily. We define ultraproducts and saturation of
based spaces. Using based spaces as an equivalent presentation of derivative
spaces and also seeing them as structures of L2, enable us to apply model-
theoretic results, such as compactness, to our models. Utilizing this we show
that any derivative space has a saturated ultrapower with a d-map from this
ultrapower to the d-Alexandroff extension of the space. This is one of our main
technical lemmas for proving the Goldblatt-Thomason theorem.

As a special case we obtain the Goldblatt-Thomason theorem for topological
derivative spaces (Theorem 5.6) i.e., for derivative spaces that are topological
spaces. Since the d-Alexandroff extension of a topological derivative space is not
necessarily a topological derivative space, we consider a reflection from a wider
class which contains topological spaces and weakly transitive Kripke frames.
Then, we show that an L2-elementary class of topological spaces is modally
definable iff it is closed under disjoint unions, open subspaces, d-morphic images
and reflects weak transitive extensions.

Topological spaces with c-semantics satisfy all conditions of the Goldblatt-
Thomason theorem, these spaces are definable over the class of all derivative
spaces. Indeed, they are definable by the formula p → ♦p. On the other
hand, the class of all derivative spaces associated with weakly transitive Kripke
frames is not modally definable over the class of all derivative spaces, since it
does not reflect the d-Alexandroff extension. It also follows from our Goldblatt-
Thomason theorem that the class of T1-spaces is not modally definable over
the class of all topological derivative spaces, while the class of Td-spaces is
definable.

2 Preliminaries: Derivative spaces and based spaces

In this section we review the main semantical structures used in the text:
derivative spaces, and, specifically, their presentation as based spaces. Deriva-
tive spaces were introduced by Fernández-Duque and Iliev [6] as ‘convergence
spaces’, in order to unify topological and Kripke semantics for the logic of the
Cantor derivative. They were renamed derivative spaces by Baltag et al. [1].
These are a special case of the more general derivative algebras of Esakia [5].
Derivative spaces may moreover be presented as based spaces, similarly to how
topological spaces may be presented in terms of a basis. The latter presenta-
tion will be the most convenient for us, since many classic results for first order
logic can be readily applied to based spaces.

Derivative spaces are sets of points equipped with an operator satisfying
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the basic properties of the Cantor derivative, although this operator need not
coincide with the ‘true’ derivative of a topological space.

Definition 2.1 A derivative space is a pair (X, d) where X 6= ∅ is a set of
points and d : P(X)→ P(X) is a derivative operator that satisfies the following
conditions for all A,B ⊆ X:

(i) d(∅) = ∅;

(ii) d(A ∪B) = d(A) ∪ d(B);

(iii) d(d(A)) ⊆ A ∪ d(A).

The dual of d, called the co-derivative, is defined as d̃(A) = X − d(X −A), for
each A ⊆ X.

The following two examples show that we can define two different derivative
spaces over a given topological space. In other words, a derivative space is a
generalized notion of a topological space.

Example 2.2 Let X = (X, τ) be a topological space, then (X, c) is a derivative
space, where c is the topological closure operator of τ . Any derivative space
of this form is called a topological closure space. Note that in addition to the
conditions of the derivative operator in Definition 2.1, the topological closure
operator also satisfies A ⊆ c(A) and c(c(A)) ⊆ c(A) for all A ⊆ X.

In 1944, by interpreting the modal operator ♦ as the topological closure
operator, McKinsey and Tarski introduced a topological semantics of modal
logic [11], nowadays named c-semantics.

Example 2.3 Let X = (X, τ) be a topological space. The Cantor derivative
operator of X , denoted by dτ , is the operator that assigns to each subset of X
the set of its limit points, i.e., for any A ⊆ X

dτ (A) = {a ∈ X | ∀O ∈ τ (a ∈ O ⇒ A ∩O − {a} 6= ∅)}.

Then (X, dτ ) is a derivative space.
In [11], McKinsey and Tarski also noted that the modal operator ♦ in-

terpreted as the Cantor derivative operator gives another topological seman-
tics for modal logic. It is known as the d-semantics for modal logic. Since
c(A) = A ∪ dτ (A), the d-semantics is more expressive than c-semantics. For
example, the class of T0 spaces is not definable in c-semantics ([12, Cor. 37]),
but it is definable in d-semantics ([2, Cor. 1]).

Examples 2.2 and 2.3 show that the class of derivative spaces contains the
class of topological spaces, equipped with either the closure or Cantor derivative
operators. On the other hand, any derivative space (X, d) can be seen as a
topological space by defining the closure operator cd as cd(A) = A ∪ d(A). We
denote this induced topology by τd. Note that given an arbitrary derivative
space (X, d), its derivative operator d does not necessarily coincide with the
Cantor derivative of its induced topology τd. Precisely, for any A ⊆ X we have

d(A) = dτd(A) ∪ ref(A), (1)
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where dτd is the Cantor operator of τd and ref(A) = {a ∈ A | a ∈ d({a})} (see
Appendix for the proof). The elements of ref(A) are called reflexive points.

We call a subset A ⊆ X, d-closed if it is closed in τd, i.e., d(A) ⊆ A. So,
A ⊆ X is d-open if A ⊆ d̃(A) = X − d(X −A).

