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Abstract. In [7] we introduced the category MKHaus of modal compact Hausdorff spaces, and showed

these were concrete realizations of coalgebras for the Vietoris functor on compact Hausdorff spaces, much as
modal spaces are coalgebras for the Vietoris functor on Stone spaces. Also in [7] we introduced the categories

MKRFrm and MDV of modal compact regular frames, and modal de Vries algebras as algebraic counterparts
to modal compact Hausdorff spaces, much as modal algebras are algebraic counterparts to modal spaces. In

[7], MKRFrm and MDV were shown to be dually equivalent to MKHaus, hence equivalent to one another.

Here we provide a direct, choice-free proof of the equivalence of MKRFrm and MDV. We also detail
connections between modal compact regular frames and the Vietoris construction for frames [19, 20], discuss

a Vietoris construction for de Vries algebras, and how it is linked to modal de Vries algebras. Also described

is an alternative approach to the duality of MKRFrm and MKHaus obtained by using modal de Vries algebras
as an intermediary.

1. Introduction

In [7] we began a program of lifting structures and techniques of modal logic, based fundamentally on
Stone spaces and Boolean algebras, to the setting of compact Hausdorff spaces, de Vries algebras, and
compact regular frames. Here, we consider aspects of this work more closely linked to the study of point-free
topology than to modal logic. While we briefly recall some important facts from [7], the reader would benefit
from having access to this paper when reading this note.

A modal space, or descriptive frame, (X,R) is a Stone space X with binary relation R satisfying certain
properties equivalent to requiring the associated map from X into its Vietoris space V(X) be continuous.
With the so-called p-morphisms between them, the category MS of modal spaces is isomorphic to the category
of coalgebras for the Vietoris functor on Stone spaces. This lies at the heart of the coalgebraic treatment
of modal logic. A modal algebra (B,◇) is a Boolean algebra with unary operation ◇ that preserves finite
joins. The category MA of modal algebras and the homomorphisms between them is dually equivalent to
MS via a lifting of Stone duality. These equivalences and dual equivalences tie the coalgebraic, algebraic,
and relational treatments of modal logic.

In [7] the situation was lifted from the setting of Stone spaces to compact Hausdorff spaces. We defined
a modal compact Hausdorff space (X,R) to be a compact Hausdorff space with binary relation R satisfying
conditions equivalent to having the associated map from X to its Vietoris space V(X) be continuous. Then
with morphisms again being p-morphisms, we showed the category MKHaus of modal compact Hausdorff
spaces is isomorphic to the category of coalgebras for the Vietoris functor on the category KHaus of compact
Hausdorff spaces. For algebraic counterparts to modal compact Hausdorff spaces, we lifted Isbell duality
between KHaus and compact regular frames, and de Vries duality between KHaus and de Vries algebras,
obtaining categories MKRFrm of modal compact regular frames, and MDV of modal de Vries algebras, each
dually equivalent to MKHaus. For various reasons, the category MDV was a bit poorly behaved. We defined
two full subcategories of MDV, the categories LMDV and UMDV of lower and upper continuous modal de Vries
algebras, that were better behaved, and showed both were equivalent to MDV. The situation is summarized
in Figure 1 below.

The functors in Figure 1 are described in [7]. Those between MKRFrm and MKHaus lift the usual point
and open set functors between compact regular frames and compact Hausdorff spaces, and those between
MDV and MKHaus lift the usual end and regular open set functors between de Vries algebras and compact
Hausdorff spaces. As such, they require the axiom of choice. The composite of these functors then gives
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Figure 1

an equivalence between MKRFrm and MDV, but again, this requires the axiom of choice. The equivalences
between MDV and its subcategories LMDV and UMDV are choice-free.

A primary purpose here is to give a direct, choice-free proof of the equivalence of MKRFrm and each of
MDV, LMDV and UMDV. To do so, we construct functors L ∶MKRFrm → LMDV and U ∶MKRFrm → UMDV
that lift the Booleanization functor in two ways, and a functor R ∶ MDV → MKRFrm that lifts the round
ideal functor. After the preliminaries in Section 2, this equivalence is established in Section 3.

The definition of modal compact regular frames involves identities for the modal operators that appear
in Johnstone’s construction of Vietoris frames [19, 20]. This is not surprising as modal compact regular
frames arise as algebraic counterparts of coalgebras for the Vietoris functor on compact Hausdorff spaces.
The details of this connection are given in Section 4. In this section we also discuss a counterpart of the
Vietoris construction for de Vries algebras.

The equivalence of MKRFrm and MDV of Section 3 composed with the dual equivalence of MDV and
MKHaus of [7] provides an alternative approach to the duality of MKRFrm and MKHaus. Restricted to KRFrm
and KHaus, this composite is a particular case of Hofmann-Lawson duality [17], and closely resembles Stone
duality. In the modal setting, it resembles the familiar duality between modal algebras and modal spaces.
Details of this alternative approach are given in Section 5.

2. Preliminaries

We briefly recall the primary definitions. The reader should consult [7] for complete details.

Definition 2.1. A frame is a complete lattice L where finite meets distribute over infinite joins, and a frame
homomorphism is a map between frames preserving finite meets and infinite joins. A frame is compact if

⋁S = 1 implies there is a finite subset T ⊆ S with ⋁T = 1. Using ¬a for the pseudocomplement of an element
a, we say a is well inside b, and write a ≺ b, if ¬a ∨ b = 1. A frame L is a regular frame if for each b ∈ L we
have b = ⋁{a ∶ a ≺ b}. The category of compact regular frames and the frame homomorphisms between them
is denoted KRFrm.

For more about compact regular frames see, e.g., [18, 4, 19, 22].

Definition 2.2. A modal compact regular frame (abbreviated: MKR-frame) is a triple L = (L,◻,◇) where
L is a compact regular frame, and ◻,◇ are unary operations on L satisfying the following conditions.

