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Abstract. This paper explores a new language of neighbourhood structures where existential
information can be given about what kind of worlds occur in a neighbourhood of a current world.
The resulting system of ‘instantial neighbourhood logic’ INL has a non-trivial mix of features from
relational semantics and from neighbourhood semantics. We explore some basic model-theoretic
behavior, including a matching notion of bisimulation, and give a complete axiom system for which
we prove completeness by a new normal form technique. In addition, we relate INL to other modal
logics by means of translations, and determine its precise SAT complexity. Finally, we discuss proof-
theoretic fine-structure of INL in terms of semantic tableaux and some expressive fine-structure in
terms of fragments, while discussing concrete illustrations of the instantial neighborhood language
in topological spaces, in games with powers for players construed in a new way, as well as in dynamic
logics of acquiring or deleting evidence. We conclude with some coalgebraic perspectives on what is
achieved in this paper. Many of these final themes suggest follow-up work of independent interest.

1. Introduction

Neighbourhood semantics for modal logic [25, 29, 12, 21] is a generalization of both standard
relational semantics and topological semantics, in which worlds are related to sets of worlds called
‘neighbourhoods’, and a modal formula �ϕ holds if at least one neighbourhood has only points
satisfying ϕ. The box modality thus encodes a quantifier pattern of the shape ∃∀. There are many
motivations for this generalization, from a desire to model weaker modal logics than the usual
minimal system K to representing and reasoning about significant semantic structures that are not
simply graph-like. However, when we extend a semantic realm for a language, there is always an
inevitable issue of whether that language is still adequate for capturing all structural features of the
richer models. In particular, neighbourhood models suggest that the content of neighbourhoods
may be important, and for that, we need not just universal, but also existential information: what
different kinds of worlds occur in given neighbourhoods? There are several motivations for making
such a move to an appropriate richer language, as we shall see in this paper: ranging from topology
to games, and from modeling notions of evidence to belief revision. Their common core is a new
‘instantial neighbourhood modality’ to be defined in the following section.

We will study the resulting extension INL of basic modal logic in quite some detail, and show that
it has significant properties, many of them due to the fact that INL mixes features of neighbourhood
modal logic with features from relational semantics. To set the scene, in Section 2, we discuss basics
of the system: language, truth definition, bisimulation, and some typical model constructions such
as tree unraveling. In Section 3 we prove a Hennessy-Milner result for bisimulation, and also give
some applications to undefinability. Section 4 presents a sound minimal logic containing the key
axioms and rules for reasoning with the neighbourhood modality. Section 5 follows up with a
completeness proof based on normal forms and matching canonical models. Section 6 positions
INL in between the basic neighbourhood modal logic and normal modal logics on relational models
via translations that also allow us to determine the precise complexity of validity. Several further
directions are then considered in Section 7, including further topics such as semantic tableaux for
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INL as well as links with topology, game logics, dynamic logic of evidence change, and especially,
promising extensions toward coalgebra. Section 9 gives our general conclusion.

2. A new neighbourhood language

2.1. Basic definitions. In this section we introduce a new system of ‘instantial neighbourhood
logic’ INL that generalizes basic modal logic over neighbourhood models, using largely standard
modal techniques, though with a number of non-trivial adaptations.

Let Prop be the set of propositional letters. We assume that the propositional language has
primitive connectives ¬,∧, while ⊥,∨,→,↔ are defined in the standard way. The language of INL
extends the propositional language by a modal operator � creating new formulas

�(ϕ1, . . . , ϕk;ψ)

for any INL-formula ψ and any (possibly empty) finite sequence ϕ1, . . . , ϕk of INL-formulas. We
allow this sequence to have length 0, in which case we write the formula as �ψ.

Definition 2.1 (Modal depth). The modal depth of a formula is defined by induction as follows:
md(p) = md(⊥) = 0, md(ϕ∧ψ) = max{md(ϕ),md(ψ)}, md(¬ϕ) = md(ϕ), md(�(ϕ1, . . . , ϕk;ψ)) =
1 +max{md(ϕ1), . . . ,md(ϕn),md(ψ)}.
Definition 2.2 (Neighbourhood frames and models). A neighbourhood frame is a pair F = (W,N)
where W is a non-empty set called a domain, and N : W → PP(W ) is a map called a neighbour-
hood function, where P(W ) is the powerset of W . A valuation on W is a map V : Prop→ PW .

A triple M = (W,N, V ) is called a neighbourhood model or a neighbourhood model based on
(W,N) if (W,N) is a neighbourhood frame and V is a valuation on it.

Definition 2.3 (Truth of INL-formulas). Let M = (W,N, V ) be a neighbourhood model, w ∈ W ,
and ϕ a formula. We inductively define when M satisfies ϕ in a state w, written M, w |= ϕ :

M, w |= p iff w ∈ V (p),
M, w |= ¬ϕ iff M, w 6|= ϕ,
M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ,
M, w |= �(ψ1, ..., ψk;ϕ) iff there is S ∈ N(w) such that for all s ∈ S we have M, s |= ϕ and

for all i ∈ {1, ..., k} there is si ∈ S such that M, si |= ψi.

Note that, when the sequence ψ1, ..., ψk is empty, the truth clause for the box becomes: M, w |=
�ϕ iff there is S ∈ N(w) such that for all s ∈ S we have M, s |= ϕ. We denote the truth set
{w ∈ W : M, w |= ϕ} of ϕ by V (ϕ). As an immediate illustration to give a feel for the truth
clauses of the instantial neighbourhoods, consider the diagram shown in Figure 1. The diagram
shows a neighbourhood model with a world w (the bottom one in the diagram) in which the
formula �(�p,�¬p; p) is true. (Here, we depict neighbourhoods of a world as “balloons” tied to
the corresponding node in the diagram by a dotted path. The light grey shaded rectangle shows
the truth set of the variable p.) What this formula means in informal terms is that there is a
neighbourhood of the point of evaluation, in which p is true everywhere, and furthermore this
neighbourhood contains one point with a neighbourhood in which p is true everywhere, and one
point with a neighbourhood in which p is true nowhere.

We say that a formula ϕ is satisfiable in M = (W,N, V ) if there is w ∈W such that M, w |= ϕ.
We say that ϕ is satisfiable if there is a neighbourhood model M = (W,N, V ) satisfying ϕ. We say
that ϕ is valid in a neighbourhood frame (W,N) if for each model M based on (W,N) and each
w ∈W we have M, w |= ϕ, and ϕ is valid if it is valid in every neighbourhood frame.

Remark 2.4. By way of positioning our choice of a semantic format, recall the standard semantics
of modal operators in neighbourhood models:

M, w |= �ϕ iff V (ϕ) ∈ N(w),
M, w |= ♦ϕ iff V (¬ϕ) /∈ N(w).
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Figure 1. Illustration of the modal truth clause

The logic of all neighbourhood models via the latter semantics is the system E, which only contains
the congruence rule ϕ↔ψ

�ϕ↔�ψ . One can view our logic as specializing this semantics by requiring

closure of neighborhood families under upward set inclusion, a stipulation that yields a stronger
systemEM with the monotonicity rule ϕ→ψ

�ϕ→�ψ . We refer to [12] and [20] for details.

However, one can also view the above truth clause as an independent generalization of the mono-
tonic modal semantics over neighbourhood models:

M, w |= �ϕ iff there is S ∈ N(w) such that for all s ∈ S we have M, s |= ϕ,
M, w |= ♦ϕ iff for any S ∈ N(w) there is s ∈ S such that M, s |= ϕ.

This fits our intended interpretations for INL better (see our later discussion in Section 7 of
topological spaces, games, and evidence models), and this is why we have chosen this format.

Still, one could define a semantics for INL more akin to that for E, with a truth clause

M, w |= �(ψ1, ..., ψk;ϕ) iff there is S ∈ N(w) such that S = V (ϕ) and
for all i ∈ {1, ..., k} there is si ∈ S such that M, si |= ψi.

The latter modality is expressible in an extension of the basic modal language in the standard neigh-
bourhood semantics with an existential modality E over worlds, by the formula �ϕ∧

∧n
i=1E(ψi∧ϕ).

This formula will reappear in our discussion of special cases for INL in Section 7.

Bisimulations for neighbourhood models that fit our language are defined as follows:

Definition 2.5 (INL-Bisimulation). Let M = (W,N, V ) and M′ = (W ′, N ′, V ′) be neighbourhood
models. A binary relation Z ⊆ W × W ′ is called a INL-bisimulation if for each (w,w′) ∈ Z
(alternative notation w 
Z w

′) we have:

1. M, w |= p iff M′, w′ |= p for each proposition letter p,

2. ∀S ∈ N(w) ∃S′ ∈ N ′(w′)
{
∀s′ ∈ S′∃s ∈ S(s
Z s

′) and
∀s ∈ S∃s′ ∈ S′(s
Z s

′)

3. ∀S′ ∈ N ′(w′) ∃S ∈ N(w)

{
∀s ∈ S∃s′ ∈ S′(s
Z s

′) and
∀s′ ∈ S′∃s ∈ S(s
Z s

′)
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Following standard terminology, states (or worlds – we will use both of these common terms
interchangeably in this paper) w and w′ are called INL-bisimilar (written, w 
 w′) if there exists
an INL-bisimulation Z such that w 
Z w

′.

2.2. Warm-up results. We begin by proving some basic semantic results about INL. Our first
result is completely as expected: formulas of INL are invariant under INL-bisimulations.

Definition 2.6 (Modal Equivalence). Let M = (W,N, V ) and M′ = (W ′, N ′, V ′) be neighbourhood
models and let w ∈ W and w′ ∈ W ′. We say that w and w′ are modally equivalent (written,
w! w′) if for any INL-formula α we have M, w |= α iff M′, w′ |= α.

Theorem 2.7. Let M = (W,N, V ) and M′ = (W ′, N ′, V ′) be neighbourhood models with w ∈ W
and w′ ∈W ′. Then w 
 w′ implies w! w′.

