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Abstract

The overarching theme of this thesis is completeness in modal logic, to which our
four main lines of research relate:

• degrees of completeness,
• quasi-canonicity,
• canonical approximations, and
• computable enumerability of dynamic topological logics.

We introduce degrees of completeness as a generalisation of Fine’s degrees of
incompleteness [19], and study degrees of pre-well-founded (WF) and converse pre-
well-founded (CWF) frames. In particular, we show that there exist singleton and
continuum sized CWF-frame degrees.
Our proof techniques for establishing the existence of these continuum sized

degrees also turn out to have applications to the recently introduced notion of quasi-
canonicity [42]. In particular we show that neither GL nor Grz is quasi-canonical,
thus answering negatively a question posed by Takapui [41].
We also introduce a notion of approximations for logics, generalising the earlier

notions of subframisations and stabilisations [4]. We study approximations in the
complete lattice of canonical logics, and in particular compute the canonical approx-
imations of Grz.2 and Grz.3.
Finally we turn to dynamic topological logic. Using techniques developed by

Konev et al. [28], we show that, under certain conditions on a class of CWF frames
ℱ, the dynamic topological logic of dynamic frame structures over ℱ is computably
enumerable.
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Chapter 1

Introduction

Modal logics are logics obtained by adding to classical proposition logic additional
modal operators. With these modal operators, modalities such as necessity, obligation,
ability and belief, as well as temporal aspects, can be expressed. As such, modal
logics have applications ranging from linguistics and philosophy to mathematics and
computer science. Applications within mathematics arise for example in provability
logic, where modal operators are used to express provability and consistency, and
intuitionistic propositional logic, which can be translated into a modal logic via the
Gödel-McKinsey-Tarksi translation [34, Section 5].

In this thesis we study modal logics from a theoretical perspective. We investigate
modal logics from several directions, all of which are related to completeness, mostly
with respect to Kripke semantics. Four main lines of investigation can be distinguished
in this thesis:

• degrees of completeness,

• quasi-canonicity,

• canonical approximations, and

• computable enumerability of dynamic topological logics.

We will give a short introduction to each of these topics in turn.

Degrees of completeness. It is well-known that there exist modal logics which
are not Kripke complete [see e.g. 11, Section 6.4]. Fine [19] introduced degrees
of incompleteness to measure this amount of incompleteness. Such a degree in
essence groups together logics which cannot be distinguished between by the Kripke
semantics.

Blok [8] characterised the cardinalities of these degrees of incompleteness. In fact
only two cardinalities arise: 1 and continuum. This result is now known as Block’s
dichotomy theorem. However, what happens to the cardinalities when we restrict
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our attention to extensions of K4, the logic of transitive frames, is a major open
problem [11, Problem 10.5].

Inspired by this open problem, G. Bezhanishvili, N. Bezhanishvili and Moraschini
[5] introduced a variation on the notion of degrees, where they group logics together
as soon they are not distinguished by finite Kripke frames. They show that for
these degrees an analogue of the of the dichotomy theorem holds. However, when
restricting to extensions of K4, they prove essentially the opposite result: any finite
number as well as 𝜔 and continuum arise as the cardinality of such degree.

Inspired by this work, we introduce a general notion of degrees, which encompasses
both Fine’s original degrees of incompleteness as well as the finite frames variation.
We study some general structural theory about degrees, and explore several new
instances of the general notion of degrees. In particular we consider WF- and
CWF-frame degrees; two instances of degrees which lie in-between the finite-frame
degrees and Fine’s degrees of incompleteness. Although we derive multiple results
on cardinalities for these degrees, a full characterisation like in the finite frame case
is still far off.
In addition to degrees for classes of frames, we also briefly consider degrees for

classes of Kripke models, in particular WF-model degrees and CWF-model degrees.

Quasi-canonicity. Some of the techniques we develop while studying CWF-frame
degrees surprisingly turn out to have applications in a different setting. Recall that
a modal logic is called canonical when its canonical frames are frames of the logic.1
Every canonical logic is Kripke complete, and as such canonicity is a major tool for
proving Kripke completeness.
While studying topological d-semantics for modal logic, Takapui [42] introduced

the notion of quasi-canonicity, a property in-between full canonicity and mere Kripke
completeness, which turned out relevant for the applicability of one of his proof
techniques. In particular, Takapui [41] posed the question of whether GL is quasi-
canonical; a positive answer would improve his main result.
We show that quasi-canonicity lies strictly in-between canonicity and Kripke

completeness, and answer the aforementioned question negatively. In particular we
show that two of the most famous Kripke complete but non-canonical logics, namely
GL and Grz, are not quasi-canonical either. Interestingly, the proofs for this follow
readily from our work on CWF-frame degrees.

Canonical approximations. We also study canonicity from a different perspective.
Recall that for a normal modal logic Λ, one can find a Kripke complete ‘approximation’
of it by taking the logic of the frames of Λ, or Log(Fr(Λ)) in symbols. This produces a

1A potentially different definition for canonicity that is sometimes used, is that only the canonical
frame over countably many atomic propositions needs to be a frame of the logic. Whether these
two definitions are equivalent is a major open problem [11, Problem 10.1].
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least Kripke complete extension of Λ. A similar approach can produce least complete
extensions for other semantics, e.g. topological semantics, as well.
However, the story does not end there. Many important classes of modal logics

form complete lattices w.r.t. set-inclusion. Besides the class of logics that are complete
for a certain semantics, like Kripke complete, these include the classes of subframe
logics, stable logics, the logics axiomatisable by Sahlqvist formulas and the class
of canonical logics. For any logic Λ and a complete lattice of modal logics, one
can define an approximation of Λ from above or from below by taking the meet of
its extensions in the lattice or the join of the logics of the lattice that it contains,
respectively.

For the lattice of logics complete for a certain semantics, the approximation from
above of a logic Λ is obtained by the procedure noted above, i.e. by taking the logic
of the structures that validate Λ. In the setting of super-intuitionistic logics, G.
Bezhanishvili, N. Bezhanishvili and Ilin [4] and Ilin [24] studied approximations for
the lattices of subframe logics and stable logics. We explore approximations for the
lattice of canonical logics. In particular we compute the canonical approximations of
two extensions of Grz, namely Grz.2 and Grz.3.

Computable enumerability of dynamic topological logics. As a final line
of research we investigate computable enumerability for dynamic topological logics.
Dynamic topological logic is a multi-modal logic that combines the usual unimodal
logic with a linear temporal logic, giving it a total of three modal operators. This
logic was introduced, in its current form, by Kremer and Mints [31], to study ‘the
confluence of three research areas: the topological semantics for S4, topological
dynamics, and temporal logic.’ [31]. While the name suggests a topological semantics,
a Kripke semantics for it does exist.

Similar to unimodal logic, dynamic topological logics can be defined semantically,
as the logic of a class of frames. However, contrary to unimodal logic, for many logics
defined this way, no ‘convenient’ axiomatisations are known. As a result, it is not
obvious whether these logics are computably enumerable.

Konev et al. [28] prove computable enumerability for a fragment, called DTL1, of
the dynamic topological logic of S4-frames. However, with some minor modifications,
their techniques have a much wider applicability. We use these techniques to prove
computable enumerability of the full dynamic topological logic of many classes of
CWF-frames.

Although the final result is very computability theoretic, the proof is much more
semantic. It mostly comprises a completeness result w.r.t. certain sequences of
labelled trees. The computable enumerability of the logic immediately follows from
this.
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Outline. The thesis is organised as follows. Chapter 2 recalls the preliminaries
required for the rest of the thesis, and introduces notations and conventions that are
used thereafter. The reader familiar with modal logic can skip most of this chapter,
and refer back to it as the need arises. The following chapters discuss the topics
described above.
First, in Chapter 3 degrees of completeness are introduced, and their general

theory is studied. The most important known results for degrees of incompleteness
and finite-frame degrees, including the dichotomy theorem and the anti-dichotomy
theorem, are stated. Towards the end of the chapter, straightforward results for
our newly introduced WF-frame and -model degrees are derived. In Chapter 4 we
continue our investigation into degrees, now focusing on CWF-frame, and, to a lesser
extent, -model, degrees. Here we prove our main contributions regarding degrees of
completeness, in particular the existence of infinitely many continuum sized CWF-
model degrees.
In the short Chapter 5, we study quasi-canonicity. Our two main results in

this chapter, namely that neither GL nor Grz is quasi-canonical, are proven using
techniques developed in the previous chapter. Staying with canonicity, we study
canonical approximations in Chapter 6. As our main results, we compute the
canonical approximations of the logics Grz.2 and Grz.3.
Chapter 7 introduces the syntax and semantics of dynamic topological logic, as

well as the basics of computability theory and two famous theorems about trees,
namely Kőnig’s lemma and Kruskal’s tree theorem. This chapter can be seen as
setting the stage for the next chapter, and does not include novel material. With
these preliminaries covered, in Chapter 8 we derive our computable enumerability
result for certain dynamic topological logics, based on earlier work of Konev et al.
[28].
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Chapter 2

Preliminaries

In this chapter we give a brief overview of the basics of modal logic.

2.1 Introduction
While the reader is expected to be familiar with the basics of modal logic and Kripke
semantics, for the sake of being self-contained, this chapter gives all the definitions and
notational conventions that are used throughout this thesis. Basic knowledge about
classical propositional logic, topology and ordinals is assumed. Kripke semantics,
general frame semantics and algebraic semantics for modal logic are discussed. More
specific topics, including depth, pre-well-foundedness, Fine-Rautenberg formulas
and tree unravelling, are discussed towards the end of the chapter. For a properly
motivated and more complete introduction to modal logic, we refer the reader to
Blackburn, de Rijke and Venema [7]. For more information on any particular topic,
we refer to Chagrov and Zakharyaschev [11].

2.2 Notations and Conventions
In this section we introduce basic mathematical notations and conventions.

Convention 2.1 (Ordinals). We identify an ordinal number 𝛼, or ordinal for short,
with the set of ordinals that are strictly smaller than 𝛼. The set of natural numbers,
which is the smallest infinite ordinal, is denoted 𝜔. We use the greek letters 𝛼, 𝛽, 𝛾
for variables over the ordinals, and 𝜆 for a variable over the limit ordinals.

Notation 2.2 (Tuple). Let 𝑛 ∈ 𝜔. We denote the 𝑛-ary tuple consisting of
𝑎0, … , 𝑎𝑛−1 by ⟨𝑎0, … , 𝑎𝑛−1⟩.

Notation 2.3. Let 𝑋 be a set. Then 𝒫(𝑋) denotes the power set of 𝑋, i.e. the set
of all subsets of 𝑋.

Regarding notation, we make a distinction between functions and relations.
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Functions. We use the usual 𝑓∶ 𝐴 → 𝐵 notation for functions. When 𝐴 and 𝐵 are
sets, this just indicates that 𝑓 is a function (of sets). When 𝐴 and 𝐵 are structures,
not just sets, the same notation indicates that 𝑓 is a function on the underlying sets
that respects this structure in some way. We always indicate the structure-preserving
property that 𝑓 satisfies.
For example, when 𝔛 and 𝔜 are topological spaces on sets 𝑋 and 𝑌 respectively,

𝑓∶ 𝑋 → 𝑌 indicates that 𝑓 is a function from 𝑋 to 𝑌. We indicate that it is continuus
by calling it a continuus function 𝑓∶ 𝔛 → 𝔜.

Notation 2.4 (Function). Let 𝐴, 𝐵 be sets. We write 𝑓∶ 𝐴 → 𝐵 when 𝑓 is a (total)
function from 𝐴 to 𝐵. In this case 𝐴 is called the domain of 𝑓 and 𝐵 the co-domain.
We write 𝑓∶ 𝐴 ↪ 𝐵 when 𝑓 is injective and 𝑓∶ 𝐴 ↠ 𝐵 when it is surjective.

Notation 2.5 (Function application). Let 𝑛 ∈ 𝜔, 𝐴0, … 𝐴𝑛−1, 𝐵 be sets and 𝑓∶ 𝐴0 ×
… × 𝐴𝑛−1 → 𝐵 a function. When 𝑎0 ∈ 𝐴0, … , 𝑎𝑛−1 ∈ 𝐴𝑛−1, we write 𝑓(𝑎0, … , 𝑎𝑛−1)
for 𝑓(⟨𝑎0, … , 𝑎𝑛−1⟩).

Definition 2.6 (Sequence). Let 𝛼 be an ordinal. An 𝛼-sequence is a function with
domain 𝛼.

Notation 2.7 (Partial function). Let 𝐴, 𝐵 be sets. We write 𝑓∶ 𝐴 ⇀ 𝐵 when 𝑓 is a
partial function from 𝐴 to 𝐵, i.e. a 𝑓∶ 𝐴′ → 𝐵 for some subset 𝐴′ ⊆ 𝐴. We call 𝐴′

the domain of 𝑓, and write dom(𝑓) for it.

Relations.

Notation 2.8 (Relation application). Let 𝑅 be an 𝑛-ary relation. Then for any
𝑎0, … , 𝑎𝑛−1, we write

𝑅(𝑎0, … , 𝑎𝑛−1)

for ⟨𝑎0, … , 𝑎𝑛−1⟩ ∈ 𝑅.

Notation 2.9 (Partial relation application). Let 𝑅 be an 𝑛-ary relation. Then for
any 𝑎0, … , 𝑎𝑘 with 𝑘 < 𝑛, we write

𝑅(𝑎0, … , 𝑎𝑘) ≔ {⟨𝑎𝑘+1, … , 𝑎𝑛⟩ | 𝑅(𝑎0, … , 𝑎𝑘)}.

Topology. We use the letters 𝔛 and 𝔜 for topological spaces. For a topological
space 𝔛, we write 𝔛w for the underlying set of points. For a set 𝑌 ⊆ 𝔛w, we denote
the topological interior of 𝑌, i.e. the largest open set contained in 𝑌, by Int(𝑌) and
the topological closure of 𝑌, i.e. the least closed set extending 𝑌, by Cl(𝑌).
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2.3 Modal Logic Syntax

Modal logic does not refer to a single logic, but rather a family of logics over a variety
of languages. What all have in common, is that it extends classical propositional
logic with additional modal operators. In Section 7.3 we introduce a particular modal
logic with more than one modal operator, but for now we restrict to the standard
unimodal case.

In standard unimodal logic we extend the language of classical propositional logic
with a single unary operator ◻, called ‘box’. This box expresses necessity, and behaves
similar to the ∀ in first-order logic. It can be interpreted in various ways, for example
proof theoretically, epistemically, deontically or temporally. That is, ◻𝜑 can be read
as ‘𝜑 is provable’, ‘(someone) knows/believes 𝜑’, ‘𝜑 is obligatory’ or ‘from now on 𝜑
always holds’.
A second modal operator, ⬦, is used as a shorthand for ¬◻¬. It expresses

possibility, and behaves similar to ∃ in first-order logic. The proof theoretic, epistemic,
deontic and temporal interpretations of ⬦𝜑 would be ‘𝜑 is consistent’, ‘(someone)
holds it possible that 𝜑’, ‘𝜑 is permitted’ or ‘𝜑 will/might hold in the future’.

Formally, we define the language of unimodal logic as follows:

Definition 2.10. Let 𝑃 be some set of atomic propositions. Then the language of
unimodal logic is defined by the following BNF:

𝜑 ⩴ ⊤ | ⊥ | 𝑝 | 𝜑1 ∧ 𝜑2 | ¬𝜑 | ◻𝜑,

where 𝑝 ranges over 𝑃. We use the following shorthands:

𝜑1 ∨ 𝜑2 ≔ ¬(¬𝜑1 ∧ ¬𝜑2)
𝜑1 → 𝜑2 ≔ ¬𝜑1 ∨ 𝜑2

⬦𝜑 ≔ ¬◻¬𝜑.

We introduce another shorthand notation, the relevance of which will become clear
at the end of Section 2.5.

Notation 2.11. Let 𝜑 be a modal formula. We write ◻𝜑 ≔ 𝜑 ∧ ◻𝜑 and ⬦𝜑 ≔
𝜑 ∨ ⬦𝜑.

Using these definitions ⬦ is again dual to ◻, in the sense that ⬦𝜑 is ‘logically
equivalent’ to ¬◻¬𝜑. More generally, we define a translation of formulas 𝜑 ↦ 𝜑
replacing every ◻ by ◻. More formally, this is defined as follows.

Definition 2.12. Define a translation of modal formulas 𝜑 into modal formulas
𝜑𝑟𝑒𝑓𝑙 by induction on the formula 𝜑, by 𝑝 ≔ 𝑝 for 𝑝 an atomic proposition or ⊤ or
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⊥, and for all 𝜓1, 𝜓2,

𝜓1 ∧ 𝜓2 ≔ 𝜓1 ∧ 𝜓2,
¬𝜓1 ≔ ¬𝜓1,
◻𝜓1 ≔ ◻𝜓1.

We denote the set of subformulas of a formula 𝜑 by Sub(𝜑).
Just like classical propositional logic can be defined as the set of formulas that are

true classically, we define modal logics as sets of formulas. To call a set of formulas
a logic, it has to satisfy some properties. As we already said, it needs to extend
classical logic, and obviously needs to be closed under substitution, and, similar to
classical logic the modus ponens rule. There are two extra requirements about ◻, to
make it actually behave like a necessity operator. In addition, if ⬦ is introduced as
a primitive symbol in the language, instead of a shorthand in the meta-language, the
formula ⬦𝑝 ↔ ¬◻¬𝑝 needs to be in the logic, for an atomic proposition 𝑝.

Definition 2.13 (Normal modal logic). Let Λ be set of modal formulas over some
fixed countably infinite set of atomic propositions, say the natural numbers 𝜔. It is
called a normal modal logic iff Λ extends classical propositional logic, contains the K-
axiom

◻(𝑝 → 𝑞) → (◻𝑝 → ◻𝑞),
and is closed under

substitution: if 𝜑 ∈ Λ, 𝑝0, … , 𝑝𝑛−1 are atomic propositions and 𝜓0, … , 𝜓𝑛−1 are
modal formulas, then the substitution

𝜑[𝑝0 ≔ 𝜓0, … , 𝑝𝑛−1 ≔ 𝜓𝑛−1] ∈ Λ,

modus ponens: if 𝜑 → 𝜓 ∈ Λ and 𝜑 ∈ Λ then 𝜓 ∈ Λ, and

necessitation: if 𝜑 ∈ Λ then ◻𝜑 ∈ Λ.

In this thesis we will only be concerned with normal modal logics, and therefore
call them just modal logics, or even logics, for brevity.
Remark 2.14. It is sometimes useful to consider logics over a different set of atomic
propositions, for example a set with larger cardinality than 𝜔. Suppose 𝑃 is some
other set meant to be used as atomic formulas, and Λ a modal logic as defined above.
Then we can induce a ‘logic’ in the modal language over atomic propositions 𝑃 by
taking all possible substitutions of formulas in Λ with atomic propositions in 𝑃.
This induced set then also has all the properties from the definition of normal

modal logics, and if 𝑃 is infinite we can get the original logic Λ back by repeating
the previous process, now substituting with atomic propositions in 𝜔. For the rest of
this work, we will implicitly perform these substitutions whenever necessary, and
identify a logic and its substitutions. .
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There exists a least set of formulas which forms a normal modal logic, which we
call the basic modal logic K. The set of all modal formulas also forms a normal modal
logic, called the inconsistent logic Fm. In general we use bold names for concrete
modal logics, and Λ for a variable logic.

Definition 2.15. Denote by 𝒰 the set of all normal modal logics. When Λ ∈ 𝒰,
define

NExt(Λ) ≔ {Λ′ ∈ 𝒰 | Λ ⊆ Λ′}

to be the set of all normal modal logics extending Λ.

2.4 Modal Algebras
In this section we define Boolean algebras and modal algebras. These are algebras
with operators for the connectives of classical and modal logic respectively. The
operators for conjunction and disjunction arise from the order theoretic structure
called a lattice.

Definition 2.16 (Lattice). A lattice is a partial order1 ⟨𝑋, ≤⟩ such that for every
𝑥, 𝑦 ∈ 𝑋 there exist a supremum 𝑥 ∨ 𝑦 of 𝑥 and 𝑦 called their join and an infimum
𝑥 ∧ 𝑦 called their meet. It is called bounded iff it has a least and greatest element.

Definition 2.17 (Complete lattice). A complete lattice is a partial order ⟨𝑋, ≤⟩
such that whenever 𝑌 ⊆ 𝑋 is a set of elements of 𝑋, then it has a supremum ⋁ 𝑌
called the join of 𝑌 and an infimum ⋀ 𝑌 called the meet of 𝑌.

Note that every complete lattice is a bounded lattice, since the join of the empty
set is a least element and the meet of the empty set is a greatest element of the
lattice.

Lattices can also be described algebraically.

Definition 2.18 (Algebraic lattice). An algebraic lattice is an algebraic structure
⟨𝐴, ∧, ∨⟩ where ∧ and ∨ are associative and commutative binary operators on 𝐴
such that for all 𝑎, 𝑏 ∈ 𝐴,

𝑎 ∧ 𝑎 = 𝑎 𝑎 ∨ 𝑎 = 𝑎,
𝑎 ∧ (𝑎 ∨ 𝑏) = 𝑎 𝑎 ∨ (𝑎 ∧ 𝑏) = 𝑎.

An algebraic bounded lattice is an algebraic structure ⟨𝐴, ∧, ∨, ⊥, ⊤⟩ such that
⟨𝐴, ∧, ∨⟩ is an algebraic lattice and 0 and 1 are elements of 𝐴 such that for all
𝑎 ∈ 𝐴,

𝑎 ∧ ⊤ = 𝑎 𝑎 ∨ ⊥ = 𝑎.
1Partial orders are formally defined in Definition 2.39 in the next section.
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Algebraic (bounded) lattices induce (bounded) lattices and visa-versa. Therefore,
we will identify between the two.

Proposition 2.19. Let ⟨𝑋, ≤⟩ be a lattice then ⟨𝑋, ∧, ∨⟩ is an algebraic lattice.
If ⟨𝑋, ≤⟩ is a bounded lattice with least element ⊥ and greatest element ⊤ then
⟨𝑋, ∧, ∨, ⊥, ⊤⟩ is an algebraic bounded lattice.

Proposition 2.20. Let ⟨𝐴, ∧, ∨⟩ be an algebraic lattice, and define for 𝑎, 𝑏 ∈ 𝐴, 𝑎 ≤ 𝑏
iff 𝑎 ∧ 𝑏 = 𝑎. Then ⟨𝐴, ≤⟩ is a lattice with ∧ giving the binary meet and ∨ the
binary join. If moreover ⟨𝐴, ∧, ∨, ⊥, ⊤⟩ is an algebraic bounded lattice then ⟨𝐴, ≤⟩
is a bounded lattice with least element ⊥ and greatest element ⊤.

Writing out ⟨𝐴, ∧, ∨, ⊥, ⊤⟩ all the time is rather verbose. Therefore, from now on
we will just write 𝔄 for such algebraic structure, and use the default notations for
the meet, join etc. When there is a need to differentiate between different algebras
for example, we will indicate the algebra in the subscript of the operator, as in ∧𝔄,
∨𝔄 etc. We write 𝑎 ∈ 𝔄 for 𝑎 ∈ 𝐴.
The conjunction and disjunction in classical (and also intuitionistic) logic still

satisfy one property that meet and join lattices do not: distributivity.

Definition 2.21 (Distributive lattice). An (algebraic) (bounded) lattice 𝔄 is called
distributive iff for all 𝑎, 𝑏, 𝑐 ∈ 𝔄,

𝑎 ∧ (𝑏 ∨ 𝑐) = (𝑎 ∧ 𝑏) ∨ (𝑎 ∧ 𝑐).

It can be noted that a second distributivity law follows:

𝑎 ∨ (𝑏 ∧ 𝑐) = (𝑎 ∨ 𝑏) ∧ (𝑎 ∨ 𝑐).

To interpret classical logic we still need an operator for the negation. The resulting
algebraic structure is called a Boolean algebra, named after George Boole, who laid
the foundations for Boolean algebra in Boole [9].

Definition 2.22 (Boolean algebra). A Boolean algebra is a distributive (algebraic)
bounded lattice 𝔄 enriched with a unary operator ¬, called the complement operator,
such that for all 𝑎 ∈ 𝔄,

𝑎 ∧ ¬𝑎 = ⊥ and 𝑎 ∨ ¬𝑎 = ⊤.

Example 2.23 (Powerset algebra). Let 𝑋 be some set. Then ⟨𝒫(𝑋), ⊆⟩ forms a
bounded lattice with as meet the intersection ∩ and as join the union ∪. The least
element is the empty set ⌀ and the greatest one 𝑋 itself. Clearly distributivity holds.
In fact, set complements give a complement operator ¬𝑎 ≔ 𝑋 ∖ 𝑎 on this bounded
lattice. Hence ⟨𝒫(𝑋), ∩, ∪, ⌀, 𝑋, 𝑋 ∖ −⟩ forms a Boolean algebra, called the powerset
algebra of 𝑋.
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To interpret modal logic, in addition we need a unary operator to interpret ◻.
This leads to modal algebras.

Definition 2.24 (Modal algebra). A modal algebra is a Boolean algebra 𝔄 enriched
with a unary operator ◻ such that ◻⊤ = ⊤ and for all 𝑎, 𝑏 ∈ 𝔄, ◻(𝑎 ∧ 𝑏) = ◻𝑎 ∧ ◻𝑏.

We can interpret modal formulas as elements of a modal algebra. This requires
the atomic propositions to be mapped to elements for the algebra. Such mapping is
called a valuation,

Definition 2.25 (Modal algebra model). Let 𝑃 be a set of atomic propositions. A
modal algebra model with atomic propositions 𝑃, or just a modal algebra model for
short, is a pair ⟨𝔄, 𝔙⟩ where 𝔄 is a modal algebra and 𝔙∶ 𝑃 → 𝔄 a function, called
the valuation.

Remark 2.26. Even when we always work over a modal language with infinitely many
atomic propositions, it is often useful to be able to consider models with only a finite
subset of these propositions. Hence we use this convention that every model carries
its own set of atomic propositions around. .

Interpretation of modal formulas is then done in the obvious way.

Definition 2.27 (Modal algebra model interpretation). Let ⟨𝔄, 𝔙⟩ be a modal
algebra model and 𝜑 a modal formula such that every atomic proposition in 𝜑 is an
atomic proposition of the valuation 𝔙. We define ⟦𝜑⟧⟨𝔄,𝔙⟩ ∈ 𝔄 by induction on the
formula 𝜑:

• If 𝜑 = 𝑝 is an atomic proposition then ⟦𝜑⟧⟨𝔄,𝔙⟩ ≔ 𝔙(𝑝).

• If 𝜑 = 𝜓1 ∧ 𝜓2 then ⟦𝜑⟧⟨𝔄,𝔙⟩ ≔ ⟦𝜓1⟧⟨𝔄,𝔙⟩ ∧𝔄 ⟦𝜓2⟧⟨𝔄,𝔙⟩.

• If 𝜑 = ¬𝜓 then ⟦𝜑⟧⟨𝔄,𝔙⟩ ≔ ¬𝔄⟦𝜓⟧⟨𝔄,𝔙⟩.

• If 𝜑 = ⬦𝜓 then ⟦𝜑⟧⟨𝔄,𝔙⟩ ≔ ⬦𝔄⟦𝜓⟧⟨𝔄,𝔙⟩.

2.5 Kripke Frames

The main semantics for modal logics we consider in this thesis is Kripke semantics or
relational semantics. This is based on relational structures called Kripke frames or
just frames for short. It is essentially a different word for a directed graph, without
finiteness restrictions.

Definition 2.28 (Kripke frame). A Kripke frame is a pair 𝔉 = ⟨𝑊, 𝑅⟩ where 𝑊 is
a set and 𝑅 a binary relation on 𝑊. We write 𝔉w for 𝑊, which we call the set of
worlds or the domain of 𝔉. Elements of 𝔉w are called points, worlds or states.
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We write Fr for the class of all Kripke frames.

Terminology 2.29. Let 𝔉 = ⟨𝑊, 𝑅⟩ be a frame, and 𝑥, 𝑦 ∈ 𝑊 points. We say

• 𝑥 sees 𝑦 or 𝑥 is below 𝑦 iff 𝑅(𝑥, 𝑦), and

• 𝑥 is strictly-below 𝑦 iff 𝑥 sees 𝑦 and 𝑦 does not see 𝑥.

Many notions come in pairs, one looking upward an one downward, for example
ascending and descending, or upsets and downsets. To save us having to duplicate
every definition, we introduce the converse of a frame, which is the frame where the
relation is turned around.

Definition 2.30 (Converse frame). The converse 𝑅op of 𝑅 is the relation such that
𝑅op(𝑥, 𝑦) iff 𝑅(𝑦, 𝑥). The converse frame of 𝔉 = ⟨𝑊, 𝑅⟩ is 𝔉op ≔ ⟨𝑊, 𝑅op⟩.

Convention 2.31. We will use the letters 𝔉, 𝔊, ℌ for Kripke frames, 𝑊, 𝑋, 𝑌 , 𝑍
for sets of points, 𝑅, 𝑆 for relations and 𝑤, 𝑥, 𝑦, 𝑧 as variables for points. We use
𝑎, 𝑏, 𝑐, … for named points in concrete frames.

For the rest of this section let 𝔉 = ⟨𝑊, 𝑅⟩ be a frame, unless noted otherwise.

Points. We introduce some standard terminology for points and sets of points in a
frame.

Definition 2.32 (Reflexive, irreflexive). A point 𝑤 ∈ 𝑊 is called reflexive iff 𝑅(𝑥, 𝑥),
and irreflexive otherwise.

Definition 2.33 (Chain). A set 𝑋 ⊆ 𝑊 is called a chain iff for all 𝑥, 𝑦 ∈ 𝑊, 𝑥 = 𝑦,
𝑅(𝑥, 𝑦) or 𝑅(𝑦, 𝑥).

Definition 2.34 (Anti-chain). A set 𝑋 ⊆ 𝑊 is called an anti-chain iff for all 𝑥, 𝑦 ∈ 𝑋,
¬𝑅(𝑥, 𝑦).

Definition 2.35 (Cluster). A set 𝐶 ⊆ 𝑊 is called a cluster iff for all 𝑥, 𝑦 ∈ 𝐶,
𝑅(𝑥, 𝑦) and 𝑅(𝑦, 𝑥), and 𝐶 is maximal with this property. It is called a proper cluster
iff |𝐶| ≥ 2, and a degenerate cluster iff 𝐶 consists of a single irreflexive point.

Note that every point is contained in a unique cluster.

Definition 2.36 (Final). A point 𝑥 ∈ 𝑊 is called final iff it sees no points other
than potentially itself.

Definition 2.37 (Maximal). Let 𝑋 ⊆ 𝑊. A point 𝑥 ∈ 𝑋 is said to be maximal for
𝑋 iff for every 𝑦 ∈ 𝑅(𝑥) ∩ 𝑋, we have 𝑅(𝑦, 𝑥). It is said to be minimal for 𝑋 iff it is
maximal for 𝑋 in the converse frame 𝔉op.

Definition 2.38 (Upset). A set 𝑋 ⊆ 𝑊 is called an upset iff for all 𝑥 ∈ 𝑋 and
𝑅(𝑥) ⊆ 𝑋. It is called a downset iff it is an upset in the converse frame. The
least upset or downset containing 𝑥 is called the upset or downset generated by 𝑥
respectively.
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Frame properties. The relation of a frame can have all kinds of properties, for
example be transitive or reflexive. When the relation of a frame has one of these
properties, the frame is also said to have this property. For example, a frame ⟨𝑊, 𝑅⟩
is called transitive iff 𝑅 is transitive. For the sake of completeness, we include
definitions for all the properties that we will use.

Definition 2.39. A frame 𝔉 = ⟨𝑊, 𝑅⟩ is called

• weakly-transitive iff for all 𝑥, 𝑦, 𝑧 ∈ 𝑊, if 𝑅(𝑥, 𝑦), 𝑅(𝑦, 𝑧) and 𝑥 ≠ 𝑧 then 𝑅(𝑥, 𝑧),

• transitive iff for all 𝑥, 𝑦, 𝑧 ∈ 𝑊, if 𝑅(𝑥, 𝑦) and 𝑅(𝑦, 𝑧) then 𝑅(𝑥, 𝑧),

• reflexive iff every point of 𝔉 is reflexive,

• irreflexive iff every point of 𝔉 is irreflexive,

• a preorder iff it is both reflexive and transitive,

• anti-symmetric iff for all 𝑥, 𝑦 ∈ 𝑊, if 𝑅(𝑥, 𝑦) and 𝑅(𝑦, 𝑥) then 𝑥 = 𝑦,

• a partial order iff it is both a preorder and anti-symmetric,

• upward linear iff for all 𝑥 ∈ 𝑊, 𝑅(𝑥) is a chain in 𝔉,

• linear iff the entire domain 𝑊 is a chain in 𝔉,

• a linear order iff it is both a partial order and linear,

• symmetric iff for all 𝑥, 𝑦 ∈ 𝑊, if 𝑅(𝑥, 𝑦) then 𝑅(𝑦, 𝑥),

• an equivalence relation iff it is both a preorder and symmetric,

• confluent iff for all 𝑥, 𝑦, 𝑧 ∈ 𝑊, if 𝑅(𝑥, 𝑦) and 𝑅(𝑥, 𝑧) then there exists 𝑤 ∈ 𝑊
such that 𝑅(𝑦, 𝑤) and 𝑅(𝑧, 𝑤), and

• rooted iff there exists 𝑟 ∈ 𝑊, called a root, such that 𝑅∗(𝑟) = 𝑊, where 𝑅∗ is
the reflexive transitive closure of 𝑅, as defined in Definition 2.40.

Note that a rooted weakly-transitive frame is upward linear iff it is linear.
When ℱ is a class of frames we write ℱrooted for the class of rooted elements of ℱ.
Statements about cardinality are inherited from the set of worlds instead. For

example, a frame 𝔉 is called finite iff 𝔉w is finite.
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Operations on frames. There are several straightforward transformations that
can be applied to frames. The most common ones are closure operations and disjoint
unions of multiple frames.

Definition 2.40 (Closures).

• The reflexive closure 𝑅 of 𝑅 is the least reflexive relation extending 𝑅, i.e.
𝑅 = 𝑅 ∪ {⟨𝑥, 𝑥⟩ | 𝑥 ∈ 𝑊}.

• The irreflexivisation of 𝑅 is the largest irreflexive relation that 𝑅 extends, i.e.
𝑅 ∖ {⟨𝑥, 𝑥⟩ | 𝑥 ∈ 𝑊}.

• The transitive closure 𝑅+ of 𝑅 is the least transitive relation extending 𝑅.

• The reflexive transitive closure 𝑅∗ of 𝑅 is the least reflexive and transitive
relation extending 𝑅.

The reflexive closure, transitive closure or reflexive transitive closure of 𝔉 is 𝔉 ≔
⟨𝑊, 𝑅⟩, 𝔉+ ≔ ⟨𝑊, 𝑅+⟩ or 𝔉∗ ≔ ⟨𝑊, 𝑅∗⟩ respectively.

Definition 2.41 (Subframe). Let 𝑋 ⊆ 𝑊. Then 𝔉↾𝑋 ≔ ⟨𝑋, 𝑅 ∩ 𝑋2⟩ is called the
restriction of 𝔉 to 𝑋, and 𝔉↾𝑋 is called a subframe of 𝔉.

Definition 2.42 (Generated subframe). A subframe 𝔉↾𝑋 of 𝔉 is called a generated
subframe iff 𝑋 is an upset in 𝔉. When 𝑥 ∈ 𝑊, the subframe of 𝔉 generated by 𝑥 is
𝔉↾𝑅∗(𝑥).

Definition 2.43 (Disjoint union). Let ℱbe a set of frames. Then the disjoint union
of ℱ is the frame ⟨𝑌 , 𝑆⟩ where

𝑌 ≔ {⟨𝑋, 𝑥⟩ | ⟨𝑋, 𝑅⟩ ∈ ℱ, 𝑥 ∈ 𝑋}

is the disjoint union of the domains of the elements of ℱ, and

𝑆 ≔ {⟨⟨𝑋, 𝑥1⟩, ⟨𝑋, 𝑥2⟩⟩ | ⟨𝑋, 𝑅⟩ ∈ ℱ, ⟨𝑥1, 𝑥2⟩ ∈ 𝑅}.

Morphisms. As in any category, we define notions of morphisms, functions that
preserve some of the frame structure. Let for now 𝔉 = ⟨𝑋, 𝑅⟩ and 𝔊 = ⟨𝑌 , 𝑆⟩ be
frames.

Definition 2.44 (Monotone, frame morphism). A function 𝑓∶ 𝑋 → 𝑌 is called
monotone or a frame morphism from 𝔉 to 𝔊 iff for all 𝑥, 𝑦 ∈ 𝑋, if 𝑅(𝑥, 𝑦) then
𝑆(𝑓(𝑥), 𝑓(𝑦)). In this case we write 𝑓∶ 𝔉 → 𝔊.

Definition 2.45 (Embedding). A frame morphism 𝑓∶ 𝔉 → 𝔊 is called an embedding
iff it is injective and for all 𝑥, 𝑦 ∈ 𝑋, if 𝑆(𝑓(𝑥), 𝑓(𝑦)) then 𝑅(𝑥, 𝑦). In this case we
write 𝑓∶ 𝔉 ↪ 𝔊.
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Definition 2.46 (Isomorphism). A frame morphism 𝑓∶ 𝔉 → 𝔊 is called a frame
isomorphism iff there exists a frame morphism 𝑔∶ 𝔊 → 𝔉 that is an inverse of 𝑓, i.e.
𝑓 ∘ 𝑔 = id𝑌 and 𝑔 ∘ 𝑓 = id𝑋. In this case 𝔉 and 𝔊 are called isomorphic.

Equivalently, 𝑓 is a frame isomorphism iff it is a surjective embedding.
For sequences we introduce special terminology.

Definition 2.47. Let 𝛼 be an ordinal and 𝑓∶ 𝛼 → 𝑋 an 𝛼-sequence of points of 𝔉.
Then 𝑓 is called ascending (w.r.t. 𝔉) iff it is monotone from ⟨𝛼, <⟩ to 𝔉 and strictly-
ascending iff in addition for every 𝛽, 𝛾 ∈ 𝛼 with 𝛽 < 𝛾, ¬𝑅∗(𝑓(𝛾), 𝑓(𝛽)). It is called
descending (w.r.t. 𝔉) iff it is ascending w.r.t. 𝔉op, and strictly-descending iff it is
strictly-ascending w.r.t. 𝔉op.

Kripke models and modal interpretation. Modal formulas can be interpreted
on Kripke frames, but like in the algebra case we need a valuation for assigning
meaning to atomic propositions. A frame together with a valuation is called a Kripke
model. Interpretation of modal formulas is defined via an induced modal algebra.

Definition 2.48. Let 𝔉 = ⟨𝑋, 𝑅⟩ be a Kripke frame, and 𝑌 ⊆ 𝑋 a subset of its
points. Define

◻𝑅𝑌 ≔ {𝑥 ∈ 𝑋 | 𝑅(𝑥) ⊆ 𝑌} and ⬦𝑅𝑌 ≔ 𝑅op(𝑌).

Instead of subscript 𝑅 we will also write subscript 𝔉, as in ◻𝔉.

Proposition 2.49. Let 𝔉 = ⟨𝑋, 𝑅⟩ be a Kripke frame. Then the powerset algebra
of 𝑋 enriched with ◻𝑅 as the modal operator forms a modal algebra.

This algebra is called the modal algebra induced by 𝔉, and denoted 𝔉#∗. This
notation is due to the fact that taking the induced algebra of a Kripke frame can be
factored into two steps, as we will see in the next section.

Definition 2.50 (Kripke model). Let 𝔉 be a Kripke frame and 𝑃 be a set of atomic
propositions. Let Kripke model on 𝔉 with atomic propositions 𝑃 is a pair ⟨𝔉, 𝔙⟩
where 𝔙∶ 𝑃 → 𝒫(𝔉w) is a function called the valuation. We write 𝔐fr ≔ 𝔉.

Note that a valuation 𝔙 on a Kripke frame is also a valuation on a modal algebra.
Hence Kripke model ⟨𝔉, 𝔙⟩ induces a modal algebra model ⟨𝔉#∗, 𝔙⟩. This is used
to interpret modal formulas on a Kripke model.

Definition 2.51 (Kripke model interpretation). Let 𝔐 = ⟨𝔉, 𝔙⟩ be a Kripke
model and 𝜑 a modal formula such that every atomic proposition in 𝜑 is an atomic
proposition of 𝔐. Define ⟦𝜑⟧𝔐 ≔ ⟦𝜑⟧⟨𝔉#∗,𝔙⟩.

Notation 2.52. We write
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• 𝔐, 𝑥 ⊨ 𝜑 iff 𝑥 ∈ ⟦𝜑⟧𝔐,

• 𝔐 ⊨ 𝜑 iff for all 𝑥 ∈ 𝔉w, 𝔐, 𝑥 ⊨ 𝜑,

• for a set of formulas Γ, 𝔐 ⊨ Γ iff ∀𝜑 ∈ Γ. 𝔐 ⊨ 𝜑.

• 𝔉 ⊨ 𝜑 iff for every Kripke model 𝔐 on 𝔉, 𝔐 ⊨ 𝜑, and

• for a set of formulas Γ, 𝔉 ⊨ Γ iff for every ∀𝜑 ∈ Γ. 𝔉 ⊨ 𝜑.

We write ⊭ instead of ⊨ for the negated statements.

Terminology 2.53. We say

• 𝜑 is satisfied in the point 𝑥 of a model 𝔐 iff 𝔐, 𝑥 ⊨ 𝜑,

• for a logic Λ, 𝔐 is a model of Λ, or a Λ-model for short, iff 𝔐 ⊨ Λ,

• 𝜑 is satisfiable on 𝔉 iff there exists a model 𝔐 on 𝔉 such that 𝜑 is satisfied in
a point of 𝔐

• 𝔉 validates 𝜑 iff 𝔉 ⊨ 𝜑, and

• for a logic Λ, 𝔉 is a frame of Λ, or a Λ-frame for short, iff 𝔉 ⊨ Λ.

Now the 𝜑 ↦ 𝜑 translation from Definition 2.12 has the following meaning in
Kripke semantics:

Proposition 2.54. Let 𝔐 = ⟨𝔉, 𝔙⟩ be a Kripke model, and define 𝔐 ≔ ⟨𝔉, 𝔙⟩.
Then for any formula 𝜑 containing only atomic propositions of 𝔐, ⟦𝜑⟧𝔐 = ⟦𝜑⟧𝔐.
In particular 𝔉 ⊨ 𝜑 iff 𝔉 ⊨ 𝜑.

Proof. The latter claim trivially follows from the former. We prove the former
claim by induction on 𝜑. The cases for atomic propositions, ⊤, ⊥, conjunctions and
negations are trivial.

For ◻, assume as induction hypothesis ⟦𝜑⟧𝔐 = ⟦𝜑⟧𝔐. Then

⟦◻𝜑⟧𝔐 = ⟦◻𝜑⟧𝔐 = ⟦𝜑⟧𝔐 ∩ ⟦◻𝜑⟧𝔐 = ⟦𝜑⟧𝔐 ∩ ◻𝔉⟦𝜑⟧𝔐 = ⟦𝜑⟧𝔐 ∩ ◻𝔉⟦𝜑⟧𝔐,

where we use the induction hypothesis in the final step.
Now we need to use the definition of ◻𝔉. Note that ◻𝔉𝑌 for some set 𝑌 is the set

of points 𝑥 such that all successors in 𝔉 are in 𝑌. Note that the successors of 𝑥 in 𝔉
are precisely the successor of it in 𝔉 and 𝑥 itself. Hence ◻𝔉𝑌 = 𝑌 ∩ ◻𝔉𝑌. Using this
we see

⟦𝜑⟧𝔐 ∩ ◻𝔉⟦𝜑⟧𝔐 = ◻𝔉⟦𝜑⟧𝔐 = ⟦◻𝜑⟧𝔐.
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2.6 General Frames and Topology
In this section we introduce general frames which in a sense generalise Kripke frames
and make some remarks on the relation between general frames and topology. General
frames are essentially just Kripke frames where we restrict which valuations we allow
on the frame. In particular, only valuations where each atomic proposition is valuated
to a so called admissible subset of the frame are allowed.