(1) ◻ preserves finite meets, so ◻1 = 1 and ◻(a ∧ b) = ◻a ∧ ◻b.
(2) ◇ preserves finite joins, so ◇0 = 0 and ◇(a ∨ b) =◇a ∨◇b.
(3) ◻(a ∨ b) ≤ ◻a ∨◇b and ◻a ∧◇b ≤◇(a ∧ b).
(4) ◻,◇ preserve directed joins, so ◻⋁S = ⋁{◻s ∶ s ∈ S}, ◇⋁S = ⋁{◇s ∶ s ∈ S} for any up-directed S.

An MKR-morphism is a frame homomorphism h that satisfies h(◻a) = ◻h(a) and h(◇a) = ◇h(a). The
category of modal compact regular frames and their morphisms, composed by ordinary function composition,
is denoted MKRFrm.
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We next describe de Vries algebras. Here, as is common, we use the symbol ≺ for a certain type of relation
on a Boolean frame (complete Boolean algebra). This is a different usage than in Definition 2.1, although
there are many connections. For further details see [11, 5, 7, 8], as well as Section 3 below.

Definition 2.3. A de Vries algebra is a pair (A,≺) where A is a Boolean frame and ≺ is a binary relation
on A, called a proximity, satisfying

(1) 1 ≺ 1.
(2) a ≺ b implies a ≤ b.
(3) a ≤ b ≺ c ≤ d implies a ≺ d.
(4) a ≺ b, c implies a ≺ b ∧ c.
(5) a ≺ b implies ¬b ≺ ¬a.
(6) a ≺ b implies there exists c with a ≺ c ≺ b.
(7) a ≠ 0 implies there exists b ≠ 0 with b ≺ a.

A morphism between de Vries algebras is a function α that satisfies (i) α(0) = 0, (ii) α(a∧ b) = α(a)∧α(b),
(iii) a ≺ b implies ¬α(¬a) ≺ α(b), and (iv) α(a) = ⋁{α(b) ∶ b ≺ a}.

The motivating example of a de Vries algebra is the complete Boolean algebra ROX of regular open
sets of a compact Hausdorff space X with relation ≺ on ROX defined by S ≺ T if CS ⊆ T where C is
usual topological closure. A continuous map f ∶ X → Y between compact Hausdorff spaces gives a de Vries
morphism ICf−1[−] from ROY to ROX where I is usual topological interior. In this setting, one can see
that the ordinary function composite of de Vries morphisms need not be a de Vries morphism.

Definition 2.4. For de Vries morphisms α and β, define their composite to be β ⋆ α where

(β ⋆ α)(a) =⋁{βα(b) ∶ b ≺ a}.

Let DeV be the category of de Vries algebras and their morphisms under this ∗ composition.

Remark 2.5. The idea of a proximity has a long history, see [21] for details. A number of authors have
considered structures closely related to de Vries algebras; see, e.g., [23, 12, 3, 13, 24]. The crucial notion of a
de Vries morphism essential for obtaining categorical duality appears to originate in [11]. Further discussion
can be found in [5, 8].

Definition 2.6. A modal de Vries algebra (abbreviated: MDV-algebra) is a triple A = (A,≺,◇) where (A,≺)
is a de Vries algebra and ◇ is a unary operation on A that satisfies the following conditions.

(1) ◇0 = 0.
(2) a1 ≺ b1 and a2 ≺ b2 imply ◇(a1 ∨ a2) ≺◇b1 ∨◇b2.

A morphism between modal de Vries algebras is a de Vries morphism α for which a ≺ b implies both
α(◇a) ≺◇α(b) and ◇α(a) ≺ α(◇b). Let MDV be the category of modal de Vries algebras and morphisms
with composition being the ∗ composition of Definition 2.4.

Two full subcategories of MDV play an important role in [7], and also in our considerations here.

Definition 2.7. An MDV-algebra (A,≺,◇) is called lower continuous if ◇a = ⋁{◇b ∶ b ≺ a} and upper
continuous if ◇a = ⋀{◇b ∶ a ≺ b}. Let LMDV and UMDV be the full subcategories of MDV consisting of all
lower, respectively upper, continuous MDV-algebras.

We recall that in [7, Sec. 4.3] it was shown that each member of MDV is isomorphic to a member of LMDV
and to a member of UMDV, this despite the fact that a modal de Vries algebra need be neither lower nor
upper continuous. This somewhat counterintuitive situation is due to the fact that composition in MDV is
not function composition, and isomorphisms are not structure preserving bijections.

3. Equivalence of MKRFrm, MDV, LMDV, and UMDV

In this section we provide direct equivalences between MKRFrm and each of MDV, LMDV, and UMDV.
These proofs do not rely on the axiom of choice, as did ones in [7].

Definition 3.1. For a de Vries algebra (A,≺) and S ⊆ A, define ↓S = {a ∶ a ≤ s for some s ∈ S}, and
↡S = {a ∶ a ≺ s for some s ∈ S}. An ideal I of A is called round if I = ↡I.
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It is known (see, e.g., [3, Lem. 2] or [8, Prop. 4.6]) that the collection RA of all round ideals of A is a
subframe of the frame of all ideals of A.

Definition 3.2. For A = (A,≺,◇) an MDV-algebra, define ◻ on A by setting ◻a = ¬◇ ¬a for all a ∈ A.

Lemma 3.3. Let A = (A,≺,◇) be an MDV-algebra and a ≺ b, a1 ≺ b1, a2 ≺ b2. Then

(1) ◇a ≺◇b and ◻a ≺ ◻b.
(2) ◇(a1 ∨ a2) ≺◇b1 ∨◇b2 and ◻a1 ∧ ◻a2 ≺ ◻(b1 ∧ b2).
(3) ◻(a1 ∨ a2) ≺ ◻b1 ∨◇b2 and ◻a1 ∧◇a2 ≺◇(b1 ∧ b2).