Another special case of derivative spaces comes from weakly transitive
Kripke frames. A Kripke frame (W,R) is weakly transitive if (wRv ∧ vRz ⇒
w = z ∨ wRz), for all w, v, z ∈W .

Example 2.4 Let (W,R) be a weakly transitive Kripke frame. We obtain a
derivative space (W,dR) by defining, for any A ⊆W ,

dR(A) = {w ∈W | wRs for some s ∈ A}.

Then, τdR is the upset topology over (W,R), i.e., O ⊆W is open if for any a ∈ O
we have R(a) = {s | aRs} ⊆ O. Also, ref(A) = {a ∈ A | aRa}. Therefore, if R
is a weakly transitive and irreflexive relation, then dR is the Cantor derivative
operator of τR. Also, if R is a transitive and reflexive relation, then dR is the
topological closure operator of τR.

As mentioned above, the class of derivative spaces contains some interest-
ing classes of structures, e.g., topological spaces and weakly transitive Kripke
frames. On the other hand, the class of derivative spaces is a subclass of the
class of monotonic neighbourhood structures.

Definition 2.5 A neighbourhood derivative space is a pair (X,N ), where N :

X → 22
X

is a neighbourhood assignment that satisfies the following conditions
for any a ∈ X:

(i) X ∈ N (a),

(ii) if A ∈ N (a) and A ⊆ B, then B ∈ N (a),

(iii) if A,B ∈ N (a), then A ∩B ∈ N (a),

(iv) if a ∈ A ∈ N (a), then {b ∈ X | A ∈ N (b)} ∈ N (a).

In [1], it is shown that there is an equivalent presentation of derivative
spaces as neighbourhood derivative spaces. For a given derivative space (X, d)
and a ∈ X, let

Nd(a) = {A ⊆ X | a 6∈ d(X −A)} = {A ⊆ X | a ∈ d̃(A)}.

We call the members of Nd(a) d-neighbourhoods of a. Note that every open
neighbourhood of a with respect to the topology τd is a d-neighbourhood of
a, but the converse is not true in general. For example, when d is the Cantor
derivative of a topological space, then A ∈ Nd(a) if there is an open neighbour-
hood O of a such that O − {a} ⊆ A. In other words, A is d-open if for any
a ∈ A we have A ∈ Nd(a).

Conversely, for a given derivative neighbourhood space (X,N ), we can de-
fine an operator d over P(X) as follows:

d(A) = {a ∈ X | ∀O ∈ N (a) O ∩A 6= ∅}.
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Then (X, d) is a derivative space.
In addition to this equivalent presentation of derivative spaces, we can also

consider another one which plays a similar role as bases for topological spaces
relative to derivative spaces.

Definition 2.6 Let B : X → 22
X

be a function over X 6= ∅. Then B is called
a basic neighbourhood assignment if for each a ∈ X the following conditions
hold:

(i) B(a) 6= ∅,

(ii) if A,B ∈ B(a), then there is C ∈ B(a) such that C ⊆ A ∩B,

(iii) if A ∈ B(a) and b ∈ A, then there is B ∈ B(b) such that B ⊆ A ∪ {a}.
Any set A ∈ B(a) is called a basic d-neighbourhood of a. Also,

⋃
a∈X B(a) is

called a derivative base (or set of basic d-neighbourhoods) of X, and (X,B) is
called a based space.

Note that basic neighbourhood assignments need not be monotone (i.e.,
closed under supersets), but this does not affect their modal logic, as one may
obtain an equivalent monotone structure from them.

Lemma 2.7 Let B be a basic neighbourhood assignment over X. For each
a ∈ X, let NB(a) be the closure of B(a) under supersets. Then NB is a
derivative neighbourhood assignment.

Moreover, the function dB : P(X)→ P(X) defined as

dB(A) = {a ∈ X | ∀O ∈ B(a) O ∩A 6= ∅}

is a derivative operator, and NdB = NB.

Likewise, we may readily obtain a based space from a given derivative space
by assigning to each point its set of ‘punctured neighbourhoods’.

Lemma 2.8 Let (X, d) be a derivative space and Bd : X → 22
X

be an operator
which assigns to each a ∈ X the set of its punctured d-neighbourhoods, i.e.,

Bd(a) = {O ⊆ X | a ∈ d̃(O) & O ⊆ d̃(O ∪ {a})}.

Then Bd is a basic neighbourhood assignment with dB = d.

So, we can consider based spaces as an equivalent presentation of derivative
spaces. In other words, we can identify a class K of derivative spaces as a class
K ′ of based spaces (X,B) such that (X, dB) ∈ K. There are various technical
advantages to working with based spaces.

Example 2.9 Assume that (X, τ) is a topological space and σ is a basis for
τ . Then the function B1 defined as B1(a) = {O ∈ σ |a ∈ O} for each a ∈ X,
is a basic neighbourhood assignment of X and dB1 = c. Also the function B2
defined as B2(a) = {O−{a} | a ∈ O ∈ σ} is a basic neighbourhood assignment
with dB2

= dτ .
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3 Model theory of derivative spaces

Our main focus in this paper is on the basic modal language. Let P be a count-
able set of propositional variables. Modal formulas are constructed recursively
from P using Boolean connectives and modal operators ♦,2.

Definition 3.1 A based model is a triple M = (X,B, J·K) where X = (X,B)
is a based space and J·K : P→ P(X) is a valuation function.

