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Abstract

Polyhedral semantics is a recently introduced branch of spatial modal logic, in which
modal formulas are interpreted as piecewise linear subsets of an Euclidean space.
Polyhedral semantics for the basic modal language has already been well investigated.
However, for many practical applications of polyhedral semantics, it is advantageous
to enrich the basic modal language with a reachability modality. Recently, a language
with an Until-like spatial modality has been introduced, with demonstrated applica-
bility to the analysis of 3D meshes via model checking. In this paper, we exhibit an
axiom system for this logic, and show that it is complete with respect to polyhedral
semantics. The proof consists of two major steps: First, we show that this logic,
which is built over Grzegorczyk’s system Grz, has the finite model property. Subse-
quently, we show that every formula satisfied in a finite poset is also satisfied in a
polyhedral model, thereby establishing polyhedral completeness.

Keywords: Spatial logic, topological semantics, polyhedral semantics, completeness.

1 Introduction

Spatial modal logic is a well-established subdiscipline of modal logic, see e.g.,
[3]. Its primary focus lies in reasoning about spatial entities and their inter-
relations. In the topological semantics of modal logic, the modal operators
3 and 2 are interpreted as the topological operators of closure and interior,
respectively. The classic result of McKinsey and Tarski states that the modal
logic of all topological spaces is S4. Moreover, S4 is the logic of any dense-
in-itself metric space [15]. For modern proofs of this and related topological
completeness results, we refer to [5].
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Recently, a variant of topological semantics was introduced for polyhedra.
Polyhedra can be seen as piecewise linear subsets of an n-dimensional Euclidean
space. For each polyhedron P , one interprets formulas into a Boolean algebra
of its subpolyhedra. It is easy to see that the closure of a polyhedron is again a
polyhedron, thereby providing a polyhedral semantics for modal logic. From the
standpoint of domain modeling/language expressiveness, polyhedral semantics
is easily seen to encompass not only 3D meshes (which is the natural application
domain) but also digital images (such as medical images or city maps), as pixels
or voxels are readily modeled as polyhedra.

Polyhedral semantics has been introduced and studied in a sequence of pa-
pers [7,13,1,2] encompassing both intuitionistic and modal frameworks. These
realms are interconnected through the Gödel translation and the theory of
modal companions [9]. In this paper, we focus specifically on modal logics. It
follows from [7] and [1] that the modal logic of all polyhedra is Grzegorczyk’s
modal logic Grz. This is the modal logic of finite posets [9]. In [1], a general
criterion for a modal or intermediate logic to be complete for polyhedra, the
so-called “nerve criterion”, has been established, which enabled showing that
many well-known modal logics such as Grz.2 and Grz.3 are not polyhedrally
complete. On the other hand, Scott’s logic and logics axiomatized by Jankov
formulas of particular, star-like trees are polyhedrally complete. The logic of
convex polyhedra was studied in [2], and the full characterization of polyhedral
logics of flat polygons was announced in [14].

However, for many applications, it is important to enrich the modal language
with an Until-like spatial reachability modality. A prominent example is the
research line on spatial model checking (see [10] and the references therein
for a lightweight introduction), where the basic modal language is enhanced
with reachability [11], and interpreted on finitely representable spaces, such as
images, graphs, or polyhedra. So far, the methodology has been applied in a
variety of application domains, among which we mention medical imaging (see
e.g. [4]) and analysis of video streams [8].

Formally, the reachability modality, which we denote by γ, is interpreted
as follows: γ(ϕ,ψ) is true at a point x if there is a path starting at point x
and ending at some point y satisfying ψ, and every intermediate point along
the path satisfies ϕ. Polyhedral semantics with this modality was investigated
in [6]. We will give one illustrative example of the use of this modality. In
Figure 1, there is a maze represented as triangulated polyhedron (a finite union
of points, segments, triangles and tetrahedra). We can think of the red cube
as the actual state, green cubes as safe exits, darker cubes as unsafe passage
rooms, and white cubes as safe passage rooms. All these rooms are being
connected by corridors. Then, the formula γ(white∨ corridor, green) is true at
the red state if and only if there is a safe exit out of the current state of the
maze. For more examples and details, we refer to [6].

In this paper, we introduce the logic PLR, the polyhedral logic of reachability.



Bezhanishvili, Bussi, Ciancia, Duque and Gabelaia 3

Fig. 1. Example of a polyhedral model depicting a maze, a starting area (in red), exit
areas (in green), safe places (white), and a path witnessing that from the starting
area, an exit can be safely reached.

Although in polyhedral semantics, as well as in the posets, the modality 3 can
be expressed via γ with the formula γ(ϕ,>), we still keep 3 in the language
for convenience. The reachability-free modal fragment of PLR is the modal
logic Grz. We provide axioms for reachability. Our main result states that
PLR is sound and complete with respect to the class of all polyhedra. One of
the key insights of polyhedral logics is the fact that all the logical information
concerning a polyhedron is encoded in the face poset of its triangulations [1,6].

We prove our main result in stages. To start with, we show that the formula
of our language with reachability is satisfiable in a polyhedral model iff it is
satisfiable on a finite poset. This is shown using the results of [7] and [1] to
construct from each finite poset F a nerve poset N(F ) consisting of all non-
empty chains of F ordered by inclusion. Utilizing the results from [6], we
demonstrate that if F refutes a formula in our language, then so does N(F ).
Again relying on the results from [7] and [1], we construct a polyhedron P
whose face poset is N(F ). We then show that a polyhedral model and its
face poset model satisfy precisely the same formulas. This implies that the
polyhedron P also refutes the formula refuted on F . The converse direction
also follows from the correspondence between polyhedral models and their face
poset models, so the reachability logic of polyhedra is shown to be the same
as the reachability logic of finite posets. Next we syntactically define a logic
PLR. To show that it is sound and complete with respect to finite posets we
first prove completeness for an intermediary logic ALR (which is based on S4)
employing a variant of filtration, and then extend this to PLR (based on Grz),
by the method of cutting clusters in a filtrated model. Combining the above
results we obtain that PLR is sound and complete with respect to polyhedral
semantics.