Proof. The definition of an MDV-algebra gives ◇a ≺◇b and ◇(a1∨a2) ≺◇b1∨◇b2. In any de Vries algebra
we have a ≺ b iff ¬b ≺ ¬a. This gives ◻a ≺ ◻b and ◻a1∧◻a2 ≺ ◻(b1∧b2). So (1) and (2) are established. For (3)
use interpolation to find a1 ≺ c1 ≺ d1 ≺ b1 and a2 ≺ c2 ≺ d2 ≺ b2. Then a1∨a2 ≺ c1∨c2 and ¬d2 ≺ ¬c2, so by (2),
◻(a1 ∨a2)∧◻¬d2 ≺ ◻((c1 ∨ c2)∧¬c2). As (c1 ∨ c2)∧¬c2 ≤ c1 ≺ d1, applying (1) gives ◻(a1 ∨a2)∧◻¬d2 ≺ ◻d1,
hence ◻(a1 ∨ a2) ≤ ◻d1 ∨ ¬ ◻ ¬d2 = ◻d1 ∨◇d2. Finally use (1) once again to obtain ◻d1 ∨◇d2 ≺ ◻b1 ∨◇b2.
This gives the first statement in (3). Using that x ≺ y iff ¬y ≺ ¬x, the second statement in (3) is equivalent
to ◻(¬b1 ∨ ¬b2) ≺◇¬a1 ∨ ◻¬a2, which is equivalent to the first. �

Definition 3.4. For A = (A,≺,◇) an MDV-algebra, define RA = (RA,◻,◇) where RA is the frame of
round ideals of A and ◻,◇ are given by ◻(I) = ↡◻[I] and ◇(I) = ↡◇[I].

Proposition 3.5. If A is an MDV-algebra, then RA is an MKR-frame.

Proof. It is well-known that RA is a subframe of the ideal frame of A that is compact regular (see, e.g., [3]
or [6]). It is easy to see that ◻(I) and ◇(I) are round ideals so ◻,◇ are well defined. By Lemma 3.3.1, both
◻,◇ are proximity preserving on A, so we can alternately describe ◻(I) = ↓◻[I] and ◇(I) = ↓◇[I].

We must verify the conditions of Definition 2.2. As ◇0 = 0 and ◻1 = 1, we have ◇0 = 0 and ◻1 = 1. Clearly
◻ and ◇ are order-preserving, so ◇(I)∨◇(J) ⊆◇(I∨J) and ◻(I∧J) ⊆ ◻(I)∧◻(J). If a1 ∈ I and a2 ∈ J , then
roundness gives b1 ∈ I and b2 ∈ J with a1 ≺ b1 and a2 ≺ b2. Then Lemma 3.3.2 gives ◇(a1 ∨ a2) ≺◇b1 ∨◇b2,
showing ◇(I ∨ J) ⊆ ◇(I) ∨ ◇(J), and ◻a1 ∧ ◻a2 ≺ ◻(b1 ∧ b2), showing ◻(I ∧ J) ⊆ ◻(I) ∧ ◻(J). Thus ◇
is finitely additive and ◻ is finitely multiplicative. Also, Lemma 3.3.3 gives ◻(a1 ∨ a2) ≺ ◻b1 ∨ ◇b2 and
◻a1 ∧◇a2 ≺◇(b1 ∧ b2), showing ◻(I ∨ J) ⊆ ◻(I)∨◇(J) and ◻(I)∧◇(J) ⊆◇(I ∧ J). Finally, directed joins
in RA are given by unions, and it follows easily that both ◻ and ◇ preserve directed joins. �

Theorem 3.6. The assignment A ↦ RA can be extended to a functor R ∶ MDV → MKRFrm by setting
Rα = ↡α[⋅] for an MDV-morphism α ∶ A→B.

Proof. It is known [6, Rem. 3.10] that the “restriction” of R gives a functor R ∶ DeV → KRFrm, so it
remains only to show that the frame homomorphism Rα is an MKR-morphism. This means we must show
(Rα)(◇I) = ◇((Rα)I) and (Rα)(◻I) = ◻((Rα)I) for each round ideal I of A. This follows directly once
we show a ≺ b implies (i) α(◇a) ≺◇α(b), (ii) ◇α(a) ≺ α(◇b), (iii) α(◻a) ≺ ◻α(b), and (iv) ◻α(a) ≺ α(◻b).

Items (i) and (ii) are part of the definition of an MDV-morphism. For (iii), use interpolation to find
a ≺ c ≺ d ≺ b and recall that an MDV-morphism also satisfies x ≺ y implies α(¬y) ≺ ¬α(x) and ¬α(y) ≺ α(¬x).
Then as ◇¬c ≺◇¬a we have α(◻a) = α(¬◇¬a) ≺ ¬α(◇¬c), and as ¬d ≺ ¬c we have ◇α(¬d) ≺ α(◇¬c), hence
α(◻a) ≺ ¬α(◇¬c) ≺ ¬◇α(¬d). But d ≺ b gives ¬α(b) ≺ α(¬d), hence α(◻a) ≺ ¬◇α(¬d) ≺ ¬◇¬α(b) = ◻α(b).
This gives (iii), and a similar calculation provides (iv). �

Next we construct a functor from MKRFrm to MDV. In fact, we will construct two functors, one will have
image in LMDV and the other in UMDV.

Lemma 3.7 ([7, Lem. 3.6]). Let L = (L,◻,◇) be an MKR-frame and a, b ∈ L. Then

(1) ◇a ≤ ¬ ◻ ¬a and ◻a ≤ ¬◇ ¬a.
(2) If a ≺ b, then ◇a ≺◇b and ◻a ≺ ◻b.
(3) If a ≺ b, then ¬ ◻ ¬a ≺◇b and ¬◇ ¬a ≺ ◻b.
(4) If a ≺ b, then ◻a ≺ ¬◇ ¬b and ◇a ≺ ¬ ◻ ¬b.