Definition 2.55 (Family of admissibles). Let 𝔉 = ⟨𝑊, 𝑅⟩ be a frame. Then
𝐴 ⊆ 𝒫(𝑊) is said to be a family of admissibles iff for all 𝑎, 𝑎′ ∈ 𝐴,

• ⌀ ∈ 𝐴 and 𝑊 ∈ 𝐴,

• 𝑊 ∖ 𝑎 ∈ 𝐴,

• 𝑎 ∩ 𝑎′ ∈ 𝐴, and

• ⬦𝑅𝑎 ∈ 𝐴.

Definition 2.56 (General frame). Let 𝔉 be a frame and 𝐴 a family of admissibles
for it. Then 𝔣 = ⟨𝔉, 𝐴⟩ is called a general frame. A set 𝑋 ⊆ 𝔉w is called admissible
in iff 𝑋 ∈ 𝐴. We write 𝔣# ≔ 𝔉.

We call a Kripke model ⟨𝔉, 𝔙⟩ a model of a general frame ⟨𝔉, 𝐴⟩ iff for every
atomic proposition 𝑝 of 𝔙, 𝔙(𝑝) ∈ 𝐴. Similar to Kripke frames, we write 𝔣 ⊨ 𝜑 for
a general frame 𝔣 iff every model 𝔐 of 𝔣, 𝔐 ⊨ 𝜑. Every Kripke frame and Kripke
model induces a general frame, and similar to Kripke frames, every general frame
induces a modal algebra.

Example 2.57 (Frame induced general frame). Let 𝔉 be a Kripke frame. Then
⟨𝔉, 𝒫(𝔉w)⟩ forms a general frame, denoted 𝔉#. Clearly, every Kripke model on 𝔉 is
a model of 𝔉#.

This already explains half of the notion 𝔉#∗ for the induced modal algebra of a
Kripke frame: we first induce a general frame from the Kripke frame. The other half
of the notion denotes inducing a modal algebra from this general frame.

Proposition 2.58. Let 𝔣 = ⟨𝔉, 𝐴⟩ be a general frame. Then

⟨𝐴, ∩, ∪, ⌀, 𝔉w, 𝔉w ∖ −, ◻𝔉⟩

forms a modal algebra.

This algebra is called the algebra induced by 𝔣 and is denoted by 𝔣∗. Whenever 𝔣 is
a general frame on 𝔉 and ⟨𝔉, 𝔙⟩ is a model of 𝔣, then ⟦−⟧⟨𝔣∗,𝔙⟩ and ⟦−⟧⟨𝔉#∗,𝔙⟩ are
identical.
For the model induced general frame we first need the notion of generation of

general frames.



18 Chapter 2 Preliminaries

Definition 2.59 (Generation of general frames). Let 𝔣 = ⟨𝔉, 𝐴⟩ be a general frame
and 𝐺 ⊆ 𝐴. Then 𝔣 is said to be generated by 𝐺 iff 𝐴 is the least set extending 𝐺
such that 𝐴 is a family of admissible sets on 𝔉.

Definition 2.60 (Model induced general frame). Let 𝔐 = ⟨𝔉, 𝔙⟩ be a Kripke model.
Define 𝔐g to be the general frame on 𝔉 generated by the co-domain of 𝔙.

Proposition 2.61. For a Kripke model 𝔐, 𝔐 is a model of 𝔐g and 𝔐g has as
admissible sets precisely all sets ⟦𝜑⟧𝔐 for modal formulas 𝜑. Moreover 𝔐g ⊨ 𝜑
iff 𝔐 ⊨ 𝜑′ for some substitution 𝜑′ of 𝜑.

Important in the study of general frames is the connection with topology.

Definition 2.62 (Topology of a general frame). Let 𝔣 = ⟨𝔉, 𝐴⟩ be a general frame.
We define the topology of 𝔣 to be the topology generated by 𝐴.

Definition 2.63. Let 𝔣 = ⟨𝑊, 𝑅, 𝐴⟩ be a general frame. It is called

• differentiated iff the topology is totally separated, i.e. iff any distinct pair of
points is separated by a clopen,

• tight iff for all 𝑥, 𝑦 ∈ 𝑊 with ¬𝑅(𝑥, 𝑦), there exists 𝑎 ∈ 𝐴 with 𝑦 ∈ 𝑎 and
𝑥 ∉ ⬦𝑅𝑎,

• compact iff the topology is compact,

• discrete iff the topology is the discrete topology,

• refined iff it is differentiated and tight, and

• descriptive iff it is refined and compact.

Proposition 2.64. Let 𝔣 = ⟨𝔉, 𝐴⟩ be a general frame. Then 𝐴 is a basis (in the
topological sense).

Proposition 2.65. Let 𝔣 = ⟨𝔉, 𝐴⟩ be a compact frame. Then 𝐴 is precisely the set
of clopens of 𝔣.

Proof. Let 𝐶 denote the set of clopens in the topology generated by 𝐴. Since 𝐴
generates the topology and is closed under complements, 𝐴 ⊆ 𝐶.

Let 𝑎 ∈ 𝐶. Since 𝑎 is closed, the subspace of 𝑎 is compact again. By the previous
proposition 𝐴 is a basis for the topology. Hence, as 𝑎 is open, there exists an open
cover 𝐵 ⊆ 𝐴 for 𝑎. By compactness there exists a finite subcover 𝐵′ ⊆ 𝐵 for 𝑎.
Therefore 𝑎 = ⋃ 𝐵′, which is a finite union of elements of 𝐴, hence in 𝐴.
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2.7 Bisimulation and p-Morphisms
In this section we discuss an important tool for working with Kripke frames: bisimu-
lation. Arguably the most important special case of a bisimulation is a p-morphism,
which is what the majority of this section is about.

Definition 2.66 (Bisimulation of frames). Let 𝔉 = ⟨𝑋, 𝑅⟩ and 𝔊 = ⟨𝑌 , 𝑆⟩ be frames
and 𝑍 ⊆ 𝑋 × 𝑌 a relation. Then 𝑍 is called a bisimulation between 𝔉 and 𝔊 iff the
following two conditions hold:

back condition: if 𝑍(𝑥, 𝑦) and 𝑆(𝑦, 𝑦′) then there exists 𝑥′ such that 𝑅(𝑥, 𝑥′) and
𝑍(𝑥′, 𝑦′), and

forth condition: if 𝑍(𝑥, 𝑦) and 𝑅(𝑥, 𝑥′) then there exists 𝑦′ such that 𝑆(𝑦, 𝑦′) and
𝑍(𝑥′, 𝑦′).

Definition 2.67 (Bisimulation of models). Let 𝔐 and 𝔑 be Kripke models and
𝑍 ⊆ 𝔐w × 𝔑w a relation. Then 𝑍 is called a bisimulation iff 𝑍 is a bisimulation
between the underlying frames 𝔐fr and 𝔑fr and for all ⟨𝑥, 𝑦⟩ ∈ 𝑍, 𝑥 and 𝑦 satisfy
precisely the same atomic propositions.

We have already seen a special case of a bisimulation, namely the generated
subframe.

Example 2.68 (Generated subframe). Let 𝔉 be a frame and 𝑌 an upset in it. Then
{⟨𝑦, 𝑦⟩ | 𝑦 ∈ 𝑌} is a bisimulation between 𝔉 and 𝔉↾𝑌.

The importance of bisimulations is that they preserve the truth of modal formulas.

Proposition 2.69. Let 𝔐 and 𝔑 be Kripke models and 𝑍 ⊆ 𝔐w ×𝔑w a bisimulation
between them. Let ⟨𝑥, 𝑦⟩ ∈ 𝑍 and 𝜑 be a modal formula. Then 𝔐, 𝑥 ⊨ 𝜑 iff 𝔑, 𝑦 ⊨ 𝜑.

Proof. A simple induction on the formula 𝜑. The back and forth conditions precisely
make the inductive step for ◻ go through.

The rather obvious fact that whenever 𝔉 is a frame of a logic Λ, then so is every
generated subframe of 𝔉, now easily follows from this proposition and the previous
example. A similar fact holds for the other important special case of bisimulations:
the p-morphisms.

Definition 2.70 (p-Morphism). Let 𝔉 and 𝔊 be frames and 𝑓∶ 𝔉w → 𝔊w a function.
Then 𝑓 is called a p-morphism from 𝔉 to 𝔊 iff (the graph of) 𝑓 is a bisimulation
between 𝔉 and 𝔊. If 𝑓 is surjective then 𝔊 is called a p-morphic image of 𝔉. Similarly,
when 𝔐, 𝔑 are Kripke models, a function 𝑓∶ 𝔐w → 𝔑w is called a p-morphism from
𝔐 to 𝔑 iff (the graph of) 𝑓 is a bisimulation between 𝔐 and 𝔑. If 𝑓 is surjective
then 𝔑 is called a p-morphic image of 𝔐.
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For (graphs of) functions the forth condition simplifies precisely to monotonicity
of the function. p-Morphisms of frames have the nice property that valuations can
be pulled back along the p-morphism, making it reflect satisfiability.

Proposition 2.71. Let 𝔉, 𝔊 be frames, 𝔑 a model on 𝔊 and 𝑓∶ 𝔉 → 𝔊 a surjective
p-morphism. Then there exists a model 𝔐 on 𝔉 such that 𝑓 is a p-morphism from 𝔐
to 𝔑. A formula 𝜑 is satisfied in a point of 𝔑 iff it is satisfied in a point of 𝔐.
If Λ is a logic and 𝔉 a frame of Λ, then so is 𝔊.

Proof. Say 𝔑 = ⟨𝔊, 𝔙⟩. Define 𝔐 ≔ ⟨𝔉, 𝑓−1 ∘ 𝔙⟩. Then a point 𝑥 in 𝔐 satisfies,
by definition, the same atomic formulas as 𝑓(𝑥) in 𝔑. Suppose 𝜑 is satisfied in a
point 𝑥 of 𝔐 or 𝑦 of 𝔑. Then by Proposition 2.69 it is satisfied in 𝑓(𝑥) in 𝔑 or
any 𝑓-preimage of 𝑦 in 𝔐 respectively. The preservation of being a Λ-frame easily
follows.

The p-morphic images of a frame 𝔉, up to isomorphism, are induced by certain
bisimulations between 𝔉 and 𝔉 itself.

Definition 2.72 (Bisimulation equivalence). A bisimulation equivalence on 𝔉 is a
bisimulation between 𝔉 and 𝔉 which is also an equivalence relation.

Definition 2.73 (Quotient frame). Let 𝔉 = ⟨𝑊, 𝑅⟩ be a frame and ∼ a bisimulation
equivalence on it. Define 𝔉/∼ ≔ ⟨𝑊/∼, 𝑅′⟩ where 𝑅′(𝑋, 𝑌) for equivalence classes
𝑋 and 𝑌 of ∼ iff there exists 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 such that 𝑅(𝑥, 𝑦). This is called the
quotient of 𝔉 by ∼.

Proposition 2.74. Let 𝔉 be a frame and ∼ be a bisimulation equivalence on 𝔉. Then
the quotient map from 𝔉 to 𝔉/∼, i.e. the map sending 𝑥 ∈ 𝔉w to its ∼ equivalence
class, is a (surjective) p-morphism. In particular 𝔉/∼ is a p-morphic image of 𝔉.

In fact, any p-morphic image is induced, up to isomorphism, by a bisimulation
equivalence.

A trivial but important example of a bisimulation equivalence is the following.

Example 2.75. Let 𝔉 = ⟨𝑋, 𝑅⟩ be a weakly-transitive frame, and define a binary
relation ∼ on 𝑋 by setting 𝑥 ∼ 𝑦 iff either 𝑥 = 𝑦 or both 𝑅(𝑥, 𝑦) and 𝑅(𝑦, 𝑥). Then
∼ is a bisimulation equivalence, and the quotient 𝔉/∼ is called the skeleton. Clearly
𝔉/∼ is anti-symmetric.

p-Morphic images play an important role in a series of results that can be unified
under the name frame-based formulas [6]. We only need the first result for modal
logic in this space.

Theorem 2.76 ([18, Section 2]). Let 𝔉 be a finite preorder. Then there exists a
formula 𝜒(𝔉) such that for any frame 𝔊, we have 𝔊 ⊭ 𝜒(𝔉) iff 𝔉 is a p-morphic
image of a generated subframe of 𝔊.
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An intuitionistic analog of this theorem was first proven by Jankov [25], using
algebraic methods. Later, Fine [18, Section 2] independently derived the result
for modal logic, using frame theoretic techniques. Finally, Rautenberg [38, Proof
of the Splitting Theorem] derived the same result for modal logic, using algebraic
methods, while studying splittings of the lattice of normal modal logics. The formula
𝜒(𝔉) is therefore called the Fine-Rautenberg formula or Fine-Jankov formula of
𝔉. Another proof of the theorem can be found in Chagrov and Zakharyaschev [11,
Proposition 9.41].

2.8 Soundness and Completeness
In this section we recall the notions of soundness and completeness, and define Kripke
completeness. We first introduce the following notation.

Notation 2.77. Let 𝒮 be a class of frames, general frames or Kripke models. We
write 𝒮 ⊨ 𝜑 iff for all 𝔛 ∈ 𝒮, we have 𝔛 ⊨ 𝜑.

Definition 2.78 (Soundness). A logic Λ is called sound w.r.t. a class of frames,
general frames or Kripke models 𝒮 iff for all formulas 𝜑, 𝜑 ∈ Λ implies 𝒮 ⊨ 𝜑.

There are two versions of completeness, a weak and a strong one. When left
implicit, weak completeness is meant. We start with defining the weak completeness.

Definition 2.79 (Weak completeness). A logic Λ is called weakly complete, or just
complete for short, w.r.t. a class of frames, general frames or Kripke models 𝒮 iff for
all formulas 𝜑, 𝒮 ⊨ 𝜑 implies 𝜑 ∈ Λ.

Definition 2.80 (Kripke completeness). A logic Λ is called Kripke complete iff it is
sound and complete w.r.t. some class of Kripke frames. We write Kripke for the set
of all Kripke complete modal logics.

It should be noted that for a logic Λ, there exists a unique maximal class of Kripke
frames w.r.t. which Λ is sound, namely the set

Fr(Λ) ≔ {𝔉 | 𝔉 ⊨ Λ} (2.1)

of frames of Λ. Hence Λ is Kripke complete iff it is complete w.r.t. Fr(Λ). In
Section 3.3 we will see a third equivalent formulation of Kripke completeness.

Before we turn to strong completeness, we introduce a stronger variant of Kripke
completeness.

Definition 2.81 (Fmp, finite frame property). A logic Λ is said to have the finite
model property, or fmp for short, iff it is sound and complete w.r.t. some class of
finite Kripke models. It is said to have the finite frame property iff it is sound and
complete w.r.t. some class of finite Kripke frames.
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Clearly, the finite frame property implies the finite frame property. However,
perhaps surprisingly, the converse implication also holds, and both notions are
equivalent [7, Theorem 3.28, 11, Theorem 8.47]. It has become standard to use the
fmp terminology, and use the equivalence implicitly whenever necessary.

Proposition 2.82. A modal logic Λ has the fmp iff it has the finite frame property.

For strong completeness we need some additional definitions. Let us first note that
a logic Λ is weakly complete w.r.t. a class of structures 𝒮 iff for any formula 𝜑, if
¬𝜑 ∉ Λ, then 𝜑 is satisfiable on some structure 𝔛 ∈ 𝒮. Now, ¬𝜑 ∉ Λ means that Λ
does not prove 𝜑 to be false, i.e. it means 𝜑 is consistent with Λ. We generalise this
notion to sets of formulas.

Definition 2.83. Let Γ be a set of formulas and Λ a modal logic. Then Γ is called Λ-
consistent for any 𝑛 ∈ 𝜔 and any 𝜑0, … , 𝜑𝑛−1 ∈ Γ, their conjunction 𝜑0 ∧ … ∧ 𝜑𝑛−1
is consistent, i.e.

¬(𝜑0 ∧ … ∧ 𝜑𝑛−1) ∉ Λ.

Definition 2.84 (Strong completeness). Let 𝑃 be a set meant to be used as atomic
propositions. A logic Λ is called 𝑃-strongly complete w.r.t. a class of frames, general
frames or Kripke models 𝒮 iff whenever Γ is a Λ-consistent set of formulas over the
atomic propositions 𝑃, then all formulas of Γ are satisfied in a single point of some
model (with atomic proposition 𝑃) of 𝒮. It is called strongly complete w.r.t. 𝒮 it is
𝜅-strongly complete w.r.t. 𝒮 for all cardinals 𝜅.

A logic is called 𝑃-strongly Kripke complete iff it is sound and 𝑃-strongly complete
w.r.t. some class of Kripke frames, and strongly Kripke complete iff it is 𝜅-strongly
Kripke complete for all cardinals 𝜅.

2.9 Canonicity

In this section we introduce the notion of canonicity of modal logics. Canonicity is a
major tool for establishing Kripke completeness. It can be characterised in various
ways, including algebraically and using canonical frames.

In order to define canonical frames, we need to introduce maximal consistent sets.
Recall the definition of Λ-consistency from Definition 2.83. Then a set of formulas Γ
is called maximally Λ-consistent iff it is Λ-consistent and maximal with this property.
This is equivalent to the following definition, which we prefer since it decouples the
maximal consistency from the logic Λ.

Definition 2.85 (Maximal consistent set). Let 𝑃 be a set of atomic propositions and
Γ a set of formulas. Then Γ is called maximally consistent over atomic propositions
𝑃, or an MCS over 𝑃 for short, iff for all formulas 𝜑, 𝜓,
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• ⊤ ∈ Λ and ⊥ ∉ Λ,

• 𝜑 ∧ 𝜓 ∈ Γ iff 𝜑 ∈ Γ and 𝜓 ∈ Γ,

• 𝜑 ∨ 𝜓 ∈ Γ iff 𝜑 ∈ Γ or 𝜓 ∈ Γ, and

• ¬𝜑 ∈ Γ iff 𝜑 ∉ Γ.

If Λ is a modal logic and Γ contains (the substitution of) Λ (to atomic proposition
𝑃), then Γ is called a Λ-MCS.

Definition 2.86 (Canonical frame). Let 𝑃 be a set of atomic propositions and Λ a
logic over these atomic propositions. Then the 𝑃-canonical frame of Λ is the frame
𝔽Λ

𝑃 ≔ ⟨𝑊, 𝑅⟩ where 𝑊 is the set of Λ-MCSs and 𝑅 is defined by

𝑅(Γ, Δ) iff ∀◻𝜑 ∈ Γ. 𝜑 ∈ Δ.

Definition 2.87 (𝜅-Canonicity). Let 𝜅 be a cardinal and Λ a logic. Then Λ is called
𝜅-canonical iff the 𝜅-canonical frame 𝔽Λ

𝜅 is a frame of Λ.

It is a well-known theorem that any modal logic is 𝑃-strongly complete w.r.t. its 𝑃-
canonical frame [7, Theorem 4.22]. Hence any 𝜅-canonical logic is 𝜅-strongly Kripke
complete.

Proposition 2.88. Let Λ be a logic. Then the following are equivalent:

(i) Λ is 𝜅-canonical for each cardinal 𝜅,

(ii) for every descriptive frame 𝔣 of Λ, the underlying Kripke frame 𝔣# is a frame
of Λ.

A logic is called canonical iff one of these equivalent properties hold.

2.10 Depth and Pre-well-foundedness
In this section we will define depth of points in a frame and introduce related notations.
We will define it via transfinite induction. Using these, we define the notions of pre-
well-foundedness and converse pre-well-foundedness.

Definition 2.89 (Points at depth 𝛼). Let 𝔉 = ⟨𝑊, 𝑅⟩ be a frame and 𝛼 an ordinal.
We define a subset 𝑊 =𝛼 ⊆ 𝑊 of points at depth 𝛼 by induction on 𝛼. Let us also
define

𝑊 <𝛼 ≔ ⋃ {𝑊 =𝛽 | 𝛽 < 𝛼}, and
𝑊 ≤𝛼 ≔ 𝑊 =𝛼 ∪ 𝑊 <𝛼.
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For the inductive definition, let 𝛼 be an ordinal, and assume as induction hypothesis
that for all 𝛽 < 𝛼, 𝑊 =𝛽 is already defined. Note that then also 𝑊 <𝛼 is defined. Now
define

𝑊 =𝛼 ≔ {𝑤 ∈ 𝑊 | 𝑤 ∉ 𝑊 <𝛼,
∀𝑥 ∈ 𝑅(𝑤) [¬𝑅∗(𝑥, 𝑤) ⟹ 𝑥 ∈ 𝑊 <𝛼] ,
∀𝛽 < 𝛼 ∃𝑥 ∈ 𝑅∗(𝑤). 𝑥 ∈ 𝑊 =𝛽}.

We write 𝔉<𝛼 for the subframe of 𝔉 on the points 𝑊 <𝛼 and analogously 𝔉≤𝛼 for
the on the points 𝑊 ≤𝛼.

Remark 2.90. Note that these subsets are invariant under taking a transitive or
reflexive closure of the frame 𝔉. For example (𝔉∗)<𝛼 = (𝔉<𝛼)∗. .

As a direction consequence of the definition, we get the following criterion for
depth in the transitive case.

Proposition 2.91. Let 𝔉 be a weakly-transitive frame, 𝛼 an ordinal and 𝑥 ∈ 𝔉w.
Then 𝑥 ∈ 𝔉≤𝛼

w iff for all successors 𝑦 of 𝑥, either 𝑦 ∈ 𝔉<𝛼
w or 𝑥 and 𝑦 see each other.

Definition 2.92 (Depth of a point). Let 𝔉 = ⟨𝑊, 𝑅⟩ be a frame. Define a partial
function depth𝔉 ∶ 𝑊 ⇀ Od by setting depth𝔉(𝑤) ≔ 𝛼 where 𝛼 is the smallest 𝛼 such
that 𝑤 is in 𝔉≤𝛼, and depth𝔉(𝑤) undefined when no such 𝛼 exists.

Note that not every point has a depth. For example, any point from which there
exists an infinite strictly-ascending sequence, has no depth. In fact, when assuming
the axiom of dependent choice, having such sequence is equivalent to not having a
depth.

Definition 2.93 (Deep points). Let 𝔉 = ⟨𝑊, 𝑅⟩ be a frame and 𝑤 ∈ 𝑊. We call 𝑤
deep iff depth𝔉(𝑤) is undefined. We write 𝑊 deep for the set of all deep points in 𝔉
and 𝔉deep for its subframe, and call this the deep part of 𝔉.

Definition 2.94 (Upper points). Let 𝔉 = ⟨𝑊, 𝑅⟩ be a frame. We write 𝑊 upper ≔
⋃ {𝑊 ≤𝛼 | Od(𝛼)} = 𝑊 ∖ 𝑊 deep for the set of all non-deep points in 𝔉 and 𝔉upper

for its subframe, and call this the upper part of 𝔉.

With this theory of depth set up, we can introduce pre-well-foundedness and
converse pre-well-foundedness in the following way.

Definition 2.95 (CWF frame, WF frame). A frame 𝔉 is called conversely pre-well-
founded, or CWF for short, iff 𝔉 = 𝔉upper, or equivalently 𝔉deep is the empty frame.
Analogously, a frame 𝔉 is called pre-well-founded, or WF for short, iff its converse
frame 𝔉op is CWF.
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Remark 2.96. The terminology around well-foundedness (alternatively spelled well-
foundedness) in the literature is a bit fuzzy. Arguably the most common definition
requires the absence of any loops, so in particular implies irreflexivity. A version
which allows reflexive points is also sometimes used. However, our pre-well-founded-
ness differs from both of these, in allowing even proper clusters to exist. Our pre-
well-foundedness is in this sense like the well-foundedness condition of prewellorders.
Formally, a transitive frame 𝔉 is pre-well-founded iff the irreflexivisation of the
skeleton of 𝔉 is well-founded in the classic sense.

Our pre-well-foundedness differs in another way from the usual well-foundedness:
it is technically also defined for frames that are not transitive (or weakly-transitive).
By Remark 2.90 it is then equivalent to the pre-well-foundedness of the transitive
closure. Combining these two features of pre-well-foundedness, it follows that every
finite frame is pre-well-founded, which is one of the main motivations for this variant
on well-foundedness. .

Given the axiom of dependent choice, pre-well-foundedness can also be expressed
using sequences. This is a very useful characterisation in practise.

Proposition 2.97. Let 𝔉 be a transitive frame. Then the following are equivalent:

(i) 𝔉 is WF,

(ii) there exists no infinite strictly-descending sequence in 𝔉, and

(iii) there exists no infinite descending sequence in the irreflexivisation of the skeleton
of 𝔉.

We end this section with a depth preservation result for p-morphisms.

Proposition 2.98. Let 𝔉 and 𝔊 be frames and 𝑓∶ 𝔉 → 𝔊 a p-morphism. Then for
all 𝛼,

𝑓(𝔉≤𝛼
w ) ⊆ 𝔊≤𝛼

w .

Proof. Write 𝔉 = ⟨𝑋, 𝑅⟩ and 𝔊 = ⟨𝑌 , 𝑆⟩. We prove this by induction on 𝛼. Suppose,
as induction hypothesis, that for every 𝛽 < 𝛼, the claim holds, and let 𝑥 ∈ 𝔉≤𝛼

w . We
show that 𝑓(𝑥) ∈ 𝔊≤𝛼

w .
For let 𝑦′ ∈ 𝑆(𝑓(𝑥)) such that ¬𝑆∗(𝑦′, 𝑓(𝑥)). Since 𝑓 a p-morphism, there exists

a preimage 𝑦 of 𝑦′, such that 𝑅(𝑥, 𝑦). As 𝑓 is a frame morphism, we also see
¬𝑅∗(𝑦, 𝑥). Then 𝑦 ∈ 𝔉<𝛼

w , so by the induction hypothesis 𝑦′ = 𝑓(𝑦) ∈ 𝔊<𝛼
w . Hence

𝑓(𝑥) ∈ 𝔊≤𝛼
w .

In particular, taking p-morphic images preserves converse pre-well-foundedness.
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Table 2.1: List of modal axioms, with their axiom name (a.n.), formula name (f.n.) and
the corresponding frame condition.

a.n. f.n. formula frame condition
t refl ◻𝑝 → 𝑝 reflexivity
4 trans ◻𝑝 → ◻2𝑝 transitivity
.3 lin ⬦𝑝 ∧ ⬦𝑞 → (⬦(𝑝 ∧ 𝑞)

∨ ⬦(𝑝 ∧ ⬦𝑞) ∨ ⬦(⬦𝑝 ∧ 𝑞))
upward linearity

.2 confl ⬦◻𝑝 → ◻⬦𝑝 confluence (Church-Rosser prop.)

.1 ma ◻⬦𝑝 → ⬦◻𝑝 McKinsey property
gl la ◻(◻𝑝 → 𝑝) → ◻𝑝 irreflexivity + transitivity

+ converse pre-well-foundedness
grz grz ◻(◻(𝑝 → ◻𝑝) → 𝑝) → 𝑝 reflexivity + transitivity

+ converse pre-well-foundedness
+ absence of proper clusters

2.11 Modal Logics

Throughout this thesis we come across modal logics. This section gives an overview
of important axioms and modal logics.
For simplicity, the names of many modal logics are derived by composing the

names of their axioms. However, due to historic reasons, rather peculiar axiom
names used for this, for example 4 to designate the transitivity axiom and .2 for
the confluence axiom. Sometimes this name that is used for naming the logics is
also used as the name of the modal formula [7], and sometimes a different but more
descriptive name is used for the modal formula [11]. We will refer to the former as
the axiom name and the latter as the formula name.

A frame condition for a formula 𝜑 is a property such that for any frame 𝔉, this 𝔉
has the property iff 𝔉 ⊨ 𝜑. Table 2.1 lists the most important modal axioms, with
their axiom name, formula name, formula and frame condition.
The McKinsey property mentioned as the frame condition of ma, is not a first-

order condition [7, Example 3.11]. However, when restricted to transitive frames,
it becomes the property that every point sees a final point [11, Proposition 3.46].
Hence the conjunction trans ∧ ma has as frame condition the transitive frames in
which every point sees a final point.

In addition to the formulas in the table, we define a family of formulas bw𝑛 for
𝑛 ∈ 𝜔 ∖ {0} over atomic propositions 𝑝0, … , 𝑝𝑛 by

bw𝑛 ≔ ⋀{⬦𝑝𝑖 | 𝑖 ≤ 𝑛} → ⋁{⬦(𝑝𝑖 ∧ (𝑝𝑗 ∨ ⬦𝑝𝑗)) ∣ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗}.
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The frame condition of bw𝑛 is that for every point 𝑥 of the frame, the set of successors
of 𝑥 contains no anti-chain of size at least 𝑛 + 1 [11, Proposition 3.42].

Logic K is the least normal modal logic, i.e. the logic of all Kripke frames. Names
for other logics are then derived by appending the (capitalised) axiom names to a
base logic like K. For example K4 ≔ K ⊕ trans and KT ≔ K ⊕ refl. There are,
due to historic reasons again, several exceptions to this rule. The logic K4 ⊕ refl
is called S4, not KT4. The axioms gl and grz serve as base logic names, i.e. they
replace the K: GL ≔ K ⊕ gl and Grz ≔ K ⊕ grz.

2.12 Trees and Tree Unravelling
Trees are a special case of frames that are particularly easy to reason about. As
such, we will encounter them multiple times in this thesis. However, while intuitively
simple, there are various ways to formalise trees as frames. Therefore, we define
multiple notions of trees in this section. In addition, we consider a version of tree
unravelling, a common technique for turning frames into trees.
We start by defining trees in the non-transitive setting, and then work our way

up from there to define increasingly general transitive notions of trees. In order to
differentiate the non-transitive notion of a tree from transitive versions of trees we
introduce after it, we call it a strict tree.

Definition 2.99 (Strict tree). A frame 𝔉 = ⟨𝑊, 𝑅⟩ is called a strict tree iff

• 𝔉 is rooted, say with root 𝑟,

• 𝔉 is acyclic, i.e. the transitive closure of 𝔉 is irreflexive,2 and

• every non-root has a unique predecessor, i.e. for every 𝑥 ∈ 𝑊 ∖ {𝑟} there exists
a unique 𝑦 ∈ 𝑊 such that 𝑅(𝑦, 𝑥).

Taking the transitive closure of a strict tree gives a transitive notion of trees.

Definition 2.100 (Irreflexive transitive tree, reflexive transitive tree). A frame 𝔉 is
called an irreflexive transitive tree if it is the transitive closure of a strict tree. It is
called a reflexive transitive tree if it is the reflexive transitive closure of a strict tree.

A final version of trees we introduce allows mixing reflexive and irreflexive points
and having clusters in the tree. We call these tree-like frames. More precisely, a tree-
like frame is the result of replacing points in an irreflexive transitive tree by mixed
reflexive-irreflexive clusters. Note that such frames need no longer be transitive, but
are still weakly-transitive.

Definition 2.101 (Tree-like frame). A frame 𝔉 is called tree-like if the irreflexivisation
of the skeleton of 𝔉 is an irreflexive transitive tree.

2Hence cannot contain any clusters.
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Each of these notions of trees gives a notion of forests, by taking disjoint unions
of the respective trees. This yields definitions for strict forests, irreflexive transitive
forests and forest-like frames respectively.

Unravelling. A rather obvious question is now whether we can transform frames
into trees or forests somehow, while preserving some properties of the frame. Such
transformation is called tree unravelling or unwinding. The main property that we
want from any unravelling is that the original frame is a p-morphic image of its
unravelling. Even more than trees, there are various different tree unravellings. We
will discuss two of them.

The most common unravelling is to turn a rooted frame 𝔉 into a strict tree by taking
as points all the paths in 𝔉 starting from the root, and let a path 𝑥 see another path
𝑦 iff 𝑦 is the path of 𝑥 with a single step in 𝔉 added at the end [7, Proposition 2.15,
11, Theorem 3.18]. We call this the path unravelling, to distinguish it from a second
unravelling that we discuss. Irreflexive transitive trees can be obtained from transitive
frames by taking the transitive closure of this path unravelling.

Definition 2.102 (Path unravelling). Let 𝔉 = ⟨𝑋, 𝑅⟩ be a frame, and 𝑥0 ∈ 𝑋.
Define the path unravelling of 𝔉 around 𝑥0 to be the frame with as its worlds the
finite non-empty ascending sequences in 𝔉 starting in 𝑥0 and as its relation �⃗� where
�⃗�( ⃗𝑥, ⃗𝑦) iff ⃗𝑥 is an initial segment of ⃗𝑦 and ⃗𝑦 has length precisely one more than ⃗𝑥.

Proposition 2.103. Let 𝔉 be a frame and 𝑥0 ∈ 𝔉w. Then its path unravelling ⃗𝔉
around 𝑥0 is a strict tree. Moreover the function 𝑓∶ ⃗𝔉w → 𝔉w mapping a finite
sequence ⃗𝑥 to its last element is a surjective p-morphism from ⃗𝔉 to 𝔉. If 𝔉 is
transitive then 𝑓 is a p-morphism from transitive closure ⃗𝔉+ of ⃗𝔉 to 𝔉. If 𝔉 is a
preorder then 𝑓 is a p-morphism from the reflexive transitive closure ⃗𝔉∗ of ⃗𝔉 to 𝔉.

One drawback of the previous approach is that it does not preserve finiteness; a
property we crucially rely on in Chapter 8. Hence we need a second unravelling.
Still, in the transitive setting, there are several possibilities for unravellings that
preserve finiteness. We here choose an unravelling, which we call the finite tree-like
unravelling, where a point of the unravelling is a point in the original frame together
with a maximal path to it this point.

Definition 2.104 (Finite tree-like unravelling). Let 𝔉 = ⟨𝑋, 𝑅⟩ be a weakly-transit-
ive Kripke frame. Its finite tree-like unravelling is the frame ⟨𝑌 , 𝑆⟩ where

• 𝑌 ⊆ 𝒫(𝑋) × 𝑋 is the set of pairs ⟨𝑍, 𝑥⟩ such that 𝑍 is maximal with the
following two properties: 𝑍 ⊆ 𝑅∗op(𝑥) and 𝑍 is free of anti-chains, i.e. for any
𝑧1, 𝑧2 ∈ 𝑍, 𝑧1 = 𝑧2, 𝑅(𝑧1, 𝑧2) or 𝑅(𝑧2, 𝑧1),

• 𝑆(⟨𝑍1, 𝑥1⟩, ⟨𝑍2, 𝑥2⟩) iff 𝑍1 ⊆ 𝑍2 and 𝑅(𝑥1, 𝑥2).
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Proposition 2.105. Let 𝔉 be a finite weakly-transitive Kripke frame. Then its finite
tree-like unravelling 𝔊 is a finite forest-like frame. If 𝔉 is rooted then so is 𝔊.

Lemma 2.106. Let 𝔉 be a finite weakly-transitive Kripke frame and 𝔊 its finite
tree-like unravelling. Then the function ℎ∶ 𝔊 → 𝔉 that maps the pair ⟨𝑍, 𝑥⟩ to 𝑥 is
a surjective p-morphism.

Proof. Let us write 𝔉 = ⟨𝑋, 𝑅⟩. Monotonicity is trivial by de definition relation on
𝔊. So suppose 𝑥1, 𝑥2 ∈ 𝔉w such that 𝑅(𝑥1, 𝑥2), and let ⟨𝑍1, 𝑥1⟩ be some ℎ-preimage
of 𝑥1. Then 𝑍1 ⊆ 𝑅∗op(𝑥1) ⊆ 𝑅∗op(𝑥2) and 𝑍1 is free of anti-chains. Clearly, we can
extend 𝑍1 into a maximal such set 𝑍2. Then ⟨𝑍2, 𝑥2⟩ ∈ 𝔊w, obviously maps to 𝑥2
under ℎ and is a successor of ⟨𝑍1, 𝑥1⟩ in 𝔊.

The finite tree-like unravelling is functorial, in the following sense.

Lemma 2.107. Let, for 𝑖 ∈ {1, 2}, 𝔉𝑖 be a finite weakly-transitive Kripke frame, 𝔊𝑖
its finite tree-like unravelling and ℎ𝑖 ∶ 𝔊𝑖 → 𝔉𝑖 the surjective p-morphism from the
previous lemma. Let 𝑓∶ 𝔉1 → 𝔉2 be a monotone function. Then there exists a
monotone function 𝑔∶ 𝔊1 → 𝔊2 such that ℎ2 ∘ 𝑔 = 𝑓 ∘ ℎ1, i.e. the following diagram
commutes:

𝔊1 𝔊2

𝔉1 𝔉2

𝑔

ℎ1 ℎ2

𝑓

Proof. Write 𝔉𝑖 = ⟨𝑋𝑖, 𝑅𝑖⟩. Let ⟨𝑍1, 𝑥⟩ ∈ 𝔊1,w. Then 𝑍1 ⊆ 𝑅∗op
1 (𝑥) and 𝑍1 is free of

anti-chains. Since 𝑓 is monotone, 𝑓(𝑍1) ⊆ 𝑓(𝑅∗op
1 (𝑥)) ⊆ 𝑅∗op

2 (𝑓(𝑥)) and 𝑓(𝑍1) is free
of anti-chains. Then there exists a maximal set 𝑍2 with these properties extending
𝑓(𝑍1).

Now we would like to set 𝑔(⟨𝑍1, 𝑥⟩) to be ⟨𝑍2, 𝑓(𝑥)⟩. However, to make 𝑔 monotone,
we need to chose the 𝑍2 in a consistent manner: whenever 𝑍′

1 extends 𝑍1 we want
𝑍′

2 to extend 𝑍2. This is easily achieved using tree induction since the set 𝑍1 that
occur as the first element of a point in 𝔊1 form a reflexive transitive tree under
inclusion.

Unravelling of frames easily extends to models.

Definition 2.108 (Finite tree-like unravelling). Let 𝔐 = ⟨𝔉, 𝔙⟩ be a finite weakly-
transitive Kripke model. Its finite tree-like unravelling is the model ⟨𝔊, ℎ−1 ∘ 𝔙⟩
where 𝔊 is the finite tree-like unravelling of 𝔉 and ℎ∶ 𝔊 → 𝔉 is the surjective p-
morphism from Lemma 2.106.

Lemma 2.109. Let 𝔐 be a finite weakly-transitive Kripke model and 𝔑 its finite
tree-like unravelling. Then the surjective p-morphism of frames ℎ of Lemma 2.106 is
a p-morphism of Kripke models.
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Proof. Trivial, since by definition of the valuation of 𝔑, ℎ preserves and reflects
atomic propositions.

With these preliminaries settled, we can move to the first topic of this thesis.
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Chapter 3

Degrees of Completeness

In this chapter we introduce degrees of completeness, generalising Fine’s notion of
degrees of incompleteness. We consider degrees in their full generality, as well as
concrete examples, most notably WF-frame degrees. In the next chapter we continue
this path by studying CWF-frame degrees in more detail.

3.1 Introduction
Fine [19] introduced the notion of degrees of incompleteness, which measures the
number of logics that are indistinguishable from a given logic by Kripke frame
semantics. Formally, for a normal modal logic Λ, the degree of incompleteness of Λ
is the cardinally of the set

{Λ′ ∈ 𝒰 | Fr(Λ′) = Fr(Λ)},

i.e. set of normal modal logics with the same frame class [19]. Here the Fr(−) notion
from eq. (2.1) is used.
This definition of degrees can be generalised in two directions. For one, it is

possible to restrict the logics Λ′ to a smaller set of logics, for example the extensions
of some base logic like K4 or S4. Second, instead of looking at the frame class of
the logics, one can consider a subclass of all frames. For example, G. Bezhanishvili,
N. Bezhanishvili and Moraschini [5] introduce what they call degrees of fmp, where
they restrict the frame classes to only finite frames. One can generalise this a step
further, by not necessarily using a class of frames, but an arbitrary class of structures
on which modal logic can be interpreted.
This leads to a whole family of different notions of degrees of logics, of which

degrees of incompleteness and degrees of fmp are just two examples. In this and the
next chapter, we mostly investigate two other notions of degrees, namely degrees
w.r.t. the class of WF frames and degrees w.r.t. the class of CWF frames. In both
cases we always restrict the set of logics to the extensions of K4 or some extension
of it.
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First, in Section 3.2 we introduce an abstract framework of semantics for modal
logic. This allows us to introduce and study degrees in their full generality in
Section 3.3. Next, in Section 3.4 we consider degrees of incompleteness, WF- and
CWF-degrees, and degrees of fmp, and the relation between these different notions of
degrees. Furthermore, we note that Block’s celebrated dichotomy theorem trivially
extends to WF- and CWF-degrees.
In the final two sections we focus on WF-frame and -model degrees. First, in

Section 3.5, we show that GL.3 has infinite WF-frame degree. In Section 3.6 we then
consider WF-model completeness. In particular we prove, in contrast to the setting
of finite frames, that WF-model completeness and WF-frame completeness are not
equivalent.

3.2 Abstract Semantics
To be able to define degrees for any semantics of modal logic, we first need a definition
of what a semantics is. In this section we define this in the most general sense possible
and consider some notable examples and constructions.

Definition 3.1 (Semantics for the modal language). A semantics for the modal
language, or just semantics for short, is a pair ⟨𝒮, ⊨⟩ where 𝒮 is a class and ⊨ ⊆ 𝒮×Fm
a relation. We will call the elements of 𝒮 simply objects.

Note that for now we do not impose any requirements on the relation ⊨, although
various axioms, e.g. modus ponens, would seem logical. We introduce notation for
taking the logic of class of objects and the class of objects of a logic.

Notation 3.2. Let ⟨𝒮, ⊨⟩ be a semantics, 𝒮′ ⊆ 𝒮, 𝑋 ∈ 𝒮, Γ ⊆ Fm and 𝜑 ∈ Fm. We
write

𝑋 ⊨ Γ iff ∀𝜑 ∈ Γ. 𝑋 ⊨ 𝜑,
𝒮′ ⊨ 𝜑 iff ∀𝑋 ∈ 𝒮′. 𝑋 ⊨ 𝜑,
𝒮′ ⊨ Γ iff ∀𝜑 ∈ Γ, 𝑋 ∈ 𝒮′. 𝑋 ⊨ 𝜑.

Definition 3.3 (Logic of objects). Let 𝓢 = ⟨𝒮, ⊨⟩ be a semantics and 𝒮′ ⊆ 𝒮. Define
the logic of 𝒮′ to be

Log𝓢(𝒮′) ≔ {𝜑 ∈ Fm | 𝒮′ ⊨ 𝜑}.

Definition 3.4 (Objects of logic). Let 𝓢 = ⟨𝒮, ⊨⟩ be a semantics and Γ ⊆ Fm.
Define the 𝓢-semantics of Γ to be

𝓢(Γ) ≔ {𝑋 ∈ 𝒮 | 𝑋 ⊨ Γ}.

The two primitive semantics for modal logic that we consider are the semantics
of pointed Kripke models and that of modal algebra models. Other semantics, like
those of Kripke frames or modal algebras can be derived by taking quotients.
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Example 3.5 (Pointed Kripke model semantics). Take 𝒮 to be the class of pointed
Kripke models ⟨𝔐, 𝑥⟩, and define ⊨ as it is usually defined, i.e. as in Definition 2.51.

Example 3.6 (Modal algebra model semantics). Take 𝒮 to be the class of modal
algebra models ⟨𝔄, 𝔙⟩, and define ⊨ by ⟨𝔄, 𝔙⟩ ⊨ 𝜑 iff ⟦𝜑⟧⟨𝔄,𝔙⟩ = ⟦⊤⟧⟨𝔄,𝔙⟩.

Note that Kripke model semantics arises from pointed Kripke model semantics
by grouping all pointed versions of a given Kripke model together, and requiring
formulas to be valid in each point instead of a single point. Similarly, Kripke
frame semantics arises from Kripke model semantics by grouping Kripke models
together with identical underlying frame. This approach of grouping structures is a
general method for creating coarser semantics from finer ones, which we call quotient
semantics.

Definition 3.7 (Quotient semantics). Let ⟨𝒮, ⊨⟩ be a semantics, 𝒮′ a class and
𝑞 ∶ 𝒮 → 𝒮′ a surjection. Then the quotient of ⟨𝒮, ⊨⟩ by 𝑞 is the pair ⟨𝒮′, ⊨′⟩ where ⊨′

is defined by, for all 𝑋′ ∈ 𝒮′ and 𝜑 ∈ Fm,

𝑋′ ⊨′ 𝜑 iff {𝑋 ∈ 𝒮 | 𝑞(𝑋) = 𝑋′} ⊨ 𝜑.