The paper is organized as follows: in Section 2 we provide the reader with
background information about topological spaces and polyhedra. Section 3
introduces the reachability language and establishes its topological, Kripke and
polyhedral semantics. Section 4 recalls the key construction of the nerve of a
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poset, which links polyhedral and Kripke semantics. In Section 5 we provide
an axiomatic definition of the two target logics, ALR and PLR. In Section 6 we
present our first result, the finite model property of the S4-reachability logic
ALR. In Section 7 we extend this to the finite model property with respect to
posets of the Grz-reachability logic PLR and prove the polyhedral completeness
of PLR. In Section 8 we draw conclusions and highlight some directions for
future work.

2 Alexandroff spaces and polyhedra

In this section we briefly review some notions from topology, particularly poly-
hedra, setting up the stage for our semantics. We begin by reviewing Alexan-
droff spaces, which provide a link between topological semantics and the famil-
iar Kripke semantics for logics above S4.

2.1 Topological and Alexandroff spaces

We assume the familiarity with the basic concepts of topology such as topo-
logical spaces, closed and open sets, closure and interior, basis, etc. We re-
fer to [12] for all these notions. Recall that each preordered set (i.e., a set
with a reflexive and transitive relation) can be viewed as a special topological
space, in which an arbitrary intersection of open sets is open. Such spaces
are known as Alexandroff spaces. For a preordered set (X,R) and x ∈ X we
let R[x] = {y ∈ X | xRy}. Call U ⊆ X an R-upset if R(U) = U where
R(U) = {y ∈ X | ∃x ∈ U(xRy)}. An R-downset is defined dually, and for a
partially ordered set we simply say an upset or downset. The collection τR of
all R-upsets of (X,R) is an Alexandroff topology on X such that the closure
of a set U is the set R−1(U) = {y ∈ X : R[y] ∩ U 6= ∅}, and {R[x] : x ∈ X}
is a basis for τR. Conversely, given a topological space (X, τ) one can define a
specialization order Rτ on X by saying that xRτy iff every open set containing
x also contains y. It is well known that if (X, τ) is an Alexandroff space, then
τ = τRτ , and for every pre-ordered set (X,R) we have R = RτR . Because of
this we will not distinguish Alexandroff spaces and pre-ordered sets. Note that
any finite topological space is clearly Alexandroff.

2.2 Simplicial complexes and polyhedra

We recall here some definitions about polyhedra. Most of the definitions are
drawn from [1,6].

Definition 2.1 A d-simplex σ is the convex hull of a finite set V =
{v0, . . . , vd} ⊆ Rm of d+ 1 affinely independent points.

We recall that v0, . . . , vd are affinely independent if v1 − v0, . . . , vd − v0 are
linearly independent. The number d is said to be the dimension of σ, while the
points v0, . . . , vd are said to be its vertices. Note that simplices are bounded,
convex and compact subspaces of Rn.

A face of σ is the convex hull τ of a set T ⊆ {v0, . . . , vd}, with T 6= ∅: it
is straightforward to see that τ is also a simplex, and we thus have a partial
order on simplices given by τ 4 σ if τ is a face of σ.
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Definition 2.2 The relative interior of a simplex σ is the set

σ◦ = {Σdi=0λivi | ∀i. λi ∈ (0, 1] and Σdi=0λi = 1}.

The relative interior of a simplex coincides with its topological interior in
the subspace defined by the affine span of the simplex. Any simplex can be
partitioned into the relative interiors of its faces. We write σ◦ 4◦ τ◦ whenever
σ 4 τ , and it is easy to see that this is also a partial order, isomorphic to 4.

More complex spaces, aptly known as simplicial complexes, are obtained by
taking finite unions of simplices.

Definition 2.3 A simplicial complex K is a finite set of simplices of Rn such
that:

1. If σ ∈ K and τ 4 σ, then τ ∈ K;

2. If σ, τ ∈ K with σ ∩ τ 6= ∅, then σ ∩ τ 4 σ.

Simplicial complexes inherit the relations 4◦ and 4. The dimension of a
simplicial complex K is the maximum of the dimensions of its simplices, while
the face relation 4 is given by the union of the face relations of the simplices
composing K. Given a simplicial complex K, the polyhedron of K (denoted
by |K|) is the set-theoretic union of its simplices. Most importantly, given a
polyhedron |K|, each of its points belongs to one and only one of the relative
interiors of its simplices, so that the elements of K◦ induce a partition of |K|:

Lemma 2.4 Each point of |K| belongs to the relative interior of exactly one
simplex in K. That is, K◦ = {σ◦ | σ ∈ K} is a partition of |K|.

K◦ is called a simplicial partition of |K|, and elements of K◦ are called cells.
Note that the simplicial complex decomposition of a polyhedron is not unique.

We next recall the notion of a topological path.

Definition 2.5 A topological path in a topological space X is a continuous
function π : [0, 1]→ X, where [0, 1] is equipped with the subspace topology of
R. We say that π is a path from a to b if π(0) = a and π(1) = b.

If P = |K| for a given simplicial complex K and σ ∈ K, we say that π
traverses σ if there is x ∈ (0, 1) such that π(x) ∈ σ◦.

Topological paths have long been at the core of methods in fields such as
algebraic topology and complex analysis. As we will see, they also give rise to
an ‘until-like’ operator in modal logics of space – the main feature of our logics.

3 Language and semantics

In this section, we introduce our logic and its semantics. The semantics will
have three variants, based on Kripke frames, polyhedra, and topological spaces,
with the first two being special cases of the third.

3.1 Language with reachability modality

Our logics are based on the language generated by the following grammar:
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ϕ ≡ P | ¬ϕ | ϕ ∧ ψ | 2ϕ | γ(ϕ,ψ)

Here, P denotes a set of propositional variables typically assumed to be
countably infinite. We let Lγ denote the set of all formulas of this language.
In this paper, ‘formula’ refers exclusively to elements of Lγ .

3.2 Topological and polyhedral semantics

Next we introduce topological semantics for Lγ . As special cases, we obtain
polyhedral and Kripke semantics.

Definition 3.1 A topological model is a triple X = (X, τ, J·K), where (X, τ) is
a topological space and J·K : P→ 2X is a valuation map. The interior operator
for τ is denoted I.