The satisfaction of formulas is defined by structural induction. For propo-
sitional variables and Boolean connectives, we have the standard definitions,
and for modal operator we have

M, a |= ♦ϕ iff A ∩ JϕK 6= ∅ for all A ∈ B(a).

Then we have M, a |= 2ϕ iff there exists A ∈ B(a) such that A ⊆ JϕK.
In other words, for any derivative model M = (X, d, J·K) we have

M, a |= ♦ϕ iff a ∈ d(JϕK),

and thus, M, a |= 2ϕ iff a ∈ d̃(JϕK).

3.1 Corresponding language

The original Goldblatt-Thomason theorem [9] provides a characterization of
modally definable conditions for classes of Kripke frame that are elementary,
i.e., definable in the corresponding first-order language. Ten Cate et al. [12]
also prove a version of the Goldblatt-Thomason theorem for those topological
closure spaces that are definable in a suitable corresponding language Lt. In
this section, we introduce a first-order language which is appropriate for study-
ing derivative spaces. This language is interpreted over based neighbourhood
spaces as an equivalent presentation of derivative spaces.

Let L2 be a two-sorted first-order language. The first sort ranges over the
set of points of a space, and we denote its variables by x, y, . . . . The second sort
ranges over basic subsets of the space, and we denote its variables by U, V, . . . .
The language L2 contains two binary relations ε and ν, where ε relates point
variables with basic subset variables and ν relates basic subset variables with
point variables. Also, L2 contains a unary predicate Pp for each proposition p.
The formulas of L2 are defined as follows: 3

ϕ ::= x = y | x ε U | U ν x | Pp(x) | ¬ϕ | ϕ ∧ ϕ | ∃xϕ | ∃Uϕ.

Any based model M = (X,B, J·K) can be seen as an L2-structure

(X,
⋃
a∈X
B(a), εM, νM, {Pp | p ∈ P}),

where a εM O means that a ∈ O and O νM a means that O ∈ B(a).
Clearly, not every L2-structure is a based model. However, the class of basic

neighbourhood models is characterized by an L2-theory.

3 The language L2 is similar to the language L2, introduced for studying topological spaces
[7], except that it has an extra predicate ν.
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Assume thatM = (D1, D2, ε
M, νM, {Pp | p ∈ P}) is an L2-model. For any

A ∈ D2, let ‖A‖ = {a ∈ D1 | a εM A}.
Lemma 3.2 There exists a finite set of L2-formulas Γbasic such that if M =
(D1,B, J·K) is any L2-model such that M |= Γbasic, then M is a based model
with a basic neighbourhood assignment B(a) = {‖A‖ | A ∈ D2 & A νM a}.

Then the function d defined over P(D1) as

d(A) = {a ∈ D1 | ∀O ∈ D2 (O νM a⇒ ‖O‖ ∩A 6= ∅)},

is a derivative operator with dB = d.
Just as the standard translation interprets modal formulas with their Kripke

semantics as first order formulas, we may interpret the modal language in L2

with respect to its derivational semantics.

Definition 3.3 [Translation] Given a designated first order variable x, we re-
cursively define a translation Trx from modal formulas to L2-formulas as fol-
lows:

Trx(p) = Pp(x)

Trx(¬ϕ) = ¬Trx(ϕ)

Trx(ϕ ∧ ψ) = Trx(ϕ) ∧ Trx(ψ)

Trx(♦ϕ) = ∀U (U ν x→ ∃y(y ε U ∧ Try(ϕ)))

Trx(2ϕ) = ∃U(U ν x ∧ ∀y(y ε U → Try(ϕ)))

Proposition 3.4 For any based model M and any modal formula ϕ we have

M, a |= ϕ iff M |= Trx(ϕ)[a].

Remark 3.5 In the translation of modal formulas, the quantifiers over basic
subset variables appear in restricted forms. Let Ld be a language obtained by
restricting the use of quantifiers over set variables of L2 as follows:

• ∃U(U ν x ∧ α), where α is negative in U ,

• ∀U(U ν x→ α), where α is positive in U .

Then one can easily see that Ld is invariant under basic d-neighbourhoods, i.e.,
the satisfaction of Ld-formulas is independent of interpreting U ν x as ‘U is a
d-neighbourhood of x’ or as ‘U is a basic d-neighbourhood of x’. 4

3.2 Ultraproducts

Ultraproducts are an essential tool in estabilshing the original Goldblatt-
Thomason theorem, as well as its topological variant; they will also be used
throughout our own proof. In this section, we review their definitions and basic
properties.

Let I be a non-empty set. A set D ⊆ P(I) is a filter over I, if I ∈ D
and D is closed under finite intersections and supersets. A filter D is called

4 Similarly, over the class of topological spaces, the language Lt is introduced as a fragment
of L2 which is invariant under topological bases, see [7,12].
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an ultrafilter if for all A ⊆ I, either A ∈ D or I − A ∈ D. The ultrafilter
theorem states that any subset of P(I) with the finite intersection property
can be extended to an ultrafilter over I; in other words, if D is a filter such
that whenever X1, . . . , Xn ∈ D, it follows that X1 ∩ . . . ∩Xn 6= ∅, then there
is an ultrafilter U ⊇ D.