Such ⟨𝒮′, ⊨′⟩ is called a quotient of ⟨𝒮, ⊨⟩, and 𝑞 is called the quotient map.

Clearly, also modal algebra semantics arises as a quotient semantics of modal
algebra model semantics, and general frame semantics as a quotient semantics of
Kripke model semantics.
A second way to create new semantics, is by restricting the class of objects. For

example, instead of the semantics of all Kripke frames, one can consider only the
finite frames. We call this a subsemantics.

Definition 3.8 (Subsemantics). Let ⟨𝒮, ⊨⟩ be a semantics and 𝒮′ ⊆ 𝒮. Then the
subsemantics of ⟨𝒮, ⊨⟩ induced by 𝒮′ is the pair ⟨𝒮′, ⊨′⟩ where ⊨′ is the restriction of
⊨ to 𝒮′ × Fm.

We will mostly be concerned with the subsemantics of Kripke frame semantics of
all WF or CWF frames. In Section 3.6 we also consider the subsemantics of Kripke
model semantics of all models on WF or CWF frames.
Many basic properties that are known for frame classes still hold in the general

setting:

Proposition 3.9. Let 𝓢 = ⟨𝒮, ⊨⟩ be a semantics, 𝒮1, 𝒮2 ⊆ 𝒮, and Γ1, Γ2 ⊆ Fm.
Then

(i) if 𝒮1 ⊆ 𝒮2 then Log𝓢(𝒮2) ⊆ Log𝓢(𝒮1),

(ii) if Γ1 ⊆ Γ2 then 𝒮(Γ2) ⊆ 𝒮(Γ1),
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(iii) 𝒮1 ⊆ 𝒮(Log𝓢(𝒮1)),

(iv) Γ1 ⊆ Log𝓢(𝒮(Γ1)),

(v) 𝒮(Γ1) = 𝒮(Log𝓢(𝒮(Γ1))), and

(vi) Log𝓢(𝒮1) ⊆ Log𝓢(𝒮(Log𝓢(𝒮1))).

3.3 Completeness and Degrees
Now that we have defined semantics in a general way, we can define degrees of
completeness in this general setting. The term degree of completeness is used to
differentiate from Fine’s degree of incompleteness, which is only a special case,
and potential other definitions of degrees that take a more syntactic approach,
see Section 6.2. The degrees of completeness relate strongly to completeness (and
incompleteness), which we will define first.

Maybe the most natural definition for Λ being complete would be that the logic of
the objects of Λ is again Λ. However, one inclusion is automatic, so we only request
the other.

Definition 3.10 (Completeness). Let Λ be a logic and 𝓢 = ⟨𝒮, ⊨⟩ a semantics. Then
Λ is said to to 𝓢-complete iff

Log𝓢(𝓢(Λ)) ⊆ Λ.

Proposition 3.11. Let 𝓢 be a semantics and Λ ∈ 𝒰. Then the following are
equivalent:

(i) Λ is 𝓢-complete,

(ii) Log𝓢(𝓢(Λ)) = Λ,

(iii) there exists Λ′ ∈ 𝒰 such that Log𝓢(𝓢(Λ′)) = Λ.

Proof. (i) ⇒ (ii): One inclusion by assumption, and the other by Proposition 3.9
(iv).
(ii) ⇒ (iii): Take Λ′ ≔ Λ.
(iii) ⇒ (i): Find Λ′ ∈ 𝒰 such that Log𝓢(𝓢(Λ′)) = Λ. Then

Log𝓢(𝓢(Λ)) = Log𝓢(𝓢(Log𝓢(𝓢(Λ′)))) = Log𝓢(𝓢(Λ′)) = Λ

by Proposition 3.9 (v).

For Kripke semantics, this notion of completeness coincides with Kripke complete-
ness.
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Example 3.12. When we take for 𝓢 the Kripke semantics, a logic is 𝓢-complete
iff it is Kripke complete as in Definition 2.80. For Λ is 𝓢-complete iff it satisfies
Log𝓢(Fr(Λ)) ⊆ Λ, i.e. whenever Fr(Λ) ⊨ 𝜑 then 𝜑 ∈ Λ. This means precisely Λ is
complete w.r.t. Fr(Λ), and as already noted in Section 2.8, Fr(Λ) is the largest class
of frames w.r.t. which Λ is sound.

Remark 3.13. Note that we already defined (weak) completeness in Section 2.8,
with a different meaning from the 𝓢-completeness we define here. Like Kripke
completeness, our generic notion of 𝓢-completeness requires completeness w.r.t. only
those structures of the semantics 𝓢 that validate the logic. In a sense, it combines
soundness and weak completeness.

To clearly distinguish between these two notions, we use the following convention.
For (weak) completeness, we indicate the class of structures always using ‘w.r.t.’, and
after the word completeness. For 𝓢-completeness, we indicate the semantics in front
of the word completeness. As an example, compare ‘Λ is complete w.r.t. WF frames’
with ‘Λ is WF-frame complete’. .

A degree of completeness is the set of logics that are indistinguishable from one-
another for the semantics.

Definition 3.14 (Degree of completeness). Let 𝓢 = ⟨𝒮, ⊨⟩ be a semantics, 𝒳 a set
of logics and Λ ∈ 𝒳. The degree of 𝓢-completeness of Λ over 𝒳 is the set

deg𝒳
𝓢 (Λ) ≔ {Λ′ ∈ 𝒳 | 𝓢(Λ′) = 𝓢(Λ)}.

We will often call it the 𝓢-degree of Λ over 𝒳 for short.

Note that, in contrast to Fine, we say the degree is the set of logics, and not the
cardinality of this set. This has several advantages. The main advantage is that it is
now possible to talk about the elements of a degree. For example, later in this section,
we will talk about complete elements of a degree.1 This also makes it possible to
naturally state many order-theoretic properties, such as closedness under intersections,
meets, joins, etc. And when comparing degrees w.r.t. different semantics, one degree
being included in the other is a much more informative statement then just an
inequality on their cardinalities.
A secondary advantage is that without taking the cardinality, no choice axioms

are involved in merely defining what degrees of completeness are. Finally, there is
no real disadvantage, since statements about the cardinality of a degree can still be
phrased conveniently. Compare for example ‘degree 1’ with ‘singleton degree’, and
note that terms like infinite or continuum apply regardless.

1Indeed, there can be at most one 𝓢-complete logic in a 𝓢-degree.
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Structural theory. Since we define a degree to be a set of logics rather than a
cardinality, we can endow it with subset-inclusion ⊆, and study the resulting poset,
in order to get a better understanding of degrees. We will also relate completeness
of logics to this degree structure.

First, degrees are convex.

Proposition 3.15. Let deg𝒳
𝓢 (Λ) be a degree and Λ1, … , Λ3 ∈ 𝒳 such that Λ1 ⊆

Λ2 ⊆ Λ3. If Λ1 and Λ3 are in deg𝒳
𝓢 (Λ) then so is Λ2.

Proof. Trivial.

Second, a degree can contain at most one complete logic, and if it does then that
logic forms a top element for the degree.

Proposition 3.16. Let deg𝒳
𝓢 (Λ) be a degree and Λ1 ∈ deg𝒳

𝓢 (Λ). If Λ1 is 𝓢-complete
then it is a top in the degree, i.e. for all Λ2 ∈ deg𝒳

𝓢 (Λ), Λ2 ⊆ Λ1. In particular Λ1

is the unique 𝓢-complete element of deg𝒳
𝓢 (Λ).

Proof. Suppose Λ2 ∈ deg𝒳
𝓢 (Λ), so 𝓢(Λ2) = 𝓢(Λ1). Then

Λ2 ⊆ Log𝓢(𝓢(Λ2)) = Log𝓢(𝓢(Λ1)) ⊆ Λ1,

where the first inclusion follows by Proposition 3.9 (iv).

We always instantiate 𝒳 with the set of normal extensions of some base logic, or
the set of 𝓢′-complete such extensions, where the semantics 𝓢 used for the degrees
is a subsemantics of 𝓢′. In these cases Log𝓢(𝓢(Λ)) will always be an element of 𝒳,
hence every degree contains precisely one 𝓢-complete logic.

Let us look at an example of degrees that are not studied (for good reason): degrees
of modal algebra semantics.

Example 3.17 (Modal algebra degrees). Let 𝓢 be the modal algebra semantics. It
is well-known [7, Section 5.2] that every normal modal logic is complete w.r.t. modal
algebras. Since any 𝓢-degree contains at most one 𝓢-complete logic, every 𝓢-degree
is singleton.

Multiple semantics. We show that taking subsemantics and quotient semantics
makes degrees larger, i.e. more coarse grained.

Proposition 3.18. Let 𝓢 be a semantics, 𝓢′ a subsemantics of it, 𝒳 a set of modal
logics and Λ ∈ 𝒳. Then deg𝒳

𝓢 (Λ) ⊆ deg𝒳
𝓢′(Λ).

Proof. Write 𝒮′ for the class underlying 𝓢′, and let Λ′ ∈ deg𝒳
𝓢 (Λ). Then Λ′ ∈ 𝒳

and 𝓢(Λ′) = 𝓢(Λ). Hence

𝓢′(Λ′) = 𝓢(Λ′) ∩ 𝒮′ = 𝓢(Λ) ∩ 𝒮′ = 𝓢′(Λ),

so Λ′ ∈ deg𝒳
𝓢′(Λ).
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Proposition 3.19. Let 𝓢 be a semantics, 𝓢′ a quotient of it, 𝒳 a class of modal
logics and Λ ∈ 𝒳. Then deg𝒳

𝓢 (Λ) ⊆ deg𝒳
𝓢′(Λ).

Proof. Say 𝓢 = ⟨𝒮, ⊨⟩, 𝓢′ = ⟨𝒮′, ⊨′⟩, and 𝑞 ∶ 𝒮 → 𝒮′ is the quotient map. Let
Λ′ ∈ deg𝒳

𝓢 (Λ). Then Λ′ ∈ 𝒳 and 𝓢(Λ′) = 𝓢(Λ). We show that 𝓢′(Λ′) ⊆ 𝓢′(Λ);
the other inclusion is entirely analogous.

Let 𝑋′ ∈ 𝓢′(Λ′). Then 𝑋′ ⊨′ Λ′, so

{𝑋 ∈ 𝒮 | 𝑞(𝑋) = 𝑋′} ⊨ Λ′.

But 𝓢(Λ′) = 𝓢(Λ), so in the semantics 𝓢 any object validates Λ′ iff it validates Λ.
Hence

{𝑋 ∈ 𝒮 | 𝑞(𝑋) = 𝑋′} ⊨ Λ,

from which it follows by the definition of a quotient that 𝑋′ ⊨′ Λ. Therefore
𝑋′ ∈ 𝓢′(Λ).

3.4 Concrete Degrees of Completeness

In this section we have a first look at specific instantiations of this general notion of
degrees. In particular, we consider degrees w.r.t. Kripke frames (like Fine’s degrees
of incompleteness), finite frames (like degrees of fmp), WF frames and CWF frames.

The dichotomy theorem. A natural question to ask, and one that was indeed
already raised by Fine [19], is which cardinals arise as the cardinality of a degree.
This question was answered by Blok [8], and the answer might be surprising.

Theorem 3.20 (Block’s dichotomy theorem, [8]). Let Λ ∈ NExt(K). Then
degNExt(K)

Fr (Λ) is singleton or continuumly sized.

Moreover, Blok [8] gives a criterion for when a logic has singleton degree. Given
a complete lattice 𝒳 of logics, a logic Λ1 is called a splitting of 𝒳 iff there exists
a logic Λ2 such that 𝒳 is the disjoint union of the upset of Λ1 and the downset of
Λ2. A logic is called a join-splitting of 𝒳 iff it is the join of splittings of 𝒳. Then
degNExt(K)

Fr (Λ) is singleton iff Λ is a join-splitting of NExt(K). We refer to Chagrov
and Zakharyaschev [11, Section 10.5] for more details and the proofs.
This is a particularly notable theorem, as it completely describes Fine’s degrees

of incompleteness. However, one is interested only in logics of transitive frames, i.e.
extensions of K4. Unfortunately, it is an open problem whether Block’s dichotomy
theorem generalises to other lattices than NExt(K), such as NExt(K4) or NExt(S4)
[11, Problem 10.5].
As a first step in the direction of solving this problem, G. Bezhanishvili, N.

Bezhanishvili and Moraschini [5] introduce and analyse what they call degrees of
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fmp. In our framework, these would be finite frame degrees. Still over NExt(K),
they extend Block’s dichotomy theorem to this setting. However, over NExt(K4)
and NExt(S4) they prove the opposite result: assuming the continuum hypothesis,
every cardinal up to continuum is realised as the cardinality of a degree.

Proposition 3.21 ([5, Theorem 7.1]). Let Λ ∈ NExt(K). Then degNExt(K)
Frfin

(Λ) is
singleton or continuum. It is singleton iff Λ is a join-splitting of NExt(K).

Theorem 3.22 (Anti-dichotomy theorem, [5, Theorem 7.3]). Let Λ0 ⊆ Grz be a
normal modal logic with the fmp such that Grz is a join-splitting of NExt(Λ0). Then
for any cardinal 𝜅 ∈ 𝜔 ∪ {𝜔, 2𝜔}, there exists a logic Λ ∈ NExt(Λ0) such that

∣degNExt(Λ0)
Frfin

(Λ)∣ = 𝜅.

In particular Λ0 ∈ {K4, S4, Grz} have the required properties.

Pre-well-foundedness. With the situation for finite frame degrees completely
understood, a natural next step is to look for a degree that is in-between Fine’s degree
of incompleteness and the finite frame degree. Maybe the most obvious generalisation
of finite frames would be countable frames, but this does not provide a lot of structure
on frames. Every finite frame also has the properties of being WF and CWF, and
these are useful structural properties of the frame. Hence, we introduce WF-frame
degrees and CWF-frame degrees, which we will study in the following sections and
the next chapter.

We note that these new degrees are really in-between degrees of incompleteness and
finite frame degrees. This immediately provides a dichotomy theorem over NExt(K).

Lemma 3.23. Let 𝒳 be a set of logics, Λ ∈ 𝒳 and ℱ be either Frwf or Frcwf. Then

deg𝒳
Frfin

(Λ) ⊆ deg𝒳
ℱ(Λ) ⊆ deg𝒳

Fr(Λ).

Proof. By Proposition 3.18.

Theorem 3.24 (Dichotomy theorem). Let ℱ∈ {Frfin,Frwf,Frcwf,Fr}. If Λ is a join-
splitting of NExt(K) then degNExt(K)

ℱ (Λ) is singleton. Otherwise it is continuum.

Proof. Suppose Λ is a join-splitting. By Proposition 3.21 the finite frame degree is
singleton. By the previous lemma degNExt(K)

ℱ (Λ) is at most singleton. But any degree
is non-zero, so at least singleton.

Suppose Λ is not a join-splitting. By Theorem 3.20 deg𝒳
Fr(Λ) is continuumly sized.

By the previous lemma degNExt(K)
ℱ (Λ) is at least continuum. Since there are only

continuumly many logics, any degree is always at most continuum.

Note that this actually applies to any class of frames ℱ that contains all finite
ones.
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Degrees as lattices. We make one more observation about these four notions
of degrees. As was already noted in the previous section, one can endow degrees
with the inclusion-order and study its order theoretic properties. We already saw
that, for a nice enough class of logics 𝒳, any degree over 𝒳 has a top element and is
convex. For these the four concrete notions of degrees, we add a property to this
list: closedness under binary intersections. It will follow that, again for ‘good’ 𝒳, a
degree over 𝒳 forms a lattice.

We prove two lemmata first.

Lemma 3.25. Let Λ1, Λ2 be transitive modal logics and Λ = Λ1 ∩ Λ2. Then
Frrooted(Λ) = Frrooted(Λ1) ∪ Frrooted(Λ2).

Proof. The right-to-left inclusion is obvious. For the other inclusion, assume 𝔉 ∉
Frrooted(Λ1) ∪ Frrooted(Λ2). We show that 𝔉 ∉ Frrooted(Λ).
Let 𝑖 ∈ {1, 2}. Since 𝔉 ∉ Frrooted(Λ𝑖), we find 𝜑𝑖 ∈ Λ𝑖 that can be refuted on 𝔉,

say in a point 𝑤𝑖 ∈ 𝔉w. Then ◻𝜑𝑖 ∈ Λ𝑖, as Λ𝑖 is a modal logic. By transitivity, ◻𝜑𝑖
can be refuted on 𝔉 in its root point.
By substitution we can guarantee that 𝜑1 and 𝜑2 do not share any atomic pro-

positions. Then ◻𝜑1 and ◻𝜑2 can be refuted in the same model, both in the root.
Hence ◻𝜑1 ∨ ◻𝜑2 is refuted on 𝔉. But ◻𝜑1 ∨ ◻𝜑2 ∈ Λ1 ∩ Λ2 = Λ. Therefore
𝔉 ∉ Frrooted(Λ).

Lemma 3.26. Let Λ1, Λ2 be logics and let ℱ be a class of frames closed under taking
generated subframes. Then ℱ(Λ1) ⊆ ℱ(Λ2) iff ℱrooted(Λ1) ⊆ ℱrooted(Λ2).

Proof. (⇒) Trivial.
(⇐) Let 𝔉 be a frame and suppose 𝔉 ∉ ℱ(Λ2). Then there exists a point 𝑥 ∈ 𝔉w

and a model 𝔐 on 𝔉 such that 𝔐, 𝑥 ⊭ Λ2. Write 𝔐′ for the submodel generated by
𝑥, and 𝔉′ for its underlying Kripke frame. Then 𝔐′, 𝑥 ⊭ Λ2, so 𝔉′ ⊭ Λ2. Since 𝔉′ is
rooted and ℱrooted(Λ1) ⊆ ℱrooted(Λ2), we conclude that 𝔉′ ⊭ Λ1. Then also 𝔉 ⊭ Λ1,
so 𝔉 ∉ ℱ(Λ1).

Proposition 3.27. Let 𝒳 be a set of logics, Λ ∈ 𝒳 and let ℱ be a class of frames
closed under taking generated subframes. Let Λ1, Λ2 ∈ deg𝒳

ℱ(Λ). If Λ1 ∩ Λ2 ∈ 𝒳,
then Λ1 ∩ Λ2 ∈ deg𝒳

ℱ(Λ).

Proof. Let us write ℱrooted ≔ ℱ∩ Frrooted. By Lemma 3.25,

ℱrooted(Λ1 ∩ Λ2) = Frrooted(Λ1 ∩ Λ2) ∩ ℱ= (Frrooted(Λ1) ∪ Frrooted(Λ2)) ∩ ℱ
= ℱrooted(Λ1) ∪ ℱrooted(Λ2).

Since Λ𝑖 ∈ deg𝒳
ℱ(Λ),

ℱrooted(Λ𝑖) = ℱ(Λ𝑖) ∩ Frrooted = ℱ(Λ) ∩ Frrooted.
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We conclude that
ℱrooted(Λ1 ∩ Λ2) = ℱrooted(Λ),

and hence, by the previous lemma, ℱ(Λ1 ∩ Λ2) = ℱ(Λ).

In particular this proposition applies to ℱ ∈ {Frfin,Frwf,Frcwf,Fr}; in fact these
classes are closed under taking (not necessarily generated) subframes. For Frfin
a much stronger result was already proven by G. Bezhanishvili, N. Bezhanishvili
and Moraschini [5]. They show that finite frame degrees have a bottom element [5,
Theorem 10.3], so they are closed under arbitrary non-empty intersections.

Combining Proposition 3.27 with results from the previous section, we conclude
that a degree forms a lattice under the inclusion-order.

Proposition 3.28. Let ℱ be a class of frames closed under taking generated sub-
frames and 𝒳 a lattice of logics closed under completion Logℱ(ℱ(−)) taking binary
intersections. Let Λ ∈ 𝒳. Then ⟨deg𝒳

ℱ(Λ), ⊆⟩ forms a sublattice of 𝒳.

Proof. By Proposition 3.27 it is closed under binary intersections, which acts as a meet.
Since 𝒳 is closed under completion Logℱ(ℱ(−)), the degree contains Logℱ(ℱ(Λ)).
By Proposition 3.16 it is a top element.
For the join, suppose Λ1, Λ2 ∈ deg𝒳

ℱ(Λ). Then Logℱ(ℱ(Λ)) extends both Λ1
and Λ2, hence also their join in 𝒳. By Proposition 3.15 this join is an element of
deg𝒳

ℱ(Λ).

3.5 An Infinite WF-Frame Degree
In this section we construct an infinite WF-frame degree over the Kripke complete
logics. In fact, the degree we will consider is the degree of GL.3.

Let 𝔉𝑛 ≔ ⟨𝑊𝑛, 𝑅𝑛⟩ be the frame where 𝑊𝑛 ≔ 𝜔 + 𝑛 and

𝑅𝑛 ≔ {⟨𝛼, 𝛽⟩ ∈ (𝑊𝑛)2 | 𝛽 < 𝛼} ∪ {⟨𝜔 + 𝑖, 𝜔 + 𝑗⟩ | 𝑖, 𝑗 ∈ {0, … , 𝑛}}.

Define Λ𝑛 ≔ Log(𝔉𝑛).
Note the following about these logics.

Lemma 3.29. Λ𝑛 ⊇ K4.3 ⊕ {¬gl → ⬦𝛿𝑚 | 𝑚 ∈ 𝜔}.

Proof. Clearly 𝔉𝑛 is transitive and linear, hence Log(𝔉𝑛) ⊇ K4.3. Note that in
𝔉𝑛, ¬gl is only satisfiable on points 𝜔 + 𝑖 for some 𝑖 ∈ {0, … , 𝑛}. Therefore ¬gl →
⬦𝛿𝑚 ∈ Log(𝔉𝑛) = Λ𝑛 for all 𝑚 ∈ 𝜔.

In fact, one can show that Λ0 = GL.3. This fact follows from Fine’s finite width
theorem and Fine’s selective filtration via maximal points method, which will be
discussed later in this thesis.

We first show that these logics are all in a single WF-frame degree. Next, we show
that they are in fact distinct logics, so the degree is infinite.
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Lemma 3.30. For any 𝑛 ∈ 𝜔, Frwf(Λ𝑛) = Frwf(Λ0).

Proof. (⊆) By Lemma 3.26 it suffices to prove the inclusion for rooted WF frames
instead of all WF frames. Let 𝔉 ∈ Frwf(Λ𝑛) be a rooted frame. Since K4.3 ⊆ Λ𝑛, 𝔉
is a transitive linear frame.
Suppose ¬gl is satisfiable on some point 𝑥 of 𝔉. By the previous lemma, 𝑥 sees

for each 𝑚 ∈ 𝜔 a point 𝑦𝑚 satisfying 𝛿𝑚. But by linearity these form a descending
sequence, contradicting the fact that 𝔉 is WF. Hence 𝔉 ⊨ gl.

Since 𝔉 ⊨ gl it is CWF and irreflexive points. Then 𝔉 is WF, CWF and linear, hence
finite. So 𝔉 is a finite irreflexive chain, hence a generated subframe of 𝔉0. Hence
𝔉 ∈ Frwf(Λ0).
(⊇) Define a function 𝑓∶ 𝔉𝑛,w → 𝔉0,w being the identity on 𝜔 and sending each

𝜔+𝑖 for 𝑖 ∈ {0, … , 𝑛} to 𝜔. Clearly 𝑓 is a surjective p-morphism. Therefore Λ𝑛 ⊆ Λ0,
and hence Frwf(Λ𝑛) ⊇ Frwf(Λ0).

The proof that the logics differ, is based on a generalised version of the formula 𝛿
from Chagrov and Zakharyaschev [11, Lemma 6.11].

Lemma 3.31. For every 𝑚, 𝑛 ∈ 𝜔, Λ𝑚 ≠ Λ𝑛.

Proof. We construct a formula 𝜑𝑛 such that 𝜑𝑛 ∈ Λ𝑖 iff 𝑖 < 𝑛. These formulas 𝜑𝑛
are a kind of generalisations of grz in that they are refutable on frames that are not
CWF and on frames with a cluster of size at least 𝑛.

In order to make defining 𝜑𝑛 easier, we introduce a kind of ‘counter’ formulas 𝛾−.
We go for simplicity instead of minimising the (finite) number of atomic propositions
used, by using a tally encoding. Let 𝑝− be an 𝜔-sequence of atomic propositions.
Define

𝛾𝑛 ≔ 𝑝0 ∧ … ∧ 𝑝𝑛−1 ∧ ¬𝑝𝑛.

These formulas 𝛾𝑛 have the property that always precisely one of them is true in a
given point in some Kripke model.

Now define

𝜑𝑛 ≔ ¬(𝛾0 ∧ ◻(𝛾0 → ⬦𝛾1) ∧ … ∧ ◻(𝛾𝑛−2 → ⬦𝛾𝑛−1) ∧ ◻(𝛾𝑛−1 → ⬦𝛾0)).

Clearly, if a transitive frame 𝔉 contains a cluster of size at least 𝑛 or an infinite
strictly-ascending sequence, then ¬𝜑𝑛 is satisfiable on 𝔉.
Conversely, suppose ¬𝜑𝑛 is satisfiable on 𝔉, say in a point 𝑥0 in a model 𝔐 on

𝔉. Then 𝔐, 𝑥0 ⊨ 𝛾0 and 𝔐, 𝑥0 ⊨ 𝛾0 → ⬦𝛾1. Hence there exists a successor 𝑥1 of
𝑥0 such that 𝔐, 𝑥1 ⊨ 𝛾1. Now 𝔐, 𝑥0 ⊨ ◻(𝛾1 → ⬦𝛾2) so 𝔐, 𝑥1 ⊨ ⬦𝛾2, hence 𝑥1
sees a point 𝑥2 such that 𝔐, 𝑥2 ⊨ 𝛾2. Continuing like this, we find an ascending 𝜔-
sequence 𝑥− such that 𝔐, 𝑥𝑖 ⊨ 𝛾𝑖 mod 𝑛, where 𝑖 mod 𝑛 is the smallest element of the
equivalence class of 𝑖 modulo 𝑛 in the natural numbers.

Suppose 𝔉 contains no cluster of size at least 𝑛. Let 𝑘 ∈ 𝜔. Then the points 𝑥𝑘⋅𝑛+𝑖
for 𝑖 ∈ {0, … , 𝑛 − 1} each satisfy a different 𝛾− formula. Since there is no cluster of
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this size, 𝑥𝑘⋅𝑛+𝑛−1 does not see 𝑥𝑘⋅𝑛. Hence the subsequence of 𝑥− where we restrict
to indices that are a multiple of 𝑛 is strictly-ascending.

Now note that 𝔉𝑖 is CWF and it has a cluster of size at least 𝑛 iff 𝑛 ≤ 𝑖. Therefore
𝜑𝑛 refutable on 𝔉𝑖 iff 𝑛 ≤ 𝑖. Hence 𝜑𝑛 ∈ Λ𝑖 iff 𝑖 < 𝑛.

We conclude:

Theorem 3.32. There is an infinite WF-frame degree over the Kripke complete
extensions of K4.3.

3.6 WF-Model Completeness

In the setting of finite frames, the finite frame completeness (known as the finite
frame property) and finite model completeness (known as the fmp) are equivalent
[see e.g. 7, Theorem 3.28]. In this section we will see that the analogous statement
is not true in the setting of WF completeness. In fact, we show that every normal
modal logic is WF-model complete. The proof is very straightforward, using the path
unravelling introduced in Section 2.12.

Theorem 3.33. Let Λ ∈ NExt(K). Then Λ is WF-model complete, and has singleton
WF-model degree over NExt(K).

Proof. Suppose ¬𝜑 ∉ Λ, i.e. 𝜑 is Λ-consistent. Since any logic is complete w.r.t. its
Kripke models (even descriptive frames), there exists a Kripke model 𝔐 that validates
Λ and satisfies 𝜑 in some point 𝑥. By Proposition 2.103 there exists a surjective p-
morphism 𝑓 from the path unravelling �⃗�fr of 𝔐fr to 𝔐fr. By Proposition 2.71 this
induces a p-morphism from a model 𝔐∗ on �⃗�fr to 𝔐. Then 𝔐∗ satisfies a formula
iff 𝔐 does so. Hence 𝔐∗ validates Λ and satisfies 𝜑 (in an 𝑓-preimage of 𝑥). By
construction �⃗�fr is a strict tree, and hence WF.

For the latter part, note that since every logic is complete, no two logics can share
a degree.

This shows that for pre-well-foundedness the frame versus model degree story is
completely different from that of finiteness. Every WF-model degree is singleton,
while WF-frame degrees can be infinite, even over the Kripke complete extensions of
K4, as Theorem 3.32 shows. In this regard the class of WF frames is more similar to
that of all frames, where frame and model degrees differ wildly. This also contrasts
strongly with CWF-model degrees, where continuum degrees exist, as we will see in
the next chapter. In fact, for converse pre-well-foundedness we leave it as an open
question whether CWF-frame and CWF-model completeness coincide.
In fact, regarding WF- and CWF-model completeness, we can show more. Using

a transfinite inductive construction, one can show that any CWF-frame complete
extension of K4 is complete for models that are simultaneously WF and CWF. The
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constructed model will be of infinite width in general though. While this might seem
unimportant compared to the above result, it does mean that simultaneous WF and
CWF model degrees behave rather different from finite-model degrees, even though
pre-well-foundedness and converse pre-well-foundedness conceptually correspond to,
in a sense, ‘downward and upward finiteness’ respectively. Also note that this does
not follow from a proof similar to the above, as taking any kind of tree-unravelling will
destroy the converse pre-well-foundedness. We omit this result for brevity though.
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Chapter 4

Degrees of Converse Pre-well-
foundedness

In the previous chapter we defined degrees of completeness in a general setting and
studied WF-degrees. In this chapter we turn to CWF-degrees.

4.1 Introduction

Compared to WF-degrees, that we briefly studied at the end of the previous chapter,
proofs about CWF-frame degrees require somewhat more elaborate constructions.
Therefore, we dedicate this entire chapter to the study of CWF-degrees.

Even though CWF-frame degrees have not been studied before, some results about
CWF-frame completeness are already known. Particularly notable is Fine’s finite
width theorem [20]. A frame 𝔉 is said to have finite width iff every anti-chain in 𝔉 is
finite. Now Fine’s finite width theorem states the following.

Theorem 4.1 (Fine’s finite width theorem; [20, Theorem 4]). Let Λ ⊇ K4 be a
modal logic that is complete w.r.t. its general frames of finite width. Then Λ is CWF-
frame complete (and hence Kripke complete).

The proof can be found in the original paper of Fine [20] or in Chagrov and
Zakharyaschev [11, Section 10.4].
Remark 4.2. Two remarks concerning the notion of finite width in this theorem are
in order. First, note that it is not required that all (rooted) frames of Λ are of finite
width. It is only required that there exists some class of general frames, each of
which (individually) has finite width, with respect to which Λ is sound and complete.
For example, the theorem applies to S4, since this logic has the fmp, so is complete
w.r.t. its finite general frames.1 Clearly a finite frame has finite width.

1Not that this would prove anything useful. Having the fmp is already stronger than the consequent
of the theorem, CWF-frame completeness.



4.2 Extensions of GL and Grz 45

Second, our definition of finite width is already somewhat peculiar, in that it
differs from having width bounded by a natural number 𝑛 ∈ 𝜔. That is, a frame
can have anti-chains of size 𝑛 for any 𝑛 ∈ 𝜔 and still be finite width, because it
fails to have a single infinite anti-chain. These two features make our formulation of
Fine’s finite width theorem the most general one, equivalent to how it is stated in
e.g. Theorem 10.43 in Chagrov and Zakharyaschev [11]. .

For CWF-frame degrees this theorem implies that every degree over NExt(K4BW𝑛)
is singleton, for 𝑛 ∈ 𝜔, where K4BW𝑛 = K4 ⊕ bw𝑛 is the logic of transitive
frames in which every rooted generated subframe contains no anti-chain of size > 𝑛.
Note how this differs from WF-frame degrees, where GL.3 has infinite degree over
NExt(K4.3) = NExt(K4BW1), as shown in Section 3.5.
The second known result we will mention, comes from the study of super-intui-

tionistic logics and modal companions. Shehtman [40, Theorem 1] shows that there
exists a Kripke complete super-intuitionistic logic Λ which is CWF-frame incomplete,
and whose largest modal companion (i.e. the unique modal companion extending
Grz) is Kripke incomplete. The proof of the latter can also be found in Chagrov and
Zakharyaschev [11, Theorem 6.27], and the former follows from it [33, Theorem 1].
Now it follows that the least modal companion of Λ is also Kripke complete but CWF-
frame incomplete [11, Theorem 9.70].
For CWF-frame degrees this means that there is a non-singleton degree over

Kripke ∩ NExt(S4), i.e. the Kripke complete extensions of S4. Later in this chapter,
we will generalise this statement to infinitely many continuum sized degrees.

This chapter is organised as follows. In Section 4.2 we prove a result that is
somewhat similar to Fine’s finite width theorem, in the sense that we give a sufficient
condition for a CWF-frame degree to be singleton. We will be working over Kripke ∩
NExt(K4), i.e. we show that the concerned degrees contain exactly one Kripke
complete extension of K4. In particular, any extension of GL or Grz satisfies the
sufficient condition, and hence has singleton degree over Kripke ∩ NExt(K4).

In Sections 4.3 and 4.4 we generalise the previously mentioned result that follows
from the work of Shehtman and Litak. First, in Section 4.3 we show the existence of a
Kripke complete but CWF-model incomplete logic. This proof also lays the foundations
for Section 4.4, where we show that there exist infinitely many continuum sized CWF-
model degrees over the extensions of S4, and also infinitely many continuum CWF-
frame degrees over the Kripke complete extensions of S4. The techniques used in
these two sections also turn out to be useful again in the next chapter, where we
study the recently introduced notion of quasi-canonicity.

4.2 Extensions of GL and Grz

In this section we investigate the CWF-degrees of extension of GL and Grz. We work
over Kripke complete extensions of K4. In particular we will prove both degrees to
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be singleton, as a corollary to a more general theorem.
The proof consist of several steps, where the goal is to turn a non-CWF frame into

a CWF frame with an infinite cluster by means of repeatedly taking p-morphic images
and generated subframes. Recall the definitions of the deep part and upper part of a
frame from Definitions 2.93 and 2.94.

Lemma 4.3. Let 𝔉 be a transitive frame such that 𝔉upper has a linear p-morphic
image2 and 𝔉deep is non-empty. Then there exists a generated subframe 𝔉3 of a p-
morphic image 𝔉2 of 𝔉 such that

(i) 𝔉deep
3 is non-empty, and

(ii) any point in 𝔉deep
3 sees all of 𝔉upper

3 .

Proof. By assumption there exists a linear p-morphic image 𝔊 of 𝔉upper. Obviously,
we can extend the p-morphism to a p-morphic image 𝔉2 = ⟨𝑊2, 𝑅2⟩ of 𝔉 such that
𝔉upper

2 = 𝔊.
Write Up(𝔊) for the set of upsets of 𝔊. Define a function

sp ∶ 𝑊2 → Up(𝔊) ∶ 𝑥 ↦ 𝑅2(𝑥) ∩ 𝔊w.

Note that since 𝔉2 is transitive, 𝑅2(𝑥) is an upset in 𝔉2, and hence also in the
generated subframe 𝔊. Again by transitivity, sp is monotone as a function from
𝔉deep

2 to ⟨Up(𝔊), ⊇⟩.
Note that ⟨Up(𝔊), ⊇⟩ is a linear frame since 𝔊 is linear. Since 𝔉upper is CWF and

𝔊 is a p-morphic image of it, by Proposition 2.98 𝔊 is CWF too. Hence ⟨Up(𝔊), ⊇⟩
is CWF.
With the axiom of choice one can construct an ascending sequence 𝑥∶ 𝜔 →

𝑊 deep
2 such that for any 𝑖 ∈ 𝜔 and 𝑦 ∈ 𝑅2(𝑥(𝑖)) ∩ 𝑊 deep

2 , if sp(𝑦) ⊊ sp(𝑥(𝑖)) then
sp(𝑥(𝑖 + 1)) ⊊ sp(𝑥(𝑖)).
Now sp ∘ 𝑥∶ ⟨𝜔, ≤⟩ → ⟨Up(𝔊), ⊇⟩ is a monotone function, 𝜔 is infinite and

⟨Up(𝔊), ⊇⟩ is CWF. Then sp ∘ 𝑥 is eventually constant, say from 𝑚 ∈ 𝜔 onward. By
construction of 𝑥 this means that for 𝑦 ∈ 𝑅2(𝑥(𝑚))∩𝑊 deep

2 we have sp(𝑦) = sp(𝑥(𝑚)).
Hence 𝑦 is sp-minimal.
Let 𝔉3 be the subframe of 𝔉2 generated by 𝑥(𝑚). Note that by transitivity

𝔉3,w = 𝑅2(𝑥(𝑚)). Clearly 𝔉deep
3 = 𝔉deep

2 ∩ 𝑅2(𝑥(𝑚)). Hence 𝔉deep
3,w is non-empty and

any 𝑦 ∈ 𝔉deep
3,w has sp(𝑦) = sp(𝑥(𝑚)) = 𝔉upper

3,w .

Lemma 4.4. Let 𝔉 be a transitive frame such that 𝔉deep is non-empty, and any
point in 𝔉deep sees all of 𝔉upper. Then there exists a generated subframe 𝔉3 of a p-
morphic image 𝔉2 of 𝔉 and a strictly-ascending sequence 𝑥∶ 𝜔 → 𝔉deep

3,w such that 𝑥
is cofinal in 𝔉deep

3 and any point in 𝔉deep
3 sees all of 𝔉upper

3 .
2A linear p-morphic image is a p-morphic image that is, as a frame, linear.
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Proof. Let 𝑥′ ∶ 𝜔 → 𝔉deep
w be a strictly-ascending sequence in 𝔉deep. Set 𝑋′ ≔

𝑅op({𝑥′(𝑖) | 𝑖 ∈ 𝜔}) and define an equivalence relation ∼ on 𝑊 by 𝑦 ∼ 𝑦′ iff

• 𝑦 = 𝑦′, or

• 𝑦, 𝑦′ ∈ 𝔉deep
w and 𝑦, 𝑦′ ∉ 𝑋′.

We claim ∼ is a bisimulation equivalence. For assume 𝑦, 𝑦′, 𝑧 ∈ 𝑊 such that 𝑦 ∼ 𝑦′,
𝑦 ≠ 𝑦′ and 𝑅(𝑦, 𝑧). Then 𝑦, 𝑦′ ∈ 𝔉deep

w and 𝑦, 𝑦′ ∉ 𝑋′. If 𝑧 ∈ 𝔉upper
w then 𝑅(𝑦′, 𝑧),

so assume 𝑧 ∈ 𝔉deep
w . Pick any successor 𝑧′ ∈ 𝔉deep

w of 𝑦′. Since 𝑋′ is a downset,
𝑧, 𝑧′ ∉ 𝑋′. Hence 𝑧 ∼ 𝑧′, as required.

Since ∼ is a bisimulation equivalence, it induces a surjective p-morphism 𝑓∶ 𝔉 → 𝔉2,
where 𝔉2 ≔ 𝔉/∼. Note that 𝑓 is injective on 𝑋′. We consider three cases:

Case 1. Suppose 𝔉deep
w ⊆ 𝑋′. Define 𝔉3 ≔ 𝔉2, 𝑥 ≔ 𝑥′ and note that 𝔉deep

3 = 𝑓(𝑋′).

Case 2. Suppose there exists some 𝑦 ∈ 𝔉deep
w ∖ 𝑋′, and for all 𝑖 ∈ 𝜔, 𝑓(𝑥(𝑖)) sees

𝑓(𝑦). Define 𝔉3 ≔ 𝔉2 and note that 𝑓(𝑦) ∈ 𝔉upper
3 . Hence 𝔉deep

3 = 𝑓(𝑋′). Define
𝑥 ≔ 𝑥′.

Case 3. Suppose there exists some 𝑦 ∈ 𝔉deep
w ∖ 𝑋′, and there exists 𝑚 ∈ 𝜔 such that

𝑓(𝑥′(𝑚)) does not see 𝑓(𝑦). Define 𝔉3 to be the subframe of 𝔉2 generated by 𝑥′(𝑚).
Define for all 𝑖 ∈ 𝜔, 𝑥(𝑖) ≔ 𝑥′(𝑚 + 𝑖).

Lemma 4.5. Let Λ be a Kripke complete extension of K4 such that

• any CWF Λ-frame has a linear p-morphic image, and

• any CWF Λ-frame has no infinite clusters.

Then any Λ-frame is CWF.

Proof. Let 𝔉 be any Λ-frame, and assume, in order to reach a contradiction, it is
not CWF. Since 𝔉upper is a generated subframe of 𝔉, it is a Λ-frame. By definition it
is CWF. Hence, by assumption, there exists a linear p-morphic image of 𝔉upper. By
Lemmata 4.3 and 4.4 there exists a Λ-frame 𝔊 = ⟨𝑊, 𝑅⟩ and a strictly-ascending
sequence 𝑥∶ 𝔊 → 𝑊 such that 𝑥 is cofinal in 𝔊deep and any point in 𝔊deep sees all
points in 𝔊upper.
Define a function 𝑓∶ 𝔊deep

w → 𝜔 by setting 𝑓(𝑦) to be the smallest 𝑚 ∈ 𝜔 such
that 𝑅(𝑦, 𝑥(𝑚)). Note that by cofinality of 𝑥 such 𝑚 always exists. Since 𝜔 forms
a wellorder, there exists a smallest. Since 𝑥 is strictly-ascending, 𝑓(𝑥(𝑖)) = 𝑖 for all
𝑖 ∈ 𝜔.
Let 𝑔∶ 𝜔 → 𝜔 be a surjective function such that for any 𝑚 ∈ 𝜔, the preimage

𝑔−1(𝑚) is infinite. Define an equivalence relation ∼ on 𝑊 by setting 𝑦 ∼′ 𝑦′ iff
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• 𝑦 = 𝑦′, or

• 𝑦, 𝑦′ ∈ 𝔊deep
w and (𝑔 ∘ 𝑓)(𝑦) = (𝑔 ∘ 𝑓)(𝑦′).

We claim this is a bisimulation equivalence. For assume 𝑦, 𝑦′, 𝑧 ∈ 𝑊 such that 𝑦 ∼ 𝑦′,
𝑦 ≠ 𝑦′ and 𝑅(𝑦, 𝑧). Then 𝑦, 𝑦′ ∈ 𝔊deep

w and 𝑓(𝑦) and 𝑓(𝑦′) are congruent modulo 𝑛.
If 𝑧 ∈ 𝔊upper

w then 𝑅(𝑦′, 𝑧), so assume 𝑧 ∈ 𝔊deep
w . Since 𝑔−1((𝑔 ∘ 𝑓)(𝑧)) is infinite, it

contains some 𝑚 > 𝑓(𝑦′). Then 𝑦′ sees 𝑥(𝑓(𝑦′)) sees 𝑥(𝑚), and

(𝑔 ∘ 𝑓)(𝑥𝑚) = 𝑔(𝑚) = (𝑔 ∘ 𝑓)(𝑧).

Hence 𝑧 ∼ 𝑥(𝑚).
Since ∼ is a bisimulation equivalence, 𝔊/∼ is a Λ-frame. Clearly it is a CWF frame

and has an infinite cluster. This contradicts the assumption.

We conclude that any logic as in the previous lemma has singleton CWF-degree:

Theorem 4.6. Let Λ be a Kripke complete extension of K4 such that

• any CWF Λ-frame has a linear p-morphic image, and

• any CWF Λ-frame has no infinite clusters.

Then the CWF-frame degree of Λ equals its Kripke-frame degree,3 i.e.

degNExt(K4)
Frcwf

(Λ) = degNExt(K4)
Fr (Λ).

In other words, the CWF-frame degree contains only a single Kripke complete logic:

degNExt(K4)∩Kripke
Frcwf

(Λ) = {Λ}.