Given a topological model X = (X, τ, J·K) we extend J·K to all formulas
ϕ ∈ Lγ via the satisfaction relation |= by stipulating JϕK = {x ∈ X | X , x |= ϕ}
and using the following recursive definition:

• X , x |= p ⇐⇒ x ∈ JpK

• X , x |= ¬ϕ ⇐⇒ X , x 6|= ϕ

• X , x |= ϕ1 ∧ ϕ2 ⇐⇒ X , x |= ϕ1 and X , x |= ϕ2

• X , x |= 2ϕ ⇐⇒ x ∈ I(JϕK)

• X , x |= γ(ϕ,ψ) ⇐⇒ there exists a topological path π such that π(0) = x,
π(1) ∈ JψK and π[(0, 1)] ⊆ JϕK

On occasion we may write x |= ϕ instead of X , x |= ϕ when X is clear
from context. With this, we may define polyhedral models as a special case of
topological models.

Definition 3.2 A polyhedral model is a pair X = (K, J·K), where K is a sim-
plicial complex and J·K : P → 2K . We identify X with the topological model
Xtop = (|K|, τK , J·Ktop), where τK is the subspace topology on |K| inherited
from Rn and JpKtop =

⋃
σ∈JpK σ

◦ for every p ∈ P.

It is easily observed that if X = (K, J·K) and X ′ = (K ′, J·K) are two models
with |K| = |K ′| (and sharing their propositional valuation), then for each
x ∈ |K| and ϕ ∈ Lγ we have that X , x |= ϕ ⇐⇒ X ′, x |= ϕ.

Definition 3.3 An Alexandroff model is a triple M = (W,4, J·K), where W is
any set, 4 is a preorder on W , and J·K : P→ 2W .

An Alexandroff model M = (W,4, J·K) is a simplicial Kripke model if 4 is
a partial order and W is finite.

The valuation JϕK is extended to arbitrary formulas ϕ by identifyingM with
the topological model obtained by equipping W with the upset topology.

As usual, we write w ≺ v if w 4 v and v 64 w. Our Alexandroff models
are simply S4 models, but we use this terminology to stress that S4 frames
coincide with Alexandroff spaces equipped with their specialization preorder,
allowing us to apply Definition 3.1 to Alexandroff models. However, in this



Bezhanishvili, Bussi, Ciancia, Duque and Gabelaia 7

setting it will also be convenient to characterize the semantics of γ(·, ·) without
an explicit reference to continuous paths.

Definition 3.4 Given an Alexandroff model M = (W,4, J·K) and a formula
ϕ, we define the reachability relation Rϕ to be the least relation so that w Rϕ v
if there is u ∈ JϕK such that either

(i) w 4 u < v, or

(ii) w Rϕ u and u Rϕ v.

This relation can equivalently be presented in terms of up-down paths.

Definition 3.5 Let M = (W,4, V ) be an Alexandroff model. A sequence
(w0, . . . , wk) ⊆W is said to be an up-down path if k = 2j for some j > 0, w0 4
w1, wk−1 < wk, and whenever 0 < i < j, we have that w2i−1 � w2i ≺ w2i+1.

Thus, an up-down path is a path w0 4 w1 � w2 ≺ w3 � . . . ≺ wk−1 < wk.

Lemma 3.6 Given a finite Alexandroff modelM = (W,4, J·K), w, v ∈W , and
a formula ϕ, the following are equivalent:

(i) w Rϕ v.

(ii) There is an up-down path (w0, . . . , wk) ⊆ W such that w0 = w, wk = v,
and for all i ∈ (0, k), wi ∈ JϕK.

(iii) There is a topological path π : [0, 1] → W such that π(0) = w, π(1) = v,
and for all t ∈ (0, 1), π(t) ∈ JϕK.

Proof. We prove that the second item implies the first; the other direction is
similar. Suppose that (w0, . . . , wk) ⊆ W is an up-down path such that for all
i ∈ (0, k), wi ∈ JϕK. We prove by induction on k that w0 R

ϕ wk.
We know that w1 < w2, so that w0 4 w1 < w2 witnesses w0 R

ϕ w2 by the
‘base case’ of the definition of Rϕ. If k = 2 we are done, otherwise k > 2 and
the induction hypothesis yields w2 R

ϕ wk. Since in this case w2 ∈ JϕK, this
witnesses the inductive clause for Rϕ, and once again w0 R

ϕ wk.
To show that (ii) implies (iii) suppose that (w0, . . . , w2k) is an up-down

path. To build a corresponding topological path, consider points i
k ∈ [0, 1]

with 0 ≤ i ≤ k and let π(x) = w2i if x = i
k and π(x) = w2i+1 if x ∈

(
i
k ,

i+1
k

)
.

Then π is continuous and satisfies the requirements of (iii).
For the other direction suppose π : [0, 1] → W is a topological path with

π(0) = w, π(1) = v and π[(0, 1)] ⊆ JϕK. Since (0, 1) is a connected subspace of
[0, 1] and π is continuous, π[(0, 1)] is a connected subspace of the Alexandroff
space W . Moreover, it follows from the continuity of π that w = π(0) and
v = π(1) are in the closure of π[(0, 1)]. Hence there exist w1, v1 ∈ π[(0, 1)] with
w 4 w1 and v 4 v1. The connectedness of π[(0, 1)] ⊆ JϕK ensures now the
existence of an up-down path as required in (ii). 2

Given this context, up-down paths are closely related to topological paths.
To further utilize this connection, first we define a simplicial model which is a
Kripke companion to a given polyhedral model.
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Definition 3.7 For a polyhedral model X = (K, J·K), the Kripke companion
of X is M(X ) = (K,4, J·K), where simplices of K are regarded as points, 4 is
the face relation of Section 2.2, and JpK is unchanged.

We define ς : |K| → K by letting ς(x) be the unique σ ∈ K such that x ∈ σ◦.

Lemma 3.8 Let X = (K, J·K) be a polyhedral model. Then, the map ς : |K| →
K is continuous with respect to the Alexandroff topology on K.

Moreover, if x, y ∈ |K| and N ⊆ K, the following are equivalent:

(i) There is a topological path from x to y traversing all the elements of N .

(ii) There is an up-down path (σ0, . . . , σn) from ς(x) to ς(y) such that N =
{σ1, . . . , σn}.