Proof. Suppose there is a bisimulation Z such that w 
Z w′. We show, by induction on the
complexity of INL-formulas as defined earlier, that w and w′ agree on all INL-formulas. The cases
for proposition letters, ¬ and ∧ are trivial. Now suppose M, w |= �(ϕ1, ..., ϕk;ψ). Then there is
U ∈ N(w) such that for all u ∈ U we have M, u |= ψ and for all i ∈ {1, . . . , k} there is ui ∈ U such
that M, ui |= ϕi. Since w 
Z w′ and U ∈ N(w), there is U ′ ∈ N ′(w′) such that for all u′ ∈ U ′
there is u ∈ U with u
Z u

′ and for all u ∈ U there is u′ ∈ U ′ with u
Z u
′. Let v be an arbitrary

state in U ′. Because Z is a bisimulation, there exists u ∈ U with u 
Z v. Since for all u ∈ U
we have M, u |= ψ, and the complexity of ψ is smaller than the complexity of �(ϕ1, ..., ϕk;ψ), by
the induction hypothesis, we obtain that M′, v |= ψ. Furthermore, for any i ∈ {1, . . . , k}, we have
that M, ui |= ϕi for some ui ∈ U , and as Z is a bisimulation, for each ui there is u′i ∈ U ′ such that
ui 
Z u′i. The same argument as above entails that for each i ∈ {1, . . . , k} we have M′, u′i |= ϕi.
In conclusion, we showed that M′, w′ |= �(ϕ1, ..., ϕk;ψ). The other direction is similar. Therefore,
we obtain that w! w′. �

Similarly to bounded morphisms (p-morphisms) in relational semantics, we may also consider
special functions that preserve structure of neighbourhood models:

Definition 2.8. Let M = (W,N, V ) and M′ = (W ′, N ′, V ′) be neighbourhood models. Then a map
f : W →W ′ is called a bounded morphism if, for all u ∈W :

• u ∈ V (p) iff f(u) ∈ V ′(p), for every proposition letter p,
• N ′(f(u)) = {f [Z] | Z ∈ N(u)}, where f [Z] is the image of Z for the map f .

This definition gives the expected result:

Proposition 2.9. Let M = (W,N, V ) and M′ = (W ′, N ′, V ′) be neighbourhood models. Then
a map f : W → W ′ is a bounded morphism from M to M′ if and only if its graph is an INL-
bisimulation.

We have the following immediate corollary of Proposition 2.9 and Theorem 2.7.

Corollary 2.10. Let M = (W,N, V ) and M′ = (W ′, N ′, V ′) be neighbourhood models, and a map
f : W →W ′ a bounded morphism from M to M′. Then for each w ∈W and each INL-formula ϕ,

M, w |= ϕ if and only if M′, f(w) |= ϕ.

Next, we show that some of the basic model theoretic constructions familiar from standard
relational semantics have simple counterparts in neighbourhood semantics. For this purpose we
shall require the following notion:

Definition 2.11. Given a neighbourhood model M = (W,N, V ), we define the support relation
SM ⊆W ×W by setting, for u, v ∈W :

(u, v) ∈ SM if and only if v ∈
⋃
N(u)

We let S?M denote the reflexive-transitive closure of SM.
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Using this definition we can introduce an obvious analogue of the standard notion of generated
submodels known from basic modal logic:

Definition 2.12. Let M = (W,N, V ) be any neighbourhood model, and let u ∈ W . Then the
point-generated submodel of M at u, denoted M[u], is the structure (W ′, N ′, V ′) where:

• W ′ = {v ∈W | (u, v) ∈ S?M},
• N ′ = N�W ′,
• V ′ = V �W ′.

More generally, we say that M′ is a generated submodel of M if W ′ ⊆W and the inclusion map
is a bounded morphism. The next proposition states that, as expected, point-generated submodels
are generated submodels in this sense.

Proposition 2.13. For any u ∈W , the obvious inclusion map ι : W ′ →W is a bounded morphism
from M[u] to M. Hence, for all formulas ϕ, we have:

M, u |= ϕ iff M[u], u |= ϕ

Next, we turn to tree unraveling. Here our goal is to show that INL has the “tree model property,”
i.e. every satisfiable formula is satisfiable in some tree-like model. The question is exactly what
“tree-like” means in this context. Since trees are characterized by the property that there is some
distinguished node, the root, from which there is a unique path to any other given node, the
question we really need to answer here is what is a “path” in a neighbourhood model. A first
answer is to say that a path in a model M is any tuple (w0, ...., wn) where, for each i < n, we have
(wi, wi+1) ∈ SM. This suggests the following definition:

Definition 2.14. A model M is said to be tree-like if the support relation SM is a tree.

Definition 2.15. Let M = (W,N, V ) be any neighbourhood model and let u ∈ W . We define the
tree-unraveling of M at u, denoted MU

u , to be the structure (W ′, N ′, V ′) where:

• W ′ is the set of all finite sequences (v0, ..., vn) over W with v0 = u and (vi, vi+1) ∈ SM
for 0 ≤ i < n.
• Given a sequence (v0, ..., vn) and Z ′ ⊆W ′ we set Z ′ ∈ N ′(v0, ..., vn) if and only if

there is some Z ∈ N(vn) such that

Z ′ = {(v0, ..., vn, w) | w ∈ Z}.

• The valuation V ′ is defined by (v0, ..., vn) ∈ V ′(p) iff vn ∈ V (p).

Clearly MU
u is a tree-like model, with root u. Furthermore, we have:

Proposition 2.16. There is a bounded morphism f : MU
u →M given by the assignment:

(v0, ..., vn) 7→ vn

From this the desired tree model property follows immediately:

Proposition 2.17. Any satisfiable formula is satisfiable at the root of some tree-like model.

A second possibility is to say that a path in M is any tuple

(w0, Z0, w1, Z1, ...., Zn−1, wn)

where, for each i < n, Zi is a neighbourhood of wi and wi+1 ∈ Zi. Let us call such a tuple a strong
path from w0 to wn in M.

Definition 2.18. A model M is said to be strongly tree-like if there is some w ∈W such that for
every w′ ∈W , there is a unique strong path from w to w′ in M.
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It is not hard to see that every strongly tree-like model is tree-like, but the converse implication
does not hold. Generally, a tree-like model is strongly tree-like if and only if the neighbourhoods
of any point are pairwise disjoint, i.e. there are no w,Z,Z ′ with Z,Z ′ ∈ N(w) and Z ∩ Z ′ 6= ∅.
Under the constraint that neighbourhoods are pairwise disjoint in this sense, the two notions of
tree-likeness are thus equivalent.

Now let us consider tree unraveling again.

Definition 2.19. Let M = (W,N, V ) be any neighbourhood model and let u ∈ W . We define the
strong tree-unraveling of M at u, denoted MS

u , to be the structure (W ′, N ′, V ′) where:

• W ′ is the set of all strong paths in M beginning with u.
• Given a strong path (v0, Z0, ..., Zn−1, vn) and Z ′ ⊆ W ′ we set Z ′ ∈ N ′(v0, Z0, ..., Zn−1, vn)

if and only if there is some Z ∈ N(vn) such that

Z ′ = {(v0, Z0, ..., Zn−1, vn, Z, w) | w ∈ Z}.

• The valuation V ′ is defined by (v0, Z0, ..., Zn−1, vn) ∈ V ′(p) iff vn ∈ V (p).

The strong tree-unraveling of any model is strongly tree-like.

Proposition 2.20. There is a bounded morphism f : MS
u →M given by the assignment:

(v0, Z0, ..., Zn−1, vn) 7→ vn

We now get the following strengthened version of the tree model property:

Proposition 2.21 (Strong tree model property). Any satisfiable formula is satisfiable at the root
of some strongly tree-like model.

Finally, we establish a finite-depth property for instantial neighbourhood logic:

Definition 2.22. Let M = (W,N, V ) be any neighbourhood model, let u ∈ W , and let k be any
integer. Then the depth k point-generated submodel of M at u, denoted by M[u, k], is defined to
be the structure (W ′, N ′, V ′) where:

• W ′ is the set of all v ∈W such that there is a SM-path from u to v of length ≤ k.
• For v ∈ W ′, we set N ′(v) = N(v) if there is a SM-path from u to v of length < k, and
N ′(v) = ∅ otherwise. That is, N ′(v) = ∅ if the shortest SM-path from u to v has length k.
• V ′ = V �W ′.

A fairly simple argument will establish the following:

Fact 2.23. Let ϕ be any formula of modal depth ≤ k. Then:

M, u |= ϕ iff M[u, k], u |= ϕ

Corollary 2.24 (Finite-height model property). Any satisfiable formula of modal depth k is sat-
isfiable at the root of some tree-like model with an underlying tree of height at most k.

3. Hennessy-Milner property on finite models

In this section we show that our notion of bisimulation makes sense, by proving a Hennessy-
Milner theorem for INL. More precisely, we show that over finite models, the relation of modal
equivalence is an INL-bisimulation. The restriction to finite models is not a best possible result
relating modal equivalence of models to bisimulation, but it will serve the purposes of this paper.

Theorem 3.1. Let M = (W,N, V ) and M′ = (W ′, N ′, V ′) be finite neighbourhood models with
w ∈W and w′ ∈W ′. Then w! w′ iff w 
 w′.
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Proof. Our aim is to show that the relation ! is an INL-bisimulation between M and M′. We
show only one direction of the back-and-forth conditions, since the other direction can be proved
using a symmetric argument.

First, pick any w ∈W and w′ ∈W ′. We define a formula δ(w,w′) as follows:

• If w! w′, set δ(w,w′) = >.
• Otherwise, pick some formula ϕ such that M, w |= ϕ and M′, w′ |= ¬ϕ and set δ(w,w′) = ϕ.