Proof. Let Λ′ ∈ degNExt(K4)∩Kripke
Frcwf

(Λ). We show that Λ′ is complete w.r.t. its CWF
frames. Note that since Λ′ is Kripke complete, it suffices to show that every Λ′-frame
is CWF. By Lemma 4.5, it suffices to show that any CWF frame of Λ′ has a linear p-
morphic image and finite clusters. Note that Λ has these properties by assumption,
and Frcwf(Λ′) = Frcwf(Λ).

To apply this theorem, we need to establish linear p-morphic images. Two im-
portant classes of frames with this property are reflexive frames and irreflexive
frames.

Proposition 4.7. Let 𝔉 be a reflexive frame. Then 𝔉 has a linear p-morphic image.

Proof. Trivial, since the reflexive point is a p-morphic image of 𝔉.
3That is, the degree of incompleteness as Fine [19] introduced, but taking the set of logics instead of
the cardinality.
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Proposition 4.8. Let 𝔉 be an irreflexive transitive CWF frame. Then 𝔉 has a linear
p-morphic image.

Proof. Write 𝔉 = ⟨𝑊, 𝑅⟩. Define an equivalence relation ∼ on 𝑊 by 𝑥 ∼ 𝑦 iff 𝑥 = 𝑦
or 𝑥, 𝑦 ∈ 𝑊 and depth𝔉(𝑥) = depth𝔉(𝑦). It is a bisimulation equivalence, for assume
𝑥 ∼ 𝑥′ and 𝑦 ∈ 𝑅(𝑥). Assume w.l.o.g. 𝑥 ≠ 𝑥′. Then 𝑥, 𝑥′ ∈ 𝑊 and depth𝔉(𝑥) =
depth𝔉(𝑥′). Now depth𝔉(𝑦) < depth𝔉(𝑥), and since depth𝔉(𝑥′) = depth𝔉(𝑥), there
exists 𝑦′ ∈ 𝑅(𝑥′) with depth𝔉(𝑦′) = depth𝔉(𝑦). Hence 𝑦 ∼ 𝑦′ as required.
We show that 𝔉/∼ is linear. Write 𝑓 for the quotient map, and let 𝑥, 𝑦 ∈ 𝔉w,

and assume w.l.o.g. depth𝔉(𝑥) ≤ depth𝔉(𝑦). If depth𝔉(𝑥) = depth𝔉(𝑦) then 𝑥 ∼ 𝑦
so 𝑓(𝑥) = 𝑓(𝑦). So suppose depth𝔉(𝑥) < depth𝔉(𝑦). Then 𝑦 sees a point 𝑦′ with
depth𝔉(𝑦′) = depth𝔉(𝑥). Therefore 𝑦′ ∼ 𝑥, so 𝑓(𝑦) sees 𝑓(𝑦′) = 𝑓(𝑥).

Since GL-frames are irreflexive and Grz-frames are reflexive, the requirement of
linear p-morphic images is satisfied. Note that GL-frames have no non-degenerate
clusters and Grz-frames have no clusters of size ≥ 2, so they do not contain infinite
clusters. From Theorem 4.6 we conclude:

Corollary 4.9. Let Λ be a Kripke complete extension of GL or Grz. Then

degNExt(K4)∩Kripke
Frcwf

(Λ) = {Λ}.

4.3 CWF-Model Incompleteness
In this section and the next we construct continuumly many continuum sized CWF-
frame degrees over the Kripke complete extensions of S4. The approach is as follows.
We start syntactically, by considering a kind of syntactic version of CWF-model
incompleteness, as a set of axioms and a single ‘non-axiom’. Next, we prove that
Kripke complete logics with these properties exist, by giving a frame, or in fact
continuumly many, that validates these axioms and refutes the non-axiom. We
conclude that there is a Kripke complete but CWF-model incomplete logic. In the
next section we show, using the same frames and the properties we established about
them in this section, that there exist infinitely many continuum sized CWF-model
degrees.

CWF-incompleteness syntactically. We start by considering a kind of syntactic
version of CWF-model incompleteness. Recall that a logic Λ being CWF-model
incomplete means that there exists some formula 𝜑0 such that ¬𝜑0 ∉ Λ but 𝜑0 is
not satisfiable on a CWF-model of Λ. In other words, if 𝜑0 is satisfied in a model 𝔐,
then there exists an infinite strictly-ascending sequence in 𝔐fr.

Each point in a 𝜔-sequence can be modelled as a formula 𝜑𝑛. The monotonicity of
the sequence can then be described by implications 𝜑𝑛 → ⬦𝜑𝑛+1, i.e. each point in the
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sequence sees the next one. For the strictness, no point must see any of the previous
points. This can globally be described by implications 𝜑𝑛 → ⋀{¬⬦𝜑𝑖 | 𝑖 < 𝑛}.
Alternatively, as a more local approach, one can change the implications describing
the monotonicity to

𝜑𝑛 → ⬦(𝜑𝑛+1 ∧ ⋀{¬⬦𝜑𝑖 | 𝑖 ≤ 𝑛}).

Proposition 4.10. Let 𝜑− be a 𝜔-sequence of modal formulas and Λ a modal logic
such that for all 𝑛 ∈ 𝜔,

𝜑𝑛 → ⬦𝜑𝑛+1, 𝜑𝑛 → ⋀{¬⬦𝜑𝑖 | 𝑖 < 𝑛} ∈ Λ. (4.1)

Then 𝜑0 is not satisfiable on a CWF model of Λ. If ¬𝜑0 ∉ Λ then Λ is CWF-model
incomplete.

Proof. Suppose 𝜑0 is satisfied on a Kripke model 𝔐 of Λ. We show that 𝔐fr is not
CWF.
We construct, by induction on 𝑛 ∈ 𝜔, a strictly-ascending 𝜔-sequence 𝑥− such that

for all 𝑛, 𝔐, 𝑥𝑛 ⊨ 𝜑𝑛. For the basis, pick 𝑥0 in 𝔐 which satisfies 𝜑0.
For the inductive step, assume 𝑥𝑛 is already defined, 𝑥0, … , 𝑥𝑛 is strictly-ascending

and 𝔐, 𝑥𝑖 ⊨ 𝜑𝑖 for all 𝑖 ≤ 𝑛. Since 𝔐 is a Λ-model,

𝔐, 𝑥𝑛 ⊨ 𝜑𝑛 → ⬦𝜑𝑛+1.

By the induction hypothesis the antecedent 𝜑𝑛 is satisfied, hence 𝑥𝑛 sees a point
𝑥𝑛+1 such that 𝔐, 𝑥𝑛+1 ⊨ 𝜑𝑛+1. Then 𝑥0, … , 𝑥𝑛+1 is an ascending sequence. It is
strict since 𝔐, 𝑥𝑛+1 ⊨ ⋀{¬⬦𝜑𝑖 | 𝑖 < 𝑛 + 1}, so it cannot see any 𝑥𝑖 with 𝑖 < 𝑛 + 1,
as 𝑥𝑖 satisfies 𝜑𝑖.

Hence there exists a strictly-ascending sequence in 𝔐fr, so it is not CWF.

Let us remark that this syntactic description of converse pre-well-foundedness
really captures its essence, and can be used to define analogues of converse pre-well-
foundedness in other semantics for modal logic, such as modal algebra semantics and
topological semantics. For example, one can call a modal algebra 𝔄 CWF iff there
exists no 𝜔-sequence 𝑎− of elements of 𝔄 such that, for all 𝑛 ∈ 𝜔,

𝑎𝑛 ≤ ⬦𝑎𝑛+1 and 𝑎𝑛 ≤ ⋀{¬⬦𝑎𝑖 | 𝑖 < 𝑛}.

As a second example, in joint work with Takapui [42] we explore the connection with
scattered spaces in topological d-semantics.
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• • • ⋯ ‘ladder’

• • • ⋯ anti-chain

• • • ⋯ strictly-ascending sequence

Figure 4.1: Global idea for constructing a transitive frame whose logic satisfies the require-
ments of Proposition 4.10. It consists of an infinite strictly-ascending sequence
at the bottom, an infinite anti-chain in the middle, and an infinite descending
ladder at the top. Transitive arrows are omitted.

Sketch of the frame construction. Now ‘all’ we have to do is find a logic Λ and
a sequence of formulas 𝜑− that satisfy the assumptions of Proposition 4.10. Since we
want a Kripke complete logic, we will define the logic Λ to be the logic of a frame
𝔉. Obviously this frame 𝔉 cannot be CWF, so it must contain an infinite strictly-
ascending sequence. Moreover, by Fine’s finite width theorem, 𝔉 must contain an
infinite anti-chain. These two requirements and the formulation of Proposition 4.10
will guide the construction of the frame 𝔉.

By Proposition 4.10 we want to have a strictly-ascending sequence in which each
point is ‘characterised’ by a formula. Fine’s finite width theorem and its proof suggest
that we should describe these points by the points that they see in an infinite anti-
chain. The most natural way to characterize the points of the anti-chain by formulas,
is to have them look into some kind of ladder at various depths. This leads to a
construction like the one depicted in Figure 4.1.

The ladder. As announced at the start of the section, we want our CWF-incomplete
logic to extend S4. Therefore, our frame 𝔉 needs to be reflexive. This means that
we cannot ‘measure’ depth using formulas in a simple infinite strictly-descending
sequence.4 Hence, we need a more complicated ladder.
The intuition here is that we need a ladder where no two distinct points can be

identified using a p-morphism, except when two final points in the ladder are also
identified. This can be achieved using a ladder of ‘width 3’, in which we have a ‘layer’
of three final points, and then for each layer, a layer of three points below it, where
the points each see a different subset of two points in the layer above.

More formally, define 𝔉l ≔ ⟨𝑊l, 𝑅l⟩ as follows. Set

𝑊l ≔ 𝜔 × 3,

and name these points 𝑎𝑖
𝑛 ≔ ⟨𝑛, 𝑖⟩. Define to 𝑅 be the reflexive transitive closure of

{⟨𝑎𝑖
𝑛+1, 𝑎𝑗

𝑛⟩ ∣ 𝑛 ∈ 𝜔, 𝑖, 𝑗 ∈ 3, 𝑖 ≠ 𝑗}.
4In the irreflexive setting this would be possible: the point at depth 𝑛 precisely satisfies ◻𝑛+1⊥∧⬦𝑛⊤.
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𝑎0
0 𝑎2

1 𝑎0
2 𝑎2

3 ⋯

𝑎1
0 𝑎1

1 𝑎1
2 𝑎1

3 ⋯

𝑎2
0 𝑎0

1 𝑎2
2 𝑎0

3 ⋯

Figure 4.2: The reflexive and transitive ladder 𝔉l. Note that the direction in which the
upper index increases alternates between top to bottom and bottom to top.

This frame is depicted in Figure 4.2.
Suppose that each of the the final points 𝑎−

0 is characterised by an atomic propos-
ition. Then each of the points 𝑎−

− can be characterised by a formula 𝛼−
−. For this,

assume formulas 𝛼𝑖
0 for 𝑖 ∈ 3 are given. Define, by induction on 𝑛 ∈ 𝜔,

𝛼𝑖
𝑛+1 ≔ ¬⬦𝛼𝑖

𝑛 ∧ ⋀{⬦𝛼𝑗
𝑛 ∣ 𝑗 ∈ 3, 𝑗 ≠ 𝑖}.

Proposition 4.11. Let 𝔐 be a model on 𝔉l and 𝛼𝑖
0 formulas for 𝑖 ∈ 3 such

that 𝔐, 𝑤 ⊨ 𝛼𝑖
0 iff 𝑤 = 𝑎𝑖

0. Then for all ⟨𝑛, 𝑖⟩, 𝑤 ∈ 𝑊l,

𝔐, 𝑤 ⊨ 𝛼𝑖
𝑛 iff 𝑤 = 𝑎𝑖

𝑛.

Proof. By a trivial induction.

A CWF-incomplete logic. We combine this ladder with an infinite anti-chain
and an ascending sequence as described. In fact, we construct a family of frames by
varying the ascending sequence at the bottom.

Let us call a function 𝑓∶ 𝜔 → 𝜔 + 1 admissible iff it is nowhere 0 and 𝑓(0) = 1.
Define, for a given admissible function 𝑓, the frame 𝔉𝑓 = ⟨𝑊𝑓, 𝐹𝑓⟩ by adding to 𝔉l
new distinct points 𝑏𝑛 for each 𝑛 ∈ 𝜔 and 𝑐𝑖

𝑛 for each 𝑛 ∈ 𝜔 and 𝑖 ∈ 𝑓(𝑛). Let 𝑅𝑓 be
the reflexive transitive closure of

𝑅l ∪ {⟨𝑐𝑖
𝑛, 𝑏𝑛⟩, ⟨𝑏𝑛, 𝑎𝑗

𝑛⟩ ∣ 𝑛 ∈ 𝜔, 𝑖 ∈ 𝑓(𝑛), 𝑗 ∈ 3} ∪ {⟨𝑐𝑖
𝑛, 𝑐𝑗

𝑛⟩ ∣ 𝑛 ∈ 𝜔, 𝑖, 𝑗 ∈ 𝑓(𝑛)}.

An example of such a frame is shown in Figure 4.3.
The proof now consists of roughly three steps. First we define a valuation on 𝔉𝑓,

and in a sense characterise this valuation by a modal formula. Second, under this
valuation, we characterise the points of 𝔉𝑓 by formulas. This will give us a formula 𝛾𝑛
that precisely characterises the points 𝑐−

𝑛 . Finally we combine the characterisations
of the valuation and the points 𝑐−

𝑛 into formulas 𝜑𝑛 as in Proposition 4.10.
We want to characterise each of the 𝑎−

0 by an atomic proposition, so let 𝑝0, … , 𝑝2
be distinct atomic propositions. Since the points 𝑎−

0 are ‘indistinguishable from each
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𝑎0
0 𝑎2

1 𝑎0
2 𝑎2

3 ⋯

𝑎1
0 𝑎1

1 𝑎1
2 𝑎1

3 ⋯

𝑎2
0 𝑎0

1 𝑎2
2 𝑎0

3 ⋯

𝑏0 𝑏1 𝑏2 𝑏2 ⋯

𝑐0
0 𝑐0

1 𝑐0
2 𝑐0

3 ⋯

𝑐1
1 𝑐1

2

Figure 4.3: The reflexive and transitive frame 𝔉𝑓, in case 𝑓(0) = 𝑓(3) = 1 and 𝑓(1) =
𝑓(2) = 2.
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other’, we define a valuation for each permutation of the atomic propositions. For a
permutation 𝜎∶ 3 → 3, define a valuation

𝔙𝜎(𝑝𝑖) ≔ {𝑎𝜎(𝑖)
0 }.

Write 𝔐𝑓,𝜎 ≔ ⟨𝔉𝑓, 𝔙𝜎⟩.
We characterise these valuations using a modal formula 𝜓0. Define

𝜓1 ≔ ⋀{◻(𝑝𝑖 → ¬𝑝𝑗) ∣ 𝑖, 𝑗 ∈ 3, 𝑖 ≠ 𝑗},

𝜓2 ≔ ⋀{◻(𝑝𝑖 → ◻𝑝𝑖) | 𝑖 ∈ 3},

𝜓3 ≔ ⋀{⬦𝑝𝑖 | 𝑖 ∈ 3},
𝜓0 ≔ 𝜓1 ∧ 𝜓2 ∧ 𝜓3.

The ‘characterisation’ is given by the following two lemmata.

Lemma 4.12. Let 𝑓 be an admissible function and 𝜎∶ 3 → 3 a permutation. Then
for all 𝑛 ∈ 𝜔 and 𝑗 ∈ 𝑓(𝑛),

𝔐𝑓,𝜎, 𝑐𝑗
𝑛 ⊨ 𝜓0.

Proof. Easy to check.

Lemma 4.13. Let 𝑓 be admissible, 𝑤 ∈ 𝑊𝑓 and 𝔉 = ⟨𝑊, 𝑅⟩ the subframe of 𝔉𝑓
generated by 𝑤. Let 𝔐 = ⟨𝔉, 𝔙⟩ be a model on 𝔉 such that 𝔐, 𝑤 ⊨ 𝜓0. Then 𝑎𝑖

0 ∈ 𝑊
for all 𝑖 ∈ 3. Moreover, there exists a permutation 𝜎∶ 3 → 3 such that for all 𝑖 ∈ 3,
𝔙(𝑝𝜎(𝑖)) = {𝑎𝑖

0}.

Proof. By 𝜓1 the sets 𝔙(𝑝𝑖) are disjoint, by 𝜓2 they are upsets and by 𝜓3 they are
non-empty. Since in 𝔉𝑓 every upset contains one of the three final points 𝑎𝑖

0, we see
that 𝑎𝑖

0 ∈ 𝑊 and 𝑎𝑖
0 ∈ 𝔙(𝑝𝜎(𝑖)) for some permutation 𝜎∶ 3 → 3. Now note that in 𝔉𝑓,

any non-final point sees at least two final points. By the disjointness it follows that
𝔙(𝑝𝜎(𝑖)) = {𝑎𝑖

0}.

Hence we can use 𝑝𝜎(𝑖) as the formula 𝛼𝑖
0 describing 𝑎𝑖

0. Now the formulas 𝛼𝑖
𝑛

defined earlier are satisfied precisely in the point 𝑎𝑖
𝑛. Having these formulas dependent

on the permutation 𝜎 however can be problematic. Therefore we define 𝛼𝑖
0 ≔ 𝑝𝑖

independent of such permutation. For points outside the ladder of 𝑎−
− points, the

permutation is irrelevant, as they always see either all or none of the 𝑎−
𝑛 .

Lemma 4.14. Let 𝑓 be admissible, 𝜎∶ 3 → 3 a permutation. Then for all 𝑛 ∈ 𝜔, 𝑖 ∈ 3,
and 𝑤 ∈ 𝑊𝑓 we have

(i) 𝔐𝑓,𝜎, 𝑤 ⊨ 𝛼𝜎(𝑖)
𝑛 iff 𝑤 = 𝑎𝑖

𝑛,

(ii) 𝔐𝑓,𝜎, 𝑤 ⊨ ⋀{⬦𝛼𝑖
𝑛 | 𝑖 ∈ 3} iff for all 𝑖 ∈ 3, 𝑅(𝑤, 𝑎𝑖

𝑛), and
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(iii) 𝔐𝑓,𝜎, 𝑤 ⊨ ⋀{¬⬦𝛼𝑖
𝑛 | 𝑖 ∈ 3} iff for all 𝑖 ∈ 3, ¬𝑅(𝑤, 𝑎𝑖

𝑛).

Proof. Clearly, the latter two statements trivially follow from the first.
When 𝑤 is one of the 𝑎-points, this follows by induction on 𝑛, like in Proposition 4.11.

Any other point sees 𝑎𝑗
𝑚 for some 𝑗 iff it sees it for all 𝑗. Hence it cannot satisfy any

𝛼𝑗
𝑚+1 for any 𝑚 and 𝑗. Since 𝛼𝑗

0 is only satisfied in a final 𝑎-point, that concludes
the proof.

The notable fact about the latter two statements is that they are independent of
𝜎. This allows us to characterise the 𝑏− and 𝑐−

− points of 𝔉𝑓 by formulas. Define, for
𝑛 ∈ 𝜔,

𝛽𝑛 ≔ ⋀{𝛼𝑖
𝑛 | 𝑖 ∈ 3} ∧ ⋀{¬⬦𝛼𝑖

𝑛+1 | 𝑖 ∈ 3},
𝛾0 ≔ ⬦𝛽0,

𝛾𝑛+1 ≔ ⬦𝛽𝑛+1 ∧ ¬⬦𝛽𝑛,
𝜑𝑛 ≔ 𝜓0 ∧ 𝛾𝑛.

Lemma 4.15. Let 𝑓 be admissible, 𝜎∶ 3 → 3 a permutation. Then for all 𝑛 ∈ 𝜔
and 𝑤 ∈ 𝑊𝑓 we have

(i) 𝔐𝑓,𝜎, 𝑤 ⊨ 𝛽𝑛 iff 𝑤 = 𝑏𝑛, and

(ii) 𝔐𝑓,𝜎, 𝑤 ⊨ 𝛾𝑛 iff 𝑤 ∈ {𝑐𝑖
𝑛 | 𝑖 ∈ 𝑓(𝑛)}.

Proof.

(i) Trivial, as 𝑏𝑛 is the only point that sees all 𝑎−
𝑛 but none of the 𝑎−

𝑛+1.

(ii) Follows from the first statement and the fact that the 𝑐−
𝑛 are the only points

seeing 𝑏𝑛 but not 𝑏𝑛−1 (when 𝑛 ≥ 1).

Finally we want to show that the formulas from Proposition 4.10 are valid on 𝔉𝑓.
We first show this for 𝔐𝑓,𝜎, and then use the characterising property of 𝜓0 to extend
this to all models on 𝔉𝑓.

Lemma 4.16. Let 𝑓 be admissible, 𝜎∶ 3 → 3 a permutation, 𝑛 ∈ 𝜔. Then

𝔐𝑓,𝜎 ⊨ 𝜑𝑛 → ⬦𝜑𝑛+1, and

𝔐𝑓,𝜎 ⊨ 𝜑𝑛 → ⋀{¬⬦𝜑𝑖 | 𝑖 < 𝑛}.

Proof. By Lemma 4.12, 𝜓0 is satisfied in all 𝑐−
−, and by Lemma 4.15 𝛾𝑛 is satisfied

precisely on the 𝑐−
𝑛 points. Hence 𝜑𝑛 is satisfied precisely on the 𝑐−

𝑛 points, and the
claim easily follows.
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Proposition 4.17. Let 𝑓 be an admissible function. Then ¬𝜑0 ∉ Log(𝔉𝑓) and

{𝜑𝑛 → ⬦𝜑𝑛+1, 𝜑𝑛 → ⋀{¬⬦𝜑𝑖 | 𝑖 < 𝑛} ∣ 𝑛 ∈ 𝜔} ⊆ Log(𝔉𝑓).

Proof. For ¬𝜑0 ∉ Log(𝔉𝑓), note that 𝜑0 = 𝜓0∧𝛾0 is satisfiable on 𝔉𝑓. By Lemma 4.12
𝔐𝑓,𝜎, 𝑐0

0 ⊨ 𝜓0 for some permutation 𝜎∶ 3 → 3, e.g. the identity on 3. By Lemma 4.15
𝔐𝑓,𝜎, 𝑐0

0 ⊨ 𝛾0.
For the second claim, let 𝑛 ∈ 𝜔. Then both formulas have 𝜑𝑛 = 𝜓0 ∧ 𝛾𝑛 as

antecedent. Let 𝔐 be a model on 𝔉𝑓 and 𝑥 a point of 𝔉𝑓 such that 𝔐, 𝑥 ⊨ 𝜑𝑛.
By Lemma 4.13 there exists a permutation 𝜎∶ 3 → 3 such that 𝔐 = 𝔐𝑓,𝜎. Now
applying the previous proposition finishes the proof.

By this proposition, Log(𝔉𝑓) satisfies all the requirements of Proposition 4.10.
Hence Log(𝔉𝑓) is CWF-model incomplete. Since it is the logic of a frame, it is Kripke
complete.

4.4 Continuum CWF-Degrees
We continue to work towards our end-goal of proving the existence of continuum
CWF-degrees. In fact we prove two similar statements. First, there exist infinitely
many continuumly sized CWF-model degrees over the extensions of S4. Second, there
exists infinitely many continuumly sized CWF-frame degrees over the Kripke complete
extensions of S4. Note that neither statement implies the other. The proofs for these
two statements are very similar. In fact, we will only prove the former in detail, and
afterwards note the modifications to make to this proof in order to prove the second
result.

Using the frames 𝔉𝑓 introduced in the previous section, we introduce continuumly
many Kripke complete logics that share their CWF-model degree. Proving that these
logics are all distinct actually turns out to be the hardest part. Here the results from
the previous section will come to the rescue. Finally, we extend the result from a
single degree to infinitely many degrees.

The logics. Let us endow the admissible functions with the pointwise ordering,
denoted by ≤. Clearly, when 𝑓 ≤ 𝑔 then 𝔉𝑓 is a subframe of 𝔉𝑔. In fact it is also a p-
morphic image.

Lemma 4.18. Let 𝑓, 𝑔 be admissible functions with 𝑓 ≤ 𝑔. Then 𝔉𝑓 is a p-morphic
image of 𝔉𝑔.

Proof. Trivial, since for all 𝑖, 𝑗 ∈ 𝑔(𝑛),

𝑅𝑔(𝑐𝑖
𝑛) ∖ {𝑐𝑖

𝑛} = 𝑅𝑔(𝑐𝑗
𝑛) ∖ {𝑐𝑗

𝑛},

so they can be identified as needed by a p-morphism.
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We define the logics that will serve as elements for the degrees. For 𝑓, 𝑔 admissible
with 𝑓 ≤ 𝑔, define

𝐿𝑔
𝑓 ≔ Log(𝔉𝑓) ∩ Log(gFrcwf(Log(𝔉𝑔))).

This is the logic of the frame 𝔉𝑓 and all CWF general frames of Log(𝔉𝑔).
These logics are constructed so that for a constant 𝑔 and varying 𝑓, they have the

same CWF general frames (and hence Kripke models):

Lemma 4.19. Let 𝑓, 𝑔 be admissible functions with 𝑓 ≤ 𝑔. Then

(i) gFrcwf(𝐿
𝑔
𝑔) = gFrcwf(Log(𝔉𝑔)),

(ii) gFr(𝐿𝑔
𝑓) ⊆ gFr(𝐿𝑔

𝑔), and

(iii) gFrcwf(𝐿𝑔
𝑓) = gFrcwf(𝐿

𝑔
𝑔).

Proof.

(i) By Proposition 3.9 (vi), Log(𝔉𝑔) ⊆ Log(gFrcwf(Log(𝔉𝑔))). Therefore

𝐿𝑔
𝑔 = Log(𝔉𝑔) ∩ Log(gFrcwf(Log(𝔉𝑔))) ⊆ Log(𝔉𝑔) = Log(𝔉𝑔) ∩ Log(𝔉𝑔)

⊆ Log(𝔉𝑔) ∩ Log(gFrcwf(Log(𝔉𝑔))) = 𝐿𝑔
𝑔,

so 𝐿𝑔
𝑔 = Log(𝔉𝑔).

(ii) Clearly, it suffices to show Log(𝔉𝑓) ⊆ Log(𝔉𝑔). This is the case since, by
Lemma 4.18, 𝔉𝑓 is a p-morphic image of 𝔉𝑔.

(iii) The ⊆ inclusion immediately follows from (ii). For the ⊇ inclusion, note that
by (i), gFrcwf(𝐿

𝑔
𝑔) = gFrcwf(Log(𝔉𝑔)). Now let 𝔣 ∈ gFrcwf(Log(𝔉𝑔)). Then it is

a general frame of Log(gFrcwf(Log(𝔉𝑔))), and hence of 𝐿𝑔
𝑓.

Hence for a given admissible function 𝑔, the logics 𝐿𝑔
− are in a single CWF-model

degree. For 𝑔∶ 𝜔 → 𝜔 + 1 that sends 0 to 1 and all other numbers to 2, there are
continuumly many admissible functions 𝑓 ≤ 𝑔. It is tempting to conclude that the
CWF-model degree of 𝐿𝑔

𝑔 is continuumly sized. However, this requires one more
property: all 𝐿𝑔

− are distinct. We will prove this using Propositions 4.10 and 4.17.
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Differentiating the logics. Let 𝑞− be an injective sequence of atomic propositions
all distinct from 𝑝0, … , 𝑝2. Define, for 𝑚, 𝑛 ∈ 𝜔, formulas

𝜒𝑚
𝑛 ≔ (◻(⋀{𝑞𝑖 → ¬𝑞𝑗 ∣ 𝑖, 𝑗 ∈ 𝑚, 𝑖 ≠ 𝑗}) ∧ ⋀{⬦(𝛾𝑛 ∧ 𝑞𝑖) | 𝑖 ∈ 𝑚})

→ ◻(𝛾𝑛 → ⋁{𝑞𝑖 | 𝑖 ∈ 𝑚}).

A rooted transitive frame validates 𝜒𝑚
𝑛 iff in any model on it, there are at most 𝑚

points satisfying 𝛾𝑛.

Lemma 4.20. Let 𝑓 be admissible, 𝑚, 𝑛 ∈ 𝜔. Then 𝔉𝑓 ⊨ 𝜑0 → 𝜒𝑚
𝑛 iff 𝑓(𝑛) ≤ 𝑚.

Proof. Easy, since 𝜑0 can be satisfied precisely in and only in 𝑐0
0 with one of the

valuations 𝔙𝜎. Under this valuation precisely the points 𝑐−
𝑛 satisfy 𝛾𝑛, so there are

precisely 𝑓(𝑛) distinct points satisfying 𝛾𝑛.

Lemma 4.21. Let 𝑓, 𝑔 be admissible, 𝑚, 𝑛 ∈ 𝜔. Then 𝜑0 → 𝜒𝑚
𝑛 ∈ 𝐿𝑔

𝑓 iff 𝑓(𝑛) ≤ 𝑚.

Proof. (⇒) Since 𝔉𝑓 is a frame of 𝐿𝑔
𝑓 this follows immediately from the previous

lemma.
(⇐) Assume 𝑓(𝑛) ≤ 𝑚. By the previous lemma 𝜑0 → 𝜒𝑚

𝑛 ∈ Log(𝔉𝑓). Hence
it suffices to show 𝜑0 → 𝜒𝑚

𝑛 ∈ Log(gFrcwf(Log(𝔉𝑔))). But by Propositions 4.10
and 4.17 ¬𝜑0 is valid on any CWF model of Log(𝔉𝑔), so ¬𝜑0 ∈ Log(gFrcwf(Log(𝔉𝑔))).
It follows that any implication with 𝜑0 as antecedent is also in the logic.

Hence these logics differ, i.e. 𝐿𝑔
𝑓 is injective in 𝑓. We conclude:

Proposition 4.22. Let 𝑔 be an admissble function such that 𝑔(𝑛) ≥ 2 for infinitely
many 𝑛 ∈ 𝜔. Then Log(𝔉𝑔) has a continuumly sized CWF-model degree over
NExt(S4).

Proof. Clearly there are continuumly many admissible functions 𝑓 under 𝑔. By
Lemma 4.19 all 𝐿𝑔

𝑓 have the same class of CWF general frames and hence CWF Kripke
models, so they are in a single CWF-model degree.
The frames 𝔉𝑓 are preorders so Log(𝔉𝑓) extends S4. By Proposition 3.9 (vi),

Log(gFrcwf(Log(𝔉𝑔))) extends Log(𝔉𝑓). Hence 𝐿𝑔
𝑓 ≔ Log(𝔉𝑓)∩Log(gFrcwf(Log(𝔉𝑔)))

extends S4. Finally, by Lemma 4.21 the map 𝑓 ↦ 𝐿𝑔
𝑓 is injective.

CWF-frame degrees. For the analogous result about CWF-frame degrees over
Kripke complete extensions of S4, we define slightly different logics. For 𝑓, 𝑔 admiss-
ible with 𝑓 ≤ 𝑔, define

𝐿′𝑔
𝑓 ≔ Log(𝔉𝑓) ∩ Log(Frcwf(Log(𝔉𝑔))).
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The only difference with 𝐿𝑔
𝑓 is that we take CWF Kripke frames instead of CWF

general frames.
An analogue of Lemma 4.21 where 𝐿−

− is replaced by 𝐿′−
− follows with the exact

same proof. In Lemma 4.19 all mentions of general frame classes need to be replaced
by Kripke frame classes. The analogue of Proposition 4.22 becomes the following.

Proposition 4.23. Let 𝑔 be an admissble function such that 𝑔(𝑛) ≥ 2 for infinitely
many 𝑛 ∈ 𝜔. Then Log(𝔉𝑔) has a continuumly sized CWF-frame degree over
Kripke ∩ NExt(S4).

Again, the proof goes analogous to that of Proposition 4.22. As an extra step, we
need to show that 𝐿′𝑔

𝑓 is Kripke complete. For this, note that it is defined as the
intersection of two logics of frame classes. As the intersection of Kripke complete
logics is Kripke complete, we are done.

Infinitely many degrees. Finally we show that there exists infinitely many of
these CWF-degrees. Note that if two logics have the same CWF-frame degree then they
also have the same CWF-model degree. Therefore, by Propositions 4.22 and 4.23, it
suffices to show that there exist infinitely many admissible functions 𝑔 with 𝑔(𝑛) ≥ 2
for infinitely many 𝑛, such that each of the Log(𝔉𝑔) has a different CWF-frame degree.

Define a sequence of admissible functions 𝑔− by

𝑔𝑛(𝑖) ≔
⎧{
⎨{⎩

1 if 𝑖 = 0,
𝑛 + 2 if 𝑖 = 1,
2 otherwise.

Then every 𝑔𝑛 is admissible and 𝑔𝑛(𝑖) ≥ 2 for infinitely many 𝑖.
We use Fine-Rautenberg formulas, as introduced in Theorem 2.76, to show that

for 𝑚 ≠ 𝑛, the logics Log(𝔉𝑚) and Log(𝔉𝑛) have different classes of CWF frames. Let
𝔊𝑛 a reflexive transitive frame consisting of a root 𝑑0, above it an anti-chain of 𝑛 + 2
points 𝑒0, … , 𝑒𝑛+1, above this a two point cluster 𝑑1, 𝑑2 and finally a single point 𝑑3
on top, as depicted in Figure 4.4.

Lemma 4.24. Let 𝑚, 𝑛 ∈ 𝜔. Then 𝔊𝑚 is a p-morphic image of (a generated
subframe of) 𝔉𝑔𝑛

iff 𝑚 ≤ 𝑛.

Proof. (⇒) Suppose 𝔊𝑚 is a p-morphic image of a generated subframe of 𝔉𝑔𝑛
. Note

that only points in or below a proper cluster or deep points can be mapped to points
in a proper cluster by a p-morphism. Since 𝔉𝑔𝑛

contains no proper clusters, only
𝑐−

− points can be sent to 𝑑0, 𝑑1, 𝑑2 and the 𝑒−. By monotonicity of the p-morphism,
the anti-chain of 𝑒− points can only be the image of an anti-chain in 𝔉𝑔𝑛

. But 𝔉𝑔𝑛
contains only anti-chains of size up to 𝑛 + 2 in the 𝑐−

− points, and the anti-chain in
𝔊𝑛 has size 𝑚 + 2. Hence 𝑚 ≥ 𝑛.
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𝑑3

𝑑1 𝑑2

𝑒0 … 𝑒𝑛+1

𝑑0

Figure 4.4: The reflexive transitive frame 𝔊𝑛, consisting of a root 𝑑0, an anti-chain of 𝑛+2
points 𝑒−, a cluster 𝑑1, 𝑑2 and a top 𝑑3.

(⇐) Suppose 𝑚 ≤ 𝑛. Define a p-morphism ℎ from 𝔉𝑔𝑛
to 𝔊 by

ℎ(𝑐0
0) ≔ 𝑑0, ℎ(𝑐𝑖

1) ≔ 𝑒min(𝑖,𝑚),
ℎ(𝑐𝑖

2𝑘+2) ≔ 𝑑1, ℎ(𝑐𝑖
2𝑘+3) ≔ 𝑑2,

ℎ(𝑏𝑘) ≔ 𝑑3, ℎ(𝑎𝑖
𝑘) ≔ 𝑑3,

where 𝑘 ranges over 𝜔 and min(𝑖, 𝑚) denotes the minimum of 𝑖 and 𝑚. It is easy to
check that ℎ is indeed a p-morphism as claimed.

Using Fine-Rautenberg formulas for the frames 𝔊𝑛, it follows that each Log(𝔉𝑔𝑛
)

has a different set of finite (hence in particular CWF) Kripke frames.

Lemma 4.25. Let 𝑚, 𝑛 ∈ 𝜔 such that 𝑛 < 𝑚. Then 𝔊𝑚 is a finite frame of
Log(𝔉𝑔𝑚

) but not of Log(𝔉𝑔𝑛
).

Proof. The former claim is trivial, since by the previous lemma 𝔊𝑚 is a p-morphic
image of 𝔉𝑔𝑚

. For the latter, we use Fine-Rautenberg formulas. By Theorem 2.76
there exists a formula 𝜒(𝔊𝑚) such that 𝔉𝑔 ⊭ 𝜒(𝔊𝑚) iff 𝔊𝑚 is a p-morphic image of
a generated subframe of 𝔉𝑔. By the previous lemma, since 𝑚 > 𝑛, 𝔊𝑚 is not a p-
morphic image of a generated subframe of 𝔉𝑔𝑛

. We conclude that 𝔉𝑔𝑛
⊨ 𝜒(𝔊𝑚).

Obviously 𝔊𝑚 is a p-morphic image of a generated subframe of itself. Hence
𝔊𝑚 ⊭ 𝜒(𝔊𝑚). Therefore, 𝔊𝑚 is not a frame of Log(𝔉𝑔𝑛

).

We conclude:

Theorem 4.26. There exists infinitely many continuumly sized CWF-model degrees
over NExt(S4) and infinitely many continuumly sized CWF-frame degrees over
Kripke ∩ NExt(S4).
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Proof. Define Λ𝑛 ≔ Log(𝔉𝑔𝑛
) for each 𝑛 ∈ 𝜔. By Propositions 4.22 and 4.23 Λ𝑛 has

a continuum sized CWF-model degree over NExt(S4) and a continuum sized CWF-
frame degree over Kripke ∩ NExt(S4). By the previous lemma, no two Λ− are in a
single finite-frame degree, so in particular also not in a single CWF-frame or CWF-
model degree.

We leave it as an open problem whether there exist countably infinite or finite but
non-singleton CWF-frame degrees, either over all extensions of K4 or S4, or over the
Kripke complete such extensions. These questions seem significantly more difficult
to answer than the continuum case, but answering any one of them would greatly
improve our understanding of CWF-frame degrees. A potentially more tractable
question that we leave open, is whether CWF-frame completeness and CWF-model
completeness differ, as in the WF-case (see Section 3.6).
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Chapter 5

Quasi-Canonicity

In this short chapter we apply the techniques from Section 4.3 in a different setting,
to establish results about the recently introduced notion of quasi-canonicity. In
particular, we answer the question posed by Takapui [41] of whether GL is quasi-
canonical negatively.

5.1 Introduction

While studying topological d-semantics for GL and its extensions, Takapui [42]
introduced the following property for modal logics, weaker than canonicity but strong
enough for proving some interesting results [42]. As such it is called quasi-canonicity.
Recall that for a general frame 𝔣, the underlying Kripke frame is denoted by 𝔣#.

Definition 5.1 (Quasi-canonicity). A logic Λ is called quasi-canonical iff for every
extension Λ′ ∈ NExt(Λ), Λ′ is complete w.r.t.

{𝔣 general frame ∣ 𝔣 ⊨ Λ′, 𝔣# ⊨ Λ}. (5.1)

It is easily seen that this notion lies in-between canonicity and Kripke completeness
[42], the proofs for which are also included in the next section. In fact, we improve
this claim by showing that quasi-canonicity is strictly weaker than canonicity.
Takapui [41] poses the question whether GL is quasi-canonical. We answer this

question negatively using methods developed in Section 4.3, and prove the same for
Grz. The former is used by Takapui [42] to show that a particular construction does
not apply to all extensions of GL. In joint work with Takapui [42, Section 6.2], we
prove an analogue of this result for GL in the setting of topological d-semantics.
The chapter is organised as follows. In the next section we show that quasi-

canonicity lies strictly in-between canonicity and Kripke completeness, strengthening
a result of Takapui [42]. In Sections 5.3 and 5.4 we show that Grz and GL respectively
are not quasi-canonical, thus negatively answering the question posed by Takapui
[41].
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5.2 Quasi-Canonicity and Canonicity

It is easily seen that quasi-canonicity lies in-between canonicity and Kripke complete-
ness in strength, as is shown by Takapui [42]. In this section we strengthen this by
showing that quasi-canonicity is strictly weaker than canonicity. We first state the
former fact in the following two propositions. As Takapui [42] is as of yet to appear,
we do provide proofs for these simple propositions, but note that both are due to
Takapui [42].

Proposition 5.2 ([42, Theorem 6.1]). Any canonical logic is quasi-canonical.

Proof. Let Λ be a canonical modal logic, and Λ′ ∈ NExt(Λ). Then Λ′ is complete
w.r.t. its descriptive frames, i.e.

{𝔣 descriptive frame | 𝔣 ⊨ Λ′}. (5.2)

But any such descriptive frame 𝔣 is then a descriptive frame of Λ, and since Λ is
canonical, 𝔣# ⊨ Λ.

Proposition 5.3 ([42, Theorem 6.2]). Any quasi-canonical logic is Kripke complete.

Proof. Let Λ be a quasi-canonical modal logic. Since Λ ∈ NExt(Λ) is an extension
of itself, it is complete w.r.t.

{𝔣 general frame ∣ 𝔣 ⊨ Λ, 𝔣# ⊨ Λ}. (5.3)

Obviously 𝔣# ⊨ Λ implies 𝔣 ⊨ Λ, so Λ is complete w.r.t. general frames over Kripke
Λ-frames. But then it is complete w.r.t. only its Kripke frames as well.

We now show that quasi-canonicity is strictly weaker than canonicity. Recall the
bounded width axiom bw𝑛 from Section 2.11. We show, using Fine’s finite width
theorem, that GLBW𝑛 and GrzBW𝑛 are quasi-canonical for all 𝑛 ∈ 𝜔, even though
they are known not to be canonical. We start with the following observation:

Proposition 5.4. Let Λ be a logic for which every extension is Kripke complete.
Then Λ is quasi-canonical.

Proof. Let Λ′ ∈ NExt(Λ). Then Λ′ is complete w.r.t. its Kripke frames, so also w.r.t.
general frames on Λ′-frames. Note that every frame of Λ′ is a frame of Λ.

Recall Fine’s finite width theorem, as stated in Theorem 4.1. It states that any
extension of K4, complete w.r.t. its general frames of finite width is CWF-frame
complete. In particular, this applies to GLBW𝑛 and GrzBW𝑛.

Proposition 5.5. Let 𝑛 ∈ 𝜔 and Λ ∈ NExt(K4BW𝑛). Then Λ is quasi-canonical.
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Proof. Let Λ′ ∈ NExt(Λ). Every rooted refined frame of Λ′ is of width at most 𝑛 [11,
Proposition 10.32]. Since any logic is complete w.r.t. its rooted descriptive frames,
Λ′ is complete w.r.t. its general frames of finite width. By Theorem 4.1 it is Kripke
complete. Hence every extension of Λ is Kripke complete, so by Proposition 5.4 Λ is
quasi-canonical.

We conclude that quasi-canonicity does not imply canonicity.

Proposition 5.6. Grz.3 is quasi-canonical but not canonical.

Proof. Note that Grz.3 = GrzBW1, and hence it is quasi-canonical by Proposi-
tion 5.5. It is a well-known fact that Grz.3 is not canonical, and this also follows
from Theorem 6.19.

In the next two sections we will show that Grz and GL are not quasi-canonical.
Since both of these logics are Kripke complete, we can conclude that (unsurprisingly)
quasi-canonicity is strictly stronger than Kripke completeness. Therefore, quasi-
canonicity is strictly in-between canonicity and Kripke completeness.

5.3 Grz is not Quasi-Canonical

In this section we show that Grz is not quasi-canonical, using techniques from
Chapter 4. We prove this by constructing an extension of Grz that is not complete
w.r.t. its CWF general frames.

Recall that in Chapter 4 we developed a technique to create logics which are
incomplete w.r.t. their CWF general frames. The problem for our current application
is that these logics were Kripke complete and hence cannot be extensions of Grz.
However, this is easily solved by restricting the set of admissibles on the frame used
to define the logic.

We first derive a sufficient condition for satisfying Grz.

Definition 5.7. Let 𝔉 be a frame and 𝑋 ⊆ 𝔉w. Then a sequence 𝑥∶ 𝜔 → 𝔉w is said
to eventually decide 𝑋 iff there exists 𝑛0 ∈ 𝜔 such that either

• for all 𝑛 ≥ 𝑛0, 𝑥(𝑛) ∈ 𝑋, or

• for all 𝑛 ≥ 𝑛0, 𝑥(𝑛) ∉ 𝑋.

For a model 𝔐 on 𝔉 and a formula 𝜑, 𝑥 is said to eventually decide 𝜑 iff it
eventually decides ⟦𝜑⟧𝔐.