Proof. First we check that ς is continuous. For this it suffices to show that if
C ⊆ K is closed, then ς−1[C] = {x ∈ |K| : x ∈

⋃
C◦} is closed. We have that

C is closed iff it is downward-closed under 4, i.e. if τ 4 σ ∈ C then τ ∈ C.
From this it follows that if σ ∈ C then σ ⊆

⋃
C◦, as if x ∈ σ it follows that

x ∈ τ◦ for some τ 4 σ and, as observed, τ ∈ C. Since C is closed, we thus have
that ς−1[C] =

⋃
C◦ =

⋃
C, and since the latter is closed, so is the former.

From this it is immediate that (i) implies (ii), since if π : [0, 1] → |K| is
a topological path then ς ◦ π : [0, 1] → K is also a topological path (being
continuous) and clearly the two traverse the same faces. For the converse, it
suffices to consider the case where N has three (possibly repeating) elements
σ0 4 σ1 < σ2 and to find a path from x ∈ σ◦0 to y ∈ σ◦2 traversing only σ1, as
such paths can then be strung together inductively. Choose z ∈ σ◦1 ; then, it
can easily be checked that the piecewise linear path π with π(0) = x, π(1/2) = z
and π(1) = y has these properties. 2

Combining lemmas 3.6 and 3.8, we see that the semantics of γ(·, ·) for a
polyhedral model coincides with that of its Kripke companion, in the following
sense.

Lemma 3.9 Let X = (K, J·K) be a polyhedral model and x ∈ |K|. Then, for
every formula ϕ, we have that X , x |= ϕ ⇐⇒ M(X ), ς(x) |= ϕ.

It follows readily from Lemma 3.9 that any formula satisfiable on a polyhe-
dral model is also satisfiable on a simplicial Kripke model. The converse is also
true, but the transformation from Kripke models to polyhedral ones requires
an extra step, as we see in the next section.

4 The nerve of a Kripke model

Not every simplicial Kripke modelM is of the formM(X ) for some polyhedral
model X , but it is possible to transform M into a new model which does have
this property. This new model is the nerve of M.

Definition 4.1 Given a poset W , its nerve, N(W ), is the collection of finite
non-empty chains in W ordered by set-theoretic inclusion. We define a function
max : N(W )→W sending each element of N(W ) to its maximal element and
use this map to ‘pull back’ the valuation from W to N(W ); to be precise, we
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set JpK
N

= {c | max(c) ∈ JpK}. The nerve model of M is then the model

N(M) = (N(W ),⊆, J·KN ).

The map max : N(W ) → W mapping a chain to its maximal element is a
p-morphism [1]. We can always find a polyhedral model X such that N(M) =
M(X ), as shown, e.g. in [1].

Theorem 4.2 If M is any simplicial Kripke model then there exists a polyhe-
dral model X such that N(M) =M(X ).

The function max will preserve the truth of formulas in our language. To
make this precise, we must introduce the notion of up-down morphism.

Definition 4.3 Let M = (W,4, J·K), M′ = (W ′,4′, J·K′) be Kripke models.
A function f : W →W ′ is an up-down morphism if:

• (atom) if w ∈W , w ∈ JpK, then f(w) ∈ JpK
′
;

• (forth) if w 4 u < v, then f(w) 4 f(u) < f(v), and

• (back) if f(w) 4 u′ < v′, then there is an up-down path (v0, . . . , vk) ⊆ W
such that v0 = w, vk = v′, and for all i ∈ (0, k), f(vi) = u′.

It is easy to see that an up-down morphism is also a p-morphism. Indeed,
if w ∈ W and w 4 v, then we have an up-down path w 4 v < v, and this
implies f(w) 4′ f(v) <′ f(v), so in particular f(w) 4′ f(v). On the other
hand, if f(w) 4′ v′, then we consider the up-down path f(w) 4′ v′ <′ v′ and
we get that there is an up-down path (v0, . . . , vn) ⊆ W such that v0 = w and
f(v1) = v′, which yields the back condition for 4 since v0 4 v1.

Lemma 4.4 Let M = (W,4, J·K), M′ = (W ′,4′, J·K′) be Kripke models and
suppose that f : W → W ′ is an up-down morphism. Then, for every formula
ϕ ∈ Lγ we have JϕK = f−1[JϕK

′
].

Proof. The proof proceeds by a standard structural induction on ϕ. The case
for 2ϕ follows from up-down morphisms being also p-morphisms. The case
for γ(ϕ,ψ) requires observing that if (w0, . . . , w2n) is an up-down path in W
witnessing that γ(ϕ,ψ) holds on w = w0, then the ‘forth’ clause can be applied
n times to obtain a path (w′0, . . . , w

′
2n′) witnessing γ(ϕ,ψ) on f(w0). If instead

γ(ϕ,ψ) holds on f(w), a symmetric argument shows that γ(ϕ,ψ) holds on w.2

To see that the nerve of a Kripke model satisfies the formulas satisfied in
the original model, it suffices to see that max is an up-down morphism.

Lemma 4.5 If M = (W,4, J·K) is a simplicial Kripke model then the map
max: N(W )→W is an up-down morphism.

Proof. The atomic clause is taken care of by the definition of J·KN . For the
(forth) condition, if c, c1, c2 ∈ N(W ) with c ⊆ c1 ⊇ c2, it readily follows that
max(c) 4 max(c1) < max(c2).

Let us now take w, u, v ∈ W such that w 4 u < v. We note that N(W )
contains the chains {w} ⊆ {w, u} ⊇ {u} ⊆ {v, u} ⊇ {v}, and that this sequence
forms an up-down path. Moreover, we have max({w}) = w, max({v}) = v and
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max({w, u}) = max({u}) = max({v, u}) = u. Hence the (back) condition is
also satisfied. 2

It follows that the satisfiability in simplicial Kripke models is the same as
the satisfiability in polyhedral models.

Theorem 4.6 A formula ϕ is satisfiable on the class of simplicial Kripke mod-
els if and only if it is satisfiable on the class of polyhedral models.

Proof. That any formula satisfied on a polyhedral model is satisfied on a
Kripke model follows from Lemma 3.9.