Recall that for a compact regular frame L, the operation ¬¬ is a closure operator on L whose fixed points
BL are a de Vries algebra with proximity given by the restriction of the well inside relation ≺ on L [6,
Lem. 3.1]. Meets in BL agree with those in L, joins are given by applying the closure operator ¬¬ to the
join in L. We use ⊔ for finite joins in BL and ⊔ for infinite joins.
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Definition 3.8. For L = (L,◻,◇) an MKR-frame, define ◇L, ◇U on BL by ◇La = ¬¬◇a and ◇Ua = ¬◻¬a,
and following our convention, define ◻

L
= ¬◇

L
¬ and ◻

U
= ¬◇

U
¬.

Proposition 3.9. For L = (L,◻,◇) an MKR-frame, LL = (BL,◇L
) is a lower continuous MDV-algebra,

and UL = (BL,◇U
) is an upper continuous MDV-algebra.

Proof. Clearly ◇
L0 = 0 and ◇

U0 = 0. Let a1, a2, b1, b2 ∈BL with a1 ≺ b1 and a2 ≺ b2. Then a1 ∨ a2 ≺ b1 ∨ b2.
As x ≺ y implies ¬¬x ≺ y we have a1 ⊔ a2 = ¬¬(a1 ∨ a2) ≺ b1 ∨ b2. Lemma 3.7.2 and the additivity of ◇
give ◇(a1 ⊔ a2) ≺ ◇b1 ∨◇b2 ≤ ¬¬◇ b1 ⊔ ¬¬◇ b2, so ◇

L
(a1 ⊔ a2) ≺ ◇

Lb1 ⊔◇
Lb2. This shows ◇L is de Vries

additive, so LL is an MDV-algebra. For de Vries additivity of ◇U , we have a1 ⊔a2 ≺ b1 ⊔ b2, and as x ≺ y iff
¬y ≺ ¬x in any de Vries algebra, ¬(b1 ⊔ b2) ≺ ¬(a1 ⊔ a2). Then Lemma 3.7.2 gives ◻¬(b1 ⊔ b2) ≺ ◻¬(a1 ⊔ a2),
hence ¬ ◻ ¬(a1 ⊔ a2) ≺ ¬ ◻ ¬(b1 ⊔ b2). Using DeMorgan’s law and the fact that ◻ is multiplicative, this gives
◇

U
(a1 ⊔ a2) ≺◇

Ub1 ⊔◇
Ub2, and shows UL is an MDV-algebra.

To see LL is lower continuous, let a ∈BL. Recall we use ⋁ for joins in L and ⊔ for joins in BL. As L is
regular, a = ⋁{b ∶ b ∈ L and b ≺ a}. Since b ≺ a implies ¬¬b ≺ a, we have a = ⋁{c ∶ c ∈BL and c ≺ a}. As ◇ is
additive, ◇a = ⋁{◇c ∶ c ∈BL and c ≺ a}, and it follows that ¬¬◇ a = ¬¬⋁{¬¬◇ c ∶ c ∈BL and c ≺ a}. Thus
◇

La = ⊔{◇
Lc ∶ c ≺ a}, showing LL is lower continuous.

To see UL is upper continuous, recall meets in BL agree with those in L. For a ∈ BL, we have ¬a ∈ BL
and ¬a = ⋁{c ∶ c ∈ BL and c ≺ ¬a}. Noting that the c ∈ BL with c ≺ ¬a are exactly the ¬b with b ∈ BL and
a ≺ b, we have ¬a = ⋁{¬b ∶ b ∈BL and a ≺ b}. As ◻ preserves directed joins, ◻¬a = ⋁{◻¬b ∶ b ∈BL and a ≺ b}.
Then as ¬⋁xi = ⋀¬xi in any frame, and ◇

U
= ¬ ◻ ¬, we have ◇Ua = ⋀{◇

Ub ∶ b ∈BL and a ≺ b}. Thus UL
is upper continuous. �

Theorem 3.10. The assignments L ↦ LL and L ↦ UL can be extended to functors L ∶ MKRFrm → LMDV
and U ∶MKRFrm→ UMDV by setting Lh = Uh = ¬¬h for an MKR-morphism h ∶ L→M.

Proof. The “restrictions” of L,U to KRFrm are known [6, Lem. 3.4] to give a functor B ∶ KRFrm → DeV. It
remains to show the de Vries morphisms Lh ∶ LL→ LM and Uh ∶ UL→ UM are modal de Vries morphisms.
This means we must show that a ≺ b in BL implies (i) ¬¬h(◇La) ≺◇L

¬¬h(b), (ii) ◇L
¬¬h(a) ≺ ¬¬h(◇Lb),

(iii) ¬¬h(◇Ua) ≺◇U
¬¬h(b), and (iv) ◇U

¬¬h(a) ≺ ¬¬h(◇Ub).
Before proving these items, we collect some facts. As h is a frame homomorphism, it preserves proximity

and order, and satisfies h(¬x) ≤ ¬h(x); and as h is an MKR-morphism, x ≺ y implies h(◇x) ≺ ◇h(y),
◇h(x) ≺ h(◇y), h(◻x) ≺ ◻h(y), and ◻h(x) ≺ h(◻y). Lemma 3.7 shows ◇,◻ preserve proximity. Finally, in
any frame, x ≺ y iff ¬¬x ≺ y.

As a ≺ b, we have ◇La = ¬¬◇ a ≺ ◇b. So h(◇La) ≺ h(◇b) = ◇h(b) ≤ ◇L
¬¬h(b). From this, (i) follows.