So δ(w,w′) either provides some witness that w and w′ are not modally equivalent, or is set to >
if they are modally equivalent. Now, for w ∈W , set

χ(w) :=
∧
{δ(w,w′) | w′ ∈W ′}

This conjunction is well defined because W ′ is a finite set. Note that M, w � χ(w) for all w ∈ W .
It is easy to prove the following claim:

Claim: For all w ∈W and all w′ ∈W ′, we have:

w! w′ iff M′, w′ |= χ(w).

Now suppose that w ! w′, for w ∈ W and w′ ∈ W ′. Let U be a neighbourhood of w, say
U = {u0, ..., uk}. It is easy to see that we have:

M, w |= �(χ(u0), ..., χ(uk);χ(u0) ∨ ... ∨ χ(uk)).

Hence, we must also have

M′, w′ |= �(χ(u0), ..., χ(uk);χ(u0) ∨ ... ∨ χ(uk)).

This means there must be some neighbourhood U ′ of w′ such that every formula χ(ui) is true
somewhere in U ′, and conversely every member of U ′ satisfies χ(ui) for some i ≤ k. By the Claim,
it follows that the relation ! satisfies the appropriate back-and-forth conditions with respect to
the sets U and U ′. �

Much more can be said about INL-bisimulations. For further notions and results, we refer to
Section 7. The formulas that appear in our proof of the Hennessy-Milner theorem bear a strong
resemblance to the normal forms for INL-formular that we etablish later in Section 5, which play a
crucial role in the completeness proof for our axiomatization of INL. The proof also has a coalgebraic
flavor, and this theme will be taken up in Section 7.5.

For now, however, we pursue another question. How does INL relate to more standard modal
languages on neighbourhood models? To see this, we recall the notion of bisimulation for monotonic
modal logic on neighbourhood models. This notion is folklore, but see [28] and [20] for details.

Definition 3.2 (Monotonic Bisimulation). Let M = (W,N, V ) and M′ = (W ′, N ′, V ′) be neigh-
bourhood models. A binary relation Z ⊆ W ×W ′ is called a monotonic bisimulation if for each
(w,w′) ∈ Z (alternative notation w -Z w

′) we have:

1. M, w |= p iff M′, w′ |= p for each proposition letter p.
2. ∀S ∈ N(w) ∃S′ ∈ N ′(w′)∀s′ ∈ S′ ∃s ∈ S such that (s -Z s

′).
3. ∀S′ ∈ N ′(w′) ∃S ∈ N(w)∀s ∈ S ∃s′ ∈ S′ such that (s -Z s

′).

It is easy to check that each INL-bisimulation is also a monotonic bisimulation. Below we will
give an example that the converse, in general, is not true. Since monotonic bisimilarity entails
modal equivalence for the basic modal language, this implies that over the neighbourhood models
INL is more expressive than the standard modal language.

Example 3.3. We will now give an example of two neighbourhood models and states in these
models which are bisimilar in the standard sense, but which are not INL-bisimilar. Start by choosing
M = (W,N, V ) and M′ = (W ′, N ′, V ′) where W = {w0, w1, w2}, N(w0) = {{w1}, {w1, w2}},
V (p) = {w1, w2}, V (q) = {w2} and W ′ = {w′0, w′1}, N ′(w′0) = {w′1}, V ′(p) = {w′1}, V ′(q) = ∅.
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Then it is easy to see that w0 and w0′ are monotonic bisimilar (consider a relation linking w0 with
w′0 and w1 with w′1), but not INL-bisimilar. To see this, by Theorem 3.1, it is sufficient to note that
M, w0 |= �(q; p), but M′, w′0 6|= �(q; p).

M M′

w0

w1

w2

w′
0

w′
1

Figure 2. Bisimulation between M and M′

From Example 3.3 we immediately derive

Proposition 3.4. Over neighbourhood models, INL is not definable in the basic modal language.

Remark 3.5. The interpretation of the box-operator in the basic neighborhood language has an
existential-universal quantifier pattern, but in INL this fixed pattern is loosened up. In particular,
we can define a universal-universal box � by the definition �ϕ = ¬�(¬ϕ;>). One might ask if the
extension of the basic language with this operator yields the full expressive power of INL. However,
following a discussion that took place after the submission of this paper, D. Klein, O. Roy, and
the fourth author have shown that INL (even its “single-instance fragment”, see Section 7.2) is not
definable in the enhanced basic modal language with both � and �. Many further extensions of
the basic modal language can be studied with the bisimulation techniques presented here.

In an opposite direction, with bisimulations for INL in place we can also easily prove limitative
results on the expressive power of INL. As a straightforward example of this, we will show that the
universal modality is not definable in the INL-language. Recall that the standard truth condition
for the global modalities E (the existential version) and A (the universal version) reads as follows:

M, w |= Eϕ iff there is s in M such that M, s |= ϕ.
M, w |= Aϕ iff for any s in M we have M, s |= ϕ.

Example 3.6. Let M = (W,N, V ) and M′ = (W ′, N ′, V ′) be neighbourhood models such that
W = {w, v}, N(w) = ∅, V (p) = {v}, and W ′ = {w′}, N(w′) = ∅, V ′(p) = ∅. Then it is easy to see
that Z = {(w,w′)} is an INL-bisimulation. On the other hand, M, w |= Ep, while M, w′ 6|= Ep.

Thus, we arrive at the following proposition.

Proposition 3.7. Over neighbourhood models, the universal modality is not definable in INL.

4. Axiomatization and soundness

In this section we provide a Hilbert-style proof system for INL, prove soundness and derive some
basic properties. Completeness of the axioms will be shown later in Section 5.

Our basic proof calculus has as axioms schemes all propositional tautologies, together with the
following axiom schemes:
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(R-Mon) �(γ1, ..., γj ;ψ)→�(γ1, ..., γj ;ψ ∨ χ),

(L-Mon) �(γ1, ..., γj , ϕ;ψ)→�(γ1, ..., γj , ϕ ∨ χ;ψ),

(Inst) �(γ1, ..., γj , ϕ;ψ)→�(γ1, ..., γj , ϕ ∧ ψ;ψ),

(Norm) ¬�(⊥;ψ),

(Case) �(γ1, ..., γj ;ψ)→�(γ1, ..., γj , δ;ψ) ∨�(γ1, ..., γj ;ψ ∧ ¬δ),

(Weak) �(γ1, ..., γj , ϕ, δ1, ..., δn;ψ)→�(γ1, ..., γj , δ1, ..., δn;ψ),

(Dupl) �(γ1, ..., γj , δ1, ..., δn;ψ)→�(γ1, ..., γj , ϕ, δ1, ..., δn;ψ), provided ϕ ∈ {γ1, ..., γj , δ1, ..., δn}.

The system has only two rules, modus ponens and substitution of equivalents:

(MP)
α→β α

β
,

(RE)
α↔β ϕ

ϕ[α/β]
.

where ϕ[α/β] is the result of possibly replacing some occurrences of α in ϕ by β.

Explanation. To understand these principles intuitively, note that some just express the set char-
acter of the finite sequence of instances at the start of our modalities, others state obvious upward
monotonicity properties in all arguments, while we also have distribution over disjunction for in-
stanced formulas. In addition, (Inst) expresses the compatibility of the universal condition with
all instances, while (Case) shows how we can either add instances to a given modality witnessing a
formula δ or strengthen the universal condition of the modality with the negation of δ.

The following simple lemma will simplify some of our proofs.

Lemma 4.1. The following rules are admissible in the proof system:

(TR)
α→ β β → γ

α→ γ

(MT)
α→ β ¬β
¬α

We write ` ϕ to say that the formula ϕ is provable in this system, and Γ ` ϕ as a shorthand
for `

∧
Γ→ ϕ if Γ is a finite set of formulas. We are now ready to derive some basic schemes and

admissible rule schemes of the logic INL.

Lemma 4.2. The following theorem and rule schemes are provable (‘admissible’) in INL.
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(1) �(γ1, ..., γj , θ, ϕ, δ1, ..., δm;ψ)→�(γ1, ..., γj , ϕ, θ, δ1, ..., δm;ψ),

(2) ¬�(γ1, ..., γj ,⊥, δ1, ..., δm;ψ),

(3) ¬�(γ;⊥),

(4)
ψ→χ

�(γ1, ..., γj ;ψ)→�(γ1, ..., γj ;χ)
,

(5)
α→β

�(γ1, ..., γj , α;ψ)→�(γ1, ..., γj , β;ψ)
,

(6) �(γ1, ..., γj , α ∨ β;ψ)→�(γ1, ..., γj , α;ψ) ∨�(γ1, ..., γj , β;ψ).