For the converse, if ϕ is satisfied on a simplicial Kripke model M, then ϕ is
also satisfied on N(M) by lemmas 4.4 and 4.5. Theorem 4.2 then implies that
ϕ is satisfied on a polyhedral model. 2

We conclude that the logic of polyhedral models coincides with the logic of
simplicial Kripke models. With this in mind, we may restrict our attention to
the latter for the remainder of the text.

5 Logics of reachability

In this section, we introduce axiomatically two key logics of this paper – ALR
and PLR. The former will be based on S4 and the latter on Grz, both familiar
modal logics related to transitive frames and topological spaces. However, it is
necessary to introduce new axioms and rules for the reachability operator. In
particular, we define two rules: the first one is quite intuitive, and it basically
states that implication preserves reachability.

The second rule, or induction rule, is a bit more subtle. Intuitively, it works
as a back propagation rule for the ψ formula, where the first premise is needed
to propagate through a down step of an up-down path, while the second one is
needed to propagate through an up step.

Definition 5.1 Axioms of the Alexandroff reachability logic ALR are given by
all the propositional tautologies and Modus Ponens, S4 axioms and rules for
2, plus the following:

Axiom 1. ψ ∨ (ϕ ∧ γ(ϕ,ψ))→ 2(ϕ→ γ(ϕ,ψ))

Axiom 2. 3(ϕ ∧ γ(ϕ,ψ))→ γ(ϕ,ψ)

Rule 1.
ϕ→ ϕ′ ψ → ψ′

γ(ϕ,ψ)→ γ(ϕ′, ψ′)

Rule 2.
ψ → 2(ϕ→ ψ) ϕ ∧3(ϕ ∧ ψ)→ ψ

γ(ϕ,ψ)→ 3(ϕ ∧ ψ)
.

The polyhedral reachability logic PLR is obtained by adding the Grz axiom
2(2(p→ 2p)→ p)→ 2p to ALR.

We note in passing that the above two rules can also be formulated as axioms
using a defined operator [π]ϕ ≡ ¬γ(>,¬ϕ) which semantically acts as a ‘global’
box modality inside the path-connected component of the point of evaluation.
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The next proposition shows soundness of our logics and is proved in the
Appendix.

Proposition 5.2 The logic ALR is sound for the class of Alexandroff spaces
and the logic PLR is sound for the class of simplicial Kripke models.

Lemma 5.3 γ(ϕ,ψ)→ 3ϕ is a theorem of ALR.

Proof. Since ψ → > is a tautology, applying Rule 1 gives γ(ϕ,ψ)→ γ(ϕ,>).
Taking easily derivable > → 2(ϕ→ >) and ϕ ∧3(ϕ ∧ >)→ > as premises of
Rule 2, we conclude γ(ϕ,>)→ 3(ϕ ∧ >). Modus Ponens now yields 3ϕ. 2

6 Alexandroff completeness

In order to prove completeness of the logic, we will use a widely known tech-
nique in the realm of modal logics. We will go through the construction of
a canonical model, which will be filtered modulo a specifically crafted set of
formulas. Finiteness of such a set will give us a finite model, which is essential
in showing that the axiom system also enjoys the finite model property. We
will then prove a filtration lemma, to achieve completeness.

Definition 6.1 Let Λ ∈ {ALR,PLR}. The canonical model for Λ is the struc-
ture Mc = (Wc,4c, J·Kc), where Wc is the set of all Λ-theories (maximal Λ-
consistent sets), T 4c S if whenever 2ϕ ∈ T , it follows that 2ϕ ∈ S, and
JpKc = {T ∈Wc : p ∈ T}.

The results in this section apply to both the canonical model for ALR and
for PLR, beginning with the following standard lemma.

Lemma 6.2 For any formula ϕ, 3ϕ ∈ T ∈Wc iff there is S <c T with ϕ ∈ S.

6.1 Filtration

Say that a set Σ of formulas is adequate if it is closed under subformulas and
single negations, and whenever γ(ϕ,ψ) ∈ Σ, then 2(ϕ → γ(ϕ,ψ)) ∈ Σ and
3(ϕ ∧ γ(ϕ,ψ)) ∈ Σ. For a set Γ of formulas let sub(Γ) denote the set of all
subformulas of formulas in Γ.

Lemma 6.3 Let Γ be a finite set of formulas. Then the smallest adequate set
containing Γ is also finite.

Proof. Let Γ1 = Γ ∪ {2(ϕ → γ(ϕ,ψ)),3(ϕ ∧ γ(ϕ,ψ)) | γ(ϕ,ψ) ∈ sub(Γ)}.
Clearly Γ1 is finite. Moreover, Γ and Γ1 have the same set of subformulas of
the form γ(ϕ,ψ).

Let now Σ = sub(Γ1) ∪ {¬ϕ | ϕ ∈ sub(Γ1), ϕ 6= ¬ψ}. It is straightforward
to check that Σ is finite and adequate. 2

Definition 6.4 Let Σ be adequate. Define T ∼Σ S if T ∩ Σ = S ∩ Σ. We
define MΣ = (WΣ,4Σ, J·KΣ) as follows:

(i) WΣ = {TΣ : T ∈Wc}, where TΣ is the equivalence class of T under ∼Σ.

(ii) TΣ 4Σ SΣ if whenever 2ϕ ∈ T ∩ Σ, it follows that 2ϕ ∈ S.

(iii) JpKΣ = {TΣ : p ∈ T ∩ Σ}.
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It easily follows from the definitions that S 4c T implies SΣ 4Σ TΣ.
Given ϕ ∈ Σ, we define a ϕ-reachability relation on MΣ inductively by

letting TΣ RϕΣ SΣ if there is UΣ ∈WΣ such that ϕ ∈ U and either

(i) TΣ 4Σ UΣ <Σ SΣ, or

(ii) TΣ RϕΣ UΣ and UΣ RϕΣ SΣ.

It easily follows from this definition that RϕΣ is a symmetric relation.

Lemma 6.5 If γ(ϕ,ψ) ∈ Σ, TΣ RϕΣ SΣ, and either ψ ∈ S or ϕ ∧ γ(ϕ,ψ) ∈ S,
then γ(ϕ,ψ) ∈ T .