Lemma 5.8. Let 𝔉 be a preorder and 𝔐 a model on it. If for every formula 𝜑 and
every ascending sequence 𝑥∶ 𝜔 → 𝔉, 𝑥 eventually decides 𝜑, then 𝔐 ⊨ Grz.
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Proof. Suppose, in order to reach a contradiction, that 𝔐 ⊭ Grz. Then 𝔐 refutes
some substitution of grz, say

𝔐, 𝑥0 ⊭ ◻(◻(𝜑 → ◻𝜑) → 𝜑) → 𝜑

for some point 𝑥0 ∈ 𝔉w and formula 𝜑. Then 𝑥0 refutes 𝜑 and for every successor 𝑦
of 𝑥0,

𝔐, 𝑦 ⊨ ◻(𝜑 → ◻𝜑) → 𝜑.

Hence 𝑦 either satisfies 𝜑, or has a successor refuting 𝜑 → ◻𝜑.
By induction we construct an ascending sequence 𝑥∶ 𝜔 → 𝔉 such that, for all

𝑛 ∈ 𝜔, 𝑥(2𝑛) refutes 𝜑 and 𝑥(2𝑛 + 1) satisfies 𝜑 and refutes ◻𝜑. Define 𝑥(0) ≔ 𝑥0,
and note that it refutes 𝜑. Next, assume 𝑥(𝑛) is already defined, and note that since
the sequence is ascending, it is a successor of 𝑥0.

Case 1. If 𝑛 is even, then 𝑥(𝑛) refutes 𝜑 so it has a successor 𝑧 refuting 𝜑 → ◻𝜑.
Then 𝑧 satisfies 𝜑 and refutes ◻𝜑. Set 𝑥(𝑛 + 1) ≔ 𝑧.

Case 2. If 𝑛 is odd, then 𝑥(𝑛) refutes ◻𝜑 by assumption, so there is a successor 𝑧
of it refuting 𝜑. Set 𝑥(𝑛 + 1) ≔ 𝑧.

Now clearly 𝑥 is an ascending sequence which does not eventually decide 𝜑,
contradicting the assumption.

Recall the family of frames 𝔉𝑓 defined in Section 4.3. Let us write 𝔉1 for the frame
where 𝑓 is set to the constant 1 function. Recall that there existed a formula 𝜑0 with
the following properties:

• 𝔐1, 𝑐0
0 ⊨ 𝜑0, where 𝔐1 is the model on 𝔉1 with three atomic propositions

𝑝0, 𝑝1, 𝑝2 which sets 𝑝𝑖 true precisely at 𝑎𝑖
0, and

• 𝜑0 is not satisfied in any CWF model of Log(𝔉1) (by Propositions 4.10 and 4.17).

We claim that this 𝔐1 validates Grz.

Lemma 5.9. 𝔐1 ⊨ Grz.

Proof. By Lemma 5.8 it suffices to show that any formula 𝜑 is eventually decided on
every ascending sequence in 𝔐1. We prove this by induction on the formula 𝜑.

For atomic propositions it is clear, since every atomic proposition is only satisfied
at a single point. The cases for conjunction, disjunction and negation are trivial.
So we are only left with the modal box. If no point in the sequence satisfies ◻𝜓

then we are obviously done. So assume some point in the sequence satisfies ◻𝜓.
Then so do all successors, in particular all later points in the ascending sequence.
Then clearly the sequence eventually decides ◻𝜓.

Hence so does the general frame 𝔣1 induced by 𝔐1, so Grz ⊆ Log(𝔣1).
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Lemma 5.10. Let Λ be a logic such that Log(𝔉1) ⊕ Grz ⊆ Λ ⊆ Log(𝔣1). Then Λ is
not complete w.r.t. its general frames on Grz-frames.

Proof. Since 𝜑0 is satisfied in 𝔐1, we conclude ¬𝜑0 ∉ Log(𝔣1). Therefore it suffices
to show that 𝜑0 is not satisfied on any general frame of Log(𝔉1) ⊕ Grz on a Grz-
frame. Now let 𝔐 be a Log(𝔉1)-model on a Grz-frame. Then it is CWF. By
Propositions 4.10 and 4.17 it does not satisfy 𝜑0.

We conclude:

Theorem 5.11. Grz is not quasi-canonical. In particular there exists an extension
of Grz which is not complete w.r.t. general frames whose underlying Kripke frames
are CWF.

5.4 GL is not Quasi-Canonical
In this section we show, using a proof similar to that in the last section, that GL
is not quasi-canonical, thereby answering the question raised by Takapui [41]. We
again start by giving a sufficient condition for Kripke models to validate GL.

Definition 5.12 (Upper limit property). An irreflexive transitive general frame
𝔣 = ⟨𝔉, 𝐴⟩ is said to have the upper limit property iff every 𝑎 ∈ 𝐴 has the property
that, whenever 𝑥− ∶ 𝜔 → 𝑎 is an ascending sequence in 𝔉↾𝑎, then 𝔉upper

w ∩ 𝑎 contains
a successor of 𝑥0. An irreflexive transitive Kripke model is said to have the upper
limit property iff its induced general frame has the upper limit property.

Lemma 5.13. Let 𝔣 = ⟨𝔉, 𝐴⟩ be an irreflexive transitive general frame. If 𝔣 has the
upper limit property then 𝔣 ⊨ GL.

Proof. Suppose, in order to reach a contradiction, that 𝔣 ⊭ GL. Then 𝔣 refutes a
substitution of gl, say

𝔐, 𝑥0 ⊭ ◻(◻𝜑 → 𝜑) → ◻𝜑

for some point 𝑥0 ∈ 𝔉w and formula 𝜑. Then 𝔐, 𝑥0 ⊭ ◻𝜑 and for all successors 𝑦 of
𝑥0, 𝔐, 𝑦 ⊨ ◻𝜑 → 𝜑. Hence if 𝑦 refutes 𝜑 then it has a successor that does so too.

By induction we construct an ascending 𝜔-sequence 𝑦− ∶ 𝜔 → 𝔉 such that each 𝑦−
refutes 𝜑 in 𝔐. Note that 𝑥0 refutes ◻𝜑, so it sees a point 𝑦0 refuting 𝜑. For the
inductive step, assume 𝑥𝑛 is defined and refutes 𝜑. Then 𝑥0 sees 𝑦0 and 𝑦0 = 𝑦𝑛 (if
𝑛 = 0) or 𝑦0 sees 𝑦𝑛 (if 𝑛 > 0), so by transitivity 𝑥0 sees 𝑦𝑛. Since 𝑦𝑛 refutes 𝜑, it
follows that it has a successor 𝑦𝑛+1 which refutes 𝜑.
Define 𝑎 ≔ ⟦¬𝜑⟧𝔐. Then the sequence 𝑦− is contained in 𝑎, and 𝑎 is admissible.

Moreover, a similar induction to the previous one shows that above any point in
𝑎 ∩ 𝑅(𝑥0), there exists an ascending 𝜔-sequence in 𝑎. Since 𝔉 is irreflexive and
transitive, such sequence is strictly-ascending, so 𝑎 ∩ 𝑅(𝑥0) ⊆ 𝔉deep

w . Hence 𝔣 does
not have the upper limit property.
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The analogous result for Kripke models obviously follows.
We would like to use the frame 𝔉1 from the previous section again. However,

applying the previous lemma requires an irreflexive frame. Therefore, we take the
irreflexivisation of the frame 𝔉1 instead, call it 𝔉′

1. Define 𝔣′
1 to be the general frame

on 𝔉′
1 generated by the sets {𝑎𝑖

0} for 𝑖 ∈ 3. We claim that 𝔣′
1 ⊨ GL.

Lemma 5.14. 𝔣′
1 ⊨ Grz.

Proof. Note that 𝔉1 is irreflexive and transitive. By Lemma 5.13 it suffices to show
that 𝔣′

1 has the upper limit property.
We prove by induction on the generation of admissible sets 𝑎 that if an admissible

𝑎 contains infinitely many 𝑏− or 𝑐− points then there exists 𝑛 ∈ 𝜔 such that for all
𝑚 ≥ 𝑛 and 𝑖 ∈ 3, 𝑎𝑖

𝑚 ∈ 𝑎. For ⌀ and the three generators, this is trivial as they
do not contain any 𝑏− or 𝑐− points, and for 𝔉′

1,w it is trivial since it contains all 𝑎−
−

points.
For binary union, assume 𝑎1 and 𝑎2 are admissible and 𝑎1 ∪ 𝑎2 contains infinitely

many 𝑏− or 𝑐− points. Then clearly one of 𝑎1 and 𝑎2 does so too, so by induction
hypothesis it contains all 𝑎−

𝑚 from some 𝑚 onwards. Hence so does 𝑎1 ∪ 𝑎2.
For binary intersection, assume 𝑎1 and 𝑎2 are admissible and 𝑎1 ∩ 𝑎2 contains

infinitely many 𝑏− or 𝑐− points. Then clearly both 𝑎1 and 𝑎2 do so too, and hence by
the induction hypthesis contain all 𝑎−

𝑚 for 𝑚 ≥ 𝑛1 and 𝑚 ≥ 𝑛2 respectively. Define
𝑛 to be the maximum of 𝑛1 and 𝑛2, and we are done.

For ◻, note that ◻𝑎 is always an upset, so the claim trivially holds. For ⬦, suppose
𝑎 is admissible and ⬦𝑎 contains infinitely many 𝑐− points. If 𝑎 already contained
infinitely many 𝑏− or 𝑐− points, then it contains 𝑎−

𝑚 for 𝑚 ≥ 𝑛 for some 𝑛, and then
⬦𝑎 contains these for 𝑚 ≥ 𝑛 + 1. If 𝑎 contains finitely many 𝑏− and 𝑐− then it must
contain 𝑎𝑖

𝑛 for some 𝑛 ∈ 𝜔 and 𝑖 ∈ 3. Then ⬦𝑎 contains 𝑎−
𝑚 for 𝑚 ≥ 𝑛 + 2.

It clearly follows that 𝔣′
1 has the upper limit property, for assume 𝑎 is some

admissible and 𝑥− ∶ 𝜔 → 𝑎 and ascending sequence in it. Then 𝑥− must contain
infinitely many 𝑐−, hence by the inductive argument there exists 𝑛 ∈ 𝜔 such that
𝑎−

𝑚 ∈ 𝑎 for all 𝑚 ≥ 𝑛. Then 𝑎0
𝑛 ∈ 𝔉upper

w ∩𝑎 and 𝑎0
𝑛 is seen by 𝑥0. Hence 𝔣′

1 ⊨ GL.

Similar to in the previous section, we want to show that Log(𝔣′
1) is not complete

w.r.t. its general frames on Grz frames. We again use Propositions 4.10 and 4.17
but since we took the irreflexivisation of the frame, we need to use the translation
from Definition 2.12. We first prove a lemma that we can use ⬦ instead of ⬦ in the
hypotheses of Proposition 4.17.

Lemma 5.15. Let 𝜑− be a 𝜔-sequence of modal formulas and Λ a modal logic such
that for all 𝑛 ∈ 𝜔,

𝜑𝑛 → ⬦𝜑𝑛+1, 𝜑𝑛 → ⋀{¬⬦𝜑𝑖 | 𝑖 < 𝑛} ∈ Λ.

Then
𝜑𝑛 → ⬦𝜑𝑛+1, 𝜑𝑛 → ⋀{¬⬦𝜑𝑖 | 𝑖 < 𝑛} ∈ Λ.
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Proof. From
𝜑𝑛+1 → ⋀{¬⬦𝜑𝑖 | 𝑖 < 𝑛 + 1}

one easily derives 𝜑𝑛+1 → ¬⬦𝜑𝑛. Combining this with 𝜑𝑛 → ⬦𝜑𝑛+1 proves
𝜑𝑛 → ⬦𝜑𝑛+1. This proves the first formula.
For the second formula, note that ¬⬦𝜓 is a stronger statement than ¬⬦𝜓, for

any 𝜓. More formally, in any modal algebra 𝔄, ¬⬦𝑎 ≤ ¬⬦𝑎 for any 𝑎 ∈ 𝔄, where
⬦𝑎 is a shorthand for 𝑎 ∨ ⬦𝑎. Hence 𝜑𝑛 → ⋀{¬⬦𝜑𝑖 | 𝑖 < 𝑛} follows from the
version with ⬦.

Lemma 5.16. Let Λ be a logic such that Log(𝔉′
1) ⊕ GL ⊆ Λ ⊆ Log(𝔣′

1). Then Λ is
not complete w.r.t. its general frames on GL-frames.

Proof. Write 𝔐′
1 for the irreflexivisation of 𝔐1 and note it is a Kripke model on 𝔣′

1.
By Proposition 2.54 a formula 𝜑 is satisfied respectively valid on 𝔐1 iff 𝜑 is satisfied
respectively valid on 𝔐′

1.
Since 𝜑0 is satisfied in 𝔐1, 𝜑0 is so in 𝔐′

1, hence ¬𝜑0 ∉ Log(𝔣′
1). Therefore, it

suffices to show that 𝜑0 is not satisfied on any general frame of Log(𝔉′
1) ⊕ GL on a

GL-frame. Now let 𝔐 be a Log(𝔉′
1)-model on a GL-frame. Then it is CWF.

By Proposition 4.17

{𝜑𝑛 → ⬦𝜑𝑛+1, 𝜑𝑛 → ⋀{¬⬦𝜑𝑖 | 𝑖 < 𝑛} ∣ 𝑛 ∈ 𝜔} ⊆ Log(𝔉1),

so by Proposition 2.54

{𝜑𝑛 → ⬦𝜑𝑛+1, 𝜑𝑛 → ⋀{¬⬦𝜑𝑖 | 𝑖 < 𝑛} ∣ 𝑛 ∈ 𝜔} ⊆ Log(𝔉′
1).

Applying the previous lemma to the sequence of formulas 𝜑− proves the hypothesis
of Proposition 4.17. Hence 𝜑0 is not satisfied on a CWF model of Log(𝔉′

1), so in
particular not on 𝔐.

We conclude:

Theorem 5.17. GL is not quasi-canonical. In particular there exists an extension
of GL which is not complete w.r.t. general frames whose underlying Kripke frames
are CWF.

Thus we answered the question posed by Takapui [41] whether GL is quasi-
canonical. The negative answer might be disappointing; Takapui [42] uses it to
show that a particular construction of him in the area of topological d-semantics
does not apply to all extensions of GL. However, the negative answer is also not
entirely unexpected, as GL is quite non-canonical, in several ways. For example, it
is not 0-canonical, but then, neither is GL.3,1 which is quasi-canonical, as we saw in
Section 5.2. In joint work with Takapui [42, Section 6.2] we also give a topological
analogue of Theorem 5.17, which again relies heavily on our work in Section 4.3.

1The 0-canonical frame of GL.3, and hence also GL, contains a reflexive point.
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Chapter 6

Canonical Approximations

In this chapter we have another look at canonicity. This time we consider approxim-
ating logics with canonical ones.

6.1 Introduction

Many interesting classes of logics form complete lattices, i.e. lattices that have not only
binary meets and joins, but meets and joins for arbitrary sets of elements. As such,
it is possible to approximate arbitrary modal logics with logics from the class under
consideration. Two specific instances of these approximations have already been
studied in the literature. In the setting of super-intuitionistic logics, G. Bezhanishvili,
N. Bezhanishvili and Ilin [4] and Ilin [24] study approximations for the complete
lattices of subframe logics and stable logics, which they named subframizations and
stabilizations respectively. We develop some general theory about approximations,
and study approximations for the complete lattice of canonical modal logics.
Similar to the general theory of semantics and degrees studied in Sections 3.2

and 3.3, we develop a general theory of approximations in Section 6.2. In the following
sections we apply this general notion of approximations to the class of canonical logics.
In Section 6.3 we show that the class of canonical logics forms a complete lattice,
but not a complete sublattice of the lattice of all normal modal logics. The former
suffices for the theory of approximations to apply. Next, in Section 6.4 it is shown
that the canonical approximation from above and the one from below equal for logics
with the fmp. Finally, the last two sections compute the canonical approximations of
Grz.3 and Grz.2 respectively.

6.2 Approximations

Many interesting classes of logics form complete lattices w.r.t. the subset-order. Then
a logic outside the class under consideration can be approximated by logics in the
class. This can be done from above, by approximating with extensions of the logic,
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or from below, by approximating with weakenings. Because we were considering a
complete lattice, both approaches give rise to a closest approximant, which we will
call the approximation from above or from below respectively.
Note that any of this is generic over the language under consideration, and what

constitutes a logic, as long as the set of all logics 𝒰 forms a complete lattice under
some order ≤. We will always instantiate 𝒰 with the set of normal modal logics and
≤ with the subset-order. In cases where it might be ambiguous in which complete
lattice a meet or join is taken, we will indicate the lattice in the subscript, as in ⋀

𝒰
.

Definition 6.1 (Approximation). Let 𝒳 ⊆ 𝒰 be a set of logics, which forms a
complete lattice w.r.t. ≤. Define

𝒳↓ ∶ 𝒰 → 𝒳 ∶ Λ ↦ ⋀
𝒳

{Λ′ ∈ 𝒳 | Λ ⊆ Λ′}, and

𝒳↑ ∶ 𝒰 → 𝒳 ∶ Λ ↦ ⋁
𝒳

{Λ′ ∈ 𝒳 | Λ′ ⊆ Λ}.

The former is called the 𝒳-approximation from above and the latter the 𝒳-ap-
proximation from below. Both 𝒳↓(Λ) and 𝒳↑(Λ) are called 𝒳-approximations of
Λ.

Remark 6.2. It is known from order theory that if 𝒳 has either meets for all subsets
or joins for all subsets, then it forms a complete lattice with, for any 𝒴 ⊆ 𝒳,

⋀𝒴 = ⋁{Λ ∈ 𝒳 | ∀Λ′ ∈ 𝒴. Λ ⊆ Λ′}, and

⋁𝒴 = ⋀{Λ ∈ 𝒳 | ∀Λ′ ∈ 𝒴. Λ′ ⊆ Λ}. .

When 𝒳 is a complete sublattice of 𝒰 these approximations behave nicely.

Proposition 6.3. Let 𝒳 ⊆ 𝒰 be a complete meet-semi-sublattice of 𝒰, i.e. ⋀
𝒳

= ⋀
𝒰

.
Then

∀Λ ∈ 𝒰. Λ ⊆ 𝒳↓(Λ). (6.1)

Similarly, if it is a complete join-semi-sublattice, i.e. ⋁
𝒳

= ⋁
𝒰

, then

∀Λ ∈ 𝒰. 𝒳↑(Λ) ⊆ Λ.

Proof. Trivial, for let Λ ∈ 𝒰. Then

⋁
𝒰

{Λ′ ∈ 𝒳 | Λ′ ⊆ Λ} ⊆ Λ ⊆ ⋀
𝒰

{Λ′ ∈ 𝒳 | Λ ⊆ Λ′}.

Remark 6.4. The assumption that 𝒳 is a complete semi-sublattice is really necessary
here. For example in the case that 𝒳 ≔ Can is the set of canonical logics, eq. (6.1)
does not hold, as we will see in the next section. .
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The approximations from above and below can be expressed in terms of each other,
as follows.

Proposition 6.5. Let 𝒳 ⊆ 𝒰 be a set of logics which forms a complete lattice
w.r.t. ≤, and let 𝐿 ∈ 𝒰. Then

𝒳↓(𝐿) = 𝒳↑(⋀
𝒰

{Λ ∈ 𝒳 | 𝐿 ⊆ Λ}), (6.2)

and similarly
𝒳↑(𝐿) = 𝒳↓(⋁

𝒰
{Λ ∈ 𝒳 | Λ ⊆ 𝐿}).

Proof. This is a matter of writing out the definitions.

𝒳↓(𝐿) = ⋀
𝒳

{Λ ∈ 𝒳 | 𝐿 ⊆ Λ}

= ⋁
𝒳

{Λ′ ∈ 𝒳 | ∀Λ ∈ {Λ ∈ 𝒳 | 𝐿 ⊆ Λ}. Λ′ ⊆ Λ}

= ⋁
𝒳

{Λ′ ∈ 𝒳 ∣ Λ′ ⊆ ⋀
𝒰

{Λ ∈ 𝒳 | 𝐿 ⊆ Λ}}

= 𝒳↑(⋀
𝒰

{Λ ∈ 𝒳 | 𝐿 ⊆ Λ}).

The first equality is by definition of 𝒳↓. For the second equality we use one of the
equations from Remark 6.2. For the third, note that Λ′ is below all elements of a set
iff it is below the intersection. The final equality is the definition of 𝒳↑.
The derivation of formula for 𝒳↑(𝐿) is analogous.

6.3 The Lattice of Canonical Logics

In order to apply the theory from the previous section to canonicity, we need to
show that the canonical modal logics form a complete lattice. We prove this by
showing that the canonical logics are closed under joins in 𝒰, so they form a complete
join-semi-sublattice of 𝒰. We also show that the canonical logics are closed under
binary intersections, but not under arbitrary ones. Even though the closure under
intersections is stated as Problem 10.2 in Chagrov and Zakharyaschev [11], the proof
turns out to be a relatively easy exercise.1
Let us write Can for the set of canonical modal logics. We first prove that it is

closed under joins in 𝒰, as this is the easiest to show.

Proposition 6.6. Let 𝒳 ⊆ Can. Then ⋁
𝒰

𝒳 ∈ Can. In other words, 𝒳 forms a
complete join-semi-sublattice of 𝒰.

1‘Problem’s in Chagrov and Zakharyaschev [11] are intended as major open problems in the field, and
a significant number of them is still open.
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Proof. Recall that by Proposition 2.88 a logic Λ is canonical iff for every descriptive
frame 𝔣 of Λ, the underlying Kripke frame 𝔣# is a frame of Λ. Let 𝔣 be a descriptive
frame 𝔣 of ⋁

𝒰
𝒳. Then it is a descriptive frame of Λ for each Λ ∈ 𝒳, and hence by the

canonicity of these Λ, the underlying frame 𝔣# is a frame of Λ for all Λ ∈ 𝒳. Since
⋁

𝒰
𝒳 is by definition a least upper bound for these Λ, 𝔣# is a frame of ⋁

𝒰
𝒳.

By Remark 6.2 it follows that Can forms a complete lattice.
Next we consider the intersections of canonical logics. Problem 10.2 in Chagrov and

Zakharyaschev [11] asks for ‘canonicity’ and ‘𝒟-persistence’ separately, where their
‘canonicity’ coincides with what we call 𝜔-canonicity and ‘𝒟-persistence’ is precisely
property (ii) in Proposition 2.88, hence equivalent to our notion of canonicity. To
answer both questions at once, we show for all cardinals 𝜅 that the 𝜅-canonical logics
are closed under binary intersections.

Lemma 6.7. Let Λ, Λ′ be modal logics such that Λ ⊆ Λ′, and let 𝑃 be some set
meant to be used as atomic propositions. Then the 𝑃-canonical frame 𝔽Λ′

𝑃 = ⟨𝑊 ′, 𝑅′⟩
of Λ′ is a generated subframe of the 𝑃-canonical frame 𝔽Λ

𝑃 = ⟨𝑊, 𝑅⟩ of Λ.

Proof. Let Γ ∈ 𝑊 ′ be a Λ′-MCS. Clearly it is also Λ-MCS. Therefore 𝑊 ′ ⊆ 𝑊. Since
the frame relation for canonical frames is purely defined in terms of the formulas in
the MCSs, we see that 𝔽Λ′

𝑃 is a subframe of 𝔽Λ
𝑃 .

We show that it is a generated subframe. Let Γ ∈ 𝑊 ′, Δ ∈ 𝑊 such that 𝑅(Γ, Δ).
We claim that Δ extends Λ′, for let 𝜑 ∈ Λ′. Then by necessitation ◻𝜑 ∈ Λ′, and

Γ is a Λ′-MCS, hence ◻𝜑 ∈ Γ. Since 𝑅(Γ, Δ) and the definition of canonical frames,
it follows that 𝜑 ∈ Δ.
So Δ indeed extends Λ′, as claimed. Since it is maximally consistent, it follows

that it is a Λ′-MCS. Therefore Δ ∈ 𝑊 ′. Hence 𝑊 ′ forms an upset in 𝔽Λ
𝑃 .

Lemma 6.8. Let Λ1, Λ2 be modal logics and set Λ0 ≔ Λ1 ∩ Λ2 their intersection.
Then a Λ0-MCS is either a Λ1-MCS or a Λ2-MCS.

Proof. Let Γ be a Λ0-MCS, and suppose it is neither Λ1-consistent nor Λ2-consistent.
Then there exists formulas 𝜑1, 𝜑2 ∈ Γ such that ¬𝜑𝑖 ∈ Λ𝑖 for 𝑖 ∈ {1, 2}. Clearly also
¬(𝜑1 ∧ 𝜑2) ∈ Λ𝑖. Hence

¬(𝜑1 ∧ 𝜑2) ∈ Λ1 ∩ Λ2 = Λ0 ⊆ Γ.

But Γ is a Λ0-MCS and 𝜑1, 𝜑2 ∈ Γ so also (𝜑1 ∧ 𝜑2) ∈ Γ. Hence Γ is inconsistent,
contradiction.

Theorem 6.9. Let 𝜅 be a cardinal and Λ1, Λ2 be 𝜅-canonical logics. Then Λ1 ∩ Λ2
is 𝜅-canonical.
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Proof. Write Λ0 ≔ Λ1 ∩ Λ2, and recall that 𝔽Λ𝑖𝜅 is the 𝜅-canonical frame of Λ𝑖.
Suppose 𝜑 ∈ Λ0 and Γ is a Λ0-MCS (over the atomic propositions 𝜅). By Lemma 6.8

it is a Λ𝑖-MCS for some 𝑖 ∈ {1, 2}. By Lemma 6.7 𝔽Λ𝑖𝜅 is a generated subframe of 𝔽Λ0
𝜅 ,

and since Γ is a Λ𝑖-MCS, it point of this generated subframe. Since 𝜑 ∈ Λ𝑖 and Λ𝑖 is
𝜅-canonical, 𝜑 is valid on 𝔽Λ𝑖𝜅 . As generated subframes preserve validity, 𝔽Λ0

𝜅 , Γ ⊨ 𝜑.
Since Γ and 𝜑 ∈ Λ0 were arbitrary, Λ0 is canonical.

It obviously follows that also the canonical logics are closed under binary intersec-
tion. Hence, besides forming a complete lattice, Can also forms a sublattice of the
lattice of all modal logics 𝒰, i.e. the binary meet and join of Can coincide with the
ones from 𝒰.

We finally show that the canonical logics are not closed under countable intersec-
tions. In particular, we show that GL is, in a rather strong sense, not canonical, but
is the intersection of countably many logics that are canonical.

Proposition 6.10. The set of canonical logics Can is not closed under countable
intersections, so not a complete sublattice of 𝒰.

Proof. Define, for 𝑛 ∈ 𝜔, Λ𝑛 ≔ K4 ⊕ ◻𝑛⊥. It is easy to see that Λ𝑛 extends GL,
either via syntactic, algebraic or frame theoretic methods. Let us take the syntactic
method. We need to prove that

gl = ◻(◻𝑝 → 𝑝) → ◻𝑝 ∈ Λ𝑛.

For 𝑛 = 0 or 𝑛 = 1 this is trivial, as ◻0⊥ = ⊥ derives everything and ◻⊥ immediately
derives ◻𝑝. So suppose 𝑛 ≥ 2.
Recall that GL extends K4, so we can start reasoning in K4. First, repeatedly

using the transitivity axiom and modus ponens shows that, for all 𝑖 ∈ 𝜔,

◻(◻𝑝 → 𝑝) → ◻𝑖+1(◻𝑝 → 𝑝) ∈ K4.

Repeatedly applying the K-axiom using modus ponens one obtains

◻(◻𝑝 → 𝑝) → (◻𝑖+2𝑝 → ◻𝑖+1𝑝) ∈ K4.

Repeatedly applying these, for 𝑖 decreasing from 𝑛 − 2 to 0, one derives,

◻(◻𝑝 → 𝑝) → (◻𝑛𝑝 → ◻𝑝) ∈ K4.

Now in Λ𝑛, ◻𝑛⊥ is a theorem, so by monotonicity of ◻, ◻𝑛𝑝 is so too. Using some
classical reasoning, we derive

◻(◻𝑝 → 𝑝) → ◻𝑝 ∈ Λ𝑛,
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as required.
Therefore indeed GL ⊆ Λ𝑛 for all 𝑛, and hence

GL ⊆ ⋂ {Λ𝑛 | 𝑛 ∈ 𝜔}.

We want to prove the converse inclusion as well.
It is well-known that GL has the fmp; in fact it is even sound and complete w.r.t.

finite irreflexive transitive trees [see e.g. 7, Theorem 4.45]. In fact the completeness
w.r.t. finite frames also follows from Fine’s selective filtration via maximal points
method that we discuss in Section 8.4. Recall that GL frames are transitive, CWF
and irreflexive. Therefore a finite GL frame with 𝑛 points does not contain any
ascending sequence of length > 𝑛. Hence it is a frame of Λ𝑛+1. In particular, every
finite GL-frame is a frame of the intersection ⋂ {Λ𝑛 | 𝑛 ∈ 𝜔}. By the completeness
of GL w.r.t. these frames, it follows that

⋂ {Λ𝑛 | 𝑛 ∈ 𝜔} ⊆ GL.

Now it suffices to show that GL is not canonical while every Λ𝑛 is canonical. Both
of these claims hold in strong ways. First, GL is well-known to be not 𝜔-canonical
[7, Theorem 4.43], but in fact, as we saw in the last chapter, it is not even quasi-
canonical (see Theorem 5.17), and quasi-canonicity is strictly weaker than canonicity
(see Section 5.2). In addition GL is also not even 0-canonical; even the 0-canonical
frame of GL.3 contains a reflexive point.

On the other hand, each Λ𝑛 is canonical. It is well-known that K4 is canonical [7,
proof of Theorem 4.27], and Λ𝑛 is axiomatised over K4 by a formula free of atomic
propositions. Hence Λ𝑛 is canonical. In fact it is Sahlqvist, from which the canonicity
also follows [7, Theorem 5.91, 11, Theorem 10.31].

Note that since GL is not canonical in such a strong sense, while the Λ𝑛 are even
Sahlqvist, this single proof gives a wealth of results similar to this proposition: the
𝜅-canonical logics are not closed under countable intersections for any 𝜅 and neither
are the Sahlqvist, 𝜔-strongly Kripke complete or quasi-canonical logics.

6.4 Canonical Approximations from Above and Below

Since the canonical logics form a complete join-semi-sublattice of 𝒰, by Proposi-
tion 6.3, any logic extends its canonical approximation from below. However, since
the canonical logics are not closed under arbitrary intersections, the analog for the
canonical approximation from above does not follow. In this section we will show
that there are in fact logics that strictly extend their canonical approximation from
above, and in particular non-canonical logics where both canonical approximations
equal.



6.4 Canonical Approximations from Above and Below 75

Using the proof of Proposition 6.10 this is easy to see, as GL is the intersection of
canonical extensions of it. Then from eq. (6.2) it follows that Can↓(GL) = Can↑(GL).
Since GL is not canonical, Can↑(GL) is strictly below GL.

However, it turns out this is only an instance of a much more general result. In fact
we can show, using the Fine-van Benthem theorem, that for any logic with the fmp,
i.e. every logic which is complete w.r.t. its finite frames, the canonical approximations
equal. To state the Fine-van Benthem theorem, we need to introduce elementary
classes first. These are defined as in model theory.

Definition 6.11 (Elementary). A class of frames ℱ is called elementary iff there
exists a set Φ of first-order formulas (over the language containing binary relation
symbols for equality = and and the relation of a frame 𝑅) such that 𝔉 ∈ ℱ iff for all
𝜑 ∈ Φ, 𝔉 ⊨ 𝜑 (where ⊨ denotes validation in the model theoretic sense).

The Fine-van Benthem theorem now states that the logic of an elementary class
of frames is canonical. It was first proven by Fine [21, Theorem 3], using model
theoretic methods. It was proven again by van Benthem [45, Corollary 3.7], using
the theory of ultrafilter extensions. The proof can also be found in Chagrov and
Zakharyaschev [11, Theorem 10.19].

Theorem 6.12 (Fine-van Benthem theorem; [21, Theorem 3]). Let Λ be a modal
logic that is sound and complete w.r.t. an elementary class of Kripke frames. Then Λ
is canonical.

Now we can show that for logics with the fmp, the approximations from above
and below equal. The proof is essentially due to G. Bezhanishvili.

Proposition 6.13. Let Λ be a logic with the fmp. Then Can↑(Λ) = Can↓(Λ).

Proof. Because Λ has the fmp, we have

Λ = Log({𝐹 | 𝐹 ∈ Frfin(Λ)}) = ⋂ {Log(𝐹) | 𝐹 ∈ Frfin(Λ)}.

Note that every (singleton of a) finite frame is an elementary class, hence by the Fine-
van Benthem theorem their logics are canonical. So each of the Log(𝐹) is canonical.
Obviously Λ ⊆ Log(𝐹). We conclude that

Λ = ⋂ {Λ′ | Λ′ ∈ Can, Λ ⊆ Λ′},

so Can↓(Λ) = Can↑(Λ).

It should be pointed out that from the proof it also follows that any logic with the
fmp is the intersection of its canonical extensions.
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6.5 The Canonical Approximations of Grz.3

Now that we have established the basic theory of canonical approximations, we will
look at some examples. In particular, in this section we will compute the canonical
approximations of Grz.3, and in the next section those of Grz.2.

Recall the axioms and frame properties of the logics S4.3, S4.3.1 and Grz.3 from
Section 2.11. We list some well-known properties about these logics.

Proposition 6.14.

(i) Any extension of K4.3 is complete w.r.t. its CWF frames, so in particular
Kripke complete,

(ii) S4.3, S4.3.1 and Grz.3 are complete w.r.t. their finite frames,

(iii) Grz.3 extends S4.3.1, and

(iv) S4.3.1 is canonical.

Proof sketch. (i) By Fine’s finite width theorem (Theorem 4.1).

(ii) By (i) all these logics are complete w.r.t. their CWF frames. Clearly their frame
classes are closed under taking finite subframes. By Fine’s selective filtration
via maximal points method it follows that they are complete w.r.t. their finite
frames, see Section 8.4 and Lemma 8.32. In fact, it was shown by Bull [10] and
later Fine [17] that every extension of S4.3 has the fmp, much earlier than the
two general results of Fine used above.

(iii) By (ii) it suffices to show that every finite frame of Grz.3 is a frame of S4.3.1.
But a Grz-frame is CWF so it contains a point 𝑥 that is maximal for the entire
frame, and does not contain any proper clusters, so the cluster of 𝑥 is singleton.
Then 𝑥 is final, and by transitivity and linearity every point sees 𝑥.

(iv) By (i) S4.3.1 is Kripke complete, and clearly it has an elementary frame class.
It follows by the Fine-van Benthem theorem (Theorem 6.12) that it is canonical.

From the last two facts, we conclude that S4.3.1 is contained in the canonical
approximation of Grz.3 from below. In the rest of this section we show that it
actually is the canonical approximation.

The proof essentially consists of two parts. First, we derive that S4.3.1 is (sound
and) complete w.r.t. certain ordinals. Second, we show that any 𝜔-strongly Kripke
complete logic contained in Grz.3 has at least those ordinals as frames. Hence
S4.3.1 extends such 𝜔-strongly Kripke complete logic, in particular the canonical
approximation from below.
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Lemma 6.15. S4.3.1 is complete with respect to the class of rooted linear orders
with a top element.

Proof. Let ¬𝜑 ∉ S4.3.1. As noted above, S4.3.1 is sound and complete w.r.t. its
finite frames. Hence 𝜑 is satisfiable on a finite frame 𝔉0 of S4.3.1, i.e. a finite upward
linear preorder with top element. Say 𝜑 is satisfiable in some point 𝑤0. Taking the
subframe 𝔉1 of 𝔉0 generated by 𝑤0 gives a rooted linear preorder with top element
on which 𝜑 is still satisfiable.
To turn this into a linear order, we use the technique known as bulldozing [11,

Theorem 3.20]. The technique is to replace any proper cluster by an infinite ascending
sequence of points. More formally, define 𝔉2 to be the frame consisting of points
⟨𝐶, 𝑖⟩ for any cluster 𝐶 in 𝔉1 and 𝑖 ∈ 𝜔 such that 𝑖 ≠ 0 implies that 𝐶 is a proper
cluster. For the relation of 𝔉2, define ⟨𝐶1, 𝑖⟩ sees ⟨𝐶2, 𝑗⟩ iff either

• 𝐶1 = 𝐶2 and 𝑖 ≤ 𝑗, or

• 𝐶1 ≠ 𝐶2 and the points in 𝐶1 see the points in 𝐶2.

Clearly 𝔉2 is still rooted (with as root ⟨𝐶root, 0⟩ where 𝐶root is the cluster of the
root of 𝔉1) and a linear preorder. Since we replaced every proper cluster of 𝔉1 with
something anti-symmetric, 𝔉2 is anti-symmetric, hence a linear order. It still has a
top element since by definition a top element has a singleton cluster, hence it was
not replaced by an ascending sequence.
We claim that 𝔉2 is a p-morphic image of 𝔉1. For any proper cluster 𝐶 of 𝔉1 let

|𝐶| denote the number of elements of 𝐶. Note that since 𝔉0 is finite, so is 𝔉1 and
hence the cluster 𝐶. Pick a bijection 𝑔𝐶 ∶ |𝐶| � 𝐶.
Now define a function 𝑓∶ 𝔉2,w → 𝔉1,w by sending ⟨{𝑥}, 0⟩ to 𝑥 for any singleton

cluster {𝑥} in 𝔉1, and ⟨𝐶, 𝑖⟩ to 𝑔𝐶(𝑖 mod |𝐶|), where 𝑖 mod 𝑛 denotes the smallest
natural number that equals 𝑖 modulo 𝑛. Clearly, 𝑓 is surjective, and it is easy to
check that it is a p-morphism. Hence 𝔉1 is a p-morphic image of 𝔉2, so 𝔉2 satisfies
𝜑.

To prove completeness of S4.3.1 w.r.t. certain ordinals, we employ an ad-hoc
selection method.

Lemma 6.16. S4.3.1 is sound and complete with respect to the set of frames

𝑆 ≔ {⟨𝛼 + 1, ≤⟩ | 𝛼 ∈ 𝜔2}.

Proof. Note that 𝑆 is a subset of the frame class of S4.3.1, hence the soundness. For
the completeness, let 𝜑′ ∉ S4.3.1, say refuted in a model 𝔐 on a linear order with
top element ⟨𝑊, ≤⟩. Let 𝜑 be a formula equivalent to ¬𝜑′ with only negations on
atomic propositions (push negations down through box, diamond, conjunction and
disjunction). Let 𝑤0 be a point of 𝔐 that satisfies 𝜑 (so refutes 𝜑′) and let 𝑤1 be
the top point of 𝔐. Let 𝐷 ≔ {𝜓 | ⬦𝜓 ∈ Sub(𝜑)}. Note that 𝐷 is finite.
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We construct a subset 𝑋 ⊆ 𝑊 inductively. Define 𝑋0 ≔ {𝑤0, 𝑤1}. Given a finite
𝑋𝑖 ⊆ 𝑊 we define 𝑊𝑖+1. Let 𝜓 ∈ 𝐷. Define 𝑋𝑖,𝜓 ≔ {𝑥 ∈ 𝑋𝑖 | 𝔐, 𝑥 ⊨ ⬦𝜓}. If this
set is non-empty then it has a maximal element, say 𝑥. Since 𝔐, 𝑥 ⊨ ⬦𝜓, there is
a point 𝑥𝑖,𝜓 above 𝑥 (hence by maximality above all elements of 𝑋𝑖,𝜓) such that
𝔐, 𝑥𝑖,𝜓 ⊨ 𝜓. Now define 𝑋𝑖+1 ≔ 𝑋𝑖 ∪ {𝑥𝑖,𝜓 ∣ 𝜓 ∈ 𝐷, 𝑋𝑖,𝜓 ≠ ⌀}, and note that it is
finite again. Finally we define 𝑋 ≔ ⋃ {𝑋𝑖 | 𝑖 ∈ 𝜔}.

Consider the submodel 𝔐′ of 𝔐 consisting of precisely the points in 𝑋. We prove
by induction on 𝜓 ∈ Sub(𝜑) that for 𝑥 ∈ 𝑋, if 𝔐, 𝑥 ⊨ 𝜓 then 𝔐′, 𝑥 ⊨ 𝜓. For atomic
propositions and their negations this is trivial, since the valuation is inherited from
𝔐.
For conjunction, assume 𝜓 = 𝜓1 ∧ 𝜓2 and the claim holds for 𝜓1 and 𝜓2 (IH). If

𝔐, 𝑥 ⊨ 𝜓 then 𝔐, 𝑥 ⊨ 𝜓1 and 𝔐, 𝑥 ⊨ 𝜓2 so by the induction hypothesis 𝔐′, 𝑥 ⊨ 𝜓1
and 𝔐′, 𝑥 ⊨ 𝜓2. We conclude that 𝔐′, 𝑥 ⊨ 𝜓.
For disjunction, assume 𝜓 = 𝜓1 ∨ 𝜓2 and the claim holds for 𝜓1 and 𝜓2 (IH).

If 𝔐, 𝑥 ⊨ 𝜓 then 𝔐, 𝑥 ⊨ 𝜓𝑖 for some 𝑖 ∈ {1, 2}. Then by IH 𝔐′, 𝑥 ⊨ 𝜓𝑖, hence
𝔐′, 𝑥 ⊨ 𝜓.

For box, assume 𝜓 = ◻𝜓1 and the claim holds for 𝜓1 (IH). If 𝔐, 𝑥 ⊨ 𝜓 then for any
successor 𝑦 of 𝑥, 𝔐, 𝑦 ⊨ 𝜓1. If 𝑦 ∈ 𝑋 then by IH 𝔐′, 𝑦 ⊨ 𝜓1. Hence all successors of
𝑥 in 𝔐′ satisfy 𝜓1, so 𝔐′, 𝑥 ⊨ 𝜓.

For diamond, assume 𝜓 = ⬦𝜓′ and the claim holds for 𝜓′ (IH). Note that 𝜓′ ∈ 𝐷.
Since 𝑥 ∈ 𝑋, we can find 𝑖 ∈ 𝜔 such that 𝑥 ∈ 𝑋𝑖. If 𝔐, 𝑥 ⊨ 𝜓 then 𝑥 ∈ 𝑋𝑖,𝜓′ , which
is therefore non-empty. Hence 𝑥𝑖,𝜓′ ∈ 𝑋𝑖+1 ⊆ 𝑋 exists. By definition 𝔐, 𝑥𝑖,𝜓′ ⊨ 𝜓′

and 𝑥𝑖,𝜓′ is a successor of 𝑥. Hence 𝔐′, 𝑥 ⊨ 𝜓.
That concludes the proof by induction. From 𝑥0 ∈ 𝑋 and 𝔐, 𝑥 ⊨ 𝜑 it now follows

that 𝔐′, 𝑥0 ⊨ 𝜑. Since 𝜑 is equivalent to ¬𝜑′, 𝔐′, 𝑥0 ⊭ 𝜑′.
Looking again at the construction of 𝑋, we note that

𝑋 = 𝑋0 ∪ {𝑥𝑖,𝜓 ∣ 𝑖 ∈ 𝜔, 𝜓 ∈ 𝐷, 𝑋𝑖,𝜓 ≠ ⌀}.

Now, for a fixed 𝜓, 𝑋𝑖,𝜓 is a monotone increasing in 𝑖, and hence so are the 𝑥𝑖,𝜓
(when they exist, i.e. when 𝑋𝑖,𝜓 ≠ ⌀). Since 𝐷 is finite, this shows that 𝑋 is the
union of finitely many countable chains. It follows that ⟨𝑋, ≤⟩ is isomorphic to
⟨𝜔 ⋅ 𝑚 + 𝑛, ≤⟩ for some 𝑚, 𝑛 ∈ 𝜔. Since ⟨𝑋, ≤⟩ has a top element, namely 𝑤1, 𝑛 ≠ 0.
Therefore 𝜔 ⋅ 𝑚 + 𝑛 = 𝛼 + 1 for some 𝛼 ∈ 𝜔2. So 𝜑′ is also refuted on a frame in
𝑆.

The next part of the proof is to show that any 𝜔-strongly Kripke complete logic
contained in Grz.3 has at least those ordinals as frames.