Proof. For (1), use (TR) to chain together the following implications:

�(γ1, ..., γj , θ, ϕ, δ1, ..., δm;ψ) ` �(γ1, ..., γj , ϕ, θ, ϕ, δ1, ..., δm;ψ) (Dupl)
�(γ1, ..., γj , ϕ, θ, ϕ, δ1, ..., δm;ψ) ` �(γ1, ..., γj , ϕ, θ, δ1, ..., δm;ψ) (Weak)

For (2), just apply (MT) to the axiom ¬�(⊥;ψ) and the following implication which is obtained
by repeated applications of (Weak):

�(γ1, ..., γj ,⊥, δ1, ..., δm;ψ)→�(⊥;ψ)

We derive (3) as follows:

�(γ;⊥) ` �(γ ∧ ⊥;⊥) (Inst)
` γ ∧ ⊥ ↔ ⊥ Classical logic

�(γ;⊥) ` �(⊥,⊥) (RE)
` ¬�(⊥;⊥) (Norm)
` ¬�(γ;⊥) (MT)

For (4), suppose that ` ϕ→χ. We derive the conclusion of the rule as a theorem as follows:

�(γ1, ..., γj ;ϕ) ` �(γ1, ..., γj ;ϕ ∨ χ) (R-Mon)
` χ↔ ϕ ∨ χ Classical logic + assumption

�(γ1, ..., γj ;ϕ) ` �(γ1, ..., γj ;χ) (RE)

(5) can be derived similarly. Finally, for (6):

1. ` �(γ1, ..., γj , α ∨ β;ψ)→ �(γ1, ..., γj , α ∨ β, α;ψ) ∨�(γ1, ..., γj , α ∨ β;ψ ∧ ¬α) (Case)
2. ` �(γ1, ..., γj , α ∨ β, α;ψ)→ �(γ1, ..., γj , α;ψ) (Weak)
3. ` �(γ1, ..., γj , α ∨ β;ψ ∧ ¬α)→ �(γ1, ..., γj , (α ∨ β) ∧ (ψ ∧ ¬α);ψ ∧ ¬α) (Inst), 2
4. ` (α ∨ β) ∧ (ψ ∧ ¬α)→ β Classical logic
5. ` (ψ ∧ ¬α)→ ψ Classical logic
6. ` �(γ1, ..., γj , (α ∨ β) ∧ (ψ ∧ ¬α);ψ ∧ ¬α)→ �(γ1, ..., γj , β;ψ) (4),(5)
7. ` �(γ1, ..., γj , α ∨ β;ψ ∧ ¬α)→ �(γ1, ..., γj , β;ψ) (TR), 3
8. ` �(γ1, ..., γj , α ∨ β;ψ)→ �(γ1, ..., γj , α;ψ) ∨�(γ1, ..., γj , β;ψ) 1,2,7, C.l.

�

The proof system for INL presented above is sound and complete. Completeness will be proved
in the next section. Here, we prove that the system is sound:
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Theorem 4.3 (Soundness of INL). If ` ϕ, then ϕ is valid in the neighbourhood semantics.

Proof. Since our two inference rules clearly preserve validity, we only have to check that all our
axioms are valid. Most of the axioms in the above list are straightforward to check, so we give only
the proofs for (Inst) and (Case).

For (Inst), we want to show that �(γ1, ..., γj , ϕ;ψ)→�(γ1, ..., γj , ϕ ∧ ψ;ψ) is a valid formula.
Take an arbitrary model M = (W,N, V ) and some state w ∈ W . Assume w |= �(γ1, ..., γj , ϕ;ψ),
then there is S ∈ N(w) such that (1) ψ is satisfied at each state in S, (2) γi is satisfied at some
state in S for each i ∈ {1, ..., j}, and (3) ϕ is satisfied at some state, say u in S. Since u ∈ S, by
(1) we also have u |= ψ, and hence u |= ϕ ∧ ψ. Therefore, w |= �(γ1, ..., γj , ϕ ∧ ψ;ψ).

For (Case), we want to show validity of the formula

�(γ1, ..., γj ;ψ)→�(γ1, ..., γj , δ;ψ) ∨�(γ1, ..., γj ;ψ ∧ ¬δ)
Again take an arbitrary model M = (W,N, V ) and state w ∈W . Assume that w |= �(γ1, ..., γj ;ψ).
Then there is S ∈ N(w) such that (1) ψ is satisfied at each state in S, (2) γi is satisfied at some
state in S for each i ∈ {1, ..., j}. Now, assume furthermore that the formula �(γ1, ..., γj , δ;ψ) is not
satisfied at w. Then it must be the case that δ is satisfied nowhere in S, so ¬δ is true everywhere
in S, giving w |= �(γ1, ..., γj , ψ ∧ ¬δ). From the assumption that w |= �(γ1, ..., γj ;ψ) we have now
derived that

w |= �(γ1, ..., γj , δ;ψ) ∨�(γ1, ..., γj ;ψ ∧ ¬δ),
which concludes the argument. �

5. Normal forms and completeness

5.1. A normal form theorem. Our goal in this section is to prove a completeness theorem for
the axiom system presented above. The proof will proceed via a normal form theorem.

Throughout the section, we assume a fixed well-ordering over the set of all formulas of INL. With
this in mind, the following notation will be useful: given a finite set of formulas Γ and a formula
ϕ, we denote by �(Γ;ϕ) the formula �(ψ1, ..., ψn;ϕ) where ψ1, ..., ψn is a list of all the formulas in
Γ, without repetitions, in the order dictated by our fixed well-ordering over the language.

Lemma 5.1. For any formula of the form �(ψ1, ..., ψn;ϕ), we have:

` �(ψ1, ..., ψn;ϕ)↔ �({ψ1, ..., ψn};ϕ)

Proof. Use (Weak) and (Dupl) to remove repetitions, and use (1) to rearrange the formulas ψ1, ..., ψn
in the order consistent with the fixed well-order over the language. �

As a first application this leads to the following lemma:

Lemma 5.2. Let i ∈ ω and let P be a finite set of propositional variables. Then there are, up to
provable equivalence, only finitely many formulas of modal depth ≤ i and variables in P .

Proof. A straightforward induction on the modal depth of a formula. The crucial step is to show
that there are only finitely many formulas up to provable equivalence of the form �(ψ1, ..., ψn;ϕ)
where ψ1, ..., ψn, ϕ are all of depth ≤ k. But by the previous lemma, each such formula is equivalent
to a formula of the form �(Γ;ϕ) where ϕ is of depth ≤ k and Γ is a finite set of formulas of depth
≤ k. It is now easy see that the number of formulas up to provable equivalence of the form
�(ψ1, ..., ψn;ϕ) where ψ1, ..., ψn, ϕ are all of modal depth ≤ k is bounded by 2m ×m, where m is
the number of formulas of modal depth ≤ k up to provable equivalence. �

Definition 5.3. Let P be a finite set of propositional variables, and let i be any natural number.
An i-type over P is a consistent set of formulas Γ of modal depth ≤ i and variables in P such that,
for every formula ψ of depth ≤ i and variables in P , we have ψ ∈ Γ or ¬ψ ∈ Γ. In other words:
an i-type over P is a maximal consistent set of formulas of modal depth ≤ i and variables in P .



12 JOHAN VAN BENTHEM, NICK BEZHANISHVILI, SEBASTIAN ENQVIST, JUNHUA YU

We denote the set of i-types over P by T (i, P ). We can associate a formula with each i-type
τ as follows: for each formula in τ , pick the least formula that is provably equivalent to it. The
collection of all these formulas is then finite by Lemma 5.2, so we can take the conjunction of all
of them and denote it by τ̂ . If Γ is a set of i-types then we write Γ̂ = {τ̂ | τ ∈ Γ}.

Lemma 5.4. Let ϕ be any formula with variables from P and modal depth at most i. Then:

` ϕ↔
∨
{τ̂ | τ ∈ T (i, P ) & ϕ ∈ τ}

We are now ready for our normal form theorem:

Theorem 5.5. Let ϕ,ψ1, ..., ψk be formulas with variables in P and all of modal depth ≤ i. Then
the formula �({ψ1, ..., ψk}, ϕ) is provably equivalent to a formula of the form:∨

{�(Γ̂;
∨

Γ̂) | Γ ∈ F}

where F is a family of sets of i-types over P such that, for each Γ ∈ F , the following facts hold:

(1) For each j ∈ {1, ..., k} there is some τ ∈ Γ with ψj ∈ τ .
(2) For each τ ∈ Γ we have ϕ ∈ τ .

Proof. We know that �(ψ1, ..., ψk;ϕ) is provably equivalent to �({ψ1, ..., ψk};ϕ). Note that we can
assume that �({ψ1, ..., ψk};ϕ) is consistent, since otherwise it is provably equivalent to

∨
∅, which

is a disjunction of the right shape. We perform the reduction in two steps.

Claim 1: The formula �({ψ1, ..., ψk};ϕ) is provably equivalent to a formula of the form:∨
{�(Γ̂;ϕ) | Γ ∈ F}

where F is a family of sets of i-types over P such that conditions (1) and (2) hold.

Claim 2: Any formula of the form �(Γ̂;ϕ), where Γ is a set of i-types over P each containing

ϕ, is provably equivalent to a disjunction of formulas of the form �(Φ̂;
∨

Φ̂), where each Φ
is a set of i-types over P for which conditions (1) and (2) hold.

The theorem obviously follows from these two claims, so we prove them one by one.

For Claim 1: First, we use Lemma 5.4 together with the uniform substitution rule (RE) to
rewrite the formula �({ψ1, ..., ψk};ϕ) as:

�({
∨

Ψ̂1, ...,
∨

Ψ̂k};ϕ)

where, for each j ∈ {1, ..., k}, we denote by Ψj the set {τ ∈ T (i, P ) | ψj ∈ τ}. At this point, we
can repeatedly apply the theorem scheme (6) to obtain the equivalent disjunction∨

{�({τ̂1, ..., τ̂k};ϕ) | τ1 ∈ Ψ1 & ... & τk ∈ Ψk}

Clearly condition (1) holds for each set {τ1, ..., τk}. All that is left to do to finish Claim 1 is to
remove those disjuncts of the form �({τ̂1, ..., τ̂k};ϕ) where for some j ∈ {1, ..., k}, ϕ /∈ τj . But for
each such disjunct, we have ¬ϕ ∈ τj , so by (Weak) and (L-Mon):

` �({τ̂1, ..., τ̂k};ϕ)→ �(¬ϕ;ϕ)

But then we can apply (Inst) together with (Norm) to show that the disjunct provably entails ⊥.
Hence, the whole disjunction is provably equivalent to the smaller disjunction where this disjunct
is removed, by basic propositional logic. With this observation, we are finished with Claim 1.

For Claim 2: Let �(Γ̂;ϕ) be a formula of the shape described in the premise of the claim.