Proof. By induction on the structure of RϕΣ from TΣ to SΣ.
In the base case, there is UΣ such that ϕ ∈ U , TΣ 4Σ UΣ and SΣ 4Σ UΣ.
Since γ(ϕ,ψ) ∈ Σ and Σ is adequate, we have 2(ϕ → γ(ϕ,ψ)) ∈ Σ. Suppose
ψ ∈ S or ϕ∧γ(ϕ,ψ) ∈ S. By Axiom 1 and Modus Ponens, 2(ϕ→ γ(ϕ,ψ)) ∈ S.
From SΣ 4Σ UΣ it follows that 2(ϕ → γ(ϕ,ψ)) ∈ U and by the reflexivity
axiom of S4 we get ϕ→ γ(ϕ,ψ) ∈ U . Since ϕ ∈ U , we may conclude γ(ϕ,ψ) ∈
U . By adequacy of Σ we also have 3(ϕ ∧ γ(ϕ,ψ)) ∈ Σ and since TΣ 4Σ UΣ,
ϕ ∧ γ(ϕ,ψ) ∈ U , we obtain 3(ϕ ∧ γ(ϕ,ψ)) ∈ T . By Axiom 2, γ(ϕ,ψ) ∈ TΣ, as
required.

For the inductive case we have that there is U with ϕ ∈ U , TΣ RϕΣ UΣ, and
UΣ RϕΣ SΣ. By the induction hypothesis, since ψ ∈ S and UΣ RϕΣ SΣ we obtain
γ(ϕ,ψ) ∈ U . It follows that ϕ ∧ γ(ϕ,ψ) ∈ U and since TΣ RϕΣ UΣ, once again
by the induction hypothesis, we have γ(ϕ,ψ) ∈ T . 2

Definition 6.6 Let Σ be an adequate and finite set. For TΣ ∈ WΣ we define
χ(TΣ) =

∧
(T ∩ Σ) (note that this is well defined by the definition of ∼Σ).

Lemma 6.7 Let Σ be an adequate and finite set. Suppose t0 ∈ WΣ, ϕ ∈ Σ
and let χ =

∨
{χ(s) : s ∈ Rϕ(t0)}. Then,

(i) ALR ` 3(ϕ ∧ χ)→ χ

(ii) ALR ` ϕ ∧ χ→ 2(ϕ→ χ).

Proof.
We will make use of the easily seen observation that for any S ∈Wc we have

χ ∈ S iff SΣ ∈ Rϕ(t0).
To prove the first item, suppose that 3(ϕ∧χ)→ χ is not provable, i.e. ¬χ∧

3(ϕ ∧ χ) is consistent. Then there is T ∈ Wc with 3(ϕ ∧ χ) ∧ ¬χ ∈ T . By
Lemma 6.2, there exists S <c T such that ϕ ∧ χ ∈ S. Since χ ∈ S, we have
that SΣ ∈ Rϕ(t0). On the other hand, since ϕ ∈ S and TΣ 4Σ SΣ <Σ SΣ, we
also have TΣ RϕΣ SΣ and hence TΣ ∈ Rϕ(t0), implying χ ∈ T , a contradiction.

Suppose now that ϕ∧χ→ 2(ϕ→ χ) is not provable, i.e. (ϕ∧χ)∧3¬(ϕ→ χ)
is consistent. Then there is T ∈ Wc such that (ϕ ∧ χ) ∧ 3(ϕ ∧ ¬χ) ∈ T , and
again by Lemma 6.2 we get S <c T such that ϕ ∧ ¬χ ∈ S. Since χ ∈ T ,
we have that TΣ ∈ Rϕ(t0). We now note that ϕ ∈ S, and thus TΣ Rϕ SΣ,
as TΣ 4Σ SΣ <Σ SΣ. Then t0 Rϕ SΣ also holds, implying χ ∈ S, again a
contradiction. 2
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Lemma 6.8 If γ(ϕ,ψ) ∈ T ∩Σ, then there exists S with TΣ RϕΣ SΣ and ψ ∈ S.

Proof. Toward a contradiction, assume that γ(ϕ,ψ) ∈ T and for all SΣ ∈
Rϕ(TΣ) we have that ψ /∈ S. Let χ be as in the previous lemma, for t0 = TΣ.
Taking contrapositives we obtain:

(i) ALR ` ¬χ→ 2(ϕ→ ¬χ)

(ii) ALR ` ϕ ∧3(ϕ ∧ ¬χ)→ ¬χ.

By Rule 2, ALR ` γ(ϕ,¬χ)→ 3(ϕ ∧ ¬χ).
Further, since ψ 6∈ S for each SΣ ∈ Rϕ(TΣ), we get ALR ` χ → ¬ψ, hence

ALR ` ψ → ¬χ. By Rule 1, ALR ` γ(ϕ,ψ) → γ(ϕ,¬χ). Together with
ALR ` γ(ϕ,¬χ)→ 3(ϕ ∧ ¬χ) this yields ALR ` γ(ϕ,ψ)→ 3(ϕ ∧ ¬χ).

Since we assumed γ(ϕ,ψ) ∈ T at the outset, 3(ϕ ∧ ¬χ) ∈ T follows, and
hence there is S <c T such that ϕ ∧ ¬χ ∈ S. Since SΣ <Σ TΣ and ϕ ∈ S, we
obtain TΣ RϕΣ SΣ, thus by our definition of χ, χ ∈ S, contradicting ¬χ ∈ S. 2

With this we are able to prove a key filtration lemma.

Lemma 6.9 Let Σ be a finite adequate set of formulas and let ϕ ∈ Σ. Then
for each T ∈Wc we have ϕ ∈ T iff MΣ, TΣ |= ϕ.

Proof. Standard induction on formulas using lemmas 6.2, 6.5 and 6.8. 2

Theorem 6.10 ALR is complete for the class of Alexandroff models and has
the finite model property.

Proof. Suppose ALR 6` ¬ϕ. Then there is T ∈ Wc with ϕ ∈ T . By
Lemma 6.3 there exists a finite adequate set Σ containing sub(ϕ). It follows
from Lemma 6.9 thatMΣ, TΣ |= ϕ. SinceMΣ is finite, the proof is finished.2

7 Polyhedral completeness

Now that we have obtained completeness for Alexandroff spaces, it remains to
show that PLR is complete for the class of simplicial Kripke models, hence by
Theorem 4.6, also for the class of polyhedral logics. The proof builds on that
for ALR, but requires some additional steps.