Let (Xi : i ∈ I) be a family of non-empty sets and
∏
i∈I Xi be the Carte-

sian product of this family, i.e.,
∏
i∈I Xi = {(ai)i∈I |ai ∈ Xi}. Two elements

(ai)i∈I , (bi)i∈I ∈
∏
i∈I Xi are D-equivalent, denoted by (ai)i∈I ∼D (bi)i∈I , if

{i ∈ I|ai = bi} ∈ D. It is clear that ∼D is an equivalence relation. We denote
the equivalence class of (ai)i∈I by [(ai)]. Let

∏
DXi be the set of all equivalence

classes.
Assume (Xi : i ∈ I) is a family of based spaces, and D is an ultrafilter over

I. Define the function BD over
∏
DXi as

BD([(ai)]) = {
∏
D
Ui | {i ∈ I | Ui ∈ Bi(ai)} ∈ D},

where Bi is a basic neighbourhood assignment of Xi. Then one can easily see
that (

∏
DXi,BD) is a based space.

Definition 3.6 The d-ultraproduct of a family of based models (Mi : i ∈ I) is a
model

∏
DMi = (

∏
DXi,BD, J·KD), where JpKD =

∏
DJpKi for any proposition

p ∈ P.
If Mi = M for each i ∈ I, then

∏
DMi is called an ultrapower of M. We

denote by â the class [(ai)] where ai = a for each i ∈ I.

Example 3.7 If (Xi : i ∈ I) is a family of topological spaces (Xi, σi) where σi
is a topological base, then BD is a topological base over

∏
DXi (see Definition

15 in [12]).

Proposition 3.8 For any family of based models (Mi : i ∈ I) and for any
modal formula ϕ, we have∏

D
Mi, [(ai)] |= ϕ iff {i ∈ I | Mi, ai |= ϕ} ∈ D.

Since the ultraproduct of based spaces is a based space, the  Loś Theorem
applied to the two-sorted first order language L2-formulas implies that L2 has
the compactness property over that class of based models.

3.3 d-Saturation

The next key ingredient in a proof for the Goldblatt-Thomason theorem is sat-
uration; essentially, a structure is saturated if any set Γ(x) of formulas with one
free variable whose finite subsets are satisfied on some point of the structure is
uniformly satisfied on a single point. By modifying the notion of Lt-saturation
introduced in [12] for topological closure spaces, we provide an appropriate
notion for derivative spaces.
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Definition 3.9 [Derivative Saturated] Let M = (X,B, J·K) be a based model.
A subset A ⊆ X is point-saturated if for any L2-type Γ(x), i.e., a set of L2-
formulas with one point free variable x and without any basic subset variable,
we have Γ(x) is satisfiable in A provided that it is finitely satisfiable in A. A
based model (X,B, J·K) is derivative saturated (or d-saturated for short) if it
satisfies the following conditions:

(i) X is point-saturated.

(ii) For any a ∈ X, any O ∈ B(a) is point-saturated.

(iii) For any a ∈ X there exists Oa ∈ B(a) such that for any formula ϕ(x)
which is true in all members of some neighbourhood of a, is true over all
members of Oa.

Proposition 3.10 For any based model M, there is an ulrafilter D such that∏
DM is d-saturated.

The proof is given in the Appendix.

4 Definability

Our main goal in this paper is to study modal definability conditions for classes
of derivative spaces. As mentioned above, based spaces provide an equivalent
presentation of derivative spaces, and we investigate the definability conditions
of based spaces. This will allow us to have more flexibility on the corresponding
language, as well as granting us access to standard techniques for first order
logic. More precisely, for any given class C of derivative spaces, we identify C
with the class C′ of based spaces (X,B) such that (X, dB) belongs to C.
Definition 4.1 Let C be a class of based spaces. A class K ⊆ C is modally
definable over C if there is a set of modal formulas Σ such that for any based
space X ∈ C we have X ∈ K iff X |= Σ.

A class K is modally definable if it is modally definable over the class of all
based spaces.

Example 4.2 For a based space X = (X,B), let σ =
⋃
a∈X B(a)∪ {∅}. Then

X |= p→ ♦p iff σ is a topological base and dB is the closure operator over the
topology generated by σ. Note that σ is a topological base iff for any a ∈ X
and A ∈ B(a) we have a ∈ A. In other words, the class of all topological closure
spaces, i.e., derivative spaces (X, d) for which d = c, is defined by p→ ♦p.

As mentioned in Example 2.3, the d-semantics is more expressive than the
c-semantics. The following is another example witnessing the more expressive
power of d-semantics.

Example 4.3 A topological space (X, τ) is a Td-space if every x ∈ X is an
intersection of an open and a closed set; equivalently if dτ (A) is closed for
all A ⊆ X. The class of Td-spaces is not definable in c-semantics (see [12,
Cor. 37]). But, it is definable over the class of all topological derivative spaces
by 2p→ 22p [2]. More generally, this formula defines the class of all derivative
spaces with the property that d(d(A)) ⊆ d(A) for each A ⊆ X.
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Example 4.4 It is easy to see that the Löb formula 2(2p→ p)→ 2p is valid
on derivative space X = (X, d) iff d(A) = d(A−d(A)), for any A ⊆ X. Also, for
any topological space X we have X is scattered iff dτ (A) = dτ (A− dτ (A)) for
any A ⊆ X. Thus, for any derivative space X = (X, d), if (X, τd) is scattered
and dτd = d, then the Löb formula is valid on X (see, e.g., [16]).