Again, we apply Lemma 5.4 to rewrite the formula as �(Γ̂;
∨

Φ̂) where Φ = {τ ∈ T (i, P ) | ϕ ∈ τ}.
Generally, call a formula of the shape �(Γ̂;

∨
Φ̂) where Γ and Φ are sets of i-types over P such

that Γ ⊆ Φ an almost normal box formula. For any almost normal box formula �(Γ̂;
∨

Φ̂), let the

error degree of �(Γ̂;
∨

Φ̂) be defined as the size of the set Φ \ Γ. Since there are only finitely many



INSTANTIAL NEIGHBOURHOOD LOGIC 13

i-types over P , the error degree of an almost normal box formula is always a finite ordinal, which
equals 0 if and only if Γ = Φ. So, to prove Claim 2, it now suffices to show:

Claim 3: Any almost normal box formula �(Γ̂;
∨

Φ̂) of error degree m, where m > 0, is
provably equivalent to a disjunction of almost normal box formulas of error degree m− 1.
Also, for each disjunct �(Γ̂′;

∨
Φ̂′) of this disjunction, we have Γ ⊆ Γ′ and Φ′ ⊆ Φ.

To prove Claim 3, let �(Γ̂;
∨

Φ̂) be an almost normal box formula of error degree m. Since m > 0
there is some τ ∈ Φ \ Γ. Using the axiom (Case) we find:

` �(Γ̂;
∨

Φ̂)↔ (�(Γ̂ ∪ {τ̂};
∨

Φ̂) ∨�(Γ̂;
∨

Φ̂ ∧ ¬τ̂))

More precisely, the direction from left to right follows from (Case), and the converse direction follows

using classical logic, (4) and (Weak). But clearly, the formula
∨

Φ̂ ∧ ¬τ̂ is provably equivalent to∨
(Φ̂ \ {τ̂}) just by propositional logic. So the whole disjunction on the right side takes the shape:

�(Γ̂ ∪ {τ̂};
∨

Φ̂) ∨�(Γ̂;
∨

(Φ̂ \ {τ̂})

Each of these two disjuncts is an almost normal box formula of error degree m− 1, and so we are
done with the proof of Claim 3, and the proof of the theorem is complete. �

5.2. The model construction. Fix a finite set of propositional variables P . We construct a
canonical model M = (W,N, V ) as follows. Let W be the (disjoint) union of all the type sets T (i, P )
for i ∈ ω. The neighbourhood structure N is now defined by setting N(τ) = ∅ for τ ∈ T (0, P ) and,
for τ ∈ T (i, P ) with i > 0:

N(τ) = {Γ ⊆ T (i− 1, P ) | �(Γ̂;
∨

Γ̂) ∈ τ}

Finally, for p ∈ P we set V (p) = {τ ∈W | p ∈ τ}.

Lemma 5.6 (Truth lemma). Let ϕ be a formula with propositional variables only in the set P , and
of modal depth at most i. Then for any τ ∈ T (i, P ), we have:

M, τ |= ϕ iff ϕ ∈ τ

Proof. The proof proceeds by induction on i. The case for i = 0 is simple and left to the reader.
Suppose the lemma holds for i, and consider an i+ 1-type τ . It suffices to show that the lemma

holds for all formulas of the form �(ψ1, ..., ψk;ϕ), where ψ1, ..., ψk and ϕ are all of depth i. A
simple argument will then extend the claim to arbitrary formulas of depth i+ 1.

First, suppose that �(ψ1, ..., ψk;ϕ) ∈ τ . By Theorem 5.5, this formula is then equivalent to a
disjunction of the form ∨

{�(Γ̂;
∨

Γ̂) | Γ ∈ F}
where F is a family of sets of i-types over P satisfying conditions (1) and (2). So at least one of

these disjuncts �(Γ̂;
∨

Γ̂) must be in τ since it is an i+ 1-type, which means that Γ ∈ N(τ). Using
conditions (1) and (2) for Γ, together with the induction hypothesis applied to all i-types, we now
easily show that M, τ |= �(ψ1, ..., ψk;ϕ).

Conversely, suppose that M, τ |= �(ψ1, ..., ψk;ϕ). Using the induction hypothesis for i-types, we
see that there is a set of i-types Γ ∈ N(τ) such that ϕ ∈

⋂
Γ and, for every j ∈ {1, ..., k}, there

is some τj ∈ Γ with ψj ∈ τj . But then �(Γ̂;
∨

Γ̂) ∈ τ . To show that �(ψ1, ..., ψk;ϕ) ∈ τ it now
suffices to show the following:

` �(Γ̂;
∨

Γ̂)→�(ψ1, ..., ψk;ϕ)

But since ϕ ∈
⋂

Γ we clearly have `
∨

Γ̂ → ϕ, and if ψj ∈ τj then ` τ̂j → ψj . We now only have
to apply (4), (5) and (Weak) to obtain the required implication, and so we are done. �

Theorem 5.7 (Completeness). For any formula ϕ, if |= ϕ then ` ϕ.
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Proof. Suppose 0 ϕ, so that ¬ϕ is consistent. Let i be the modal depth of ϕ and let P be the
propositional variables that occur in ϕ. Construct the model M as above. By Lemma 5.4, there is
an i-type τ with ¬ϕ ∈ τ , hence ϕ /∈ τ , and by the Truth Lemma, we have (M, τ) 2 ϕ. Therefore
2 ϕ, which completes the proof. �

This completeness proof was inspired by normal form techniques from [15, 26], suitably adapted to
modal neighbourhood semantics. We have been unable to find a more standard Henkin construction
to establish our main result, and leave this as an open problem.

Finally, our proof method clearly produces finite counter-examples to non-derivable formulas ϕ,
whose size can be effectively computed from that of ϕ. Therefore we have established an effective
finite model property, and in particular:

Corollary 5.8 (Decidability). Derivability and validity for the logic INL are decidable.

6. Translations and complexity

Our new logic extends earlier systems of modal logic, but what is the precise formal relation?
The answer lies in a number of faithful translations. In this section we show how to embed the
basic modal logic K and the monotonic neighbourhood logic EM into INL. We also embed INL into
the bimodal logic K⊕ K and eventually even into K itself.

All the proofs to follow are based on semantic arguments, and could be used as semantic validity
reductions. However, as all the aforementioned logics are complete with respect to the corresponding
(relational or neighbourhood) semantics, we formulate our results in proof-theoretic terms.

Recall that K is the basic modal logic. For the next translation it is easier to use the ♦-
presentation of the basic modal language. Later in this section we will also use �-presentations.
We define a translation δ from the basic modal language into the language of INL as follows:

• δ(p) = p for each propositional variable p.
• δ preserves Boolean connectives.
• δ(♦ϕ) = �(δ(ϕ);>).

Theorem 6.1. For each formula α of basic modal language we have:

K ` α iff INL ` δ(α).

Proof. Suppose K 6` α. Then by the completeness of K with respect to relational models, there
is a relational model M = (W,R, V ) and w ∈ W such that M, w 6|= α. For each x ∈ W we let
N(x) = {R[x]}. Then M′ = (W,N, V ) is a neighbourhood model. It is easy to show by induction
on the complexity of formulas that for each β in the basic modal language we have

M, w |= β iff M′, w |= δ(β).

So M′, w 6|= δ(α), and INL 6` δ(α).
Conversely, suppose INL 6` δ(α). Then by the completeness of INT with respect to neighbourhood

models, there is M = (W,N, V ) and w ∈W such that M, w 6|= δ(α). We define R on W by setting
for each x, y ∈ W , xRy if y ∈ U for some U ∈ N(x). Then M′′ = (W,R, V ) is a relational model.
Now, it is easy to show by induction on the complexity of formulas that, for each β in the basic
modal language, we have this equivalence: 1

M′′, w |= β iff M, w |= δ(β).

Thus, M′′, w 6|= α and K 6` α. �

Next, recall that EM is the basic monotonic neighbourhood logic. We consider the following
translation τ from the basic modal language into the language of INL:

1We emphasize that the crux of this construction is as follows: the rather ‘flat’ relation R defined above works
thanks to the very special nature of the translated formulas that the model has to preserve.
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• τ(p) = p for each propositional variable p,
• τ preserves Boolean connectives,
• τ(�ϕ) = �(∅; τ(ϕ)).

Lemma 6.2. For any neighbourhood model M = (W,N, V ) and w ∈W we have

M, w |= α iff M, w |= τ(α).

Proof. An easy induction on the complexity of α. �

Theorem 6.3. For each formula α of basic modal logic we have:

EM ` α iff INL ` τ(α).

Proof. Suppose EM 6` α. Then by the completeness of EM with respect to monotonic neighbourhood
models, there is a monotonic neighbourhood model M = (W,N, V ) and w ∈W such that M, w 6|= α.
By Lemma 6.2 M, w 6|= τ(α). So INL 6` τ(α). The converse direction is similar and follows from
the completeness of INL with respect to neighbourhood models. �

It is important to see that the above result is not trivial. It is clear that there is an embedding
of EM in INL. But the crucial further point is that this embedding is also faithful.

Next, let K⊕K be the fusion of K with itself. We define the following translation of the language
of INL into the bimodal language with two unary modalities.2 Let

• σ(p) = p for each propositional variable p.
• σ commutes with the Boolean connectives.
• σ(�(ψ1, . . . , ψn;ϕ)) = ♦1((♦2σ(ψ1) ∧ · · · ∧ ♦2σ(ψn)) ∧�2σ(ϕ)).

The idea behind this translation, that goes back to the approach in Kracht and Wolter [23], is
that neighbourhood models can be represented as bimodal Kripke models, where neighbourhoods
are introduced as worlds by themselves that can ‘contain’ old-style worlds.

Theorem 6.4. For each formula α in the language of INL we have:

INL ` α iff K⊕ K ` σ(α).

Proof. Suppose INL 6` α. Then by the completeness of INL with respect to neighbourhood models,
there is a neighbourhood model M = (W,N, V ) and w ∈ W such that M, w 6|= α. We let X =
W ∪ P(W ). For each x, y ∈ X we set xR1y if x ∈ W , y ∈ P(W ) and y ∈ N(x) and xR2y if
x ∈ P(W ), y ∈ X and y ∈ x. We also let V ′(p) = V (p). Then M′ = (X,R1, R2, V

′) is a birelational
model of bimodal logic. Moreover, by an easy induction on the complexity of formulas one can
show that for each formula β in the language of INL we have

M, w |= β iff M′, w |= σ(β).