Also a ≺ b implies ¬¬h(a) ≺ h(b), hence ◇¬¬h(a) ≺ ◇h(b) = h(◇b) ≤ ¬¬h(◇Lb), and from this (ii) follows.
As a ≺ b, we have ¬a ∨ b = 1. Thus ◻(¬a ∨ b) = 1, and the definition of an MKR-frame gives ◻¬a ∨◇b = 1.
Then, by Lemma 3.7.1, 1 = h(◻¬a∨◇b) ≤ h(¬¬◻¬a)∨◇h(b) ≤ ¬h(¬◻¬a)∨¬◻¬h(b) = ¬h(◇Ua)∨◇Uh(b),
giving h(◇Ua) ≺◇Uh(b), and (iii) follows. Finally, a ≺ b gives h(a) ≺ h(b), and as in (iii), ◻¬h(a)∨◇h(b) = 1.
So ¬¬ ◻ ¬¬¬h(a) ∨ h(◇b) = 1, giving ◇

U
(¬¬h(a)) ≺ h(◇b) ≤ ¬¬h(◇Ub). �

Theorem 3.11. There is an equivalence between MKRFrm and LMDV given by L and the restriction of R
to LMDV; and an equivalence between MKRFrm and UMDV given by U and the restriction of R to UMDV.

Proof. Suppose L = (L,◻,◇) is an MKR-frame, A = (A,≺,◇) is a lower continuous MDV-algebra, and C =

(C,≺,◇) is an upper continuous MDV-algebra. Define h ∶RLL→ L and k ∶RUL→ L by h(I) = k(I) = ⋁ I.
Also, define α ∶ A → LRA and β ∶ C → URC by α(a) = ↡a and β(c) = ↡c. It is known [6, Sec. 3] that on the
level of compact regular frames and de Vries algebras h, k and α,β are natural isomorphisms. It remains
only to show h, k are MKR-isomorphisms and α,β are MDV-isomorphisms.

To show h is an MKR-isomorphism, we must show h(◇L
(I)) =◇h(I) and h(◻L

(I)) = ◻h(I) for I a round

ideal of the regular elements of L. In Proposition 3.5 we noted ◇
L
(I) = ↓◇L

[I] and ◻
L
(I) = ↓◻L

[I]. Then

h(◇L
(I)) = ⋁◇L

[I] and h(◻L
(I)) = ⋁◻L

[I]. Also, as ◇ and ◻ preserve directed joins, ◇h(I) = ⋁◇[I]
and ◻h(I) = ⋁◻[I]. So to show h is an isomorphism, we must show ⋁◇L

[I] = ⋁◇[I] and ⋁◻L
[I] = ⋁◻[I].

Similarly, to show k is an isomorphism, we must show ⋁◇
U
[I] = ⋁◇[I] and ⋁◻U

[I] = ⋁◻[I]. But for
a ∈ L regular, Definition 3.8 gives ◇La = ¬¬◇ a, ◻La = ¬◇ ¬a, ◇Ua = ¬ ◻ ¬a, and ◻

Ua = ¬¬ ◻ a. So if a, b
are regular with a ≺ b, Lemma 3.7 gives ◇a ≤ ◇

La ≤ ◇
Ua ≺ ◇b and ◻a ≤ ◻

Ua ≤ ◻
La ≺ ◻b. The required

equalities of the above joins follow easily from these inequalities and the roundness of I.
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To show α is an MDV-isomorphism, we must show α(◇a) = (◇)
Lα(a). Recall (◇)

LI = ¬¬◇ [I] where
pseudocomplement ¬ in the frame of round ideals is given by ¬I = ↡¬⋁ I, hence ¬¬I = ↡⋁ I [6, Lem. 3.5]. We
then have (◇)

Lα(a) = ¬¬◇[↡a] = ↡⋁◇[↡a]. As A is lower continuous, ⋁◇[↡a] =◇a, and the result follows.
To show β is an isomorphism we must show β(◇c) = (◇)

Uβ(c). Recall (◇)
UI = ¬◻¬I where ◻ I = ↡◻[I]

and ◻ = ¬◇¬. So (◇)
Uβ(c) = ¬◻¬ ↡ c = ¬◻ ↡ ¬c = ↡ ¬⋁◻[↡ ¬c] = ↡ ¬⋁{◻b ∶ b ≺ ¬c}. Using the infinite

DeMorgan law in a Boolean algebra, the fact that in an MDV-algebra ¬ ◻ b = ◇¬b and b ≺ ¬c iff c ≺ ¬b, we
have (◇)

Uβ(c) = ↡⋀{◇a ∶ c ≺ a}. Then as C is upper continuous, this is ↡◇c, giving the result. �

Corollary 3.12. Without choice, the categories MKRFrm, LMDV, UMDV, and MDV are equivalent; and
with choice, they are all dually equivalent to MKHaus.

Proof. We have just proved without choice that MKRFrm, LMDV, and UMDV are equivalent, and in [7,
Sec. 4.3] we proved without choice that LMDV and UMDV are equivalent to MDV. In [7, Sec. 3], using choice,
we proved MKRFrm and MKHaus are equivalent. �

4. Connections to the Vietoris construction

In this section we relate MKR-frames to Johnstone’s construction of the Vietoris functor on frames. We
also discuss a counterpart of the Vietoris functor for de Vries algebras. We begin with a brief summary of
Isbell duality between KRFrm and KHaus [18, 4, 19].

A point of a frame L is a frame homomorphism p ∶ L → 2 into the 2-element frame. The set of points
of L is topologized by {ϕ(a) ∶ a ∈ L} where ϕ(a) = {p ∶ p(a) = 1}. This topological space is denoted
pL. The functor p ∶ KRFrm → KHaus takes a frame L to its space of points, and a frame homomorphism
h ∶ L→M to the continuous map ph ∶ pM → pL where ph(q) = q ○h. The functor p with the open set functor
Ω ∶ KHaus→ KRFrm provide Isbell duality.

We next give a brief summary of Johnstone’s results ([19, Sec. III.4], [20]).