We can also show the converse of that, i.e., if the Löb formula is valid on
the derivative space X , then (X, τd) is scattered and dτd = d. So the class of
all scattered spaces is definable by the Löb formula over the class of topological
derivative spaces.

4.1 Invariant Results

Any modally definable class must be invariant over any operation that pre-
serves modal formulas. We identify three constructions over based spaces (resp.
derivative spaces) that have this property; our Goldblatt-Thomason theorem
will then state that these conditions precisely characterize modal definability.

Definition 4.5 Let (Xi : i ∈ I) be a family of disjoint based spaces. The
d-sum of this family is a space

⊎
i∈I Xi = (X,B), where X =

⊎
i∈I Xi and

B : X → 22
X

is defined by B(a) = Bi(a), for a ∈ Xi.

Proposition 4.6 Let (Xi : i ∈ I) be a family of disjoint based spaces. Then
for any formula ϕ, we have

⊎
i∈I Xi |= ϕ iff Xi |= ϕ for all i ∈ I.

Example 4.7 The class of finite based spaces is not modally definable, since
an infinite sum of finite spaces will validate any formula valid on finite spaces.
Similarly, the class of all derivative spaces with a finite derivative operator, i.e.,
with a derivative operator which assigns to each subset a finite subset, is not
modally definable.

Definition 4.8 Let X be a based space. A d-open subspace of X is a space
O = (O,BO), where O is a d-open subset of X (i.e. for any a ∈ O there is
O′ ∈ B(a) such that O′ ⊆ O) and BO(a) = {A ∩O|A ∈ B(a)}, for any a ∈ O.

For a weakly transitive Kripke frame (X,R) with BR(a) = {R(a)}, a d-
open subspace is a generated subframe. Also, for a based space (X,B), if σ =⋃
a∈X B(a)∪{∅} is a topological base, then a d-open subspace is a topologically

open subspace.

Proposition 4.9 Let O be a d-open subset of a based space X . Then X |= ϕ
implies that O |= ϕ, for any formula ϕ.

Example 4.10 The class of all based spaces with some point a ∈ X such
that ∅ ∈ B(a) is not modally definable. To see this consider a based space
X = ({w0, w1, w2},BR) with R = {(w1, w2), (w2, w2)} and its d-open subspace
Y over {w1, w2}.
Definition 4.11 Let (X,B) and (X ′,B′) be two based spaces. The function
f : X → X ′ is a d-morphism if

(i) for any A ∈ B(a), there exists A′ ∈ B′(f(a)) such that for any b′ ∈ A′

there is b ∈ A with f(b) = b′,
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(ii) for any A′ ∈ B′(f(a)), there exists A ∈ B(a) such that for any b ∈ A there
is b′ ∈ A′ with f(b) = b′.

If f is a surjective d-morphism, then we say that X ′ is a d-morphic image of
X .

It can easily be checked that a function f : X → X ′ is a d-morphism
between two derivative spaces (X, d) and (X ′, d′) if f−1(d′(A′)) = d(f−1(A′)),
for any A′ ⊆ X ′.

As usual, validity of formulas is preserved under d-morphic images.

Proposition 4.12 If X ′ is a d-morphic image of X , then X |= ϕ implies
X ′ |= ϕ.

We may also use d-morphisms to identify open subspaces.

Proposition 4.13 O = (O, dO) is a d-open subspace of X = (X, d), iff O ⊆ X
and the inclusion function i : O → X is a d-morphism.

Example 4.14 The classes of T1 and T2-spaces are not definable over the class
of all topological derivative spaces. To see this, let f be a function from the
ordinal ω2 equipped with the interval topology to the Sierpiński space, i.e., the
space ({0, 1}, {∅, {1}, {0, 1}}), defined as f(ω.k) = 0 for each 0 < k < ω and
f(x) = 1 for others.

In the Goldblatt-Thomason theorem for Kripke semantics, there is another
important construction, namely, the ultrafilter extension, which reflects the
validity of modal formulas. In [12] a similar construction is introduced for c-
semantics of topological spaces, named Alexandroff extension. Now, we define
an analogous notion for derivative spaces.

Let X = (X,B) be a based space and X∗ be the set of all ultrafilters over
X. Recall that for each A ⊆ X, we have dB(A) = {a | ∀B ∈ B(a) B ∩A 6= ∅}.
Define a binary relation R∗ over X∗ as follows:

uR∗u′ iff A ∈ u′ implies dB(A) ∈ u for any A ⊆ X.

Lemma 4.15 R∗ is a weakly transitive relation over X∗.

The proof of this lemma is given in the Appendix. Note that, in general,
(X∗, R∗) is not irreflexive. To see this, consider the topological derivative space
of (N, τ) where τ = {∅, all co-finite sets}. Then for any A ⊆ N, we have

d(A) =

{
∅ A is finite
N A is infinite

Thus, any non-principal ultrafilter in N∗ is reflexive since each of its members is
infinite. Indeed, any non-principal ultrafilter is an R∗-successor of all members
of N∗.