Therefore, M′, w 6|= σ(α) and K⊕ K 6` σ(α).
Conversely, suppose K⊕K 6` σ(α). Then by the completeness of K⊕K with respect to birelational

models, there is a birelational model M = (W,R1, R2, V ) and w ∈W such that M, w 6|= σ(α). For
each x ∈ W we let N(x) = {U : U = R2[y] for some y ∈ W with xR1y}. Then M′ = (W,N, V )
is a neighbourhood model. Moreover, by an easy induction on the complexity of formulas one can
show that for each formula β in the language of INL we have

M′, w |= β iff M, w |= σ(β).

Thus, M′, w 6|= α and so INL 6` α.
�

2A similar translation for the basic neighbourhood language is well-known, and it has been used extensively, e.g.,
in Parikh [27], van Benthem [5], and Kracht and Wolter [23].
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The preceding translation is in line with the natural two-sorted nature of neighbourhood models
when viewed as generalized Henkin models for second-order logic. However, we can do better in a
way that may be surprising to the reader.

Consider the special case of σ when ♦1 = ♦2, and write this modality simply as ♦, while still
using σ for the translation. Then σ embeds the language of INL into the uni-modal language.

Theorem 6.5. For each formula α in the language of INL we have:

INL ` α iff K ` σ(α).

Proof. The proof is similar to the proof of Theorem 6.4. For the right to left direction, with any
neighbourhood model M = (W,N, V ), as above, we associate a relational model (X,R, V ′), where
R = R1∪R2.

3 Conversely, given a relational model (W,R, V ) we construct a neighbourhood model
(W,N, V ), as above, by assuming R1 = R2 = R. The rest is a matter of routine verification. �

Translations go only so far. The preceding result may look like equating INL with the language of
normal modal logic, but this is not quite right. The special semantic and proof-theoretic behavior
of instantial neighbourhood logic only comes out when we study its concrete presentation.

Still, syntactic translations often do give useful information. For instance, the above observations
allow us to determine the precise computational complexity of our new neighbourhood logic.

Corollary 6.6. The complexity of the satisfiability problem for INL is PSpace-complete.

Proof. We “sandwich” INL between two PSpace-complete logics. That the satisfiability problem for
INL is in PSpace follows from Theorems 6.4 or 6.5, since satisfiability for K and K⊕K is in PSpace
[11, 17]. That it is PSpace-hard follows from Theorem 6.1, since K is PSpace-hard [11]. �

However, not every special feature of our logic follows automatically by translations. For instance,
our results on bisimulation and on axiomatic completeness required additional serious labor.

7. Further directions

This paper has presented the modal basics of the system INL of instantial neighbourhood logic.
Even so, we have not exhausted all standard topics that are usually raised in modal logic.

One such topic is correspondence theory for special INL axioms on neighbourhood frames, which
would require an extension of the correspondence analysis in [21] and [20] building on [23].4 Another
standard topic would be algebraic analysis and extensions of modal algebras with operations that
are monotonic in some arguments and distributive in others. See [13] and the references therein for
generalizations of modal algebra in this direction.

However, in this final section, we list some further directions that may be slightly less obvious,
with illustrations of what lies ahead, although we cannot pursue these directions in depth in the
short compass of this paper. We start with a few concretizations of INL, and after that, we consider
language redesign, as well as other more general issues.

7.1. Semantic tableaux. We have given a semantic and a proof-theoretic analysis of INL, even
including its decidability. But the true combinatoric behavior of a logical system often comes
out more concretely with a semantic tableau system that allows for controlled search of counter-
examples and proofs, and even for automated deduction analysis. Virtues of tableaux also include
providing cut-free Gentzen calculi for logics, and their attendant combinatorial methods.

There is in fact a complete tableau calculus for INL, which will be made available in our follow-up
work. However, given the usual elaborate book-keeping details for tableau calculi, including a full
statement would seriously disrupt the balance of this paper, and hence we have decided to just state

3Here, technically, we consider worlds and sets of worlds as disjoint sets of objects, to avoid confusion.
4For instance, a Sahlqvist theorem now gets harder because of the two-quantifier ♦� logical form of antecedents

with INL modalities: even one iteration will produce modality sequences going beyond the usual Sahlqvist syntax.
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some general observations here on what such a system achieves. Accordingly, to understand what
follows here, the reader should have some understanding of classical and modal tableau systems
(cf. [6, 16, 19]).

Modal tableau rules and validity reductions. Tableaux for modal logics search for counterexamples
using standard decomposition rules for the Boolean operators, but the heart of what they do is
the tableau rule that describes decomposition of modalities. Typically, at a tableau node where
all Boolean rules have been applied, one has some proposition letters to be made true and others
to be made false, while some modalized formulas are to be made true and some others false. In
this case, the tableau rule creates a subtree for a counterexample, since more than one accessible
world or neighbourhood may need to be created for the world corresponding to the current node.
In the description of the starting nodes for the successors in the subtree, one layer of modalities
has disappeared, so syntactic complexity goes down, and termination of tableaux is assured.

The background for this syntactic decomposition procedure are strong reduction principles for
validity of modal sequents, with antecedents read conjunctively, and consequents disjunctively as
usual. We state these principles for the related simpler systems of modal logic over neighbourhood
models or over relational models (cf. [6]).

Proposition 7.1. Let p1, . . . pn, q1, . . . , qm be propositional variables and let ϕ1, . . . , ϕn ψ1, . . . , ψm
be modal formulas. Then

(1) Over relational models, p1, . . . pn,�ϕ1, . . . ,�ϕn |= q1, . . . , qm,�ψ1, . . . ,�ψm iff
~p ∩ ~q 6= ∅, or there is some i ≤ m such that ~ϕ |= ψi.

(2) Over neighbourhood models, p1, . . . pn,�ϕ1, . . . ,�ϕn |= q1, . . . , qm,�ψ1, . . . ,�ψm iff
~p ∩ ~q 6= ∅, or there are i ≤ m and j ≤ n such that ϕj |= ψi.

Note what this says. For the basic normal modal logic, modal consequences only hold when,
right underneath the top boxes, the antecedents together imply at least one consequent. For the
basic modal logic on neighbourhood models, something even more startling holds: a modalized con-
sequence holds only if, right underneath the top boxes, some antecedent implies some consequent.5

A similar type of reduction principle holds for modal neighborhood logic in its standard minimal
version discussed earlier, but we do not spell this out here.

From reduction principles to tableau rules. These validity reductions have an immediate connec-
tion to tableau rules. Read in one direction, they drive a tableau rule for finding counter-examples.
If the modalized sequent consequence is invalid, then the negation of its reduction statement pro-
vides a tableau decomposition rule. But also, if a tableau closes, and we can assume inductively
that the sequents in the reduction statement are already derivable, then the original modalized
sequent is derivable by a simple Gentzen-style rule. Using similar considerations as for the above
simpler cases, one can find a reduction principle for our system INL, reducing validity of modal
statements to a Boolean combination of validity statements for sequents having a modal depth at
least 1 less than that of the original sequent. Because of its complexity (we have to mix the styles
of thinking of the two reduction principles stated above), we forego a explicit statement here.

System properties. The resulting modal tableau system, suitably defined, has the usual features.
Tableaus are finitely terminating, a formula is valid iff it has a closed tableau (with the negation
of the formula placed at the top), suitably defined subforests with open branches induce counter-
examples for the top-most formulas, and closed tableaus correspond to cut-free proofs in sequent
calculus for INL, allowing for constructive proofs of basic system properties such as interpolation.

5That is, modalized antecedents cannot even work together to produce significant conclusions, an extreme form
on ‘non-distribution’ of modalities over conjunctions.
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7.2. Specializing to concrete settings, reductions and expansions. The system INL pre-
sented in this paper is a general modal logic over arbitrary neighbourhood structures. Yet, it is
also of interest to see what becomes of it in more concrete settings. We consider a few such cases.

Ordinary relational semantics. As we have seen already in our Section 6 on translations,
every standard relational model M = (W,R, V ) induces a neighbourhood structure as follows. For
each world w, we set N(w) = {R[w]}. In these special neighbourhood models, our INL modality
becomes definable as follows, where on the right-hand side, the box modality is standard relational.

Proposition 7.2. Let M be as above. For all w ∈W and all INL-formulas ϕ1, . . . , ϕn, ψ, we have

M, w |= �(ϕ1, . . . , ϕn;ψ)⇔M, w |= �ψ ∧
n∧
i=1

♦ϕi

Proof. If M, w |= �(ϕ1, . . . , ϕn;ψ) then there is some neighborhood Z of w such that M, v |= ψ for
all v ∈ Z, and such that there are u1, ..., un ∈ Z with M, ui |= ϕi for each i ∈ {1, ..., n}. But in
fact we must have Z = R[w], and it follows that M, w |= �ψ ∧

∧n
i=1 ♦ϕi. The converse direction is

straightforward. �

Hence, over relational models with neighborhoods as above, the language INL is definable in the
basic modal language. The converse occurred in Section 6 (proof of Theorem 6.1), whence:

Proposition 7.3. Over relational models, INL is expressively equivalent with basic modal logic.

We could also reformulate the definability results in this subsection in terms of syntactic trans-
lations between logics, whose definition will be clear from our text.

Topological semantics. Next we consider another well-known source for neighbourhood mod-
els: topological spaces. We recall that a topological space (X, τ) can be seen as a neighbourhood
frame if for each w ∈ X we let N(w) = {U ⊆ X : U is an open neighbourhood of w}, where an
open neighbourhood of a point w is an open set containing w.