Definition 4.1. For a frame L, let L∗ be the set of all formal symbols L∗ = {◻a,◇a ∶ a ∈ L} and F (L∗) be
the free frame over L∗. Let θ be the frame congruence on F (L∗) generated by the following:

(1) ◻a∧b = ◻a ∧ ◻b and ◻1 = 1 where a, b ∈ L.
(2) ◇a∨b =◇a ∨◇b and ◇0 = 0 where a, b ∈ L.
(3) ◻a∨b ≤ ◻a ∨◇b and ◻a ∧◇b ≤◇a∧b where a, b ∈ L.
(4) ◻⋁S = ⋁{◻s ∶ s ∈ S} and ◇⋁S = ⋁{◇s ∶ s ∈ S} where S ⊆ L is directed.

Then set W(L) = F (L∗)/θ and call this the Vietoris frame of L.

This construction on objects extends to give a functor W, called the Vietoris frame functor, from the
category of frames to itself. A frame homomorphism g ∶ L →M lifts to W(g) ∶W(L) →W(M) that maps
the generator ◻a/θ to ◻ga/θ and the generator ◇a/θ to ◇ga/θ. The following specializes Johnstone’s results
on this functor to our setting of compact regular frames.

Theorem 4.2 (Johnstone). The Vietoris frame functor W restricts to a functor on KRFrm. Here, if L is a
compact regular frame isomorphic to the frame of open sets of the compact Hausdorff space X, then W(L)
is isomorphic to the frame of open sets of the Vietoris space of X. Further, for V the Vietoris functor on
KHaus and Ω,p the open set and point functors providing a dual equivalence between KHaus and KRFrm, we
have W is naturally isomorphic to Ω ○ V ○ p.

We now come to the key result relating MKR-frames and the Vietoris frame functor.

Proposition 4.3. If L is a compact regular frame, then each frame homomorphism h ∶W(L)→ L gives an
MKR-frame structure Lh = (L,◻h,◇h) on L where ◻ha = h(◻a/θ) and ◇ha = h(◇a/θ) for each a ∈ L. This
provides a bijective correspondence between frame homomorphisms h ∶W(L) → L and MKR-frames having
underlying frame L.

Proof. For a frame homomorphism h ∶W(L)→ L, the operations ◻h and ◇h on L are obviously well-defined.
We must show they satisfy the conditions of Definition 2.2. For a, b ∈ L, we have ◻h(a ∧ b) = h(◻a∧b/θ) =
h((◻a ∧◻b)/θ) = h(◻a/θ ∧◻b/θ) = h(◻a/θ)∧h(◻b/θ) = ◻ha∧◻hb. Here, the second equality follows from the
definition of θ. Also ◻h1 = h(◻1/θ) = h(1/θ) = 1, establishing the first condition of Definition 2.2. The second
condition is similar. For the third condition, ◻h(a ∨ b) = h(◻a∨b/θ) ≤ h((◻a ∨◇b)/θ) = h(◻a/θ) ∨ h(◇b/θ) =
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◻ha∨◇hb, with the other item in the third condition similar. For the final condition, if S ⊆ L is up-directed,
then ◻h(⋁S) = h(◻⋁S/θ) = h(⋁{◻s ∶ s ∈ S}/θ) = ⋁{h(◻s/θ) ∶ s ∈ S} = ⋁{◻hs ∶ s ∈ S}. Here we have used
that frame congruences and frame homomorphisms preserve arbitrary joins. The other item in the fourth
condition is obviously similar.

The above paragraph shows each frame homomorphism h ∶ W(L) → L induces an MRK-structure on
L as indicated. If h,h′ ∶ W(L) → L are frame homomorphisms that induce the same structure, then
h(◻a/θ) = h

′
(◻a/θ) and h(◇a/θ) = h

′
(◇a/θ) for each a ∈ L. So h and h′ agree on a generating set of W(L),

hence are equal.
It remains to show each MKR-frame structure on L is induced by a frame homomorphism h ∶W(L)→ L.

Suppose L = (L,◻,◇) is an MKR-frame. Define g ∶ L∗ → L by g(◻a) = ◻a and g(◇a) = ◇a for each a ∈ L.
As F (L∗) is the free frame over the set L∗, the map g extends to a frame homomorphism g ∶ F (L∗) → L.
We claim the kernel of g contains θ. Indeed, if a, b ∈ L, then as the MKR-frame L satisfies ◻(a∧ b) = ◻a∧◻b,
we have g(◻a∧b) = g(◻a) ∧ g(◻b) = g(◻a ∧ ◻b), showing the pair ◻a∧b and ◻a ∧ ◻b belongs to the kernel of g.
Similar arguments show all pairs in the generating set of θ belong to the kernel of g, showing θ is contained
in the kernel of g. Thus, there is a frame homomorphism h ∶ F (L∗)/θ → L with h ○ κ = g where κ is the
canonical homomorphism κ ∶ F (L∗) → F (L∗)/θ. Then h(◻a/θ) = g(◻a) = ◻a and h(◇a/θ) = g(◇a) = ◇a for
all a ∈ L, showing h induces the structure L on L. �

Algebras for the Vietoris frame functor on KRFrm are morphisms h ∶W(L)→ L. So the above result shows
these algebras are concretely realized by MKR-frames. The algebras forW form a category where a morphism
between algebras h ∶W(L)→ L and h′ ∶W(M)→M is a frame homomorphism g ∶ L→M where the square
formed from h,h′, g and W(g) commutes. Then g(◻a) = gh(◻a/θ) = h

′
W(g)(◻a/θ) = h

′
(◻ga/θ) = ◻ga, with

a similar calculation showing g(◇a) =◇ga. This provides the following.

Theorem 4.4. The category of algebras for the Vietoris frame functor W on KRFrm is isomorphic to the
category MKRFrm of modal compact regular frames.