Lemma 6.17. Let Λ ⊆ Grz.3 be a logic extending S4 which is 𝜔-strongly Kripke
complete. Then there exists a frame 𝔉 of Λ such that ⟨𝜔2, ≤⟩ is a subframe of 𝔉.

Proof. The idea of the proof is to define a Grz.3-consistent set of formulas over the
atomic propositions 𝜔. By 𝜔-strong Kripke completeness this set of formulas will be
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satisfied in a single point in some model on a Λ-frame. We will use the valuation of
that model to extract the required subframe from this Λ-frame.
Fix some injection 𝑝∶ 𝜔2 → 𝜔, embedding the ordinal 𝜔2 in our set of atomic

propositions 𝜔. We define a set of formulas

Γ ≔ {⬦𝑝(𝛼) | 𝛼 ∈ 𝜔2} ∪ {◻(𝑝(𝛼) → ◻¬𝑝(𝛽)) | 𝛼, 𝛽 ∈ 𝜔2, 𝛼 > 𝛽}.

We claim that Γ is Grz.3-consistent, for let Γ′ ⊊ Γ be a finite subset. Then Γ′

references only finitely many atomic propositions, say 𝑝(𝑋) for a finite set 𝑋 ⊊ 𝜔2.
Clearly ⟨𝑋, ≤⟩ is a frame of Grz.3. Endowed with the valuation 𝔙 that sets
𝔙(𝑝(𝛼)) ≔ {𝛼} for all 𝛼 ∈ 𝑋 and 𝔙(𝑞) ≔ ⌀, this turns into a model that satisfies Γ′

in its bottom point. Therefore every finite subset of Γ is Grz.3-consistent, hence so
is Γ.

Since Λ ⊆ Grz.3, we conclude that Γ is Λ-consistent. Now Λ is 𝜔-strongly Kripke
complete, so Γ is satisfied in a single point 𝑤 of a frame 𝔉 of Λ. Then for any 𝛼 ∈ 𝜔2,
𝑤 sees a point 𝑤𝛼 satisfying 𝑝(𝛼). For 𝛽 < 𝛼, 𝑤𝛼 does not see any point satisfying
𝑝(𝛽), so in particular is does not see 𝑤𝛽. We conclude that {𝑤𝛼 | 𝛼 ∈ 𝜔2} gives rise
to a subframe isomorphic to ⟨𝜔2, ≤⟩. Obviously then there is also a frame of Λ such
that ⟨𝜔2, ≤⟩ is an actual subframe (not just isomorphic).

Lemma 6.18. Let 𝔉 = ⟨𝑊, ≤⟩ be a frame of S4.3.1, and 𝔉′ = ⟨𝑊 ′, 𝑅′⟩ a WF
frame of S4.3.1 that is a subframe of 𝔉 and includes the top element of it. Then 𝔉′

is a p-morphic image of 𝔉.

Proof. For 𝑤 ∈ 𝑊, let 𝑊 ′
𝑤 ⊆ 𝑊 ′ denote the set of successors of 𝑤 that are in the

subframe 𝔉′. Since at least the top element is a successor of 𝑤 and a point of 𝔉′,
the set 𝑊 ′

𝑤 is non-empty. As 𝔉′ is transitive and WF, it follows that there exists a
minimal point 𝑓(𝑤) for 𝑊 ′

𝑤. Clearly, this defines a frame morphism 𝑓∶ 𝔉 → 𝔉′. Note
that we can chose 𝑓 such that the restriction of 𝑓 to 𝔉′ is the identity map, as by
reflexivity every point is a minimal successor of itself. Hence 𝑓 is surjective.
To see that 𝑓 is a p-morphisms, assume 𝑢 ∈ 𝑊, 𝑤 ∈ 𝑊 ′ and 𝑅′(𝑓(𝑢), 𝑤). Then

𝑢 ≤ 𝑓(𝑢) ≤ 𝑤 since 𝑓 is monotone (and 𝑅′ is a restriction of ≤), so 𝑢 ≤ 𝑤. Since 𝑓
restricts to the identity on 𝑊 ′, and 𝑤 ∈ 𝑊 ′, we find 𝑓(𝑤) = 𝑤 as required.

We conclude:

Theorem 6.19. Can↑(Grz.3) = Can↓(Grz.3) = S4.3.1.

Proof. Since Grz.3 has the fmp, by Proposition 6.13, Can↑(Grz.3) = Can↓(Grz.3).
Hence it suffices to prove Can↑(Grz.3) = S4.3.1.
Define Λ ≔ Can↑(Grz.3). Then Λ is canonical, hence in particular 𝜔-strongly

Kripke complete. Because S4.3.1 ⊆ Grz.3 is canonical, S4.3.1 ⊆ Λ. Therefore we
are left to prove Λ ⊆ S4.3.1. Since we are considering the canonical approximation
from below, Λ ⊆ Grz.3. Hence the two previous lemmata are applicable to Λ.
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By Lemma 6.17, we find a frame 𝔉 of Λ which has ⟨𝜔2, ≤⟩ as a subframe. Let
𝛼 ∈ 𝜔2. Then ⟨𝛼, ≤⟩ is a subframe of ⟨𝜔2, ≤⟩ and hence of 𝔉. Note that ⟨𝜔2, ≤⟩ as
a subframe of 𝔉 cannot include the top element, so neither can the smaller subframe
⟨𝛼, ≤⟩. Let us denote by 𝔉𝛼 the subframe of 𝔉 consisting of 𝛼 and the top element
of 𝔉. Clearly, this is isomorphic to ⟨𝛼 + 1, ≤⟩. Since 𝔉𝛼 is WF, it follows from
Lemma 6.18 that it is a frame of Λ. 𝔉𝛼 is isomorphic to ⟨𝛼 + 1, ≤⟩, so ⟨𝛼 + 1, ≤⟩ is
also a frame of Λ. But by Lemma 6.16, S4.3.1 is sound and complete w.r.t. these
frames. Hence Λ ⊆ S4.3.1.

Note that in the proof we only really used the fact that the canonical approximation
is 𝜔-strongly Kripke complete instead of its full canonicity. In fact the 𝜔-canonical
logics form a complete lattice, and using the proof above it follows that the 𝜔-
canonical approximations of Grz.3 are S4.3.1.

6.6 The Canonical Approximations of Grz.2
Now that we have established that both canonical approximations of Grz.3 are
S4.3.1, we turn to the canonical approximations of Grz.2, the logic of confluent
Grz-frames. We will show both are S4.2.1.
Recall the axioms and frame properties of the logics S4.2.1 and Grz.2 from

Section 2.11. We list some well-known properties about these logics first.

Proposition 6.20.

(i) S4.2.1 and Grz.2 have the fmp,

(ii) S4.2.1 is canonical, and

(iii) Grz.2 extends S4.2.1.

Proof sketch. (i) Call a subframe, sub-general frame or submodel cofinal iff it
contains, for every point of the frame 𝑥, a point 𝑦 above 𝑥. Note that for
both logics, the general frames of it are closed under taking cofinal sub-general
frames (or equivalently the models are closed under taking cofinal submodels).
By the Fine-Zakharyaschev selective filtration theorem [11, Theorem 9.34],
based on work by Fine [22], it follows that they have the fmp.

(ii) By (i) it is Kripke complete, and clearly has an elementary frame class. Hence
by the Fine-van Benthem theorem (Theorem 6.12) it is canonical.

(iii) By (i) it suffices to show that every finite frame of Grz.2 is a frame of S4.2.1.
A Grz-frame is CWF so it contains a point 𝑥 that is maximal for the entire
frame, and does not contain any proper clusters, so the cluster of 𝑥 is singleton.
Then 𝑥 is final, and by transitivity and confluence every point sees 𝑥.



6.6 The Canonical Approximations of Grz.2 81

From the last two facts, we conclude that S4.2.1 is contained in the canonical
approximation of Grz.2 from below. In the rest of this section we show that it
actually is the canonical approximation.

Compared to the proof in the previous section, the first completeness part of the
proof is simpler and more standard. Again, as a second part of the proof we show
that any strongly Kripke complete logic contained in Grz.2 has at least those frames.

Let us first introduce the following notation.

Definition 6.21. Let 𝔉 = ⟨𝑊, 𝑅⟩ be frame. Define 𝔉⊤ to be the of 𝔉 with a
single reflexive top point added to it. More formally define 𝔉⊤ ≔ ⟨𝑊 ⊤, 𝑅⊤⟩ where
𝑊 ⊤ ≔ 𝑊 ∪ {⊤} and 𝑅⊤ ≔ 𝑅 ∪ {⟨𝑤, ⊤⟩ | 𝑤 ∈ 𝑊 ⊤}, where ⊤ is some point distinct
from all points in 𝔉.

An important property of this construction that we will use is that any p-morphism
induces a p-morphism between the frames with top elements added, mapping the
top point to the top point.

Lemma 6.22. Let 𝔉 and 𝔊 be frames and 𝑓∶ 𝔉 → 𝔊 a p-morphism. Then there exists
a p-morphism 𝑓⊤ ∶ 𝔉⊤ → 𝔊⊤ with 𝑓⊤(⊤) = ⊤ and for any point 𝑥 of 𝔉, 𝑓⊤(𝑥) = 𝑓(𝑥).

Proof. Say 𝔉⊤ = ⟨𝑊, 𝑅⟩ and 𝔊⊤ = ⟨𝑊 ′, 𝑅′⟩. Define 𝑓 as in the lemma statement.
Clearly it is a frame morphism, since 𝑓 is. To see that it is a bounded morphism, let
𝑥 ∈ 𝑊 and 𝑦′ ∈ 𝑊 ′ such that 𝑅′(𝑓⊤(𝑥), 𝑦). We want to find a preimage 𝑦 ∈ 𝑊 of 𝑦′

with 𝑅(𝑥, 𝑦).

• If neither 𝑥 nor 𝑦′ is ⊤ then this follows from the fact that 𝑓 is a bounded
morphism.

• If 𝑦′ = ⊤ take 𝑦 = ⊤. Then 𝑓⊤(𝑦) = ⊤ = 𝑦′ by definition and 𝑅(𝑥, 𝑦) since 𝑦
is a top point.

• If 𝑥 = ⊤ then 𝑓⊤(𝑥) = ⊤. Since 𝑅′(𝑓⊤(𝑥), 𝑦), it follows that 𝑦 is the top
element ⊤ as well, so we are in the previous case.

Now we can state and prove the completeness result that goes into our canonical
approximation computation. It is a standard application of the usual tree unraveling
technique.

Lemma 6.23. S4.2.1 is sound and complete w.r.t. the class of frames 𝔉⊤ where 𝔉
is a reflexive transitive tree.

Proof sketch. Let 𝔉⊤ be a preorder with a top element satisfying a formula 𝜑 in
some point 𝑤0. Taking the subframe generated by 𝑤0 gives a rooted preorder with
top element 𝔊⊤ still satisfying 𝜑 in 𝑤0.
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Since 𝔊 is a preorder, by Proposition 2.103 it is a p-morphic image of the reflexive
and transitive closure �⃗�∗ of the path unravelling �⃗� of 𝔊. By Lemma 6.22 this
surjective p-morphism extends into a surjective p-morphism from �⃗�∗⊤ to 𝔊⊤. Hence
�⃗�∗⊤ also satisfies 𝜑 (in fact still in its root). Since �⃗� is a strict tree, �⃗�∗ is reflexive
transitive tree.

Remark 6.24. In fact, using a selection technique, somewhat similar to the proof
of Lemma 6.16, one can improve the previous lemma to countable 𝔉. Doing this
would in fact improve the final result of the section from computing the canonical
approximations to the 𝜔-canonical approximations of Grz.2. .

As a kind of work-around to save doing double work later, we note that we can in
fact make the frames non-linear.

Lemma 6.25. S4.2.1 is sound and complete w.r.t. the class of frames 𝔉⊤ where 𝔉
is a non-linear reflexive transitive tree.

Proof idea. It is easy to define a non-linear reflexive transitive tree 𝔉′ and a surjective
p-morphism from 𝔉′ to 𝔉, while preserving all the above properties. For example,
pick any point 𝑥 ∈ 𝔉w, then ‘add a duplicate copy of the frame generated by 𝑥 to 𝔉,
with the root seeing all these new points’ to obtain such 𝔉′.

The next, and more interesting part of the proof is to show that any strongly
Kripke complete logic contained in Grz.2 has at least these non-linear reflexive
transitive trees with tops added as frames.

Lemma 6.26. Let 𝜅 be a cardinal, S4.2.1 ⊆ Λ ⊆ Grz.2 a logic which is 𝜅-strongly
Kripke complete, and let 𝔉 be a reflexive transitive tree of cardinality 𝜅. Then there
exists a frame 𝔉′ of Λ such that one of 𝔉⊤ and 𝔉 is a p-morphic image of 𝔉′.

Proof. Say 𝔉 = ⟨𝑊, 𝑅⟩ and 𝔉⊤ = ⟨𝑊 ⨿ {⊤}, 𝑅⊤⟩. Fix some injection 𝑝∶ 𝑊 → 𝜅,
and note such exists since 𝔉 has cardinality 𝜅. Let 𝑟 be the root of 𝔉. We define a
set of formulas Γ to be the least set containing the following formulas:

• ◻(𝑝(𝑥) → ⬦𝑝(𝑦)) for any 𝑥, 𝑦 ∈ 𝑊 with 𝑅(𝑥, 𝑦),

• ◻(𝑝(𝑥) → ¬⬦𝑝(𝑦)) for any 𝑥, 𝑦 ∈ 𝑊 with ¬𝑅(𝑥, 𝑦),

• ◻(𝑝(𝑥) → ¬𝑝(𝑦)) for any 𝑥, 𝑦 ∈ 𝑊 with 𝑥 ≠ 𝑦,

• 𝑝(𝑟), and

• ◻(⋀{¬𝑝(𝑥) | 𝑥 ∈ 𝑊, 𝑅(𝑥, 𝑦)} → ¬⬦𝑝(𝑦)) for any 𝑦 ∈ 𝑊.

For the last formula we use the fact that since 𝔉 is a reflexive transitive tree, the
downset generated by 𝑦 is finite.
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We claim that Γ is Grz.2-consistent, for let Γ′ ⊆ Γ be a finite subset. Then Γ′

references only finitely many atomic propositions, say 𝑝(𝑋) for a finite set 𝑋 ⊆ 𝑊.
Clearly the subframe of 𝔉⊤ with the points in 𝑋 ∪ {⊤} is a finite poset with a
top element, hence a frame of Grz.2. Endowed with the valuation 𝔙 that sets
𝔙(𝑝(𝑥)) ≔ {𝑥} for all 𝑥 ∈ 𝑋 and 𝔙(𝑞) ≔ ⌀ for 𝑞 ∉ 𝑝(𝑋), this turns into a model
that satisfies Γ′ in its bottom point. Therefore every finite subset of Γ is Grz.2-
consistent, hence so is Γ.

Since Λ ⊆ Grz.2, we conclude that Γ is Λ-consistent. Now Λ is 𝜅-strongly Kripke
complete, so Γ is satisfied in a single point 𝑤0 in a model 𝔐′ on a frame 𝔉′ = ⟨𝑊 ′, 𝑅′⟩
of Λ, i.e. 𝔐′, 𝑤0 ⊨ Γ. By taking a generated submodel we can assume that 𝔉′ is
rooted with root 𝑤0.

We show that every point of 𝔉′ satisfies at most one atomic proposition 𝑝(𝑥) in the
model 𝔐′. So assume 𝑤′ ∈ 𝑊 ′. Since 𝑤0 is a root of 𝔉′, 𝑅(𝑤0, 𝑤′). For any 𝑥, 𝑦 ∈ 𝑊
with 𝑥 ≠ 𝑦 we know that 𝔐′, 𝑤0 ⊨ ◻(𝑝(𝑥) → ¬𝑝(𝑦)). Hence 𝔐′, 𝑤′ ⊨ 𝑝(𝑥) → ¬𝑝(𝑦).
We conclude that 𝑤′ can satisfy at most one of the 𝑝(𝑥).

Let us call any point 𝑤′ ∈ 𝑊 ′ that does not satisfy any atomic proposition of the
form 𝑝(𝑥) strange. We show that any strange point sees only strange points. For let
𝑤′ ∈ 𝑊 ′ be strange. Note that

𝔐′, 𝑤0 ⊨ ◻(⋀{¬𝑝(𝑥) | 𝑥 ∈ 𝑊, 𝑅(𝑥, 𝑦)} → ¬⬦𝑝(𝑦))

for any 𝑦 ∈ 𝑊, so 𝔐′, 𝑤′ ⊨ ⋀{¬𝑝(𝑥) | 𝑥 ∈ 𝑊, 𝑅(𝑥, 𝑦)} → ¬⬦𝑝(𝑦). But the
antecedent is trivially satisfied since 𝑤′ is strange. Hence 𝔐′, 𝑤′ ⊨ ¬⬦𝑝(𝑦), for any
𝑦 ∈ 𝑊. So indeed strange points see only strange points.
Now if 𝔉′ does not have strange points, it is easy to construct a surjective p-

morphism from 𝔉′ to 𝔉. (This is highly analogous to the surjective p-morphism
construction below, but without the strange points which are sent to ⊤.) So assume
𝔉′ does have at least one strange point, call it 𝑠. Since 𝔉′ is a frame of Λ ⊇ S4.2.1,
it does have a top point, say 𝑡 ∈ 𝑊 ′. Then 𝑠 sees 𝑡, since 𝑡 is top. But 𝑠 is strange,
so only sees strange points. We conclude that 𝑡 is strange.

We construct a surjective p-morphism 𝑓∶ 𝔉′ → 𝔉⊤. Define 𝑓 as follows:

• If 𝑤′ ∈ 𝑊 ′ is not strange, find the unique 𝑥 ∈ 𝑊 such that 𝔐′, 𝑤′ ⊨ 𝑝(𝑥). Set
𝑓(𝑤′) ≔ 𝑥.

• If 𝑤′ ∈ 𝑊 ′ is strange, define 𝑓(𝑤′) ≔ ⊤.

It is surjective, for assume 𝑥 ∈ 𝑊. Note that 𝑅(𝑟, 𝑥), so

𝔐′, 𝑤0 ⊨ ◻(𝑝(𝑟) → ⬦𝑝(𝑥)).

Since 𝔐′, 𝑤0 ⊨ 𝑝(𝑟) and 𝔉′ is reflexive, we get 𝔐′, 𝑤0 ⊨ ⬦𝑝(𝑥). Hence there exists
𝑤′ ∈ 𝑊 ′ with 𝔐′, 𝑤′ ⊨ 𝑝(𝑥), so 𝑓(𝑤′) = 𝑥 as required. Finally note that 𝑓(𝑡) = ⊤,
so also ⊤ has a preimage.
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To see that it is a morphism assume 𝑤′, 𝑥′ ∈ 𝑊 ′ with 𝑅′(𝑤′, 𝑥′). If 𝑥′ is strange,
then 𝑓(𝑥′) = ⊤ which is clearly above 𝑓(𝑤′). If 𝑥′ is not strange, then neither is
𝑤′, as strange points only see strange points. Assume, for sake of contradiction,
¬𝑅(𝑓(𝑤′), 𝑓(𝑥′)). Then 𝔐′, 𝑤0 ⊨ ◻(𝑝(𝑓(𝑤′)) → ¬⬦𝑝(𝑓(𝑥′))). Since 𝑅(𝑤0, 𝑤′) and
𝔐′, 𝑤′ ⊨ 𝑝(𝑓(𝑤′)) by definition, we deduce 𝔐′, 𝑤′ ⊨ ¬⬦𝑝(𝑓(𝑥′)). But 𝔐′, 𝑥′ ⊨
𝑝(𝑓(𝑥′)) and 𝑅′(𝑤′, 𝑥′), leading to a contradiction.

Finally, 𝑓 is a p-morphism, for let 𝑤′ ∈ 𝑊 ′ and 𝑥 ∈ 𝑊 ⨿{⊤} such that 𝑅⊤(𝑓(𝑤′), 𝑥).

• If 𝑥 = ⊤ then we can take 𝑥′ ≔ 𝑡 as the preimage for 𝑥, since 𝑓(𝑡) = ⊤ and
𝑅′(𝑤′, 𝑡) since 𝑡 is top.

• If 𝑤′ is strange then 𝑓(𝑤′) = ⊤, so 𝑥 must be ⊤ as well, so the previous case
applies.

• If 𝑤′ is not strange and 𝑥 ∈ 𝑊 (not ⊤) then 𝔐′, 𝑤0 ⊨ ◻(𝑝(𝑓(𝑤′)) → ⬦𝑝(𝑥)).
Since 𝑤′ is a successor of 𝑤0 satisfying 𝑝(𝑓(𝑤′)), we conclude 𝔐′, 𝑤′ ⊨ ⬦𝑝(𝑥).
Hence there exists 𝑥′ ∈ 𝑊 ′ above 𝑤′ satisfying 𝑝(𝑥), so 𝑓(𝑥′) = 𝑥 as required.

Lemma 6.27. Let S4.2.1 ⊆ Λ ⊆ Grz.2 be a logic which is strongly Kripke complete.
Then Λ is sound w.r.t. the class of frames 𝔉⊤ where 𝔉 is a non-linear reflexive
transitive tree.

Proof. Let 𝔉 be a frame as in the lemma statement. By Lemma 6.26, we find a frame
𝔉′ of Λ such that either 𝔉⊤ or 𝔉 is a p-morphic image of 𝔉′. Hence either 𝔉⊤ or 𝔉
is a frame of Λ. Note that 𝔉 is non-linear and a reflexive transitive tree, so it does
not have a top element. Therefore 𝔉 is not a frame of Λ. We conclude that 𝔉⊤ is a
frame of Λ.

Theorem 6.28. Can↑(Grz.2) = Can↓(Grz.2) = S4.2.1.

Proof. Since S4.2.1 is canonical and S4.2.1 ⊆ Grz.2, we know that S4.2.1 ⊆
Can↑(Grz.2) ⊆ Grz.2. Note that Can↑(Grz.2) is canonical, hence strongly Kripke
complete. By Lemma 6.27 it follows that it must be sound w.r.t. the class of frames 𝔉⊤

where 𝔉 is a non-linear reflexive transitive tree. But S4.2.1 ⊆ Can↑(Grz.2), and by
Lemma 6.25, S4.2.1 is complete w.r.t. this frame class. Hence S4.2.1 = Can↑(Grz.2).

Since Grz.2 has the fmp, by Proposition 6.13, Can↑(Grz.2) = Can↓(Grz.2).

As noted in Remark 6.24, the completeness lemma for S4.2.1 can be improved to
countable frames. Then the strong Kripke completeness condition in Lemma 6.27 can
be weakened to 𝜔-strong Kripke completeness, and, similar to the previous section,
we can conclude that S4.2.1 is actually the 𝜔-canonical approximation.

Concluding, we ‘computed’ the canonical approximations of the logics Grz.3 and
Grz.2. However, even though Grz.3 is an extension of Grz.2, we needed separate
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proofs for these two results. This naturally raises the question of whether both are
instances of a more general theorem, say which would apply to all extensions of
Grz.2 that satisfy certain conditions.
In both proofs, but especially the one for Grz.2, the unique top point played an

important role. One losses this uniqueness of (the) final point(s) when moving to
Grz. Whether and how this can be worked around is left for future research. In
addition, the situation for the extensions of GL is yet to be explored.
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Chapter 7

Computation, Trees and
Dynamic Topological Logic

This chapter provides short introductions to concepts from computability theory,
dynamic topological logic and Kruskal’s tree theorem. It can be thought of as a kind
of preliminaries for the next chapter, and does not contain any new results.

7.1 Introduction
In the next chapter, we prove computable enumerability of some dynamic topological
logics. In preparation of that, this chapter introduces various preliminaries for it. In
particular computable enumerability is defined and dynamic topological logics are
introduced.
The next section starts with giving a very short introduction to computability

theory. In particular computable enumerability is introduced, and its relation with
axiomatisability is discussed. Next, Section 7.3 provides an introduction to dynamic
topological logic and its semantics. Finally, Section 7.4 discusses two important
theorems about trees, namely Kőnig’s lemma and Kruskal’s tree theorem.

The reader who is already familiar with these topics can skip the respective sections.
It is advised however, to quickly review the frame semantics for dynamic topological
logic in Section 7.3.

7.2 Computability and Logic
Given a logic, a very natural question is to ask for a proof system for the logic, i.e. a
formal system which describes precisely which formulas are tautologies. In fact, very
often logics are defined in terms of a proof system, or axiomatisation. Similarly, one
can ask whether there exists an algorithmic way to determine whether a formula is a
tautology or not. The second question leads to the field of computability theory, and
turns out to be strongly related to the former question.
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In this section we give a very brief introduction to computability theory and its
relation with logic and axiomatisations. More information and details can be found
introductory and reference works on the topic, notably Rogers [39] and Odifreddi
[37].

Computability theory. Giving a precise description of computability theory is
difficult, but in essence it studies the ability of algorithms to describe functions or
sets. Classically this has been restricted to functions over and sets of natural numbers
[37]. By describing other finite objects, like formulas, as numbers, the classical theory
is still widely applicable, and suffices for our purposes in logic. This technique of
representing objects as natural numbers is also known as arithmetisation.

The first central question obviously is how to formalise the notion of an ‘algorithm’.
There are many possible formalisations. Notable examples include general recursive
functions [27],1 𝜆-definable functions [12] and Turing machines [44]. However, all
these definitions, and many others, turn out to be equivalent [26, 43], in the sense
that any function of natural numbers that is computable according to one of the
definitions, is computable according to all definitions. Hence the precise definition of
computability of functions is of minor importance.

Definition 7.1 (Computable function). An 𝑛-ary function 𝑓∶ 𝜔𝑛 → 𝜔 is called
computable iff it is computable in one of the equivalent formalisms of computability.
Informally this means that 𝑓 is computable iff there exists an algorithm that, given
inputs ⃗𝑥 ∈ 𝜔𝑛 terminates and gives as output 𝑓( ⃗𝑥).

Definition 7.2 (Decidable set). A set 𝑋 ⊆ 𝜔𝑛 is called decidable iff the characteristic
function of 𝑋 is computable. Informally this means that 𝑋 is decidable iff there
exists an algorithm that, given inputs ⃗𝑥 ∈ 𝜔𝑛 terminates and gives as output 0 if

⃗𝑥 ∉ 𝑋 and 1 if ⃗𝑥 ∈ 𝑋.

Instead of deciding whether ⃗𝑥 is an element of 𝑋, one can also consider a (strictly)
weaker definition, where there exists an algorithm that precisely lists all elements
of 𝑋 (in arbitrary order). More formally, this means precisely that 𝑋 is either the
empty set or the image of some computable function 𝑓∶ 𝜔 → 𝜔. Such a set 𝑋 is called
computably enumerable. Often more convenient though, is the following equivalent
definition using existential quantification.

Definition 7.3 (Computably enumerable). A set 𝑋 ⊆ 𝜔𝑛 is called computably
enumerable iff there exists a decidable set 𝑌 ∈ 𝜔𝑛+1 such that ⃗𝑥 ∈ 𝑋 iff ∃𝑦 ∈
𝜔. ⟨𝑦, 𝑥⟩ ∈ 𝑌. Informally this means that 𝑋 is computably enumerable iff there exists
an algorithm that, given inputs ⃗𝑥 ∈ 𝜔𝑛 terminates if ⃗𝑥 ∈ 𝑋 and does not terminate
if ⃗𝑥 ∉ 𝑋.

1In modern days an equivalent definition called 𝜇-recursive functions is more commonly used.
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The analogous definition but with a universal instead of existential quantifier
is called co-computably enumerable. These are also precisely the complements of
computably enumerable sets.

Definition 7.4 (Co-computably enumerable). A set 𝑋 ⊆ 𝜔𝑛 is called co-computably
enumerable iff there exists a decidable set 𝑌 ∈ 𝜔𝑛+1 such that ⃗𝑥 ∈ 𝑋 iff ∀𝑦 ∈
𝜔. ⟨𝑦, 𝑥⟩ ∈ 𝑌.

Remark 7.5. General recursive functions formed the first formalisation of computable
functions. Due to this, to this day, computable functions are also called recursive
functions, and computably enumerable sets are also called recursively enumerable.
Computably enumerable is often abbreviated to c.e. or r.e. (for recursively enumer-
able). .

Computable enumerability and axiomatisability. As noted earlier, logical
formulas can easily be coded as natural numbers, thus allowing to apply notions of
computability theory to logics. This obviously requires a countable set of formulas,
so the language needs to be finitary. Now computable enumerability of logics turns
out to be strongly related to axiomatisability.
Let us fix a finitary language ℒ. An instance of an 𝑛-ary proof rule on ℒ is a

sequence ⟨𝜑0, … , 𝜑𝑛⟩ of 𝑛 + 1 formulas. It is interpreted as ‘from 𝜑0 to 𝜑𝑛−1 derive
𝜑𝑛’. Using the coding of formulas, rule instances are easily coded as natural numbers.
Let us fix a decidable2 set of such rule instances. Note that the instances of many
common rules, for example modus ponens, form a decidable set.
A set of formulas Λ is now called a logic iff it is closed under the proof rule

instances, i.e. whenever ⟨𝜑0, … , 𝜑𝑛⟩ is a rule instance and 𝜑0, … , 𝜑𝑛−1 ∈ Λ then
𝜑𝑛 ∈ Λ. A logic Λ is called axiomatised by a set of formulas 𝐴 ⊆ Λ iff Λ is the least
logic extending 𝐴.

Proposition 7.6. Let Λ be a logic over ℒ axiomatised by a computably enumerable
set 𝐴. Then Λ is computably enumerable.

Proof sketch. Intuitively one enumerates proofs using as axioms the formulas in 𝐴.
Then one can enumerate Λ by giving for each proof in the previous enumeration the
conclusion of that proof.
More formally, find decidable 𝑋 such that 𝜑 ∈ 𝐴 iff ∃𝑚 ∈ 𝜔. ⟨𝑚, 𝜑⟩ ∈ 𝑋. Let us

code derivations using the proof rules by natural numbers. Now given a formula
𝜑, (a code of) a derivation 𝑝 and a finite list of pairs ⟨⟨𝑚1, 𝜓1⟩, … ⟨𝑚𝑛, 𝜓𝑛⟩⟩, it is
decidable whether

• whether each of the ⟨𝑚𝑖, 𝜓𝑖⟩ ∈ 𝑋,
2The proposition generalises to a computably enumerable set of rule instances, but the proof becomes
a bit more tedious.
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• whether 𝑝 codes a valid derivation from its axioms,

• whether 𝑝 has as its conclusion the formula 𝜑, and

• whether 𝑝 has as its axioms only formulas 𝜓𝑖 for some 𝑖 ∈ {0, … , 𝑛}.

Note that 𝜑 ∈ Λ iff there exist such 𝑝, 𝑛 and ⟨⟨𝑚1, 𝜓1⟩, … ⟨𝑚𝑛, 𝜓𝑛⟩⟩. Coding all
these in a single natural number, we thus see that Λ can be written as an existential
over a decidable set. Hence it is computably enumerable.

In particular, any logic axiomatised by a decidable set of formulas is computably
enumerable. Maybe surprisingly, if ℒ contains an operator that behaves like the usual
conjunction, then the converse also holds. This result, known as Craig’s theorem or
Craig’s trick, is due to Craig [13]. The original formulation is more general than the
one here, as it uses a far weaker condition than having a conjunction in the logic.

Proposition 7.7 (Craig’s theorem, [13]). Suppose ℒ has an operator ∧ with proof
rules 𝜑 ∧ 𝜓 ⊢ 𝜑, 𝜑 ∧ 𝜓 ⊢ 𝜓 and 𝜑, 𝜓 ⊢ 𝜑 ∧ 𝜓. Let Λ be a computably enumerable
logic over ℒ. Then Λ is axiomatised by a decidable set 𝐴.

Proof sketch. Define a function 𝑓∶ 𝜔 × ℒ → ℒ by setting

𝑓(0, 𝜑) ≔ 𝜑 and 𝑓(𝑛 + 1, 𝜑) ≔ 𝜑 ∧ 𝑓(𝑛, 𝜑).

Note that 𝑓 for all 𝑛 ∈ 𝜔, 𝑓(𝑛, 𝜑) and 𝜑 are inter-derivable. Moreover there exists a
computable function which sends a formula 𝜓 to a finite list of all its 𝑓-preimages.
Instead of having a conjunction in ℒ, the existence of a function 𝑓 with these
properties actually suffices.
Find a decidable set 𝑋 such that 𝜑 ∈ Λ iff ∃𝑚 ∈ 𝜔. ⟨𝑚, 𝜑⟩ ∈ 𝑋. Define

𝐴 ≔ {𝑓(𝑥) | 𝑥 ∈ 𝑋}. This 𝐴 is decidable, for given a formula 𝜓 one can compute all
finitely many 𝑓-preimages of it, and check each for being an element of 𝑋.

Note that 𝐴 axiomatises Λ, for suppose 𝜑 ∈ Λ. Then there exists 𝑚 ∈ 𝜔 such that
⟨𝑚, 𝜑⟩ ∈ 𝑋. Then 𝑓(𝑚, 𝜑) ∈ 𝐴, and 𝑓(𝑚, 𝜑) derives 𝜑.

Conversely suppose 𝜑 ∈ 𝐴. Then there exist a number 𝑚 and a formula 𝜓 such that
⟨𝑚, 𝜓⟩ ∈ 𝑋 and 𝑓(𝑚, 𝜓) = 𝜑. Then by definition of 𝑋, 𝜓 ∈ Λ, but by construction
of 𝑓, 𝜓 derives 𝜑. Hence 𝜑 ∈ Λ.

7.3 Dynamic Topological Logic
Dynamic topological logic refers to a family of multimodal logics that combine a
unimodal logic interpreted over topological spaces with a linear temporal logic. The
logic, in its current form, was introduced by Kremer and Mints [31] to study ‘the
confluence of three research areas: the topological semantics for S4, topological
dynamics, and temporal logic.’ [31]. It has three primitive modal operators: a box ◻
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that is interpreted topologically, a temporal next operator ⚪ and a temporal box ◻𝐹
that is the transitive closure of ⚪. Formulas are then interpreted over a topological
space equipped with a continuous function. In addition to this topological semantics,
formulas can be interpreted over a weakly-transitive Kripke frame equipped with a
monotone function.

Definition 7.8 (Dynamic topological structure). A dynamic topological structure,
or DTS for short, is a tuple ⟨𝔛, 𝑓⟩ such that 𝔛 is a topological space and 𝑓∶ 𝔛 → 𝔛
is a continuous function.

Definition 7.9 (Dynamic topological model). A dynamic topological model, or DTM
for short, with atomic propositions 𝑃, is a tuple ⟨𝔛, 𝑓, 𝔙⟩ such ⟨𝔛, 𝑓⟩ is a DTS and
𝔙∶ 𝑃 → 𝒫(𝔛w).

Definition 7.10 (Topological semantics for DTL). Let 𝔐 = ⟨𝔛, 𝑓, 𝔙⟩ be a DTM,
𝑥 ∈ 𝔛w and 𝜑 a DTL-formula. Define, by induction on 𝜑, a subset ⟦𝜑⟧𝔐 ⊆ 𝔛w:

• for an atomic proposition 𝑝 ∈ 𝑃, ⟦𝑝⟧𝔐 ≔ 𝔙(𝑝),

• Boolean connectives as usual,

• ⟦◻𝜑⟧𝔐 ≔ Int(⟦𝜑⟧𝔐),

• ⟦⚪𝜑⟧𝔐 ≔ 𝑓−1(⟦𝜑⟧𝔐), and

• ⟦◻𝐹𝜑⟧𝔐 ≔ ⋂ {⟦⚪𝑛𝜑⟧𝔐 | 𝑛 ∈ 𝜔 ∖ {0}}.

We write 𝔐, 𝑥 ⊨ 𝜑 iff 𝑥 ∈ ⟦𝜑⟧𝔐 and 𝔐 ⊨ 𝜑 iff ⟦𝜑⟧𝔐 = 𝔛w.

For the frame-based semantics we change the topological space to a weakly-
transitive Kripke frame and 𝑓 to a monotone function. The interpretation of ◻ then
changes to usual Kripke interpretation.

Definition 7.11 (Dynamic frame structure). A dynamic frame structure, or DFS
for short, is a tuple ⟨𝔉, 𝑓⟩ such that 𝔉 is a Kripke frame and 𝑓∶ 𝔉 → 𝔉 is a monotone
function.

Definition 7.12 (Dynamic frame model). A dynamic frame model, or DFM for
short, with atomic propositions 𝑃, is a tuple ⟨𝔉, 𝑓, 𝔙⟩ such ⟨𝔉, 𝑓⟩ is a DFS and
𝔙∶ 𝑃 → 𝒫(𝔉w).

Definition 7.13 (Kripke semantics for DTL). Let 𝔐 = ⟨𝔉, 𝑓, 𝔙⟩ be a DFM, 𝑥 ∈ 𝔉w
and 𝜑 a DTL-formula. Define, by induction on 𝜑, a subset ⟦𝜑⟧𝔐 ⊆ 𝔉w:

• for an atomic proposition 𝑝 ∈ 𝑃, ⟦𝑝⟧𝔐 ≔ 𝔙(𝑝),

• Boolean connectives as usual,
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• ⟦◻𝜑⟧𝔐 ≔ ◻⟦𝜑⟧𝔐,

• ⟦⚪𝜑⟧𝔐 ≔ 𝑓−1(⟦𝜑⟧𝔐), and

• ⟦◻𝐹𝜑⟧𝔐 ≔ ⋂ {⟦⚪𝑛𝜑⟧𝔐 | 𝑛 ∈ 𝜔 ∖ {0}}.

We write 𝔐, 𝑥 ⊨ 𝜑 iff 𝑥 ∈ ⟦𝜑⟧𝔐 and 𝔐 ⊨ 𝜑 iff ⟦𝜑⟧𝔐 = 𝔛w.

We introduce the following notation for defining logics over the DTL-language.

Definition 7.14. Let 𝒮 be a class of topological spaces or weakly-transitive Kripke
frames. We write DTL(𝒮) for the logic of all DTSs over topological spaces in 𝒮 or
the logic of DFSs over frames in 𝒮 respectively.

Kripke semantics as topological semantics. It should be noted that the Kripke
semantics and topological semantics for DTL are related. In fact, it is known that
DTL over S4-frames is equivalent to DTL over topological spaces called Alexandrov
spaces. These spaces were introduced by Alexandrov [2].

Definition 7.15 (Alexandrov space). A topological space is called an Alexandrov
space (sometimes spelled Alexandroff space) iff the set of opens is closed under
arbitrary intersections.

The relation between T0 Alexandrov space and partial orders was already noted by
Alexandrov [3, Section 1]. In fact, this extends to a category theoretic isomorphism
between Alexandrov spaces with continuous functions and preorders with monotone
functions [36, Proposition 2.4.6]. The preorder induced by an Alexandrov space is
the so called specialisation preorder.

Definition 7.16 (Specialisation preorder). Let 𝔛 be an Alexandrov space. Then
the specialisation preorder of 𝔛 is ⟨𝔛w, ≤⟩ where, for 𝑥, 𝑦 ∈ 𝔛w, 𝑥 ≤ 𝑦 iff Cl({𝑥}) ⊆
Cl({𝑦}).

It is obvious from the definition that the specialisation preorder is a preorder. One
can also note that in the specialisation preorder, 𝑥 ≤ 𝑦 iff 𝑥 ∈ Cl({𝑦}).

For the converse direction, a preorder induces an Alexandrov space by taking the
upset space.

Lemma 7.17 (Upset space). Let 𝔉 = ⟨𝑋, 𝑅⟩ be a preorder. Then the collection of
precisely all upsets Up(𝔉) of 𝔉 forms a topology on 𝑋. This topological space is an
Alexandrov space and called the upset space of 𝔉. A set is closed iff it is a downset
and the topological closure of a set 𝑌 is the downset 𝑅op(𝑌).

Proof. The set Up(𝔉) forms a topology on 𝑋 since ⌀ and 𝑋 are upsets and the union
or intersection of arbitrarily many upsets is again an upset. This immediately shows
that the resulting topological space is an Alexandrov space. Since the complements
of all upsets are precisely all downsets, a set is closed iff it is a downset. The least
downset extending a set 𝑌 is 𝑅op(𝑌).
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Taking specialisation preorders and upset spaces are inverse to each other.

Proposition 7.18. Let 𝔉 be a preorder and 𝔛 a Alexandrov space. Then the
specialisation preorder of the upset space of 𝔉 equals 𝔉 and the upset space of the
specialisation preorder of 𝔛 equals 𝔛.

Proof. For the former claim, write 𝔉 = ⟨𝑋, 𝑅⟩ and denote the specialisation preorder
of the upset space of 𝔉 by ⟨𝑋, 𝑆⟩. Let 𝑥, 𝑦 ∈ 𝑋. Then 𝑆(𝑥, 𝑦) iff 𝑥 ∈ Cl({𝑦}) = 𝑅op(𝑦),
i.e. 𝑅(𝑥, 𝑦).

For the latter claim, write 𝔉 = ⟨𝑋, ≤⟩ for the specialisation preorder of 𝔛 and let
𝑌 ⊆ 𝑋. We use the topological closure notation Cl for closure in 𝔛 only. Since 𝔛 is
Alexandrov, the union of closed sets

⋃ {Cl({𝑦}) | 𝑦 ∈ 𝑌} (7.1)

is closed. Since Cl({𝑦}) ⊆ Cl(𝑌), the union equals Cl(𝑌).
Now 𝑌 is closed in the upset space of 𝔉 iff it is a downset in 𝔉. In 𝔉 a set 𝑌 is a

downset iff whenever 𝑥 ∈ 𝑋 and there exists 𝑦 ∈ 𝑌 such that 𝑥 ∈ Cl({𝑦}), then 𝑥 ∈ 𝑌.
The existence of such 𝑦 is equivalent to 𝑥 being an element of the set in eq. (7.1), i.e.
𝑥 ∈ Cl(𝑌). So 𝑌 is a downset in 𝔉 iff Cl(𝑌) ⊆ 𝑌, which is equivalent to 𝑌 being closed
in 𝔛.

In a similar way, it can be seen that a monotone function of preorders is continuous
on the induced upset spaces, and conversely a continuous function of Alexandrov
spaces is monotone on the induced specialisation preorders [36]. Finally it should be
noted that, since taking downsets in the preorders corresponds to taking topological
closures in the Alexandrov spaces, the interpretation of the unimodal ⬦, and hence
◻, is invariant under the transforms. The analogous statements for the temporal
operators ⚪ and ◻𝐹 are trivial since the function is not modified. Hence we get an
equivalence between DTL over Alexandrov spaces and preorders.

Proposition 7.19. Let 𝔛 be an Alexandrov space and 𝔉 a preorder such that 𝔉 is the
specialisation preorder of 𝔛 or (equivalently) 𝔛 is the upset space of 𝔉. Then a DTL-
formula is satisfied on a DTM ⟨𝔛, 𝑓, 𝔙⟩ on 𝔛 iff it is satisfied on the DFM ⟨𝔉, 𝑓, 𝔙⟩
on 𝔉.

For this reason, the topological semantics can be seen as more general then the
Kripke semantics, as it allows for spaces which are not Alexandrov. However, in
Chapter 8 we will use techniques that apply naturally to the Kripke semantics, which
we hence focus on.

7.4 Tree Theorems
In the next chapter we will use two major well-known theorems about trees: Kőnig’s
lemma [29] and Kruskal’s tree theorem [32]. Various versions in the setting of
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undirected graphs exists, but we restrict our attention to the directed setting. Recall
the various notions of trees from Section 2.12.

Kőnig’s lemma. There are various formulations of Kőnig’s lemma, but all essen-
tially state that every infinite finitely branching tree has an infinite path in it. Here
finitely branching means that every node in the tree has only finitely many children.
The lemma was originally proven by Kőnig [29, Lemma E], and Kőnig [30] expands
on the topic with various undirected graph versions of the lemma.

More formally, in the setting of strict trees, a strict tree is called finitely branching
iff every node has only finitely many successors. Then Kőnig’s lemma states the
following:

Theorem 7.20 (Kőnig’s lemma, [29, Lemma E]). Let 𝔉 be an infinite finitely
branching strict tree. Then there exists an ascending 𝜔-sequence in 𝔉.