Definition 4.16 [d-Alexandroff extension] Let X = (X,B) be a based space.
The d-Alexandroff extension of X is the space X ∗ = (X∗,B∗), where B∗(u) =
{R∗(u)}, for each u ∈ X∗.
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In other words, for any derivative space X = (X, d), the d-Alexandroff
extension of X is the space X ∗ = (X∗, d∗) where

d∗(A) = {u | ∃u′ ∈ A s.t uR∗u′},

for any A ⊆ X∗.
Example 4.17 For any weakly transitive Kripke frame (W,R), its d-
Alexandroff extension is equal to its ultrafilter extension (W ∗, Rue).

Note that the d-Alexandroff extension of a derivative space (X, d) is the
derivative space corresponding to the ultrafilter frame of the wK4-algebra
(P(X), dτ ) (see [3]).

Example 4.18 For any topological closure space (X, τ), its d-Alexandroff ex-
tension is equal to its Alexandroff extension defined in [12].

But for any topological derivative space, its d-Alexandroff extension is not
necessarily a topological derivative space. In other words, the class of all topo-
logical derivative spaces is not closed under d-Alexandroff extensions.

Proposition 4.19 For any based space X we have, X ∗ |= ϕ implies X |= ϕ.

The proof of the proposition is given in the Appendix.

Recall that a topological space (X, τ) is Alexandroff if every point has a
minimal open neighbourhood. The Alexandroff extension of any topological
closure space, is an Alexandroff space, and this implies that the class of Alexan-
droff spaces is not definable in the c-semantics (see Corollary 41 in [12]). We
can extend this notion to derivative spaces. A derivative space (X, d) is called
Alexandroff if every point has a minimal basic d-neighbourhood.

Example 4.20 The class of all Alexandroff derivative spaces is not modally
definable. For any arbitrary derivative space X , even for non-Alexandroff one,
X ∗ is Alexandroff, since R∗(u) is the only element of B∗(u), for all u ∈ X∗.

5 The Goldblatt-Thomason Theorem

We are now ready to prove our main result. We begin with the following useful
fact; the proof can be found in the Appendix.

Proposition 5.1 For any based space X , there exists a based ultrapower
∏
D X

with a surjective d-morphism f :
∏
DX → X∗.

With this, we are ready to prove our main result.

Theorem 5.2 Let K be an L2-elementary class of based spaces. Then, K is
modally definable iff K is closed under d-sums, d-open subspaces, d-morphisms
and reflects d-Alexandroff extensions.

Proof. The left-to-right direction is obvious by the results in the above part.
For the other direction, let Log(K) = {ϕ | K |= ϕ}. We show that for any
based space X we have X ∈ K iff X |= Log(K). Clearly, Log(K) is valid on any
space in K. Now suppose that X |= Log(K). Consider a language containing
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a propositional variable pA for any A ⊆ X, and let M = (X , J·K) where J·K is a
natural valuation in this language, i.e., JpAK = A for any A ⊆ X. Now take ∆
as a theory containing all the formulas in the following form for any A,B ⊆ X:

PAc ↔ ¬PA
pA∩B ↔ pA ∧ pB
pd(A) ↔ ♦pA
pd̃(A) ↔ 2pA

Then M |= ∆.
Claim. For any a ∈ X there exists a model Na based on some Ya ∈ K and

b ∈ Ya such that Na |= ∆ and Na, b |= p{a}.
Proof of the claim: Suppose that a ∈ X. Let

∆a = {2ϕ ∧ ϕ | ϕ ∈ ∆} ∪ {pa}.

∆a is finitely satisfiable in K, since otherwise ¬δ ∈ Log(K) for some finite
subset δ of ∆a, which is a contradiction with M |= Log(K).

Since K is an elementary class, it is closed under ultraproducts, so we can
assume that there is a d-saturated model N based on some Y ∈ K and b ∈ Y
such that N, b |= ∆a. By d-saturation, b has a d-neighbourhood Ub ∈ B(b) such
that ϕ holds throughout Ub for all ϕ ∈ ∆. Let Na be a d-open subspace of N
generated by O = Ub ∪ {b}, and this completes the proof of the claim.

Let N be the ω-saturated ultrapower of
⊎
a∈X Na. By the closure of K

under d-sums and d-ultraproducts, Y =
∏
D ]a∈XYa ∈ K.

Now, by Proposition 5.1, we know that there is a d-morphism from Y to
X ∗. The closure of K under d-morphisms implies that X ∗ ∈ K. So X ∈ K
since K reflects d-Alexandroff extensions. 2

As mentioned above, for any derivative space (X, d), the frame (X∗, R∗)
is not necessarily irreflexive. Specially, for any topological derivative space,
(X∗, R∗) is not necessary irreflexive, so (X∗, d∗) is not a topological derivative
space. Thus, for giving a version of the Goldblatt-Thomason theorem for such
classes of structures, i.e., for those that are not closed under the d-Alexandroff
extension, we consider the following definition.

Definition 5.3 Let K be a class of derivative spaces. We say that K reflects
d-Alexandroff images whenever for some derivative space Y ∈ K, if X ∗ is a
d-morphic image of Y, then X is in K.

Theorem 5.4 Let K be an L2-elementary class of derivative spaces. Then
K is modally definable iff K is closed under d-sums, d-open subspaces, d-
morphisms and reflects d-Alexandroff images.