From a general categorical argument, it follows that the category of algebras for the Vietoris frame functor
W on KRFrm is dually equivalent to the category of coalgebras for the Vietoris functor V on KHaus. These
coalgebras are morphisms ρ ∶ X → V(X) from a compact Hausdorff space X into its Vietoris space. In [7]
we showed that the category MKHaus of modal compact Hausdorff spaces was isomorphic to the category of
coalgebras for V. This provides an alternative proof to the following result established directly in [7].

Theorem 4.5. The categories MKRFrm and MKHaus are dually equivalent.

As DeV is equivalent to KRFrm and dually equivalent to KHaus, there is a version of the Vietoris functor
on DeV as well. This can be realized either by sending a de Vries algebra A to the regular open sets of the
Vietoris space of the compact Hausdorff space of ends of A, or by sending A to the regular elements of the
Vietoris frame of the compact regular frame of round ideals of A. Just as MKRFrm is isomorphic to the
category of algebras for the Vietoris frame functor, so is MDV isomorphic to the category of algebras for the
Vietoris de Vries functor. This yields an alternative route to the following result established directly in [7].

Theorem 4.6. The categories MDV and MKHaus are dually equivalent.

It would be desirable to have a direct construction of the Vietoris de Vries functor W. While we do not
have such, a few remarks may be useful.

Remark 4.7. Extend the definition of a continuous relation on a compact Hausdorff space to that of a
continuous relation from a compact Hausdorff space X to a compact Hausdorff space Y . This is a subset
R ⊆ X × Y where the image of a point is closed, the inverse image of an open set is open, and the inverse
image of a closed set is closed. As these conditions imply the image under R of a closed set is closed (see [7,

Lem. 7.10.2]) the relational composite of continuous relations is continuous. So there is a category KHausR

of compact Hausdorff spaces and continuous relations between them.
The inclusion functor I ∶ KHaus → KHausR has a right adjoint F taking a space X to its Vietoris space

V(X) and a continuous relation R from X to Y to the function ρR ∶ V(X)→ V(Y ) where ρR takes a closed

set A to R[A]. The key point is KHausR(IX,Y ) ≃ KHaus(X,FY ) since continuous relations R from X
to Y are in bijective correspondence with continuous functions from X to the Vietoris space V(Y ) where
R ⊆ X × Y corresponds to the function ρR ∶ X → V(Y ) given by ρR(x) = R[x]. Clearly the Vietoris functor

V on KHaus is the composite F ○ I of the inclusion functor I from KHaus into KHausR and its right adjoint.
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These remarks can be used to discuss analogs of the Vietoris functor in other settings.

Remark 4.8. The above situation restricts to the setting Stone of Stone spaces, and StoneR of Stone spaces
and the continuous relations between them. One can show (see [16]) StoneR is dually equivalent to the
category BA∨ of Boolean algebras and the maps between them that preserve finite joins, and that this
duality restricts to the usual one between Stone and BA. It follows from the above remark that the inclusion
functor I ∶ BA→ BA∨ has a left adjoint F ∶ BA∨ → BA and the composite F ○ I is the Vietoris functor on BA.
Here the left adjoint has a simple description, for a Boolean algebra B, we have F (B) is the free Boolean
algebra over the join semilattice reduct of B (see, e.g., [1, 14, 9]).

This situation is applicable to the de Vries setting.

Remark 4.9. Let DeV∨ be the category of de Vries algebras, with the maps between them that are de Vries
additive and are lower continuous in the sense that α(a) = ⋁{α(b) ∶ b ≺ a}. Here composition is the same

composition ∗ as in DeV. One can show DeV∨ is dually equivalent to KHausR, and that this duality restricts
to the usual one between DeV and KHaus. The proofs essentially follow from pieces of [7, Sec. 5]. As is the
Boolean case, the inclusion functor I ∶ DeV → DeV∨ has a left adjoint F ∶ DeV∨ → DeV and the composite
F ○ I is the Vietoris functor on DeV. Unlike the Boolean case, we have no direct construction of this left
adjoint F , hence no direct construction of the Vietors functor on DeV.

Similarly, an extension KRFrm∨ of KRFrm could be formed that is dual to KHausR and equivalent to DeV∨.
Here objects would be as in KRFrm, but unlike DeV∨, morphisms would be pairs of maps ◇,◻ ∶ L→M that
satisfy conditions similar to those of Definition 2.2.

Finally, we remark that the category KHausR of compact Hausdorff spaces and continuous relations seems
of natural interest, and is perhaps worth of additional study.

5. Further remarks

In [7] Isbell and de Vries dualities were lifted to the modal setting to establish the dualities between
MKRFrm and MKHaus, and between MDV and MKHaus. In Section 3 we showed a direct choice-free equiv-
alence of MKRFrm and MDV. Composing this with the dual equivalence of MDV and MKHaus gives an
alternative path to the dual equivalence of MKRFrm and MKHaus. Restricted to KRFrm and KHaus, this
composite is a particular case of Hofmann-Lawson duality [17] between locally compact frames and locally
compact sober spaces, and closely resembles Stone duality. In the modal setting, this composite resembles
the familiar duality between modal algebras and modal spaces (descriptive frames).

For KRFrm and KHaus, Hofmann-Lawson duality works as follows (see, e.g., [2, 19, 22]). Let L be a compact
regular frame and let ≺ be the well inside relation on L. For S ⊆ L, let ↟S = {a ∶ s ≺ a for some s ∈ S}. We
say a filter F of L is round if F = ↟F . We note that round filters are also called regular or completely regular
filters. By a prime round filter we mean a prime filter that is round. The essential point is the following.

Theorem 5.1. For a compact regular frame L, its space of points pL is homeomorphic to the space X of
its prime round filters topologized by the sets ϕ(a) = {x ∈X ∶ a ∈ x}.

It follows that the point functor p used in Isbell duality may be replaced by a functor taking a compact
regular frame L to its space of prime round filters, and a frame homomorphism h ∶ L→M to the continuous
map h−1 between the associated spaces of prime round filters.