Proof sketch. Construct the sequence by induction. Let 𝑟 be the root of 𝔉. Since 𝔉
is infinite and finitely branching, there exists a successor 𝑥 of 𝑟 which generates an
infinite subframe. Clearly this subframe is again an infinite finitely branching strict
tree. Append 𝑥 to the sequence and recurse with the subframe generated by 𝑥.

Well-quasi-orders. Kruskal’s tree theorem involves the notion of well-quasi-orders.
Well-quasi-orders generalise the notion of well-orders from linear orders to preorders.
The terminology comes from the fact that preorders are also called quasi-orders. It
should not be confused with the stronger notion of a prewellorder.

Definition 7.21 (Well-quasi-order). Let 𝔉 = ⟨𝑋, 𝑅⟩ be a preorder. Then it is called
a well-quasi-order iff every upset 𝑌 in 𝔉 is finitely generated, that is, there exists
𝑛 ∈ 𝜔 and 𝑦0, … , 𝑦𝑛−1 ∈ 𝑌 such that 𝑌 = ⋃ {𝑅(𝑦𝑖) | 𝑖 < 𝑛}.

Proposition 7.22. Let 𝔉 = ⟨𝑋, ≤⟩ be a preorder. Then the following are equivalent:

(i) 𝔉 is well-quasi-order,

(ii) any nowhere ascending sequence in 𝔉 is finite, that is, whenever 𝑥− ∶ 𝜔 → 𝔉w
is a 𝜔-sequence then there exist 𝑖, 𝑗 ∈ 𝜔 with 𝑖 < 𝑗 such that 𝑥𝑖 ≤ 𝑥𝑗, and

(iii) 𝔉 is WF and every anti-chain in 𝔉 is finite.

Kruskal’s tree theorem. Now Kruskal’s tree theorem, originally proven by
Kruskal [32], states that finite trees in which the points are labelled with elements
from a well-quasi-order, again form a well-quasi-order under a certain ordering.
Defining this order requires us to introduce two more notions: that of tree-embedding
and label-monotonicity.
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Definition 7.23 (Tree-embedding). Let 𝔉 = ⟨𝑋, 𝑅⟩, 𝔊 = ⟨𝑌 , 𝑆⟩ be strict trees.
Then an injection 𝑓∶ 𝑋 ↪ 𝑌 is called a tree-embedding iff for every 𝑥, 𝑦1, 𝑦2 ∈ 𝑋 such
that 𝑅(𝑥, 𝑦𝑖) for 𝑖 ∈ {1, 2} then there exist distinct 𝑧𝑖 ∈ 𝑌 such that 𝑆(𝑓(𝑥), 𝑧𝑖) and
𝑆∗(𝑧𝑖, 𝑓(𝑦𝑖)).

Definition 7.24 (Labelled frame). An 𝑋-labelled frame is a pair ⟨𝔉, 𝑙⟩ where 𝔉 is a
Kripke frame and 𝑙 ∶ 𝔉w → 𝑋 is a function, called the labelling function.

Definition 7.25 (Label-monotone function). Let ⟨𝑄, ≤⟩ be a preorder and ⟨𝔉1, 𝑙1⟩
and ⟨𝔉2, 𝑙2⟩ 𝑄-labelled frames. Then a function 𝑓∶ 𝔉1,w → 𝔉2,w is called ⟨𝑄, ≤⟩-label-
monotone iff for all 𝑥 ∈ 𝔉1,w, 𝑙1(𝑥) ≤ (𝑙2 ∘ 𝑓)(𝑥). When ⟨𝑄, ≤⟩ is evident from the
context, we omit it in our notation.

Theorem 7.26 (Kruskal’s tree theorem, [32]). Let ⟨𝑄, ≤⟩ be a well-quasi-order.
Then the set of finite 𝑄-labelled strict trees forms a well-quasi-order under label-
monotone embeddability.

While Kruskal [32] aims at the version for undirected tree graphs, the theorem is
proven in the directed setting as a form of induction loading. A much simpler proof
for the undirected setting was later given by Nash-Williams [35].

The transitive setting. We will want to consider Kruskal’s tree theorem for
transitive notions of trees as well. For irreflexive transitive trees the theorem easily
adapts by taking transitive closures everywhere. The notion of a tree-embedding then
turns in to the usual notion of an embedding of frames, as defined in Definition 2.45.

Theorem 7.27 (Kruskal’s tree theorem for irreflexive transitive trees). Let ⟨𝑄, ≤⟩
be a well-quasi-order. Then the set of finite 𝑄-labelled irreflexive transitive trees
forms a well-quasi-order under label-monotone embeddability.

This is the version of Kruskal’s tree theorem is commonly used in logic [23, p. 253,
28, Theorem 16].
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Chapter 8

Computably Enumerable DTL-
Logics

In this chapter we show, using methods developed by Konev et al. [28], that the
DTL-logics of certain classes of CWF Kripke frames are computably enumerable.

8.1 Introduction

DTL-logics are often defined semantically, i.e. as the set of formulas valid on a
class of DTSs or DFSs. Hence such logics then do not automatically come with an
axiomatisation. In fact, DTL over all topological spaces and DTL over S4-frames
are known to be not finitely axiomatisable [16]. For many DTL-logics no natural
decidable axiomatisation is known.1 Hence computable enumerability is non-trivial.
Konev et al. [28] show that for the fragment DTL1 of DTL, where no ◻𝐹 occurs

under a ◻, the logic of S4-frames is computably enumerable. For this DTL1 fragment,
the logic of topological spaces equals the logic of S4-frames, hence also giving a
computable enumerability result in the topological setting. In this chapter we apply
their techniques to the full DTL-logics of classes of weakly-transitive CWF frames,
slightly generalising these techniques in the process.

Notably, we employ a stronger version of Kruskal’s tree theorem, which accounts
for clusters, both to simplify the proofs and to allow more functions between quasi-
states. The latter allows for weaker unravelling assumptions on the classes of frames
we consider.

We perform this strengthening of Kruskal’s tree theorem in the next section. Next,
in Section 8.3 we introduce sequences of labelled frames called quasi-segments and
quasi-models. These notions are used in the sections following it. We also develop
‘conversion theorems’ for inducing quasi-models from DTMs and conversely. In
Section 8.4 we develop the selective filtration technique for quasi-segments. We apply

1An exception is the logic of topological spaces in a language DTL∗ extending the DTL-language [15].
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this to prove a local finiteness result.
The selective filtration for quasi-segments is reused and combined with Kruskal’s

tree theorem in Section 8.5, to prove co-computable enumerability of satisfiability on
quasi-models over finite forest-like frames. In Section 8.5 we combine the main results
of the three preceding sections together with a form of tree unravelling to prove
computable enumerability for many DTL-logics of classes of CWF frames. Examples
of frame classes for which this main result applies are given.

8.2 Strengthening Kruskal’s Tree Theorem
Recall Kruskal’s tree theorem from Section 7.4 and our different notions of trees from
Section 2.12. In order to develop the theory of quasi-models in the largest generality,
we need a version Kruskal’s tree theorem which applies to forests instead of trees and
allows for clusters and mixed reflexive and irreflexive points in the trees, i.e. forest-
like frames. We generalize Kruskal’s tree theorem to this general setting in several
steps.
As a first step, we go from trees to forests. The proof technique, enriching the

label well-quasi-order and transforming the labelled frames, is illustrative for the
other steps as well. Each time we ‘enrich’ the label well-quasi-order 𝑄 to some well-
quasi-order 𝑄′ in a way that allows it to describe some of the structure that the ‘new’
frames have but the ‘old’ frames lack. Then we transform new 𝑄-labelled frames into
old 𝑄′-labelled frames. On these, the ‘previous’ Kruskal’s tree theorem applies, giving
a label-monotone embedding. Using the structure that the 𝑄′-labelling provides, we
turn this into a label-monotone embedding of the new 𝑄-labelled frames prior to the
transformation.
Lemma 8.1 (Kruskal’s tree theorem for forests). Let ⟨𝑄, ≤𝑄⟩ be a well-quasi-order.
Then the set of finite 𝑄-labelled irreflexive transitive forests forms a well-quasi-order
under label-monotone embeddability.
Proof. Define ⟨𝑄′, ≤𝑄′⟩ by adding to ⟨𝑄, ≤𝑄⟩ a new point 𝑞0 incomparable to all
points in 𝑄. Clearly ⟨𝑄′, ≤𝑄′⟩ is still a well-quasi-order.
We define a transformation 𝑇 from finite 𝑄-labelled irreflexive transitive forests to

finite 𝑄′-labelled irreflexive transitive trees as follows. Given a 𝑄-labelled irreflexive
transitive forest ⟨𝔉, 𝑙⟩, define 𝑇0(𝔉) to be the frame that results from adding an
irreflexive point 𝑟 to 𝔉 that sees all points of 𝔉. Note that 𝑇0(𝔉) is an irreflexive
transitive tree. Define 𝑇1(𝑙) to be 𝑙 extended by mapping 𝑟 to 𝑞0, and 𝑇 (⟨𝔉, 𝑙⟩) ≔
⟨𝑇0(𝔉), 𝑇1(𝑙)⟩.
Now let ⟨𝔉−, 𝑙−⟩ be a sequence of 𝑄-labelled irreflexive transitive forests. Then

𝑇(⟨𝔉−, 𝑙−⟩) is a sequence of 𝑄′-labelled irreflexive transitive trees, so by Theorem 7.27
there exist 𝑖, 𝑗 ∈ 𝜔 with 𝑖 < 𝑗 and a label-monotone embedding 𝑓 ′ ∶ 𝑇 (⟨𝔉𝑖, 𝑙𝑖⟩) →
𝑇 (⟨𝔉𝑗, 𝑙𝑗⟩). We will construct from it a label-monotone embedding 𝑓∶ ⟨𝔉𝑖, 𝑙𝑖⟩ →
⟨𝔉𝑗, 𝑙𝑗⟩.
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Note that since 𝑓 ′ is label-monotone, 𝑞0 = 𝑇1(𝑙𝑖)(𝑟) ≤𝑄′ (𝑇1(𝑙𝑗) ∘ 𝑓 ′)(𝑟). Since 𝑞0
is incomparable to any other point of 𝑄′, (𝑇1(𝑙𝑗) ∘ 𝑓 ′)(𝑟) = 𝑞0. But 𝑇1(𝑙𝑗) only maps
the point 𝑟 to 𝑞0, so 𝑓 ′(𝑟) = 𝑟. It follows that the restriction of 𝑓 ′ to 𝔉𝑖 maps to 𝔉𝑗,
and it is easy to check that this forms a label-monotone embedding from ⟨𝔉𝑖, 𝑙𝑖⟩ to
⟨𝔉𝑗, 𝑙𝑗⟩.

Next, we generalise to forest-like frames. For simplicity this is done in two steps.
First we allow irreflexive clusters only.

Lemma 8.2 (Kruskal’s tree theorem with clusters). Let ⟨𝑄, ≤𝑄⟩ be a well-quasi-
order. Then the set of finite 𝑄-labelled irreflexive forest-like frames forms a well-
quasi-order under label-monotone embeddability.

Proof. The basic idea is as follows. Given a 𝑄-labelled irreflexive forest-like frame
⟨𝔉, 𝑙⟩, we transform this to its skeleton 𝔉/∼ with the following labelling. To a point
of this skeleton representing a cluster in 𝔉, we assign as the label the multiset of all
the labels of the points in this cluster. These multisets are ordered, informally, by
𝐴 ≤ 𝐵 iff 𝐵 can be obtained from 𝐴 by adding elements to the multiset and replacing
elements by ≤𝑄-larger ones. Both operations are allowed on ‘single’ elements, so
they need not be applied to an element with its full multiplicity. For example
{1, 1} ≤ {1, 2} over the natural numbers ordered as usual.
Multisets over 𝑄 however can be seen as 𝑄-labelled frames where every point is

isolated. For an element 𝑞 with multiplicity 𝑚 in the multiset, this labelled frame
contains precisely 𝑚 points with label 𝑞. The order ≤ defined above then corresponds
precisely with label-monotone embeddability. Since ≤𝑄 is a well-quasi-order, it
follows by Lemma 8.1 that ≤ is so too.
Now given a label-monotone embedding between transformed frames, we can lift

it to a label-monotone embedding of the original 𝑄-labelled irreflexive forest-like
frames. The embedding between skeleta already maps clusters to clusters. Within a
cluster, we use the label-monotonicity to choose the mapping. By the definition of
the order on multisets, there exists a label-monotone injection from the source to
the target cluster. The disjoint union of one such injection for every cluster, gives
the required ‘lifted’ label-monotone embedding.
More formally, let 𝑄′ be the set of finite 𝑄-labelled irreflexive transitive forests,

and ≤𝑄′ the label-monotone embeddability order on it. By Lemma 8.1 ⟨𝑄′, ≤𝑄′⟩ is
a well-quasi-order.
We will transform finite 𝑄-labelled irreflexive forest-like frames ⟨𝔉, 𝑙⟩ into finite 𝑄′-

labelled irreflexive transitive forests 𝑇(⟨𝔉, 𝑙⟩) = ⟨𝔉′, 𝑙′⟩. For the underlying frames
we just take the skeleton, i.e. 𝔉′ ≔ 𝔉/∼. For the labellings, let 𝑐 be a point 𝔉′, i.e. a
cluster of 𝔉. Define 𝑙′(𝑐) to be the 𝑄-labelled forest ⟨𝑐, ⌀, 𝑙↾𝑐⟩, i.e. the forest with
the elements of 𝑐 as its points, all isolated, and labelled as in ⟨𝔉, 𝑙⟩.

Let ⟨𝔉−, 𝑙−⟩ be a sequence of 𝑄-labelled irreflexive forest-like frames. By Lemma 8.1
the finite 𝑄′-labelled irreflexive transitive forests form a well-quasi-order under label-
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monotone embeddability. Hence there exists 𝑖, 𝑗 ∈ 𝜔 with 𝑖 < 𝑗 and a label-monotone
embedding 𝑓 ′ ∶ 𝑇 (⟨𝔉𝑖, 𝑙𝑖⟩) → 𝑇 (⟨𝔉𝑗, 𝑙𝑗⟩). We will construct from it a label-monotone
embedding 𝑓∶ ⟨𝔉𝑖, 𝑙𝑖⟩ → ⟨𝔉𝑗, 𝑙𝑗⟩.
For any point 𝑐 of 𝔉′

𝑖 , we know that 𝑙′𝑖(𝑐) ≤𝑄′ 𝑙′𝑗(𝑓 ′(𝑐)), so there exists a label-
monotone embedding 𝑓𝑐 from the the 𝑄-labelled forest 𝑙′𝑖(𝑐) to 𝑙′𝑗(𝑐). Hence 𝑓𝑐 is a
function from 𝑐 to 𝑓 ′(𝑐). For 𝑥 ∈ 𝑐, define 𝑓(𝑥) = 𝑓𝑐(𝑥).
We show that 𝑓 is an embedding. Clearly 𝑓 is injective, since each 𝑓𝑐 is injective

and, since 𝑓 ′ is injective, have disjoint co-domains from each other. It preserves and
reflects order, since 𝑓 ′ does so and the 𝑓𝑐 functions map points from a cluster to a
cluster.
To see that 𝑓 is label-monotone, let 𝑥 be a point of 𝔉𝑖, say in cluster 𝑐. Since 𝑓𝑐

was a label-monotone embedding between trees that inherit their labelling from 𝑙𝑖
and 𝑙𝑗 respectively,

𝑙𝑖(𝑥) = 𝑙𝑖↾𝑐(𝑥) ≤𝑄 𝑙𝑗↾𝑓 ′(𝑐)(𝑓𝑐(𝑥)) = 𝑙𝑗(𝑓(𝑥)).

Finally we lift the irreflexivity requirement on the forests, giving the theorem
we actually need in the next section. The proof is rather trivial compared to the
previous steps, so we only give a rough sketch.

Theorem 8.3 (Kruskal’s tree theorem for forest-like frames). Let ⟨𝑄, ≤𝑄⟩ be a well-
quasi-order. Then the set of finite 𝑄-labelled forest-like frames forms a well-quasi-
order under label-monotone embeddability.

Proof. Let 𝑄′ ≔ {0, 1}×𝑄, and equip it with the order defined by ⟨𝑏1, 𝑞1⟩ ≤𝑄′ ⟨𝑏2, 𝑞2⟩
iff 𝑏1 = 𝑏2 and 𝑞1 ≤𝑄 𝑞2. Obviously ⟨𝑄′, ≤𝑄′⟩ forms a well-quasi-order.
Transform finite 𝑄-labelled forest-like frames ⟨𝔉, 𝑙⟩ into finite 𝑄′-labelled irreflexive

forest-like frames by taking the irreflexivisation of the underlying frame and tagging
the label of each originally reflexive point with 1 and each originally irreflexive point
with 0.

By Lemma 8.2 the finite 𝑄′-labelled irreflexive forest-like frames form a well-quasi-
order under label-monotone embeddability. Now obviously, any label-monotone em-
bedding from some 𝑇 (⟨𝔉𝑖, 𝑙𝑖⟩) to some 𝑇 (⟨𝔉𝑗, 𝑙𝑗⟩) is also a label-monotone embedding
from ⟨𝔉𝑖, 𝑙𝑖⟩ to ⟨𝔉𝑗, 𝑙𝑗⟩. Hence the 𝑄-labelled frames form a well-quasi-order under
label-monotone embeddability too.

8.3 Quasi-Models
In most of the remainder of the chapter, instead of DFMs, we will work with quasi-
segments and quasi-models, which we introduce in this section. They are similar to
DFMs, but instead of having a valuation, we track truth using a labelling function.
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This labelling indicates not only the truth of atomic proposition in a given world,
but also the truth of more complex formulas including modal operators. Having
this information locally available simplifies for example the selection technique we
employ in the next section. Being labelled structures also allows us to apply Kruskal’s
tree theorem later. Moreover, we discuss how to convert between DFMs and quasi-
models.
We will define quasi-segments to be sequences of labelled frames with certain

morphisms in between. Let us first note that DFSs and DFMs can be viewed in a
similar way, which we call their stratified form. This will allow us later to convert
between DFMs and quasi-models.

Definition 8.4 (Stratified). A DFS ⟨𝔉, 𝑓⟩ is called stratified iff 𝔉 is the disjoint
union of frames 𝔉𝑖 for 𝑖 ∈ 𝜔, and 𝑓 is the disjoint union of maps 𝑓𝑖 ∶ 𝔉𝑖 → 𝔉𝑖+1. In
this case we write ⟨𝔉−, 𝑓−⟩ for the DFS.
A DFM ⟨𝔉, 𝑓, 𝔙⟩ is called stratified iff the underlying DFS is stratified. In this

case we write ⟨𝔐−, 𝑓−⟩ for the DFM, where 𝔐𝑖 is ⟨𝔉, 𝔙⟩ restricted to 𝔉𝑖.

Remark 8.5. One can turn any DFS ⟨𝔉, 𝑓⟩ into an stratified one ⟨𝔊−, 𝑔−⟩ by setting
𝔊𝑖 ≔ 𝔉 and 𝑔𝑖 ≔ 𝑓. Formally, some tagging is involved to make the 𝔊𝑖 disjoint, but
when writing a DFS as ⟨𝔊−, 𝑔−⟩, we will leave all tagging implicit. .

Quasi-states and quasi-segments. Next, we define quasi-states, quasi-segments
and quasi-models. These structures are generic over a subformula closed set of DTL-
formulas Σ. For the rest of this section, we suppose such set Σ is given.

We say a subset Γ ⊆ Σ is a Σ-type iff

• if 𝜑1 ∧ 𝜑2 ∈ Σ then 𝜑1 ∧ 𝜑2 ∈ Γ iff {𝜑1, 𝜑2} ⊆ Γ,

• if ¬𝜑 ∈ Σ then ¬𝜑 ∈ Γ iff 𝜑 ∉ Γ,

• if ◻𝐹𝜑 ∈ Γ then for all 𝑛 ∈ 𝜔 ∖ {0} such that ⚪𝑛𝜑 ∈ Σ, ⚪𝑛𝜑 ∈ Γ, and

• if ⚪𝑛𝜑 ∈ Γ for all 𝑛 ∈ 𝜔 ∖ {0} then ◻𝐹𝜑 ∈ Γ.

Note that the final requirement is void if Σ is finite, which we will restrict to in later
sections. We write tyΣ for the set of Σ-types.

Definition 8.6 (Quasi-state). A Σ-quasi-state is a tyΣ-labelled Kripke frame 𝔖 =
⟨𝑋, 𝑅, 𝑙⟩ such that, for all 𝑥 ∈ 𝑋 and ◻𝜑 ∈ Σ,

◻𝜑 ∈ 𝑙(𝑥) iff ∀𝑦 ∈ 𝑅(𝑥). 𝜑 ∈ 𝑙(𝑦).

If ℱ is a class of Kripke frames and 𝔉 ∈ ℱ, we call it a (Σ, ℱ)-quasi-state.



100 Chapter 8 Computably Enumerable DTL-Logics

Since we have a single fixed set Σ in this section, we will mostly omit it from the
notations.
For a quasi-state 𝔖 = ⟨𝔉, 𝑙⟩, a formula 𝜑 ∈ Σ and a point 𝑥 ∈ 𝔉w, we say that

𝑥 satisfies 𝜑 iff 𝜑 ∈ 𝑙(𝑥). We write ⟦𝜑⟧𝔖 ≔ {𝑥 ∈ 𝔉w | 𝜑 ∈ 𝑙(𝑥)}. Note that since
points are labelled with Σ-types, satisfaction of Boolean connectives follows the usual
rules in Kripke models, and by eq. (8.6) so does ◻.

If a quasi-state is an analogue of a Kripke model 𝔐𝑖 in an stratified DFM then a
quasi-state-morphism is an analogue of the function 𝑓𝑖. It is a monotone function
that also satisfaction for the temporal operators behaves similar to in an stratified
DFM.

Definition 8.7 (Quasi-state-morphism). Let 𝔖1 = ⟨𝔉1, 𝑙1⟩, 𝔖2 = ⟨𝔉2, 𝑙2⟩ be Σ-quasi-
states. Then a function 𝑓 𝑓 is called a quasi-state-morphism from 𝔖1 to 𝔖2 iff

• 𝑓∶ 𝔉1 → 𝔉2 is a monotone function on the underlying frames,

• for all 𝑥 ∈ 𝔉1,w and ◻𝐹𝜓 ∈ Σ, ◻𝐹𝜓 ∈ 𝑙1(𝑥) iff {𝜓, ◻𝐹𝜓} ⊆ 𝑙2(𝑓(𝑥)), and

• for all 𝑥 ∈ 𝔉1,w and ⚪𝜓 ∈ Σ, ⚪𝜓 ∈ 𝑙1(𝑥) iff 𝜓 ∈ 𝑙2(𝑓(𝑥)).

We now have all the ingredients to define a quasi-segment. Similar to how an
stratified DFM is a sequence of Kripke models with functions between them, a quasi-
segment is a sequence of quasi-states with quasi-state-morphisms in-between. For
reasons that will become clear later, we also consider finite sequences.

Definition 8.8. A Σ-quasi-segment is a finite non-empty or 𝜔-sequence of Σ-quasi-
states 𝔖− together with quasi-state-morphisms 𝑓𝑖 ∶ 𝔖𝑖 → 𝔖𝑖+1. It is called a (Σ, ℱ)-
quasi-segment iff each of the 𝔖− is a (Σ, ℱ)-quasi-state, and infinite iff the sequence
is infinitely long.

Conversion. Each DFM induces an infinite quasi-segment.

Lemma 8.9. Let ⟨𝔐−, 𝑓−⟩ be a stratified DFM. Define, for 𝑖 ∈ 𝜔, 𝔉𝑖 ≔ 𝔐𝑖,fr and
for 𝑥 ∈ 𝔉𝑖,w,

𝑙𝑖(𝑥) ≔ {𝜑 ∈ Σ | ⟨𝔐−, 𝑓−⟩, 𝑥 ⊨ 𝜑}.

Then ⟨𝔉−, 𝑙−⟩ with morphisms 𝑓− forms a quasi-segment.

Proof. Let 𝑖 ∈ 𝜔. There are three things to check:

• for each 𝑥 ∈ 𝔉𝑖,w, 𝑙𝑖(𝑥) is a Σ-type,

• ⟨𝔉𝑖, 𝑙𝑖⟩ forms a quasi-state, i.e. eq. (8.6) holds, and

• 𝑓𝑖 is a quasi-state-morphism from ⟨𝔉𝑖, 𝑙𝑖⟩ to ⟨𝔉𝑖+1, 𝑙𝑖+1⟩.

All are trivially checked.
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The quasi-segment constructed in this lemma is called the induced quasi-segment
of ⟨𝔐−, 𝑓−⟩. By construction, a formula 𝜑 ∈ Σ is satisfied in a point 𝑥 of ⟨𝔐−, 𝑓−⟩
iff it is satisfied in the point 𝑥 of the induced quasi-segment.
A converse construction however fails. The problem is that a point in a quasi-

segment might satisfy ¬◻𝐹𝜑 but each of the points reachable by following the quasi-
state-morphisms satisfies 𝜑. This is due to all conditions on the quasi-segment being
local ones. We call an infinite quasi-segment a quasi-model iff it does not exhibit this
problem.

Definition 8.10 (Quasi-model). Let 𝔖− = ⟨𝔉−, 𝑙−⟩ be an infinite Σ-quasi-segment
with morphisms 𝑓−. We call it a Σ-quasi-model iff for all 𝑖, ◻𝐹𝜓 ∈ Σ and every point
𝑥 of 𝔖𝑖 = ⟨𝔉𝑖, 𝑙𝑖⟩ such that ◻𝐹𝜓 ∉ 𝑙𝑖, there exists 𝑗 > 𝑖 such that

𝜓 ∉ (𝑙𝑗 ∘ 𝑓𝑗−1 ∘ … ∘ 𝑓𝑖)(𝑥).

When 𝑗 is minimal we say 𝔖𝑗 realises the eventuality ¬◻𝐹𝜓 for 𝑥, and this eventuality
is realised in the quasi-segment.2

Now we can move back and forth between stratified DFMs and quasi-models. First,
the induced quasi-segment is actually a quasi-model, and we therefore call it the
induced quasi-model from now on.

Proposition 8.11. The induced quasi-segment of an stratified DFM is a quasi-
model.

Proof. Obvious.

Proposition 8.12. Let 𝔖− = ⟨𝔉−, 𝑙−⟩ together with morphisms 𝑓− be a quasi-model.
Define for 𝑖 ∈ 𝜔 and an atomic proposition 𝑝 ∈ Σ,

𝔙𝑖(𝑝) ≔ {𝑥 ∈ 𝔉𝑖,w ∣ 𝑝 ∈ 𝑙(𝑥)},

and set 𝔐𝑖 ≔ ⟨𝔉𝑖, 𝔙𝑖⟩. Then ⟨𝔐−, 𝑓−⟩ is an stratified DFM such that for all points 𝑥
of ⟨𝔖−, 𝑓−⟩ and 𝜑 ∈ Σ, 𝑥 satisfies 𝜑 in ⟨𝔖−, 𝑓−⟩ iff it satisfies 𝜑 in ⟨𝔐−, 𝑓−⟩.

Proof. It is an stratified DFM by construction. The statement about satisfaction is
proven by induction on 𝜑 ∈ Σ. The case for atomic propositions is by definition of
the valuations 𝔙−. The cases for Boolean connectives and ◻ follow by our earlier
observations about satisfaction in quasi-states.
For ⚪, assume ⚪𝜑 ∈ Σ, and as induction hypothesis that for all points 𝑥, 𝑥

satisfies 𝜑 in ⟨𝔖−, 𝑓−⟩ iff it satisfies 𝜑 in ⟨𝔐−, 𝑓−⟩. Let 𝑖 ∈ 𝜔 and 𝑥 ∈ 𝔉𝑖,w. Then
𝑥 satisfies ⚪𝜑 in ⟨𝔖−, 𝑓−⟩ iff ⚪𝜑 ∈ 𝑙𝑖(𝑥). Since 𝑓𝑖 is a quasi-state-morphism, this

2Note that the ¬ in ‘the eventuality ¬◻𝐹𝜓’ is just notation. There is no need for ¬◻𝐹𝜓 to be in Σ
to speak about this eventuality.
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is equivalent to 𝜑 ∈ 𝑙𝑖+1(𝑓𝑖(𝑥)). By the induction hypothesis this is equivalent to
⟨𝔐−, 𝑓−⟩, 𝑓𝑖(𝑥) ⊨ 𝜑, i.e. ⟨𝔐−, 𝑓−⟩, 𝑥 ⊨ ⚪(𝜑).
For ◻𝐹, assume ◻𝐹𝜑 ∈ Σ, and as induction hypothesis that for all points 𝑥,

𝑥 satisfies 𝜑 in ⟨𝔖−, 𝑓−⟩ iff it satisfies 𝜑 in ⟨𝔐−, 𝑓−⟩. Let 𝑖 ∈ 𝜔 and 𝑥 ∈ 𝔉𝑖,w.
Suppose first that 𝑥 satisfies ⚪𝜑 in ⟨𝔖−, 𝑓−⟩, i.e. ◻𝐹𝜑 ∈ 𝑙𝑖(𝑥). Since each 𝑓− is
a quasi-state-morphism, one proves by induction on 𝑛 ∈ 𝜔 ∖ {0} that {𝜑, ◻𝐹𝜑} ⊆
(𝑙𝑖+𝑛+1 ∘ 𝑓𝑖+𝑛 ∘ … ∘ 𝑓𝑖)(𝑥). By the induction hypothesis it follows that

⟨𝔐−, 𝑓−⟩, (𝑓𝑖+𝑛 ∘ … ∘ 𝑓𝑖)(𝑥) ⊨ 𝜑

for each 𝑛 ∈ 𝜔 ∖ {0}, hence ⟨𝔐−, 𝑓−⟩, 𝑥 ⊨ ◻𝐹𝜑.
Conversely suppose ◻𝐹𝜑 ∉ 𝑙𝑖(𝑥). Since ⟨𝔖−, 𝑓−⟩ is a quasi-model there exists

𝑗 > 𝑖 realising the eventuality ◻𝐹𝜑, i.e. 𝜑 ∉ (𝑙𝑗 ∘ 𝑓𝑗−1 ∘ … ∘ 𝑓𝑖)(𝑥). By the induction
hypothesis

⟨𝔐−, 𝑓−⟩, (𝑓𝑗−1 ∘ … ∘ 𝑓𝑖)(𝑥) ⊭ 𝜑

follows. Hence ⟨𝔐−, 𝑓−⟩, 𝑥 ⊭ ◻𝜑.

This stratified DFM ⟨𝔐−, 𝑓−⟩ is called the induced DFM of ⟨𝔖−, 𝑓−⟩.

Morphisms. Finally, we give some more notions of morphisms between quasi-
states and quasi-segments. Recall from Definition 7.25 that a function is called label-
monotone iff applying the function to a point makes its label increase in a given
preorder. We call the function label-preserving iff it is label-monotone w.r.t. equality.
Alternatively, a function 𝑓∶ ⟨𝔉1, 𝑙1⟩ → ⟨𝔉2, 𝑙2⟩ is label-preserving iff 𝑙2 ∘ 𝑓 = 𝑙1. It
is called monotone or an embedding iff it is monotone respectively an embedding
of the underlying frames, and an isomorphism iff it is both label-preserving and an
isomorphism on the underlying frames. Quasi-states inherit all the terminology from
labelled frames, as they are just particular labelled frames.

We note the following.

Lemma 8.13. Let 𝔖𝑖 be quasi-states for 𝑖 ∈ {1, … , 4}, 𝑓∶ 𝔖1 → 𝔖2 and ℎ∶ 𝔖3 → 𝔖4
be label-preserving embeddings and 𝑔∶ 𝔖2 → 𝔖3 a quasi-state-morphism. Then ℎ ∘ 𝑔
and 𝑔 ∘ 𝑓 are quasi-state-morphisms.

Proof. All of 𝑓, 𝑔, ℎ are monotone functions on the underlying frames, hence so are
their compositions. Note that 𝑓 and ℎ preserve labels exactly, as they are embeddings.
Therefore clearly composition with 𝑓 or ℎ preserves the requirements on labels for
quasi-state-morphisms.

For quasi-segments, a morphism is a sequence of functions mapping between the
quasi-states pairwise, that admits the natural commutative diagram.
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Definition 8.14 (Morphism of quasi-segments). Let 𝔖− together with morphisms
𝑓− and 𝔖′

− together with morphisms 𝑓 ′
− be quasi-segments of the same length.

Then a morphism from ⟨𝔖−, 𝑓−⟩ to ⟨𝔖′
−, 𝑓 ′

−⟩ is a sequence of functions 𝑔− such that
𝑔𝑖 ∶ 𝔖𝑖 → 𝔖′

𝑖 is a monotone function and 𝑓 ′
𝑖 ∘ 𝑔𝑖 = 𝑔𝑖+1 ∘ 𝑓𝑖, i.e. the following diagram

commutes:
𝔖0 𝔖1 𝔖2 ⋯

𝔖′
0 𝔖′

1 𝔖′
2 ⋯

𝑓0

𝑔0

𝑓1

𝑔1 𝑔2

𝑓′
0 𝑓′

1

A morphism 𝑔− of quasi-segments is called label-monotone, label-preserving, an
embedding, or an isomorphism, respectively, iff each of the functions 𝑔𝑖 is one of
labelled frames.

8.4 Local Finiteness

Recall that we want to prove computable enumerability for certain DTL-logics through
semantic means. As noted in Section 7.2, computing with objects requires coding
them as natural numbers, which in turn requires those objects to be finite. This
connection between finiteness and compatibility is exemplified by the famous result
that a finitely axiomatisable modal logic with the fmp is decidable [7, Theorem 6.15].
In the setting of DTL, having a fmp is too much to ask, but instead we will consider
a kind of ‘local’ version of finite frame property.

Definition 8.15 (Locally finite). A stratified DFS ⟨𝔉−, 𝑓−⟩ or DFM ⟨𝔐−, 𝑓−⟩ is
called locally finite iff each of the 𝔉𝑖 or 𝔐𝑖, respectively, is finite.

Definition 8.16 (Local fmp). Let Λ be a DTL-logic. It is said to have the local fmp
iff for every DTL-formula 𝜑 such that ¬𝜑 ∉ Λ, 𝜑 is satisfiable on an stratified locally
finite DFS of Λ.

Two common techniques for establishing the fmp in unimodal logic are filtration
and selective filtration. The former technique works by taking a certain quotient of
the Kripke model, while in the latter technique, one takes a (p-morphic image of)
a carefully selected submodel. We consider Fine’s selective filtration via maximal
points method [22, Section 4], as it admits a commutative square necessary to extend
it to DFMs.
This method was introduced by Fine [22] in Section 4. It requires the Kripke

model under consideration to have a certain maximal-point property. This method
should not be confused with another selective filtration method introduced in the
same paper in Section 6, which does not require this maximal-point property, but
also lacks the same commutative square.
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It is possible to use Fine’s selective filtration via maximal points method on Kripke
models and extend it to stratified DFMs from there, in order to prove the local
fmp. However, we apply Fine’s selective filtration via maximal points method to
quasi-segments instead, and extend it to stratified DFMs by the two conversion
propositions at the end of the previous section. This is a slightly easier approach,
and we will need the selective filtration for quasi-segments in Section 8.5 too.

Selective filtration via maximal points. The idea of Fine’s selective filtration
via maximal points method is as follows. Given a Kripke model and a formula 𝜑
satisfiable on this model, we want to select a finite submodel which still satisfies 𝜑.
One starts with a point 𝑥 where 𝜑 is satisfied. Preserving the truth of 𝜑 might require
some other points, called witnesses, to be in the submodel as well. For example,
if 𝜑 = ⬦𝜓 then preserving this formula requires one to include a successor 𝑦 of 𝑥
satisfying 𝜓 in the submodel. This point 𝑦 might then also need witnesses in order
to preserve the truth of 𝜓. Recursively adding witnesses until no point needs new
witnesses anymore gives the desired finite submodel.

The problem is how to make this procedure guaranteed to terminate. This is where
Fine’s selective filtration via maximal points method gets its name from. Whenever
we select a witness, we take a maximal one, i.e. a witness such that no strict successor
could also serve as a witness. Using transitivity of the frame, no successor of the
witness 𝑦 would again require a witness satisfying 𝜓. This makes the procedure
terminate. It does however require such maximal witnesses to exists, which leads us
to the maximal-point property.

Definition 8.17 (Maximal-point property). A general frame 𝔣 = ⟨𝑋, 𝑅, 𝐴⟩ is said
to have the maximal-point property iff for every 𝑎 ∈ 𝐴 and every 𝑥 ∈ 𝑎, 𝑅∗(𝑥) ∩ 𝑎
has a maximal point. A Kripke model 𝔐 is said to have the maximal-point property
iff the induced general frame 𝔐g has the maximal-point property.

Now, instead of Kripke models, we perform this same technique on quasi-states.
The maximal-point property has a simple analogue in this setting.

Definition 8.18 (Maximal-point property for quasi-states). A Σ-quasi-state 𝔖 =
⟨𝑋, 𝑅, 𝑙⟩ is said to have the maximal-point property iff for every 𝜑 ∈ Σ and every
𝑥 ∈ ⟦𝜑⟧𝔖, 𝑅∗(𝑥) ∩ ⟦𝜑⟧𝔖 has a maximal point.

For the rest of this section, let Σ be a subformula closed set of DTL-formulas such
that only finitely many, say 𝑛 ∈ 𝜔, formulas in Σ have ◻ as their top-level symbol.

Lemma 8.19. There exists a constant 𝐶𝑛 ∈ 𝜔, dependent on and computable in 𝑛,
such that the following holds. Let 𝔖 = ⟨𝔉, 𝑙⟩ be a Σ-quasi-state with the maximal-
point property and 𝑋0 ⊆ 𝔉w. Then there exists a set 𝑋 ⊆ 𝔉w such that 𝑋0 ⊆ 𝑋,
|𝑋| ≤ 𝐶𝑛 ⋅ |𝑋0| and 𝔖 restricted to 𝑋 forms a Σ-quasi-state.
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Proof. To make the restriction of 𝔖 to 𝑋 a quasi-state means precisely that whenever
𝑥 ∈ 𝑋 and ◻𝜓 ∈ Σ are such that ◻𝜓 ∉ 𝑙(𝑥), then we need to include a witness 𝑦 in
𝑋 such that 𝜓 ∉ 𝑙(𝑦).
We give an algorithm to find 𝑋 by constructing a finite sequence 𝑋−. Take 𝑋0 as

given, and define for each 𝑥 ∈ 𝑋0,

Ψ𝑥
0 ≔ {𝜓 | ◻𝜓 ∈ Σ, ◻𝜓 ∉ 𝑙(𝑥)}.

The set of formulas Ψ𝑥
− represents the formulas for which 𝑥 still requires witnesses.

Note that by weak-transitivity of 𝔉, every successor of 𝑥 can only ever require
witnesses for formulas in Ψ𝑥

0 .
Assume 𝑋𝑖 and Ψ−

𝑖 have been defined before, and

Ψ𝑥
𝑖 ⊆ {𝜓 | ◻𝜓 ∈ Σ, ◻𝜓 ∉ 𝑙(𝑥)}.

Let 𝑥 ∈ 𝑋𝑖 and 𝜓 ∈ Ψ𝑥
𝑖 . Then there exists a witness 𝑦 above 𝑥 such that 𝜓 ∉ 𝑙(𝑦),

and since 𝔖 has the maximal-point property, a maximal such point. Pick such
maximal witness and call it 𝑦𝑥

𝜓. Now define 𝑋𝑖+1 by adding to 𝑋𝑖 all these 𝑦−
− , i.e.

𝑋𝑖+1 ≔ 𝑋𝑖 ∪ {𝑦𝑥
𝜓 ∣ 𝑥 ∈ 𝑋𝑖, 𝜓 ∈ Ψ𝑥

𝑖 }.

Now we need to define new sets of formulas Ψ−
𝑖+1. Since any point 𝑥 ∈ 𝑋𝑖 now

has all the witnesses it requires, we set Ψ𝑖+1,𝑥 ≔ ⌀ for such 𝑥. For 𝑦 ≔ 𝑦𝑥
𝜓, note

that since 𝑦 was a maximal 𝜓-witness, 𝑦 nor any of its successors need a 𝜓-witness:
whenever such point needs a 𝜓-witness, it sees 𝑦. We also know as an induction
invariant that any successor of 𝑥 can only ever require witnesses for formulas in Ψ𝑥

𝑖 .
Hence, for Ψ𝑦

𝑖+1 we can restrict ourselves to Ψ𝑥
𝑖 ∖ {𝜓}. Therefore, we define

Ψ𝑦
𝑖 ⊆ {𝜒 ∈ Ψ𝑥

𝑖 ∖ {𝜓} | ◻𝜒 ∉ 𝑙(𝑦)},

and note that by weak-transitivity of 𝔉 and the argument above, every successor of
𝑦 can only ever require witnesses for formulas in Ψ𝑦

𝑖+1.
Clearly the maximal size Ψ𝑥

𝑖 strictly decreases as a function of 𝑖, so the construction
terminates. To be more precise, |Ψ𝑥

0 | ≤ 𝑛 for 𝑥 ∈ 𝑋0, and hence Ψ𝑥
𝑛 = ⌀ for all

𝑥 ∈ 𝑋𝑛. Then every 𝑥 ∈ 𝑋𝑛 has all the witnesses it needs, so we can take 𝑋 ≔ 𝑋𝑛.
To determine the constant 𝐶𝑛, note that at every step we introduce, for every

point of 𝑋𝑖 at most 𝑛 ‘new’ points to 𝑋𝑖+1. Since there are 𝑛 steps, we can take
𝐶𝑛 ≔ (𝑛 + 1)𝑛 as a very rough upper bound. Counting more carefully, one can note
that every point in 𝑋0 introduces at most 𝑛 witnesses, each of which require at most
𝑛 − 1 witnesses, etc., which gives the better constant

𝐶𝑛 ≔
𝑛−1
∑
𝑖=1

𝑛!
𝑖!

≤ (𝑛 + 1)𝑛.
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Recall that the more categorical version of 𝔉 being a subframe of 𝔊 is the existence
of an embedding from 𝔉 to 𝔊. To be more precise, 𝔉 embeds into 𝔊 iff 𝔉 is isomorphic
to a subframe of 𝔊. For Kripke models, the analogue holds, where embeddings are
required to preserve atomic propositions. For quasi-states, the analogue is a label-
preserving embedding. Now the commutative square that we have been referring to,
is the following lemma.

Lemma 8.20. Let 𝔖1, 𝔖′
1, 𝔖2 be Σ-quasi-states, 𝑓1 ∶ 𝔖′

1 → 𝔖1 a label-preserving
embedding and 𝑔∶ 𝔖1 → 𝔖2 a quasi-state-morphism. Then there exist a Σ-quasi-
state 𝔖′

2, a label-preserving embedding 𝑓2 ∶ 𝔖′
2 → 𝔖2 and a quasi-state-morphism

𝑔′ ∶ 𝔖′
1 → 𝔖′

2 such that |𝔖′
2| ≤ 𝐶𝑛 ⋅ |𝔖′

1| and 𝑓2 ∘ 𝑔′ = 𝑔 ∘ 𝑓1, i.e. the following square
commutes:

𝔖′
1 𝔖′

2

𝔖1 𝔖2

𝑔′

𝑓1 𝑓2

𝑔

Proof. Let 𝑋0 be the image of 𝑔 ∘ 𝑓1. By Lemma 8.19 there exists 𝑋 extending 𝑋0
such that the restriction of 𝔖2 to 𝑋 is a Σ-quasi-state and |𝑋| ≤ 𝐶𝑛 ⋅ |𝑋0|. Define
𝔖′

2 to be this restriction. Now the cardinality requirement is satisfied, and for 𝑓2 we
can take the restricted identity from 𝔖′

2 to 𝔖2, which is clearly an embedding.
Finally define 𝑔′ ≔ 𝑔 ∘ 𝑓1. Note that this is well-defined since the image of 𝑔 ∘ 𝑓1 is

contained in 𝔖′
2. By Lemma 8.13, 𝑔′ is a quasi-state-morphism as required. Clearly,

this 𝑔′ makes the diagram commute.

Selective filtration for quasi-segments. Repeatedly applying the previous
lemma gives selective filtration theorem for quasi-segments. Note that the quasi-
states that we select are not just finite, but we have an explicit upper bound on their
sizes.

