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Aybüke Özgün (aybuke.ozgun@loria.fr)
ILLC, University of Amsterdam and LORIA, CNRS-Université de Lorraine
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Abstract. Stalnaker introduced a combined epistemic-doxastic logic that can formally express a strong
concept of belief, a concept which captures the ‘epistemic possibility of knowledge’. In this paper we first
provide the most general extensional semantics for this concept of ‘strong belief’, which validates the
principles of Stalnaker’s epistemic-doxastic logic. We show that this general extensional semantics is a
topological semantics, based on so-called extremally disconnected topological spaces. It extends the stan-
dard topological interpretation of knowledge (as the interior operator) with a new topological semantics for
belief. Formally, our belief modality is interpreted as the ‘closure of the interior’. We further prove that in
this semantics the logic KD45 is sound and complete with respect to the class of extremally disconnected
spaces and we compare our approach to a different topological setting in which belief is interpreted in
terms of the derived set operator. In the second part of the paper we study (static) belief revision as well
as belief dynamics by providing a topological semantics for conditional belief and belief update modalities,
respectively. Our investigation of dynamic belief change, is based on hereditarily extremally disconnected
spaces. The logic of belief KD45 is sound and complete with respect to the class of hereditarily extremally
disconnected spaces (under our proposed semantics), while the logic of knowledge is required to be S4.3.
Finally, we provide a complete axiomatization of the logic of conditional belief and knowledge, as well as
a complete axiomatization of the corresponding dynamic logic.

Keywords: epistemic logic, doxastic logic, topological semantics, (hereditarily) extremally disconnected
spaces, conditional beliefs, updates, completeness, axiomatization.

1. Introduction

Edmund Gettier’s famous counterexamples against the justified true belief (JTB) account
of knowledge [29] invited an interesting and extensive discussion among formal episte-
mologists and philosophers concerned with understanding the correct relation between
knowledge and belief, and, in particular, with identifying the exact properties and condi-
tions that distinguishes a piece of belief from a piece of knowledge and vice versa. Various
proposals in the literature analysing the knowledge-belief relation can be classified in two
categories: (1) the ones that start with the weakest notion of true justified (or justifiable)
belief and add conditions in order to argue that they establish a “good” (e.g. factive,
correctly-justified, unrevisable, coherent, stable, truth-sensitive) notion of knowledge by
enhancing the conditions in the JTB analysis of knowledge; and (2) the ones that take
knowledge as the primitive concept and start from a chosen notion of knowledge and
weaken it to obtain a “good” (e.g. consistent, introspective, possibly false) notion of
belief. Most research in formal epistemology follows the first approach. In particular,
the standard topological semantics for knowledge (in terms of the interior operator) can
be included within this first approach, as based on a notion of knowledge as “correctly
justified belief”: according to the interior semantics, a proposition (set of possible worlds)
P is known at the real world x if there exists some “true evidence” (i.e. an open set U
containing the real world x) that entails P (i.e. U ⊆ P ). Other responses to the Gettier
challenge falling under this category include, among others, the defeasibility analysis of

c© 2015 Kluwer Academic Publishers. Printed in the Netherlands.

"The Topological Theory of Belief".tex; 5/12/2015; 10:25; p.1



2

knowledge [34, 32], the sensitivity account [37], the contextualist account [22] and the
safety account [42]1.

While most research in formal epistemology follows the first approach, the second
approach has to date received much less attention from formal logicians. This is rather
surprising, since such a “knowledge-first” approach, which challenges “conceptual priorty
of belief over knowledge”, has been persuasively defended by one of the most influential
contemporary epistemologists (Williamson [50]). The only formal account following this
second approach that we are aware of (prior to our own work) is the one given by Stalnaker
[44], using a relational semantics for knowledge, based on Kripke models in which the
accessibility relation is a directed preorder. In this setting, Stalnaker argues that the
“true” logic of knowledge is the modal logic S4.2 and that belief can be defined as the
epistemic possibility of knowledge2. In other words, believing p is equivalent to “not
knowing that you don’t know” p:

Bp = ¬K¬Kp.

Stalnaker justifies this identity from first principles based on a particular notion of belief,
namely belief as “subjective certainty”. Stalnaker refers to this concept as “strong belief”,
but we prefer to call it full belief 3. What is important about this type of belief is that it
is subjectively indistinguishable from knowledge: an agent “fully believes” p iff in fact she
“believes that she knows” p.