Remark 5.2. A prime round filter F has been defined as a prime filter that is additionally round. One can
show that this is equivalent to each of the following conditions: (i) F is a meet prime element in the lattice
of round filters ordered by set inclusion, (ii) F = ↟G for some prime filter G, and (iii) F is a completely prime
filter. The definition of round ideal is dual to the definition of round filter. Being a meet-prime element in
the lattice of round ideals is equivalent to being equal to ↡ I for some prime ideal I, and is also equivalent
to being equal to ↡m for some meet prime element m. However, it is not equivalent to being a prime ideal
that is round. We use the term a prime round ideal for a meet prime element in the lattice of round ideals.

Stone duality is often realized via prime ideals rather than prime filters. In the setting of compact regular
frames, there is a similar path using prime round ideals. The key point is that the space of points of a
compact regular frame L is homeomorphic to the space of prime round ideals of L topologized by the sets
ϕ(a) = {I ∶ a /≤ ⋁ I}. This provides a functor, where a frame homomorphism h is taken to the continuous
map ↡h−1 between the spaces of prime round ideals.



MODAL OPERATORS ON COMPACT REGULAR FRAMES AND DE VRIES ALGEBRAS 9

Remark 5.3. Hofmann-Lawson duality has many similarities with Stone duality. For example, the Prime
Ideal Theorem, stated for compact regular frames, takes the following form: If F and I are disjoint round filter
and round ideal, then there are disjoint prime round filter containing F and prime round ideal containing I.

Another similarity is how round ideals and filters are connected to the topology of the dual space of a
compact regular frame. Recall the basic fact that in Stone duality, open sets of the dual space X of a
Boolean algebra B correspond to ideals of B, and closed sets of X correspond to filters of B. For a compact
regular frame L, the open sets of its dual space are the ϕ(a) where a ∈ L. For any round ideal I, we have
I = ↡⋁ I, so there is a bijection between round ideals of L and elements of L, so open sets of the dual space
correspond to round ideals of L. Similarly, closed sets of the dual space correspond to round filters of L.
Here the underlying point is that each closed set in a compact Hausdorff space is the intersection of the open
sets that contain it. As round filters of a compact regular frame are exactly Scott open filters and closed
subsets of a compact Hausdorff space are exactly compact saturated subsets, this correspondence between
round filters and closed sets of the dual space amounts to the Hofmann-Mislove theorem [15, Thm. II-1.20]
for compact regular frames.

We next consider how the restriction of Hofmann-Lawson duality to KRFrm extends to the modal setting.
As we will see, it closely resembles the extension of Stone duality to modal algebras. By [7, Def. 3.11], for an
MKR-frame L = (L,◻,◇) a relation R is defined on its space of points by pRq iff q(a) = 1 implies p(◇a) = 1
for each a ∈ L. Viewing the space of points of L via its prime round filters, this amounts to defining a relation
R on the prime round filters by xRy iff y ⊆ ◇−1

(x). This is the approach most commonly taken in defining
a relation on the dual space of a modal algebra.

There is more to say about the definition of the relation R on the dual space of an MKR-frame. In
modal logic, the ◻ and ◇ operators are definable from each other, and the relation R on the dual space
of a modal algebra may be defined either by setting xRy iff y ⊆ ◇

−1
(x) or by setting xRy iff ◻

−1
(x) ⊆ y.

For an MKR-frame, the operators ◻ and ◇ are also definable from each other [7, Rem. 3.7]. The following
proposition shows that the relation R on its dual space of prime round filters of an MKR-frame may also be
equivalently defined by either approach.

Proposition 5.4. Let L = (L,◻,◇) be an MKR-frame and let x and y be prime round filters of L. The
following are equivalent.

(1) y ⊆◇−1
(x).

(2) ◻
−1

(x) ⊆ y.

Proof. (1) ⇒ (2) Let ◻a ∈ x. By [7, Rem. 3.7] we have ◻a = ⋁{¬◇ ¬c ∶ c ≺ a}, and as x is a round filter, it
is completely prime, so there is c ≺ a with ¬ ◇ ¬c ∈ x. Then ◇¬c is not in x, and as y ⊆ ◇−1

(x), we have
¬c is not in y. But c ≺ a gives ¬c ∨ a = 1, so ¬c not being in y implies a ∈ y. Thus ◻a ∈ x implies a ∈ y,
so ◻

−1
(x) ⊆ y. (2) ⇒ (1) Let a ∈ y. As a = ⋁{c ∶ c ≺ a} we have c ∈ y for some c ≺ a, and by interpolation

there is b with c ≺ b ≺ a. Then ¬c is not in y, and ◻
−1

(x) ⊆ y gives ◻¬c is not in x. Note c ≺ b gives
◻¬b ≺ ◻¬c, hence ¬ ◻ ¬b ∨ ◻¬c = 1. Therefore, as ◻¬c is not in x, we have ¬ ◻ ¬b ∈ x. By [7, Rem. 3.7] we
have ◇a = ⋁{¬ ◻ ¬b ∶ b ≺ a}, so ◇a ∈ x. Thus, a ∈ y implies ◇a ∈ x, so y ⊆◇−1

(x). �

This shows that for an MKR-frame, the relation on its dual space may be defined either through ◇ by
xRy iff y ⊆ ◇−1

(x) or via ◻ by setting xRy iff ◻
−1

(x) ⊆ y. This is linked to the fact that the operations ◻
and ◇ are definable from one another. This is perhaps a bit unexpected. These MKR-frames are examples
of positive modal algebras [10], algebras consisting of bounded distributive lattices with operators ◻ and ◇

satisfying the first three conditions of Definition 2.2. Dual spaces of positive modal algebras are constructed
through their prime filters, and relations defined by the above conditions are considered, but in general are
not equal. Also in this setting of positive modal algebras, the operations ◻ and ◇ are not in general definable
from one another.
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