Specifically for the class of topological derivative spaces, we can also express
the above theorem in another way based on the following definition.

Definition 5.5 Suppose that K is a class of topological spaces. Let K+ be
the class of all Kripke frames that are d-morphic images of some elements of
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K. We say that a class K of topological spaces reflects the weak transitive
extensions from K+, whenever for any topological space (X, τ) if (X∗, R∗) is
in K+, then (X, τ) is in K.

Corollary 5.6 Let K be an L2-elementary class of topological spaces. K is
modally definable iff it is closed under disjoint unions, open subspaces, and
d-morphic images and reflects weak transitive extensions from K+. 5

6 Concluding Remarks

In this paper we give a version of the Goldblatt-Thomason theorem for deriva-
tive spaces. There are some lines of research that can be considered for future
work.

One of the natural further directions is to investigate definability for ex-
tended languages which provide the ability to define more properties. For ex-
ample one can show that the class of all topological derivative spaces is definable
by the hybrid formula @i¬♦i while it is not definable in the basic language.
Utilising the method used for topological c-semantics in [12], one can extend
our results to extended languages such as modal logic with universal modality
and hybrid logics.

First-order modal logic (FML) is another extension of modal logic. There
is some work on definability in the context of FML, e.g. [17,18]. For example,
[18] gives a version of the Goldblatt-Thomason FML for Kripke frames. It
uses a well-known technique from classical model theory called Morleyization
(or atomization). Providing a version of the Goldblatt-Thomason theorem for
FML with respect to topological semantics is an interesting future work.

The other challenging extension of modal logic is the modal µ-calculus
(µML)—modal logic enriched with fixed point operators. There are many ob-
stacles for this logic, for example, µML does not enjoy the compactness prop-
erty, which plays a significant role in proving the Goldblatt-Thomason theorem.
To tackle this problem, one might need to consider simpler extensions such as
modal languages with tangled operator.

This also suggests a line of study of general definability characterization
theorems, for classes of structures that are not necessarily elementary. There
are many important examples of classes of Kripke frames or topological spaces
that are definable, but not elementary. For example, the class of scattered
spaces (Example 4.4) is definable by Löb’s formula, but is not elementary.
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Appendix

In this Appendix we prove some results from the main text. We begin with the
proof of Equation 1 in Section 2, which states that for any A ⊆ X we have

d(A) = dτd(A) ∪ ref(A),

where dτd is the Cantor operator of τd and ref(A) = {a ∈ A | a ∈ d({a})}.
First assume that a 6∈ dτd(A) ∪ ref(A). Since a 6∈ dτd(A), there is an open

O ∈ τd such that a ∈ O and O ∩ A − {a} = ∅. By the second condition of
d, we have d(A) = d(A ∩ O) ∪ d(A ∩ Oc). Since a ∈ O = Intd(O), we have
a 6∈ d(Oc) ⊆ Oc, thus a 6∈ d(A∩Oc). Furthermore, if a ∈ A, then A∩O = {a}
and a 6∈ ref(A) implies that a 6∈ d(A ∩O). If a 6∈ A, then A ∩O = ∅, and thus
a 6∈ d(A ∩O). Therefore, a 6∈ d(A).

For the other direction, first assume that a ∈ ref(A). Then a ∈ A and
a ∈ d({a}) which implies that a ∈ d(A). Now assume that a 6∈ ref(A) and
a 6∈ d(A). If a 6∈ A, then a ∈ Ac ∩ dc(A) = Intd(A

c) = O ∈ τd. Thus,
a 6∈ dτd(A), because O ∩ A − {a} = ∅. If a ∈ A, then a 6∈ d({a}). Let
O = Intd(A

c ∪ {a}), this implies that a 6∈ dτd(A).

Proof. [Proof of Lemma 3.2] We define Γbasic to be the following L2-formulas,
which express the axioms of basic d-neighbourhoods:

• ∀x∃U(U ν x),

• ∀x∀U, V (U ν x ∧ V ν x→ ∃W (W ν x ∧ ∀y(y ε W → y ε U ∧ y ε V ))),

• ∀x∀U(U ν x→ ∀z(z ε U → ∃W (W ν z ∧ ∀y(y ε W → y = x ∨ y ε U))))).
2

Proof. [Proof of Proposition 3.10] From model theory, we know that for any
L2-model, and thus for any based model, M there is an ultrafilter D such that∏
DM is ω-saturated (see [4], Theorem 6.1.8). We show that

∏
DM is also

d-saturated.

(i) It immediately follows by ω-saturation of M.

(ii) Let a be any point of
∏
DX, and O ∈ BD(a) be one of its basic neigh-

bourhoods in
∏
DM. By the definition, O =

∏
D Oi which is point-

saturated, since for any set of L2-type Γ(x) of O we can consider the
L2-type Γ′(x) = {x ε U} ∪ Γ(x). Since

∏
DM is ω-saturated, there is

b ∈
∏
DX such that

∏
DM |= Γ′(b). This means that Γ is satisfiable in

O.

(iii) Assume that a ∈
∏
DX is given and Γ(x) is the set of all L2-formulas

ϕ(x) such that ϕ(x) holds throughout some basic neighbourhood of a.
Now consider the following set of L2-formulas:

Γ(U) ={U ν a} ∪ {∀y(y ε U → ϕ(y)) | ϕ ∈ Γ}.