For a given adequate set Σ we define Σ1 = Σ ∪ {3(¬ϕ ∧ 3ϕ) | 3ϕ ∈
Σ}∪{3(ϕ∧¬ψ) | γ(ϕ,ψ) ∈ Σ} and let Σ̂ be the smallest adequate set containing

Σ1. It is a straightforward consequence of Lemma 6.3 that if Σ is finite, Σ̂ is
also finite.

Given a finite adequate set Σ we now take the filtration of the canonical
model for PLR via Σ̂ to obtain a finite model MΣ̂. We know from Lemma 6.9

that for ϕ ∈ Σ̂,MΣ̂, TΣ̂ |= ϕ ⇐⇒ ϕ ∈ T . The modelMΣ̂ may however fail to
be a poset. The next definition allows for a necessary transformation of MΣ̂.

Definition 7.1 Let M = (W,4, J·K) be an Alexandroff model. We define
cut(M) = (W ′,4′, J·K′) where W ′ = W , JpK

′
= JpK for all atomic propositions

and for all x, y ∈W ′, x 4′ y ⇐⇒ x = y or x ≺ y 1 .

1 Recall that x ≺ y is a shorthand for x 4 y and y 64 x.
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Note that if 4 is a preorder, then 4′ is a partial order, so cut(M) is a
simplicial model.

Let Mcut
Σ̂

= cut(MΣ̂), and let 4cut be the accessibility relation in Mcut
Σ̂

.

Lemma 7.2 Let 3ϕ ∈ Σ and suppose for some T ∈ Wc we have 3ϕ ∈ T ,
ϕ 6∈ T . Then there is S ∈Wc such that TΣ̂ ≺Σ̂ SΣ̂ and MΣ̂, SΣ̂ |= ϕ.

Proof. From 3ϕ ∈ T , by axiom Grz, we obtain 3(ϕ ∧ ¬3(¬ϕ ∧ 3ϕ)) ∈ T .
Then by Lemma 6.2 there is S <c T with ϕ ∧ ¬3(¬ϕ ∧ 3ϕ) ∈ S. By the

construction of Σ̂, we have ¬3(¬ϕ∧3ϕ) ∈ Σ̂. Hence TΣ̂ 4Σ̂ SΣ̂,MΣ̂, SΣ̂ |= ϕ
and MΣ̂, SΣ̂ |= ¬3(¬ϕ ∧ 3ϕ). To see that in fact TΣ̂ ≺Σ̂ SΣ̂, suppose the
contrary, that SΣ̂ 4Σ̂ TΣ̂, and note that ¬3(¬ϕ ∧ 3ϕ) can be rewritten as
2(3ϕ→ ϕ). Then sinceMΣ̂, TΣ̂ |= 3ϕ, we getMΣ̂, TΣ̂ |= ϕ. But this implies
ϕ ∈ T , which contradicts ϕ 6∈ T . 2

Lemma 7.3 For any γ(ϕ,ψ) ∈ Σ, if MΣ̂, TΣ̂ |= γ(ϕ,ψ), then there exists
an up-down path (v0, v1, . . . , vk) witnessing this such that for all i < k, either
vi = vi+1, vi ≺Σ̂ vi+1, or vi �Σ̂ vi+1.

Proof. IfMΣ̂, TΣ̂ |= γ(ϕ,ψ) then by Lemma 3.6 we have a path (v0, v1, . . . , vk)
satisfying all of the above properties except possibly when i = 0 or i = k − 1.
If v0 ≺Σ̂ v1 fails and v0 6= v1 then v0 4Σ̂ v1 and v0 <Σ̂ v1. By lemmas 5.3
and 7.2 there is S ∈ Wc such that MΣ̂, SΣ̂ |= ϕ and TΣ̂ ≺Σ̂ SΣ̂. We thus
obtain a new up-down path (ṽ0, . . . , ṽk) := (v0, SΣ̂, v2, . . . , vk) where ṽ0 ≺Σ̂ ṽ1.
If ṽk−1 �Σ̂ ṽk fails and ṽk−1 6= ṽk, we likewise choose U such thatMΣ̂, UΣ̂ |= ϕ
and ṽk ≺Σ̂ UΣ̂, and replace ṽk−1 by UΣ̂. The resulting path has all required
properties. 2

Lemma 7.4 If ϕ ∈ Σ and T ∈Wc is arbitrary, we have:

MΣ̂, TΣ̂ |= ϕ ⇐⇒ Mcut
Σ̂
, TΣ̂ |= ϕ.

Proof. Proceed by induction on ϕ. Atomic proposition and Boolean cases are
immediate and thus omitted.

Consider the formula 3ϕ.
We first show the right-to-left implication. Suppose Mcut

Σ̂
, TΣ̂ |= 3ϕ. Then

there is SΣ̂ <cut TΣ̂ such that Mcut
Σ̂
, SΣ̂ |= ϕ. By the definition of 4cut we

obtain TΣ̂ 4 SΣ̂ and by the IH we have MΣ̂, SΣ̂ |= ϕ. Then MΣ̂, TΣ̂ |= 3ϕ.
Now for the left-to-right implication. We have that MΣ̂, TΣ̂ |= 3ϕ. Then

we have two cases:

• MΣ̂, TΣ̂ |= ϕ: by the IH, Mcut
Σ̂
, TΣ̂ |= ϕ and hence Mcut

Σ̂
, TΣ̂ |= 3ϕ.

• MΣ̂, TΣ̂ 6|= ϕ: by Lemma 7.2 there is SΣ̂ �Σ̂ TΣ̂ with MΣ̂, SΣ̂ |= ϕ. Again
by the IH, Mcut

Σ̂
, SΣ̂ |= ϕ and it follows that Mcut

Σ̂
, TΣ̂ |= 3ϕ.