Proposition 7.4. Over topological spaces, INL is expressively equivalent with the basic modal logic
of � enriched with the existential modality E.

Proof. The existential modality E in INL is defined as in Proposition 7.3, while �ϕ = �(∅;ϕ).
Conversely, in the modal logic of � and E over topological spaces, the INL modality �(ϕ1, . . . , ϕn;ψ)
is definable as

E(ϕ1 ∧�ψ) ∧ · · · ∧ E(ϕn ∧�ψ) ∧�ψ.
It is easy to show that this reduction holds, and this time, the main reason behind it is the fact

that topological opens are closed under unions – while also the whole space is an open set. 6 �

We note that the basic modal logic enriched with the existential modality is a natural logic for
describing topological structure [1], and INL may be viewed as an interesting notational variant.
Another way of seeing the close connection is this observation that we state without proof:

Proposition 7.5. On topological models, the INL-bisimulations of this paper are precisely the total
topo-bisimulations in the sense of [1].

Yet other specializations. Neighbourhood structures occur in many places. INL can also be
studied in areas such as agency, including logics for belief revision based on partial plausibility
orderings (Girard [18]), or logics for players’ powers in games (Parikh [27], van Benthem [7]).

In the latter case, a game induces a neighbourhood structure as follows. Neighbourhoods of the
root in a game are those sets Z of outcomes that a player can force the game to end in by playing one

6A fortiori, it follows that, over monotonic models, INL is expressively equivalent to its single-instance fragment.
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of her strategies, i.e. such that for some strategy σ for player i, every “σ-guided match” (a history
where the relevant player plays σ) produces an outcome in Z. The neighbourhoods associated with
a game and player are then referred to as the powers of that player in the given game.

With this interpretation, neighbourhoods are closed upwards under subsethood, and furthermore
the set of all possible outcomes should always be a neighbourhood since any strategy forces it. So
by similar reasoning as in the previous section on the topological semantics, extending the language
of game logic in the style of INL would amount to the same increase in expressive power as adding
a global modality.

But there is another way to view games as neighbourhood structures, closer to the usual “strategic
forms” of games employed in game theory. Instead of looking at powers in the above monotonic
sense, we may be interested in what the strategies of the players look like in terms of their spread
of possible outcomes. Then we arrive at a more fine-grained notion of power in a game, that also
describes the “control” that other players have over the available outcomes. Let an instantiated
power of Player i in a game G be a set Z of outcomes such that i has a strategy σ for which
the following “back-and-forth”-conditions hold: every σ-guided match has an outcome in Z, and
furthermore every member of Z is an outcome of some σ-guided match.

Clearly, instantiated powers are not generally upwards closed, and with this interpretation we
get a rich extension of game logic by allowing instantial modalities (G)(ψ1, .., ψk;ϕ), interpreted as
ranging over instantiated powers of some distinguished player in the game G.

We are currently exploring this “instantial game logic” in [8], focusing mainly on a language
called IGL in which games are built up from atomic games using operators: test (?), angelic and
demonic choice (∪ and ∩), composition (◦) and iteration (the Kleene star (−)?). This logic is quite
well behaved, with a doubly exponential time upper bound on the satisfiability problem. We also
have a sound and strongly complete system of axioms for the star-free fragment of the logic, as
a natural extension of the axioms presented for INL here with suitable, and non-trivial, laws for
game-building operations, and a sound and weakly complete system of axioms obtained by adding
a fixpoint axiom and an induction rule for the Kleene star.

We see this system as exploring a general issue raised in van Benthem [7], the systematic inves-
tigation of natural game equivalences and their natural corresponding logical languages.

Finally, we are also working on an instantial neighbourhood-based game logic with an unrestricted
dual operator (−)∂ , interpreted as “role switch”. Some statements we can express in this language
are quite subtle, witness the following formula (suggested to us by an anonymous referee):

(G)((G∂)¬Win; Win)

where Win is an added propositional constant saying that the outcome is a win for player I. At first
glance, this formula may appear to express a contradiction, but what it really says is that Player I
has a winning strategy in a first iteration of the game G, such that in one of the possible outcomes
of this strategy, Player II has a winning strategy in the next iteration of the game G. 7

Remark 7.6. We do not want to suggest that logics of agency are our only or even main paradigm
for INL. For instance, neighbourhood structures also arise naturally in the form of hypergraphs,
that is, families of subsets of a domain, where each set is a “generalized arrow” [10, 31]. 8 In this
setting, once more, it is not obviously the case that we can reduce the language INL to other modal
logics, and the INL fragment of hypergraph theory may be well-worth exploring.

7By contrast, the formula (G)(¬Win; Win) is a contradiction just by the basic axioms of INL: it says that Player I
has a winning strategy of which one of the possible outcomes is a loss for Player I.

8Hypergraphs as generalized graphs have their origins in mathematics, but they have also been proposed for
modeling ‘hyperintensionality’ in philosophy: cf. the program proposed in Leitgeb [24].
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7.3. Redesigning the basic language. The language of INL is not sacrosanct, and there are
further options. In fact, our preceding discussion of game logic already considered an extension
with algebraic game terms. But it is also of interest to go down to fragments of the full language.

Fragments. A more linguistic way of specializing the logic is by looking at fragments. While
the full language of INL allows arbitrary finite sets of instances, a natural restriction would be to
having just one single instance, in a format �(ϕ;ψ). It is easy to see that the main proofs in this
paper specialize to this fragment, so we have completeness, and even Pspace-complexity, since the
lower bound reduction that we gave only uses the single-instance fragment.

Of slightly greater interest is the matching notion of bisimulation Z. Here we have to modify
Definition 2.5 as follows.

Definition 7.7. Given two neighbourhood models M = (W,N, V ) and M′ = (W ′, N ′, V ′), a relation
Z ⊆W ×W ′ is said to be a single-instance bisimulation if, whenever wZw′:

1. M, w |= p iff M′, w′ |= p for each proposition letter p,

2. ∀S ∈ N(w)∀t ∈ S ∃S′ ∈ N ′(w′)
{
∀s′ ∈ S′∃s ∈ S(sZs′) and
∃t′ ∈ S′(tZt′)

3. ∀S′ ∈ N ′(w′)∀t′ ∈ S′ ∃S ∈ N(w)

{
∀s ∈ S∃s′ ∈ S′(sZs′) and
∃t ∈ S(tZt′)

We can easily prove an invariance result for the single-instance fragment of INL with respect to
single-instance bisimulations, and we leave the details to the reader. With this invariance result in
place, we can prove an undefinability result showing that INL has strictly greater expressive power
than the single-instance fragment:

Proposition 7.8. The single-instance fragment cannot define the two-instance formula �(p, q;>).

Proof. Consider the models M = (W,N, V ) and M′ = (W ′, N ′, V ′) such that W = {w, v, u},
W ′ = {w′, v′, u′}, N(w) = {{v}, {u}}, N ′(w′) = {{v′, u′}, {v′}, {u′}}, V (p) = {v}, V (q) = {u},
V ′(p) = {v′}, and V ′(q) = {u′} (see Figure 3 below). We set N(v) = N(u) = N ′(v′) = N ′(u′) = ∅.
Then it is easy to see that w and w′ are single-instance INL-bisimilar (consider a relation linking w
with w′, v with v′ and u with u′). Consequently they satisfy the same formulas in the single-instance
of INL. However, they are not INL-bisimilar. In particular, it is easy to see that M′, w′ |= �(p, q;>),
but M, w 6|= �(p, q;>). �

M M′

w

v

u

w′

v′

u′

Figure 3. A single-instance bisimulation
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Similarly, we could define the “k-instance fragment” of INL for each positive integer k, and the
proof we gave above could be modified without trouble to prove that INL does not collapse into any
of its k-instance fragments. In other words, the k-instance fragments of INL form a strict hierarchy.

Language extensions. Going in the opposite direction, as in the case of normal modal logics
over relational models, various language extensions make sense. In particular, it is easy to see
that our bisimulations preserve much more than just our base language. We can also add Kleene
iteration, or even a full propositional dynamic logic version of our language with a family of atomic
neighbourhood relations and complex operations over these. Van Benthem [3], [7] have several
results in this setting, including a discussion of operations forming new neighbourhood relations
that are “safe” for basic neighbourhood simulations. It would be of interest to extend this analysis
to our extended INL bisimulations. Another line of extension would be the study of a modal mu-
calculus over an INL base, which would be a natural extension of current work on mu-calculi over
basic neighbourhood models [27, 14].

There are also less obvious extensions. For instance, we can translate INL into a two-sorted
first-order logic, with one sort for points and one sort for neighbourhoods, plus two distinguished
relations: one for the neighbourhood relation, and one for the (abstract) element relation. This
framework would allow us to formulate a preservation theorem complementing our bisimulation
analysis, showing how INL is the bisimulation-invariant fragment of a suitable first-order logic for
neighbourhood models.9 For monotonic modal logic on neighbourhood models this has been done
by Pauly (see [20] for an exposition of his unpublished proof), for standard neighbourhood semantics
this result has been proved in [21].

Dynamics of model change A further important language extension goes right back to the
original motivation for introducing INL. Van Benthem and Pacuit [9] introduces “evidence models”
where the neighbourhood relation links worlds to sets of worlds that are the output of some device
generating evidence. This evidence can be of any sort, no structural closure conditions are imposed,
and it is even allowed, for instance, that two evidence sets are disjoint: the sources then contradict
each other. The original static evidence logic had a standard neighbourhood modality describing
what pieces of evidence support what propositions, as well as a universal modality standing for the
knowledge that the agent has about the universe of all currently still possible worlds.

But in inquiry, evidence is in constant flux: it can be added, deleted, or modified. Van Benthem
and Pacuit [9] therefore introduce ‘dynamic modalities’ that refer to what is true in a model after
evidence has changed. In particular, they study three basic operations for such a change.