Since
∏
DM is an ω-saturated, there is

∏
D Oi ∈ B(a) such that

∏
DM |=

Γ(
∏
D Oi).
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2

Proof. [Proof of Lemma 4.15] Suppose u, u′, u′′ ∈ X∗ and uR∗u′ and u′R∗u′′.
We show that if u 6= u′′, then uR∗u′′. So, we have to show that dB(B) ∈ u
whenever B ∈ u′′ for any B ⊆ X. Take an arbitrary B ∈ u′′. Since u 6= u′′,
there is A ⊆ X such that A ∈ u′′ and Ac ∈ u. Then A ∩ B ∈ u′′, and
thus dBdB(A ∩ B) ∈ u. This implies that dB(A ∩ B) ∪ (A ∩ B) ∈ u. Hence,
(dB(A ∩ B) ∩ Ac) ∪ (A ∩ B ∩ Ac) ∈ u. So, dB(A ∩ B) ∩ Ac ∈ u. Therefore,
dB(A ∩B) ⊆ dB(B) ∈ u. 2

Proof. [Proof of Proposition 4.19] If X 6|= ϕ. Then there is a model M =
(X , J·K) and a ∈ X such that M, a 6|= ϕ. Let M∗ = (X ∗, J·K∗), where JpK∗ =
{u ∈ X∗ | JpK ∈ u}, for each p ∈ P.

Claim. M∗, u |= θ iff JθK ∈ u, for each modal formula θ.
This claim implies that M∗, ua 6|= ϕ, where ua is the principal ultrafilter

generated by a, and thus X ∗ 6|= ϕ.
Proof of the Claim: By induction on the complexity of formula θ. By

definition of J·K∗ and by the ultrafilter properties it is easy to see that the
claim holds for atomic formulas and Boolean connectives. Now let θ = ♦ψ. If
u |= ♦ψ, then JψK∗∩B∗ 6= ∅ for all B∗ ∈ B∗(u). Specifically, R∗(u)∩JψK∗ 6= ∅.
So, there is u′ such that uR∗u′ and u′ ∈ JψK∗. By induction hypothesis we have
JψK ∈ u′, which implies that J♦ψK ∈ u. For the other direction, suppose that
J♦ψK ∈ u. Let u0 = {A ⊆ X | d̃B(A) ∈ u}. Then u0 ∪ {JψK} has the finite
intersection property, and thus it can be extended to an ultrafilter u′. Then
JψK ∈ u′ and uR∗u′. 2

Proof. [Proof of Proposition 5.1] For any A ⊆ X, add a new unary predicate
PA to the language L2 and let M ba an L2-model of X with the natural
interpretation of new predicates, i.e., PA is interpreted as A. Let MD be the
d-saturated ultrapower of M as in Proposition 3.10.

Let T be the set of L2-sentences of the following forms:

(i) ∃x PA(x), for any non-empty A ⊆ X.

(ii) ∀x(PA∩B(x)↔ PA(x) ∧ PB(x)).

(iii) ∀x(¬PA(x)↔ PAc(x)).

(iv) ∀x(Pd(A)(x)↔ ∀U(U ν x→ ∃y(y ε U ∧ PA(y))).

(v) ∀x(Pd̃(A)(x)↔ ∃U(U ν x ∧ ∀y(y ε U → PA(y))))

Then we have MD |= T , since M |= T .
Now define a function f :

∏
DX → X∗ as follows:

f(a) = {A ⊆ X | a ∈ (PA)MD}.

We have to show that f is a d-morphism.

• f is well-defined, since (ii) and (iii) imply that f(a) is an ultrafilter.

• To see that f is surjective, for any given u ∈ X∗, let Γu(x) = {PA(x) | A ∈ u}.
By (ii), Γu is finitely satisfiable in MD. Since MD is d-saturated, there is a
point a ∈

∏
DX such that MD |= Γu(a).
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• To show f is a d-morphism, first assume that O ∈ BD(a). We have to show
there exists O∗ ∈ B∗(f(a)) such that for any u ∈ O∗ there is b ∈ O with
f(b) = u. Let O∗ = R∗(f(a)). For a given u ∈ O∗, we have f(a)R∗u. Let
Γ(x) = {PA(x) | d(A) ∈ u}. Then, by (iv), Γ(x) is finitely satisfiable in any
B ∈ BD(a). Specifically, Γ is finitely satisfiable in O. Now d-saturation of
MD implies that O is point saturated, and thus there is b ∈ O such that Γ(b)
is true and f(b) = u.

For the other direction, assume that O∗ ∈ B∗(f(a)), we have to show that
there is O ∈ BD(a) such that f(O) ⊆ O∗. Let Oa be the d-neighbourhood
of a as defined in part 3 of the definition of d-saturation (cf. Definition 3.9).
Let Γ = {PA(x) | d̃(A) ∈ f(a)}. Then, by (v), for any finite subset Γ′ ⊆ Γ,
we have

∧
Γ′ is true throughout some O ∈ BD(a). So, Γ is true throughout

Oa and Oa ∩ f−1(A∗) 6= ∅. Thus, there is b ∈ Oa such that f(b) ∈ A∗ and
f(a)R∗f(b).

2
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