Consider now the case of a formula γ(ϕ,ψ).
The right-to-left implication is trivial, as TΣ̂ 4cut SΣ̂ =⇒ TΣ̂ 4Σ̂ SΣ̂, and

hence any up-down path in Mcut
Σ̂

witnessing γ(ϕ,ψ) is also an up-down path

in MΣ̂ witnessing, by IH, γ(ϕ,ψ).
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As for the left-to-right implication, if MΣ̂, TΣ̂ |= γ(ϕ,ψ), by Lemma 7.3
there exists an up-down path (v0, v1, . . . , vk) in MΣ̂ witnessing γ(ϕ,ψ) such
that for all i < k, either vi = vi+1, vi ≺Σ̂ vi+1, or vi �Σ̂ vi+1. It is immediate
from the latter that this is also an up-down path in Mcut

Σ̂
. Using the IH, we

have Mcut
Σ̂
, TΣ̂ |= γ(ϕ,ψ). 2

With this, we obtain completeness for simplicial Kripke models.

Proposition 7.5 If ϕ is valid over the class of all simplicial Kripke models,
then PLR ` ϕ.

Proof. Arguing by contraposition, if ¬ϕ is consistent with PLR then there is
a theory T with ¬ϕ ∈ T . Let Σ be the smallest adequate set containing ¬ϕ,
which is finite by Lemma 6.3. Then Lemma 6.9 together with Lemma 7.4 yield
Mcut

Σ̂
, TΣ̂ |= ¬ϕ, in other words Mcut

Σ̂
, TΣ̂ 6|= ϕ. Since Mcut

Σ̂
is a finite poset,

the proof is finished. 2

Putting together Proposition 7.5, Proposition 5.2 and Theorem 4.6, we ob-
tain our main result.

Theorem 7.6 Given a formula ϕ, the following are equivalent:

(i) PLR ` ϕ;

(ii) ϕ is valid over the class of all simplicial Kripke models;

(iii) ϕ is valid over the class of all polyhedral models.

8 Conclusions

Polyhedral semantics of modal logics with reachability operators enables rea-
soning about many interesting real-world scenarios. In this work, we provided
sound and complete axiomatization of the polyhedral reachability logic.

There are many different directions for future research from both theoret-
ical and practical perspectives. Here we focus on some theoretical questions.
Having obtained axiomatization and polyhedral completeness for modal logic
with reachability, as the next step one could study more general topological
completeness for such logics. On general topological models some of the theo-
rems of PLR are no longer valid. Namely, 3 is no longer definable through γ.
This makes the axiomatization more challenging. Natural follow up problems
are axiomatizing the reachability logics for the class of all topological spaces
and for other interesting classes of spaces such as Euclidean spaces, hereditarily
irresolvable spaces, scattered spaces, locally connected spaces, etc.
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Appendix

Proposition 5.2 The logic ALR is sound for the class of Alexandroff spaces
and the logic PLR is sound for the class of simplicial Kripke models.

Proof. Let M = (W,4, J·K) be an Alexandroff model.
Axiom 1: ψ ∨ (ϕ ∧ γ(ϕ,ψ))→ 2(ϕ→ γ(ϕ,ψ))

Take w 6|= 2(ϕ→ γ(ϕ,ψ)): then ∃v < w. v 6|= (ϕ→ γ(ϕ,ψ)), namely v |= ϕ,
v 6|= γ(ϕ,ψ). Suppose w |= ψ ∨ (ϕ ∧ γ(ϕ,ψ)). We then have two cases:

• w |= ψ: we have v 4 v < w. Hence v Rϕ w and v |= γ(ϕ,ψ), a contradiction.

• w |= (ϕ ∧ γ(ϕ,ψ)): again we have v 4 v < w, hence v Rϕ w. From
w |= γ(ϕ,ψ) we also get w Rϕ u for some u |= ψ. But then, since w |= ϕ,
v Rϕ w and w Rϕ u we obtain v Rϕ u. Together with u |= ψ this implies
v |= γ(ϕ,ψ), again a contradiction.
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Axiom 2: 3(ϕ ∧ γ(ϕ,ψ))→ γ(ϕ,ψ)

Take w |= 3(ϕ ∧ γ(ϕ,ψ)), w 6|= γ(ϕ,ψ). Then there is a point v such that
w 4 v and v |= ϕ, v |= γ(ϕ,ψ). Hence w Rϕ v and v Rϕ u for some u |= ψ.
This implies w Rϕ u and thus, w |= γ(ϕ,ψ) – a contradiction.

Rule 1:
ϕ→ ϕ′ ψ → ψ′

γ(ϕ,ψ)→ γ(ϕ′, ψ′)

Take a model (W,R, J.K) and suppose that ∀w ∈ W , w |= ϕ =⇒ w |= ϕ′,
w |= ψ =⇒ w |= ψ′. Take points u, v such that u Rϕ v and v |= ψ. Then it
easily follows that u Rϕ

′
v and v |= ψ′. Hence γ(ϕ,ψ) → γ(ϕ′, ψ′) is valid in

the model.
Rule 2 (inductive rule):

ψ → 2(ϕ→ ψ) ϕ ∧3(ϕ ∧ ψ)→ ψ

γ(ϕ,ψ)→ 3(ϕ ∧ ψ)
.

Take a model M such that for all w ∈ W we have w |= ψ → 2(ϕ → ψ)
and w |= ϕ ∧3(ϕ ∧ ψ)→ ψ. Suppose u |= γ(ϕ,ψ). Then there is an up-down
path w0 4 w1 � w2 ≺ w3 � . . . ≺ w2k−1 < w2k with w0 = u, w2k |= ψ and
wi |= ϕ for all i with 0 < i < 2k. We aim to show that w1 |= ψ thereby
demonstrating u |= 3(ϕ ∧ ψ). We will in fact show by a sort of backwards
induction that wi |= ψ for all i with 0 < i < 2k. To this end, consider first
w2k−1. From w2k |= ψ → 2(ϕ → ψ) and w2k |= ψ we get w2k |= 2(ϕ → ψ).
Since w2k 4 w2k−1 and w2k−1 |= ϕ, we have w2k−1 |= ψ. If k = 1 we are
done, otherwise w2k−2 |= ϕ and we continue. From w2k−2 4 w2k−1 |= ϕ∧ψ we
obtain w2k−2 |= 3(ϕ ∧ ψ). Utilizing w2k−2 |= ϕ ∧3(ϕ ∧ ψ) → ψ we conclude
w2k−2 |= ψ. Continuing in this fashion, we will end up with w1 |= ψ as desired.

If moreover M is a simplicial Kripke model, thus based on a finite poset,
then it is well known that the Grz axiom is valid on M. 2
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