First of all, an event !ϕ of hard information that ϕ is the case intersects all available evidence
sets with the truth set of ϕ and keeps all non-empty ones. A dynamic modality [!ϕ]ψ then says
in the current model (M, s) that ϕ is true at the current world s after this change has taken
place, producing an updated model M!ϕ. Now the heart of an axiomatization for such a dynamic
modality is a “recursion law” that states what new static neighbourhood modalities will hold after
the update. And significantly, this recursion law leads to an extension of the basic neighbourhood
language with a conditionalized neighbourhood modality:

[!ϕ]�ψ ↔ �ϕ[!ϕ]ψ.

�ϕ[!ϕ]ψ says that there was evidence compatible with ϕ such that ψ holds after the !ϕ update. But
�ϕα is of course a formula from the single-instance fragment of INL: �(ϕ;α). Indeed, the following
can be shown (cf. [9] for a precise statement of the relevant recursion law):

Proposition 7.9. The closure of the basic neighbourhood language under [!ϕ] is contained in the
single-instance fragment of INL, and this fragment is closed under [!ϕ].

9There might even be natural guarded fragments on neighbourhood models in this first-order setting.
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We have not been able to determine yet whether the single-instance fragment of INL is in fact
the closure of the basic neighbourhood language under the modality [!ϕ].

A similar analysis can be given for a second basic operation +ϕ of soft information which adds
the set of ϕ-worlds as an evidence set to the current model.

However, the origins of full INL in this setting arise with the third basic dynamic operation −ϕ,
that of retracting a proposition ϕ. What this does is remove all evidence sets from the model that
are contained in the truth set of the formula ϕ. This time, when we write a recursion law for
the basic neighbourhood modality [−ϕ]�ψ, we need to state the existence of evidence sets in the
original model that are compatible with −ϕ, and that validate [−ϕ]ψ:

[−ϕ]�ψ ↔ (E¬ϕ→ �¬ϕ[−ϕ]ψ).

The formula to the right-hand side here is in the single-instance fragment of INL. But this time,
when we apply the dynamic retraction modality once more to the right-hand side, we need an
equivalent formula with a neighborhood modality recording two instances. In the notation of [9],
the general recursion law now looks as follows:

[−ϕ]�α
ψ
χ↔ (¬Aφ→ �[−φ]α

[−ϕ]ψ,¬ϕ[−ϕ]χ)

where the box formulas indicate that the relevant neighborhood contains instances for the whole
finite sequence ψ, while all its worlds satisfy α. The connection with INL-formulas will be clear,
and in general we get:

Proposition 7.10. The closure of the basic neighbourhood language under [−ϕ] is contained in
INL, and INL is closed under applying the dynamic modality [−ϕ].

Again, we have an open problem:

Question 7.11. Is INL equal to the closure of the basic neighbourhood language under the dynamic
retraction modality?

This would be of great interest, since it would motivate a static modal language like INL in terms
of dynamic considerations of model change. However, we have no proof for this assertion, and our
current conjecture is that the answer to the question is negative. In that case, dynamic extensions
of natural modal neighborhood logics might well be sui generis.

7.4. Further model theory and infinitary INL languages. Our analysis of INL-bisimulation
can be extended in a standard style, involving yet one more language extension. This time con-
sider an infinitary INL, allowing arbitrary set conjunctions and disjunctions, and arbitrary sets
of instances in the instantial part of the INL-modality. The following results can be proved by
straightforward adaptations of results for modal logic over relational models, keeping in mind our
analysis of INL-bisimulations in Section 3.

Proposition 7.12. INL-bisimulation preserves infinitary INL-formulas on all pointed models.

Proposition 7.13. For each model M, s, there exists an infinitary INL-formula δ(M, s) that defines
M, s up to INL-bisimulation.

The proof of this result is a standard construction of so-called Scott formulas [22, 2] in standard
semantics for first-order logic or modal logic. In particular, going along the ordinals, in the successor
step α+1, we enumerate INL descriptions up to depth α for all neighbourhoods of the current world
s, and add a statement that no other neighbourhoods exist.10

10The size of the set of instances can be bounded by the cardinality of the model. The limit fixed-point argument
producing the total description is as usual.
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Discussion. There are some interesting connections here with our completeness proof in Sec-
tion 5. The normal form of disjunctions of complete types that we used there may be compared
to the following statement in the present setting. Every infinitary INL-formula is equivalent to a
disjunction of Scott formulas describing available types in the model. But note that the induc-
tive step used in this model description is not of the form used earlier, but ‘one level up’. Scott
sentences describe what sort of neighbourhoods are available, they do not confine themselves to
describing what is exactly the case in one neighbourhood. The proper setting for understanding
these analogies and differences may be the coalgebraic perspective of Section 7.5 below. 11

7.5. Co-algebraic perspectives. Instantial neighbourhood semantics has strong connections with
coalgebra. First of all, readers familiar with universal coalgebra may have noticed that neighbour-
hood frames are coalgebras for the double covariant powerset functor, P ◦P : Set→ Set, and more
importantly our definition of a bounded morphism f : M→M′ of neighbourhood models requires
precisely that the map f is a coalgebra morphism for the underlying neighbourhood frames. The
usual equation for coalgebra morphisms takes the form:

N ′ ◦ f = PPf ◦N

where N,N ′ are the neighbourhood maps of the two neighbourhood frames, now viewed as coalge-
bras of the form N : W → PPW and N ′ : W ′ → PPW ′. The usual commutative square depicting
this condition is displayed below:

PPW
PPf // PPW ′

W
f

//

N

OO

W ′

N ′

OO

Our definition of INL-bisimulations now simply follows as a consequence of this coalgebraic anal-
ysis: the functor P ◦ P preserves weak pullback squares, and so comes equipped with a relation
lifting known as the Barr extension. Generally, for a set functor T, the Barr extension T of T
assigns to every binary relation R ⊆ X × Y the “lifted” relation TR ⊆ TX × TY given by:

(α, β) ∈ TR iff, for some γ ∈ TR : TπX(γ) = α and TπY (γ) = β

where πX : R → X and πY : R → Y are the projection maps. A T-bisimulation between T-
coalgebras (X, f) and (Y, g) is then defined to be a relation R ⊆ X × Y such that:

(u, v) ∈ R ⇒ (f(u), g(v)) ∈ TR

For the special case of T = P ◦P, this condition amounts to precisely the back-and-forth conditions
used in our definition of bisimulations. We refer to [30] for more details.

Turning to the language, it is easy to see that the box modalities we use to construct formulas
�(γ1, ..., γk;ψ) correspond to k + 1-ary predicate liftings for P ◦ P in the usual sense. More in-
terestingly, since P ◦ P preserves weak pullback squares we may also introduce a Moss-style nabla
modality whose semantics is based on the Barr extension for P ◦ P. This language is defined so
that, for every finite collection Γ1, ...,Γk of finite sets of formulas, we may construct the formula

∇{Γ1, ...,Γk}

11For finite models, we can do better. The Scott construction stops at some finite stage. But there are alternative
descriptions. One describes the given model in terms of unique proposition letters for each world, encoding the
accessibilities between them, and prefixing it all by one PDL iteration modality, or alternatively, a greatest fixed-
point operator, [4]. We can also do this with existential second-order quantifiers over the world-defining p-predicates.
In the modal case, this reduces to mu-calculus form by the Janin-Walukiewicz theorem. Is there an analogue for this
result in neighbourhood semantics? And how would such an analysis extend to infinite models?
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which then gets the following semantics: given a neighbourhood model M = (W,N, V ) and w ∈W ,
we have M, w |= ∇{Γ1, ...,Γk} if and only if:

Forth: For every Z ∈ N(w) there is some Γi such that:
• For every u ∈ Z there is some ψ ∈ Γi with u |= ψ
• For every ψ ∈ Γi there is some u ∈ Z with u |= ψ

Back: For every Γi there is some Z ∈ N(w) such that:
• For every u ∈ Z there is some ψ ∈ Γi with u |= ψ
• For every ψ ∈ Γi there is some u ∈ Z with u |= ψ

Exploring this language further could be an interesting task for future research, but we will not
pursue it further here.

7.6. Instantial neighborhood semantics without monotonicity. The reader may wonder
what happens if we interpret our instantial neighborhood modalities in the usual neighborhood
semantics for weaker ‘classical’ modal logics, where monotonicity is not built in. One appealing
truth clause for a formula �(ψ1, .., ψn;ϕ) would then be: M, w |= �(ψ1, ..., ψn;ϕ) iff there is some
neighborhood Z of w such that Z = V (ϕ), and V (ψi) ∩ Z 6= ∅ for each i ∈ {1, ..., n}. What is the
expressive power of this language? A quick, partial answer is that this language translates into the
basic modal language (interpreted with the non-monotone neighborhood semantics) extended with
a global existential modality. The formula �(ψ1, ..., ψn;ϕ) can be defined as:

�ϕ ∧ E(ψ1 ∧ ϕ) ∧ ... ∧ E(ψn ∧ ϕ)

If we add a constraint that the domain of a model is always a neighborhood of each world, then
the two languages are simply equivalent: we can then define the global modality Eϕ as �(ϕ;>).
More can be said about this alternative set-up, whose lack of monotonicity also has some technical
drawbacks, for instance, with fixed-point extensions for INL-style logics of computation or games.
For the moment, we just flag this alternative road here.

8. Conclusions

In this paper we introduced instantial neighbourhood logic INL. This logic provides a new modal
language and new semantics to reason about neighbourhood frames and models. We defined INL-
bisimulations and showed that these bisimulations preserve the truth of INL-formulas and that for
finite models the converse is also true. We also provided a sound and complete axiomatization for
INL on neighbourhood frames. By embedding INL into well-known modal logics we showed that it
is Pspace-complete. We also reviewed a number of other connections of INL with existing logical
formalisms and outlined a number of future research directions where instantial neighborhood logic
makes sense and provides fresh perspectives.
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