Definition 8.21 (Sized quasi-segment). We say a finite or 𝜔-sequence of Σ-quasi-
states 𝔖− is sized iff for all 𝑖, |𝔖𝑖| ≤ 𝐶𝑖+1

𝑛 . By extension, a Σ-quasi-segment is sized
iff its sequence of quasi-states is sized.

Lemma 8.22. Let 𝜑 ∈ Σ and let 𝔖− with morphisms 𝑓− be a Σ-quasi-segment
satisfying 𝜑 in 𝔖0. Then there exist a sized Σ-quasi-segment of the same length 𝔖′

−
with morphisms 𝑓 ′

− satisfying 𝜑 in 𝔖′
0, and a label-preserving embedding 𝑔− of quasi-

segments from ⟨𝔖′
−, 𝑓 ′

−⟩ to ⟨𝔖−, 𝑓−⟩. If the initial segment of 𝔖− of length 𝑛 is sized,
we can take 𝔖′

𝑖 ≔ 𝔖𝑖 for all 𝑖 < 𝑛.

Proof. Find a point 𝑥0 in 𝔖0 which has 𝜑 in its label. By Lemma 8.19 there exists a
subset 𝑋 of the domain of 𝔖0 with 𝑥0 ∈ 𝑋 and |𝑋| ≤ 𝐶𝑛 such that the restriction
of 𝔖0 to 𝑋 is a quasi-state. Define 𝔖′

0 to be this restriction and set 𝑔0 to be the
restricted identity. Now, repeatedly applying the previous lemma produces the
required commutative diagram.
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Note that label-preserving embeddings reflect the realisation of eventualities. Hence
if the original quasi-segment ⟨𝔖−, 𝑓−⟩ was a quasi-model, then so is ⟨𝔖′

−, 𝑓 ′
−⟩.

The local fmp. Using the conversion propositions from the previous section, we
get an analogous statement for stratified DFMs. We use this to prove the local fmp
for the DTL-logics that we are interested in, assuming they are complete w.r.t. their
DFMs with the maximal-point property.

Definition 8.23. [Maximal-point property for DFMs] A DFM ⟨𝑋, 𝑅, 𝑓, 𝔙⟩ is said to
have the maximal-point property iff for every DTL-formula 𝜑 and every 𝑥 ∈ ⟦𝜑⟧⟨𝔉,𝑓,𝔙⟩,
𝑅∗(𝑥) ∩ ⟦𝜑⟧⟨𝔉,𝑓,𝔙⟩ has a maximal point.

Theorem 8.24. Let ℱ be a class of Kripke frames closed under taking disjoint
unions and subframes. Suppose DTL(ℱ) is complete w.r.t. DFMs, over frames in ℱ,
that have the maximal-point property for DFMs. Then DTL(ℱ) is complete w.r.t.
stratified locally finite DFSs on frames in ℱ. In particular, it has the local fmp.

Proof. Let 𝜑 be a DTL-formula such that ¬𝜑 ∉ Λ. By the completeness assumption
in the theorem statement, there exists a DFM ⟨𝔉, 𝑓, 𝔙⟩ with the maximal-point
property, satisfying 𝜑 in some point, such that 𝔉 ∈ ℱ. By Remark 8.5 we can turn
this into an stratified DFM ⟨𝔐−, 𝑓−⟩. Note that each 𝔐𝑖,fr ∈ ℱ. It is easy to check
that this stratified DFM inherits the maximal-point property.

Define Σ ≔ Sub(𝜑). This set is finite, so in particular only finitely many formulas
in Σ have ◻ as their top-level symbol.

By Proposition 8.11, ⟨𝔐−, 𝑓−⟩ induces a (Σ, ℱ)-quasi-model ⟨𝔖−, 𝑓−⟩ which satis-
fies 𝜑 in 𝔖0. It is easy to check that each 𝔖− inherits the maximal-point property
from ⟨𝔐−, 𝑓−⟩.

By Lemma 8.22, there exists a sized Σ-quasi-segment ⟨𝔖′
−, 𝑓 ′

−⟩ still satisfying 𝜑 in
𝔖′

0 and a label-preserving embedding from ⟨𝔖′
−, 𝑓 ′

−⟩ to ⟨𝔖−, 𝑓−⟩. Since ℱ is closed
under taking subframes, the frames underlying the 𝔖′

− are (isomorphic to) frames in
ℱ. Since ⟨𝔖−, 𝑓−⟩ is a quasi-model, so is ⟨𝔖′

−, 𝑓 ′
−⟩.

Finally, by Proposition 8.12 this quasi-model induces an stratified DFM ⟨𝔐′
−, 𝑓 ′

−⟩
which still satisfies 𝜑 in 𝔐′

0. Clearly it is locally finite. Since 𝔐′
𝑖,fr ∈ ℱ for all 𝑖,

and ℱ is closed under disjoint union, the underlying frame is a frame in ℱ. Hence
⟨𝔐′

−, 𝑓 ′
−⟩ is a DFM of DTL(ℱ).

8.5 Reduced Quasi-Segments and Computable
Enumerability

In this section we will apply the selective filtration for quasi-segments developed in
the previous section a second time. This time, we combine it with Kruskal’s tree
theorem and make good use of the effective bound on the sizes of quasi-states, to
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prove a co-computable enumerability result for the formulas that are satisfiable on
quasi-models.
Let ℱbe a class of Kripke frames. Let us say that a DTL-formula 𝜑 is ℱ-quasi-

satisfiable iff it is satisfiable on a (Sub(𝜑), ℱ)-quasi-model. Propositions 8.11 and 8.12
show a strong connection with satisfiability on stratified DFMs. If ℱ is closed under
taking disjoint unions, then together with Remark 8.5 this shows that 𝜑 is ℱ-quasi-
satisfiable iff it is satisfiable on a DFS of DTL(ℱ). Hence we would like to prove
that the set of ℱ-quasi-satisfiable is co-computably enumerable, so that DTL(ℱ) is
computably enumerable.

Let us call a (Sub(𝜑), ℱ)-quasi-segment a (𝜑, ℱ)-quasi-segment iff is 𝜑 is satisfiable
in the first quasi-state, and analogously for quasi-models. Then ℱ-quasi-satisfiable iff
there exists a (𝜑, ℱ)-quasi-segment.
In this section we restrict our attention to the case where ℱ consists of only

finite forest-like frames, and is closed under taking subframes. The finite and forest-
like conditions make Kruskal’s tree theorem, in particular the version stated in
Theorem 8.3, apply to quasi-states. The closedness under taking subframes makes
the selective filtration technique from the last section apply. Since a quasi-state on a
finite frame has the maximal-point property, the latter implies that if a DTL-formula
𝜑 is satisfiable on a (Σ, ℱ)-quasi-segment respectively a (Σ, ℱ)-quasi-model, then it
is satisfiable on a sized one.

For a given length 𝑘 ∈ 𝜔, there are only finitely many sized Sub(𝜑)-quasi-segments
of length 𝑘 up to isomorphism. Assuming ℱ, up to isomorphism, is decidable, one
can check for each one whether it is a (𝜑, ℱ)-quasi-segment. Hence, the set of DTL-
formulas 𝜑 such that there exists, for each finite length 𝑘 ∈ 𝜔, a sized (𝜑, ℱ)-quasi-
segment of length 𝑘, is co-computably enumerable.

Using Kőnig’s lemma, one can show that if for each 𝑘 ∈ 𝜔, such sized (𝜑, ℱ)-quasi-
segment of length 𝑘 exists, then there exists an infinite (𝜑, ℱ)-quasi-segment. The
converse direction follows trivially after applying selective filtration to make the
quasi-segment sized. Hence, the set of formulas 𝜑 such that there exists an infinite
(𝜑, ℱ)-quasi-segment, is co-computably enumerable.
However, not every infinite quasi-segment is a quasi-model, so this does not

establish co-computable enumerability of ℱ-quasi-satisfiability. In order to solve this
issue, we introduce reduced quasi-segments. The idea will be that the existence of
reduced (𝜑, ℱ)-quasi-segments for all lengths 𝑘 ∈ 𝜔 does imply the existence of a
(𝜑, ℱ)-quasi-model. The proof of this claim will make use of Kruskal’s tree theorem.

Let us fix a DTL-formula 𝜑 for the rest of the section. We will from now on leave
the (𝜑, ℱ) for quasi-segments and quasi-models implicit.

Lemma 8.25. Let 𝔖− be a (𝜑, ℱ)-quasi-segment with morphisms 𝑓−. Suppose there
exist 𝑖, 𝑗 such that 𝑖 < 𝑗, and an label-preserving embedding 𝑔∶ 𝔖𝑖 → 𝔖𝑗. Then

𝔖0
𝑓0
→ ⋯

𝑓𝑖−1
→ 𝔖𝑖

𝑓𝑗∘𝑔
→ 𝔖𝑗+1

𝑓𝑗+1
→ 𝔖𝑗+2 … (8.1)
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is a (𝜑, ℱ)-quasi-segment.

Proof. By Lemma 8.13.

Note that in the previous lemma, if some eventuality was realised in the original
quasi-segment, then either it is still so in the shorter one, or it was realised in some
𝔖𝑘 for 𝑘 ∈ {𝑖 + 1, … , 𝑗}. This leads to the following definition.

Definition 8.26 (Progress). Let 𝔖− be a quasi-segment with morphisms 𝑓−. It is
said to progress at 𝑘 iff 𝔖𝑘 realises an eventuality for some point of 𝔖𝑗, where 𝑗 is
an index such that for all 𝑖 < 𝑗, all eventualities for points in 𝔖𝑖 are realised before
𝔖𝑘, i.e. in 𝔖0, … 𝔖𝑘−1.

Definition 8.27 (Reduced quasi-segment). A quasi-segment is called 𝑛-reduced iff
either

• for every pair ⟨𝑖, 𝑗⟩ such that 𝑖 < 𝑗, 𝑖 < 𝑛 and 𝔖𝑖 label-preservingly embeds
into 𝔖𝑗, there exists 𝑘 ∈ {𝑖 + 1, … , 𝑗} such that the quasi-segment progresses
at 𝑘, or

• every eventuality in it is realised before 𝔖𝑛.

It is called reduced iff it is 𝑛-reduced for all 𝑛.

We derive two lemmata about this reducedness. First we show that a reduced and
infinite quasi-segment is a quasi-model. Conversely, we show that any quasi-model
can be turned into a sized and 𝑛-reduced one.
For the first lemma we will use Kruskal’s tree theorem. Note that this requires

a well-quasi-order on the labels, i.e. on tyΣ. Since we take Σ ≔ Sub(𝜑), Σ is finite,
and hence so is tyΣ. Therefore tyΣ forms a well-quasi-order under equality. Then a
function is label-preserving iff it is label-monotone.

Lemma 8.28.

(i) A reduced infinite (𝜑, ℱ)-quasi-segment progresses infinitely often.

(ii) A (𝜑, ℱ)-quasi-segment that progresses infinitely often is a 𝜑-quasi-model.

Proof.

(i) Let 𝔖− together with some morphisms be a reduced infinite (𝜑, ℱ)-quasi-
segment. By Kruskal’s tree theorem, in particular Theorem 8.3, there exist
𝑖, 𝑗 ∈ 𝜔 such that 𝑖 < 𝑗 and 𝔖𝑖 label-preservingly embeds into 𝔖𝑗. Since
the quasi-segment is reduced, there is a 𝑘 ∈ {𝑖 + 1, … , 𝑗} such that the quasi-
segment progresses at 𝑘. By applying Kruskal’s tree theorem again on the
sequence from 𝔖− from 𝑘 onwards, we find another 𝑘′ > 𝑘 where the quasi-
segment progresses, etc.
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(ii) Let 𝑛 ∈ 𝜔. We show that all eventualities in the first 𝑛 quasi-states get
realised. The first 𝑛 quasi-states of the quasi-segment only have finitely many
eventualities that need to be realised. Suppose the quasi-segment progresses at
𝔖𝑘. Then an eventuality of 𝔖𝑗 gets realised that was not realised before, where
𝔖𝑗 is the first quasi-state with not-yet-realised eventualities. In particular,
either 𝑗 < 𝑛, or all eventualities of the first 𝑛 quasi-states are already realised,
in which case we are done. But in the former case, the number of eventualities
in the first 𝑛 quasi-states that are not-yet-realised decreases, which can happen
only finitely often.

Lemma 8.29. Let 𝔖− together with some morphisms be a (𝜑, ℱ)-quasi-model. Then
for every 𝑛 ∈ 𝜔 there exists a sized and 𝑛-reduced (𝜑, ℱ)-quasi-model.

Proof. By induction on 𝑛. For the base case, note that there exists by assumption
(iv) a quasi-model, and we can turn this into a sized one by Lemma 8.22. Obviously
it is 0-reduced.

For the inductive step, assume we have a sized and 𝑛-reduced quasi-model. Suppose
it is not (𝑛 + 1)-reduced. Then there exists 𝑗 > 𝑛 such that 𝔖𝑛 label-preservingly
embeds into 𝔖𝑗 and the quasi-segment does not progress at indices 𝑛 + 1, … , 𝑗.
First assume no maximal such 𝑗 exists. Then the quasi-model never progresses

after 𝔖𝑛. Since we have a quasi-model, every eventuality gets realised. Hence this
must happen before 𝔖𝑛, so the quasi-model is by definition already reduced.
Second, assume a maximal such 𝑗 does exists. Then by Lemma 8.25 we find a

quasi-model on
𝔖0, … , 𝔖𝑛, 𝔖𝑗+1, …

which is (𝑛 + 1)-reduced.
Note that the initial segment of length 𝑛 + 1 is sized. Applying Lemma 8.22 we

can turn this into a sized quasi-model without changing the first 𝑛 + 1 quasi-states:

𝔖0, … , 𝔖𝑛, 𝔖′
𝑗+1, …

Now this new quasi-model is still (𝑛 + 1)-reduced, because any label-preserving
embedding 𝔖𝑖 to 𝔖′

𝑘 (for some 𝑖 ∈ {0, … , 𝑛} and 𝑘 > 𝑗) composes with one of the
label-preserving embeddings from Lemma 8.22 to a label-preserving embedding 𝔖𝑖
to 𝔖𝑘 in the original sequence.

We are now in the position to prove the main equivalence result of this section.

Proposition 8.30. For any formula 𝜑, the following are equivalent:

(i) For every 𝑛 ∈ 𝜔 there exists a sized and reduced (𝜑, ℱ)-quasi-segment of length
at least 𝑛.
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(ii) There exists an infinite sized and reduced (𝜑, ℱ)-quasi-segment.

(iii) There exists an sized and reduced (𝜑, ℱ)-quasi-model.

(iv) There exists a (𝜑, ℱ)-quasi-model.

(v) For every 𝑛 ∈ 𝜔 there exists a sized and 𝑛-reduced (𝜑, ℱ)-quasi-model.

Proof. (i) ⇒ (ii): Let us say that a quasi-segment ⟨𝔖−, 𝑓−⟩ is a successor of a quasi-
segment ⟨𝔖′

−, 𝑓 ′
−⟩ iff ⟨𝔖′

−, 𝑓 ′
−⟩ is an initial segment of ⟨𝔖−, 𝑓−⟩. Then the set of sized

and reduced (𝜑, ℱ)-quasi-segments up to isomorphism forms a tree 𝑇 under this
successor relation.

Note that there are only finitely many sized (𝜑, ℱ)-quasi-segments of length 𝑛 up
to isomorphism. Hence 𝑇 is finitely branching. Since there are sized and reduced
(𝜑, ℱ)-quasi-segments of arbitrary lengths, 𝑇 is infinite. Hence, by Kőnig’s lemma
there exists an infinite path in 𝑇. Obviously this gives rise to a quasi-segment whose
initial segments are the points in this path. Since all these initial segments are sized
and reduced, so is the full quasi-segment.
(ii) ⇒ (iii): By Lemma 8.28.
(iii) ⇒ (iv): Trivial.
(iv) ⇒ (v): By Lemma 8.29.
(v) ⇒ (i): Take the initial segment of length 𝑛 of the sized and 𝑛-reduced (𝜑, ℱ)-

quasi-model.

As an immediate consequence we find the theorem that we were after: the set of
formulas that are ℱ-quasi-satisfiable is co-computably enumerable.

Theorem 8.31. Let ℱ be a class of finite forest-like Kripke frames closed under
taking subframes, such that membership of ℱ (up to equivalence) is decidable. Then
the set of DTL-formulas 𝜑 that are ℱ-quasi-satisfiable is co-computably enumerable.

Proof. By the previous proposition having a (𝜑, ℱ)-quasi-model is equivalent to
having sized and reduced (𝜑, ℱ)-quasi-segments for all finite lengths. For a given
formula 𝜑 and length 𝑛 we can decide whether there is a sized and reduced (𝜑, ℱ)-
quasi-segment of length 𝑛, by checking all finitely many (up to isomorphism) can-
didates. Hence universally quantifying over 𝑛 ∈ 𝜔 gives a set that is co-computably
enumerable.

8.6 Computable Enumerability over CWF Frames
In this section we apply the main theorem from the previous section to prove
computable enumerability of DTL(ℱ) for a certain frame class ℱ. There are however
two requirements on Theorem 8.31 that we need to alleviate. First, the requirement
of finiteness of the frames in ℱ, which is alleviated using the local fmp result from
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Section 8.4. Second, Theorem 8.31 applies only to forest-like frames. This is satisfied
by applying a kind of tree unravelling.
The general approach is as follows. We start with a class of frames ℱ which

is closed under taking disjoint unions and subframes and satisfies some addition
requirements to make the subsequent steps work. We will impose a condition on ℱ
that implies the maximal-point property for all stratified DFMs on a frame in ℱ.
Then, by Theorem 8.24, DTL(ℱ) has the local fmp. Hence a formula 𝜑 satisfiable
on a DFS of DTL(ℱ), is satisfiable on locally finite DFM on a frame 𝔉 ∈ ℱ.

Next, we assume ℱ is closed under a kind of tree unravelling. Then, by performing
this tree unravelling, we can assume that 𝔉 is a forest-like frame. Using Proposi-
tion 8.11 this stratified DFM induces a quasi-model. Since 𝔉 is forest-like and the
DFM was locally finite, this is a (𝜑, ℱ′)-quasi-model, where ℱ′ the class of finite
forest-like frames of ℱ. Since ℱ is closed under disjoint union, using Proposition 8.12
such (𝜑, ℱ′)-quasi-model also induces a DFM on a frame in ℱ, satisfying 𝜑 in some
point.
We conclude that satisfiability on a DFS on a frame in ℱ is equivalent to ℱ′-

quasi-satisfiability. Since ℱ′ satisfies the requirements of Theorem 8.31, the set of
satisfiable formulas is co-computably enumerable. Hence DTL(ℱ) is computably
enumerable.

The maximal-point property. As explained, we need the maximal-point property
for all stratified DFMs on a frame in ℱ, in order to apply Theorem 8.24. In fact, a
unimodal property that guarantees this is converse pre-well-foundedness, which we
already studied in the context of degrees in Chapter 4.

Lemma 8.32. Let 𝔉 be a weakly-transitive CWF Kripke frame. Then any general
frame 𝔣 = ⟨𝔉, 𝐴⟩ or Kripke model 𝔐 = ⟨𝔉, 𝔙⟩ on it has the maximal-point property.

Proof. Obviously it suffices to prove that an arbitrary non-empty subset 𝑌 ⊆ 𝔉w has
a maximal point. Recall the definitions of depth and converse pre-well-foundedness
from Section 2.10. Since 𝔉 is CWF, 𝔉 = 𝔉upper. Therefore, as 𝑌 is non-empty and the
ordinals are well-ordered, there exists some 𝑦0 ∈ 𝑌 with minimal depth.
We claim this 𝑦0 is maximal for 𝑌. For suppose 𝑦 ∈ 𝑌 such that 𝑦0 sees 𝑦.

Then by definition of depth, depth(𝑦) ≤ depth(𝑦0). Since 𝑦0 had minimal depth,
depth(𝑦) = depth(𝑦0). But by construction of depth then 𝑦 also sees 𝑦0.

Clearly, this implies the maximal-point property for DFMs on a CWF frame.

Lemma 8.33. Let ℱ be a class of CWF Kripke frames. Then DTL(ℱ) is complete
w.r.t. DFMs, over frames in ℱ, with the maximal-point property.

Proof. By definition DTL(ℱ) is complete w.r.t. DFMs ⟨𝔉, 𝑓, 𝔙⟩ such that 𝔉 ∈ ℱ.
The set

{⟦𝜑⟧⟨𝔉,𝑓,𝔙⟩ ∣ 𝜑 ∈ DTL}
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generates a general frame on 𝔉, which has the maximal-point property by the previous
lemma. It clearly follows that ⟨𝔉, 𝑓, 𝔙⟩ has the maximal-point property.

By Theorem 8.24 the local fmp follows.

Unravelling. Next, we look at the tree unravelling. To be used as in the proof
outline at the start of this section, we need an unravelling that preserves the local
finiteness of DFSs. Fortunately, in Section 2.12 we developed an unravelling preserving
finiteness, the finite tree-like unravelling. Using the functoriality it enjoys, extending
it to locally finite DFSs is easy.

Definition 8.34 (p-Morphism of stratified DFSs). Let ⟨𝔉−, 𝑓−⟩ and ⟨𝔊−, 𝑔−⟩ be
stratified DFSs. Then a p-morphism from ⟨𝔊−, 𝑔−⟩ to ⟨𝔉−, 𝑓−⟩ is a sequence of
functions ℎ− such that for all 𝑖 ∈ 𝜔, ℎ𝑖 ∶ 𝔊𝑖 → 𝔉𝑖 is a p-morphism and 𝑓𝑖∘ℎ𝑖 = ℎ𝑖+1∘𝑔𝑖,
i.e. the following diagram commutes:

𝔊0 𝔊1 𝔊2 ⋯

𝔉0 𝔉1 𝔉2 ⋯

𝑔0

ℎ0

𝑔1

ℎ1 ℎ2

𝑓0

𝑓1

It is called surjective iff each ℎ𝑖 is surjective, in which case ⟨𝔉−, 𝑓−⟩ is called a p-
morphic image of ⟨𝔊−, 𝑔−⟩.

Lemma 8.35. Let ⟨𝔉−, 𝑓−⟩ be an stratified locally finite DFS. Then there exists an
stratified locally finite DFS ⟨𝔊−, 𝑔−⟩ such that for each 𝑖 ∈ 𝜔, 𝔊𝑖 is the finite tree-
like unravelling of 𝔉𝑖 and ⟨𝔉−, 𝑓−⟩ is a p-morphic image of ⟨𝔊−, 𝑔−⟩.

Proof. Let for each 𝑖, 𝔊𝑖 be the finite tree-like unravelling of 𝔉𝑖, ℎ𝑖 ∶ 𝔊𝑖 → 𝔉𝑖 the
surjective p-morphism from Lemma 2.106, and 𝑔𝑖 ∶ 𝔊𝑖 → 𝔊𝑖+1 the monotone function
induced by 𝑓 as in Lemma 2.107.

p-Morphism for DFSs preserves valid DTL-formulas and reflects satisfiability,
analogous to p-morphism for Kripke frames w.r.t. unimodal formulas.

Lemma 8.36. Let ⟨𝔊−, 𝑔−⟩ be an stratified DFS and ⟨𝔉−, 𝑓−⟩ a p-morphic image of
it. Let 𝜑 be a DTL-formula satisfiable on ⟨𝔉−, 𝑓−⟩. Then it is satisfiable on ⟨𝔊−, 𝑔−⟩.

Proof. Let ℎ− be the surjective p-morphism from ⟨𝔊−, 𝑔−⟩ to ⟨𝔉−, 𝑓−⟩. Find valu-
ations 𝔙𝑖 such that 𝜑 is satisfied in a point of ⟨𝔐−, 𝑓−⟩, where 𝔐𝑖 ≔ ⟨𝔉𝑖, 𝔙𝑖⟩. Define
𝔑𝑖 ≔ ⟨𝔊𝑖, ℎ−1

𝑖 ∘ 𝔙𝑖⟩.
We show by induction on formulas 𝜓 ∈ Sub(𝜑) that 𝜓 is satisfied in a point 𝑥 of

⟨𝔑−, 𝑔−⟩ iff it is satisfied in ℎ(𝑥) of ⟨𝔐−, 𝑓−⟩. For the atomic propositions, Boolean
connectives and modal operator ◻ the inductive steps are standard and follow from
the fact that ℎ is a p-morphism.
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For ⚪, assume as induction hypothesis that for all 𝑦 ∈ 𝔊w, 𝔑, 𝑦 ⊨ 𝜓 iff 𝔐, ℎ(𝑦) ⊨ 𝜓.
Then for a point 𝑥 ∈ 𝔊𝑖,w,

𝔑, 𝑥 ⊨ ⚪𝜓 ⟺ 𝔑, 𝑔𝑖(𝑥) ⊨ 𝜓 ⟺ 𝔐, ℎ𝑖+1(𝑔𝑖(𝑥)) ⊨ 𝜓
⟺ 𝔐, 𝑓𝑖(ℎ𝑖(𝑥)) ⊨ 𝜓 ⟺ 𝔐, ℎ𝑖(𝑥) ⊨ ⚪𝜓.

That the case for ◻𝐹 follows from that for ⚪ since satisfying ◻𝐹𝜓 is equivalent to
simultaneously satisfying all of ⚪𝑛𝜓 for 𝑛 ∈ 𝜔 ∖ {0}. (The proof is similar to that of
conjunction, but with ‘infinitely many conjunctions’.)

Together, these two lemmata tell us that if ℱ is closed under finite tree-like
unravelling then any formula satisfiable on an stratified locally finite DFS on a frame
in ℱ is satisfiable on an stratified locally finite DFS on a forest-like frame in ℱ. In
particular, when combined with Theorem 8.24 we get the following.

Proposition 8.37. Let ℱ be a class of Kripke frames closed under taking subframes,
disjoint union and finite tree-like unravelling. Suppose DTL(ℱ) is complete w.r.t.
DFMs, over frames in ℱ, that have the maximal-point property for DFMs. Then
DTL(ℱ) is complete w.r.t. stratified locally finite DFSs on forest-like frames in ℱ.

Proof. Let 𝜑 be a formula such that ¬𝜑 ∉ DTL(ℱ). By Theorem 8.24, 𝜑 is satisfiable
on an stratified locally finite DFS ⟨𝔉−, 𝑓−⟩. By Lemma 8.35 ⟨𝔉−, 𝑓−⟩ is a p-morphic
image of its finite tree-like unravelling ⟨𝔊−, 𝑔−⟩. Since ℱ is closed under finite tree-
like unravelling, the disjoint union of the frames 𝔊− is a frame of ℱ. Hence, since
finite tree-like unravelling preserves finiteness, ⟨𝔊−, 𝑔−⟩ is an stratified locally finite
DFS on forest-like frame in ℱ. By Lemma 8.36 𝜑 is satisfiable on ⟨𝔊−, 𝑔−⟩.

Conclusion. Combining this last result with Lemma 8.33 and Theorem 8.31
gives us our desired computable enumerability result. Since now all hypotheses are
unimodal in nature, the theorem is easily applied.

Theorem 8.38. Let ℱ be a class of CWF Kripke frames closed under taking disjoint
unions, subframes and finite tree-like unravelling, such that for finite forest-like frames
membership of ℱ (up to isomorphism) is decidable. Then DTL(ℱ) is computably
enumerable.

Proof. Define ℱ′ to be the class of finite forest-like elements of ℱ. By Theorem 8.31,
the set of DTL-formulas that are ℱ′-quasi-satisfiable is co-computably enumerable.
We will show that these are precisely the formulas 𝜑 such that ¬𝜑 ∉ DTL(ℱ),
formulas whose negationis a non-theorem of DTL(ℱ). Hence the non-theorems of
DTL(ℱ) form a co-computably enumerable set, so DTL(ℱ) itself is computably
enumerable.
Let 𝜑 be a DTL-formula. First, suppose 𝜑 is ℱ′-quasi-satisfiable. Then there

exists a (𝜑, ℱ′)-quasi-model, and by Proposition 8.12 it induces an stratified DFM
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satisfying 𝜑 in a point. The underlying frame is a disjoint union of frames in ℱ′ ⊆ ℱ,
hence an element of ℱ. By definition of DTL(ℱ), ¬𝜑 ∉ DTL(ℱ).
Conversely suppose ¬𝜑 ∉ DTL(ℱ). By Lemma 8.33 DTL(ℱ) is complete w.r.t.

DFMs over ℱwith the maximal-point property. Then it follows by Proposition 8.37
that DTL(ℱ) is complete w.r.t. stratified locally finite DFSs on forest-like frames
in ℱ. Therefore 𝜑 is satisfied such a DFS. By Proposition 8.11 it is satisfied on the
induced Sub(𝜑)-quasi-model. Since the DFS was locally finite and on a forest-like
frames in ℱ, this is a (Sub(𝜑), ℱ′)-quasi-model. Say 𝜑 is satisfied in 𝑘-th quasi-state.
We obtain a (𝜑, ℱ′)-quasi-model by dropping the first 𝑘 − 1 quasi-states. Hence 𝜑 is
ℱ′-quasi-satisfiable.

In particular, when Λ is a unimodal subframe logic whose frames are closed under
finite tree-like unravelling, then DTL(ℱ) is computably enumerable for

• ℱ the class of all disjoint unions of finite Λ-frames, and

• ℱ the class of all CWF Λ-frames.

Applying the theorem shows that for example the following DTL-logics are com-
putably enumerable.

Corollary 8.39. Let ℱ be any of the following frame classes:

(i) disjoint unions of the finite frames of wK4, K4 or S4,

(ii) the CWF frames of wK4, K4 or S4,

(iii) the frames of GL or Grz,

(iv) the frames of K4 ⊕ ◻𝑛⊥ for any 𝑛 ∈ 𝜔, or

(v) linear frames of any of the previously mentioned frame classes, i.e. disjoint
unions of the finite or CWF frames of wK4.3, K4.3 or S4.3 or the frames
of GL.3, Grz.3, or K4.3 ⊕ ◻𝑛⊥ for any 𝑛 ∈ 𝜔.

Then DTL(ℱ) is computably enumerable.

Remark 8.40. For the classes of linear frames with bounded depth in the corollary,
i.e. the frames of K4.3 ⊕ ◻𝑛⊥ for some 𝑛 ∈ 𝜔, the DTL-logic is not just computably
enumerable but even decidable. To see this, suppose a DTL-formula 𝜑 is satisfiable
on a 𝜑-quasi-model on a frame of K4.3 ⊕ ◻𝑛⊥. Using a selection argument it is
easy to see that one can make each quasi-state in the quasi-model rooted, giving say
quasi-states 𝔖− with morphisms 𝑓−. Then each quasi-state is based on a chain of
at most 𝑛 elements, and there are only finitely many such Sub(𝜑)-quasi-states (up
to isomorphism). Hence there exist 𝑖, 𝑗 ∈ 𝜔 such that 𝔖𝑖 = 𝔖𝑗, and any quasi-state
that occurs infinitely often in the quasi-model does occur between indices 𝑖 and 𝑗.
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Now using this property of 𝑖 and 𝑗, we can construct a finite DFM on which 𝜑 is
still satisfied. First construct a new quasi-segment by first taking states 𝔖0, … , 𝔖𝑖−1
and then repeating 𝔖𝑖, … , 𝔖𝑗−1 infinitely often (all with the respective morphisms
from the quasi-model):

𝔖0
𝑓0
→ ⋯

𝑓𝑗−1
→ 𝔖𝑗 = 𝔖𝑖

𝑓𝑖
→ …

𝑓𝑗−1
→ 𝔖𝑗 = 𝔖𝑖

𝑓𝑖
→ …

It is easy to check that this quasi-segment is a 𝜑-quasi-model. By Proposition 8.12
it induces a stratified DFM. This can be turned into a finite DFM by identifying all
the parts that are induced by one of the repetitions of 𝔖𝑘 in the quasi-model, for
each 𝑘 ∈ {𝑖, … , 𝑗 − 1}.

Hence any DTL-formula 𝜑 that is satisfiable on a DFS on a frame of K4.3 ⊕ ◻𝑛⊥,
is satisfiable on a finite such DFS. It follows that the DTL-logic of these DFSs is
co-computably enumerable. Since we already proved computable enumerability, it
follows that it is decidable.
A similar proof works without the lin axiom, i.e. for K4 ⊕ ◻𝑛⊥. However, now

we need to work with quasi-states up to bisimilarity3 instead of up to isomorphism.
The crucial properties here are that there are only finitely many quasi-states on
frames of K4 ⊕ ◻𝑛⊥ up-to-bisimilarity, and that for bisimilar quasi-states there exist
label-preserving p-morphisms in both directions between them. Note that a label-
preserving p-morphisms compose ‘nicely’ with quasi-state-morphisms just as label-
preserving embeddings do. .
This corollary gives a sense of the generality of Theorem 8.38, which is the main

result of the chapter. However, also note how restricting the converse pre-well-
foundedness condition is. Many important modal logics, e.g. K4 or S4, have frames
that are not CWF, even tough they are CWF-frame complete. Also recall that we
based our proof on that of a result about DTL1 of Konev et al. [28, Theorem 7],
generalising some parts of the construction. However, due to this converse pre-well-
foundedness condition, their result does not follow from ours.

In fact, the converse pre-well-foundedness condition can be lifted when restricting
to the fragment of DTL, where, under a positive ◻, the future looking box ◻𝐹 is only
allowed to occur positively. This fragment significantly extends DTL1, so Theorem 7
of Konev et al. [28] would follow from this result. The proof requires a fair bit of
duality theory though, and is therefore omitted due to size and time constraints on
this thesis.

3A bisimulation between quasi-states is a bisimulation between the underlying Kripke frames which
only relates points with the same label.
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Chapter 9

Conclusions and Future Work

In this thesis we looked into various topics in modal logic related to completeness,
as summarised in the introduction. For WF- and CWF-degrees, quasi-canonicity and
canonical approximations, our investigations are essentially the first investigations
into the topic. Therefore, our results should be seen as initial observations, founding
the theory and study of these notions. We leave many questions open for future in-
vestigation. In this concluding chapter, we discuss our main contributions, important
questions that we leave open and general possible directions for future research. As
in the introduction, we discuss this topic by topic, for each of our four lines of study.

Degrees of completeness. We introduced a general notion of degrees of complete-
ness, generalising and unifying the study of the degrees of incompleteness of Fine
[19] and the ‘degrees of fmp’, which we call finite-frame degrees, of G. Bezhanishvili,
N. Bezhanishvili and Moraschini [5]. We briefly considered WF-frame degrees, and
showed WF-model degrees to be trivial in a sense, as every such degree over the
extensions of K4 is singleton. Our main contributions lie in the study of CWF-
frame degrees, with Theorems 4.6 and 4.26. In particular, these results show the
existence of singleton and continuum CWF-frame degrees over the extensions and
Kripke complete extensions of K4 and S4.
Considering Block’s dichotomy theorem and the anti-dichotomy theorem, this

immediately raises the question whether there are CWF-frame degrees of cardinality
strictly in-between 1 and continuum. This question can be asked both for degrees
over extensions of K4 or S4, as well as degrees over Kripke complete such extensions.
The former could be seen as a potential first step towards solving the same problem
for degrees of incompleteness, which is considered a major open problem in the field
[11, Problem 10.5]. The latter might be more interesting when studying converse
pre-well-foundedness in its own right, as the effects of Kripke incompleteness are in a
sense factored out.
There are two more specific questions that caught our attention, that we leave

open. First, as noted in Proposition 2.82, finite-frame completeness and finite-model
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completeness coincide. In Section 3.6 we saw that the same does not hold for WF-
frame and WF-model completeness. It is to our knowledge however still open, whether
CWF-frame and CWF-model completeness coincide.
The second question concerns the structural theory of degrees. With Proposi-

tion 3.27 we showed that WF- and CWF-frame degrees and degrees of incompleteness
are closed under finite non-empty intersections. For finite-frame degrees, G. Bezhan-
ishvili, N. Bezhanishvili and Moraschini [5, Theorem 10.3] already showed a stronger
property: these degrees are closed under arbitrary non-empty intersections. This
raises the question whether the same holds for WF- and CWF-frame degrees. An
affirmative answer would yield that the respective degrees form a complete lattice
w.r.t. the subset order, improving on the corollary of Proposition 3.28 that they form
lattices.
As a more general direction of possible future research, WF-frame degrees can be

studied. Based on our preliminary investigations, these seem easier to work with
than CWF-frame degrees; compare for example the proof of Theorem 3.32, that there
exists an infinite WF-frame degree, with that of Proposition 4.22, that there exists
an infinite (even continuum) CWF-frame degree. One can also note that from the
proof of the latter, the existence of a continuum WF-degree can be easily derived.
Despite this,1 we mostly left WF-frame degrees unstudied, and focused on the CWF-
frame degrees.

Quasi-canonicity. After studying degrees of completeness, we had a brief look at
quasi-canonicity, as introduced by Takapui [42], in Chapter 5. We showed that quasi-
canonicity is strictly in-between canonicity and Kripke completeness, improving on a
result of Takapui [42]. Moreover, we proved, using frames and techniques from our
study of CWF degrees, non-quasi-canonicity of GL and Grz. In fact, using a slightly
different frame, it is possible to get the same result for Grz.2, but we did not pursue
this further.
Currently the main motivation for the notion is a construction by Takapui [42],

which would generalise if GL turned out to be quasi-canonical. We showed that
GL is, however, not quasi-canonical. Therefore, it would be good to have further
applications of this notion. In particular, since we showed that there are quasi-
canonical logics that are not canonical, it would be interesting to check whether
existing constructions using canonicity can be generalised to quasi-canonicity.

Canonical approximations. Our other line of research involving canonicity might
be of even more interest though. We introduced a general notion of approximations
of logics in complete lattices, of which specific instances were already studied in the
literature [4], and in particular studied approximations for the lattice of canonical
logics. Our main contributions are Proposition 6.13, where we showed that for

1Or even maybe because of this.
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logics with the fmp, the canonical approximations from above an below coincide,
and Theorems 6.19 and 6.28, where we compute the canonical approximations of
Grz.3 and Grz.2. Concerning the former, it can also be noted that there are logics
(without the fmp) where the approximations from above and below differ, although
we did not prove this in this thesis.

In the direction of the latter two theorems, several interesting questions remain
open. First, we computed the canonical approximations of two extensions of Grz,
but computing the canonical approximations of Grz itself remains open. Looking
at the canonical approximations of Grz.3 and Grz.2, the pattern looks like the
Grz ‘part’ turns into S4.1, so one might hypothesise that S4.1 is the canonical
approximation of Grz. It is not difficult to see that S4.1 is a lower bound for it, but
whether it is also an upper bound remains open.

A second question is whether analogues of our results hold for extensions of GL
instead of Grz. Third, but maybe most important, it would be good to have more
general results for computing canonical approximations, instead of having to compute
each one individually. For example, one could wonder whether the operation of
taking canonical approximations preserves sums. Also, we computed the canonical
approximations of Grz.3 completely independently of those of Grz.2, while the
former logic extends the latter logic. Thus, one might ask whether there is a single
more general theorem concerning some class of extensions of Grz.2 that yields both
of our results as corollaries.

Computable enumerability of dynamic topological logics. Finally, we studied
computable enumerability for dynamic topological logics in Chapter 8. As our main
result, we proved, as Theorem 8.38, that the DTL-logics of certain classes of CWF
frames are computably enumerable. Combining the groundwork laid down in the
chapter with some duality theory, one can in fact lift the converse pre-well-foundedness
condition, at the cost of restricting to the fragment of DTL, where, under a positive
◻, the future looking box ◻𝐹 is only allowed to occur positively. This result would
significantly generalise a result due to Konev et al. [28, Theorem 7], on whose proof
techniques our investigation in based.

Ideally though, the converse pre-well-foundedness condition could be lifted without
restricting to a fragment of DTL at all. Our current techniques seem unable to
achieve this. It would be interesting to check whether more recently developed
techniques, based on ‘non-deterministic’ structures [1, 14], allow to generalise our
results in this direction.
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for Kripke models, 103, 104, 112
for quasi-states, 104, 105, 107,

108
MCS, 22, 23, 72, 73

P
partial order, 9, 13, 91
p-morphic image

of a frame, 19, 20, 25, 28, 46–49,
56, 57, 59, 60, 77, 79, 82, 84

of a model, 19, 103
p-morphism

on frames, viii, 19, 20, 25, 28, 29,
42, 46, 47, 51, 56, 59, 60, 77,
79, 81–84, 113, 116

on models, 19, 20, 29, 42, 113
point

deep, 24, 59
depth, viii, 5, 23, 23–25, 112
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final, 12, 26, 51, 52, 54, 55, 76, 80,
85

irreflexive, 12, 13, 27, 41, 96, 98
maximal, 12, 76, 80, 104, 107, 112
minimal, 12, 79
reflexive, 12, 13, 25, 27, 48, 81,

96, 98
root, 13, 27, 28, 39, 59, 60

preorder, 13, 20, 28, 58, 64, 77, 81, 82,
91–94, 102

specialisation, 91, 92
pre-well-founded, v, viii, 2, 4, 5, 23–25,

24, 31–33, 35, 37, 38, 40–45,
61, 79, 80, 93, 117, 118

conversely, v, viii, ix, 2–4, 23–26,
24, 31–33, 37, 38, 41–52,
56–61, 63–66, 68, 74, 76, 80,
95, 96, 111, 112, 114–119

Q
quasi-canonical, see canonical, quasi-
quasi-model, ix, 95, 96, 98, 99, 101,

102, 107–112, 114–116
quasi-segment, ix, 95, 96, 98–104, 100,

106–111, 116
𝑛-reduced, 109, 109–111
reduced, ix, 107–111, 109
sized, 106, 106–111

quasi-state, 95, 99, 99–102, 104–108,
110, 115, 116

-morphism, 100, 100–102, 106,
116

quotient
frame, see frame, quotient

R
reduced quasi-segment, see quasi-

segment, reduced
𝑛, see quasi-segment, reduced

refined frame, see general frame,
refined

reflexive

closure, see closure, reflexive
frame, see frame, reflexive
point, see point, reflexive

rooted
frame, see frame, rooted

S
sequence

ascending, 12, 15, 28, 41, 46, 50,
52, 64–67, 74, 77, 93

descending, 12, 15, 25, 41, 51
strictly-ascending, 15, 24, 41, 42,

46, 47, 49–51, 66
strictly-descending, 15, 25, 51

set
admissible, see admissible set
co-computably enumerable, see

computably enumerable set,
co-

computably enumerable, see
computably enumerable set

decidable, see decidable set
maximal consistent, see MCS

sized quasi-segment, see quasi-
segment, sized

skeleton, 20, 25, 27, 97
soundness, viii, 21, 22, 35, 44, 74–77,

80–82, 84
specialisation preorder, see preorder,

specialisation
stratified

DFM, 99, 99–102, 104, 107, 108,
112, 114, 116

DFS, 99, 103, 107, 113–115
strictly-ascending sequence, see

sequence, strictly-ascending
strictly-descending sequence, see

sequence, strictly-descending
subframe, 14, 24, 40, 46, 47, 54, 56,

72, 76–80, 83, 93, 106–108,
111, 112, 114

generated, 14, 19, 20, 39–41,
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45–47, 54, 59, 60, 72, 73, 77,
81, 93

symmetric, see frame, symmetric

T
theorem

anti-dichotomy, 4, 38, 117
Block’s dichotomy, 1, 2, 4, 32, 37,

38, 117
Craig’s, 89
Fine’s finite width, 40, 44, 45, 51,

63, 76
Fine-van Benthem, 75, 76, 80

tight frame, see general frame, tight
transitive

closure, see closure, transitive
frame, see frame, transitive

tree
irreflexive transitive, 27, 28, 74,

94, 96

reflexive transitive, 27, 81, 82, 84
strict, 27, 28, 42, 82, 93, 94

tree-embedding, see embedding, tree-
tree-like frame, see frame, tree-like

U
unravelling

finite tree-like, 28, 29, 113–115
path, 28, 42, 82

upper
part, see frame, upper part

upset, 12, 14, 19, 37, 46, 54, 67, 91, 93
space, 91, 92

upward linear, see frame, upward
linear

W
weakly-transitive, see frame, weakly-

transitive
well-quasi-order, 93, 94, 96–98, 109
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