Indeed, Stalnaker proceeds to formalize AGM belief revision [1], based on a special
case of the above semantics, in which the accessibility relation is assumed to be a weakly
connected preorder, and (conditional) beliefs are defined by minimization. This validates
the AGM principles for belief revision.

In this paper we generalize Stalnaker’s formalization, making it independent from the
concept of plausibility order and from relational semantics, to a topological setting. In
fact, we are looking for the most general extensional (i.e., canonical) semantics for “full
belief” (in the above-mentioned sense), validating Stalnaker’s principles for epistemic-
doxastic logic. By an “extensional” semantics we mean here any semantics that assigns
the same meaning to sentences having the same extension. Essentially, an extensional
semantics takes the meaning of a sentence to be given by a “U.C.L.A. proposition” in the
sense of Anderson-Belnap-Dunn4: a set of possible worlds (intuitively thought of as the set
of worlds at which the proposition is true). We prove that the most general extensional
semantics is a topological one, that extends the standard topological interpretation of
knowledge as interior operator with a new topological semantics for belief, given by the
closure of the interior operator with respect to an extremally disconnected topology. We
compare our new semantics with the older topological interpretation of belief in terms of
Cantor derivative, giving several arguments in favour of our semantics. We prove that the
logic of knowledge and belief with respect to our semantics is completely axiomatized by
Stalnaker’s epistemic-doxastic principles. Furthermore, we show that the complete logic
of knowledge in this setting is the system S4.2, while the complete logic of belief on
extremally disconnected spaces is the standard system KD45.

1 For an overview of responses to the Gettier challenge and a detailed discussion, we refer the reader
to [30, 40].

2 Note that Stalnaker considers in his work [44] also several other variations such as S4.4, S4F, S5.
3 We adopt this terminology both because we want to avoid the clash with the very different notion of

strong belief (due to Battigalli and Siniscalchi [8]) that is standard in epistemic game theory, and because
we think that the intuitions behind Stalnaker’s notion are very similar to the ones behind Van Fraassen’s
probabilistic concept of full belief [28].

4 Dunn [24] explains this name as follows: ‘The name honours the university that has had both R.
Carnap and R. Montague in its faculty, since in modern times they (together with others, e.g. S. Kripke
and R. Stalnaker) have been proponents of this construction. But the idea actually originates with Boole,
who suggested thinking of propositions as “sets of cases” (...).’
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We moreover focus on a topological semantics for belief revision, assuming the dis-
tinction between static and dynamic conditioning made in, e.g., [9, 5, 4]. We examine
the corresponding “static” conditioning, by giving a topological semantics for conditional
belief Bϕψ. We formalize a notion of conditional belief Bϕψ by relativizing the semantic
clause for a simple belief modality to the extension of the learnt formula ϕ and first
give a complete axiomatization of the logic of knowledge and conditional beliefs based on
extremally disconnected spaces. This topological interpretation of conditional belief also
allows us to model static belief revision of a more general type than axiomatized by the
AGM theory: the topological model validates the (appropriate versions of) AGM axioms
1-7, but not necessarily the axiom 8, though it does validate a weaker version of this
axiom5.

The above setting, however, comes with a problem when extended to a dynamic one
by adding update modalities in order to capture the action of learning (conditioning
with) new “hard” (true) information P . In general, conditioning with new “hard” (true)
information P is modeled by simply deleting the “non-P” worlds from the initial model.
Its natural topological analogue, as recognized in [6, 7, 51] among others, is a topo-
logical update operator, using the restriction of the original topology to the subspace
induced by the set P . This interpretation, however, cannot be implemented smoothly on
extremally disconnected spaces due to their non-hereditary nature: we cannot guarantee
that the subspace induced by any arbitrary true proposition P is extremally disconnected
since extremally disconnectedness is not a hereditary property and thus the structural
properties, in particular extremally disconnectedness, of our topological models might
not be preserved. We proposed a different solution for this problem in [2] via arbitrary
topological spaces. In particular, [2] introduces a different topological semantics for belief
based on all topological spaces in terms of the interior of the closure of the interior
operator and models updates on arbitrary topological spaces. In this paper, however, we
propose another solution for this problem via hereditarily extremally disconnected spaces.
Hereditarily extremally disconnected spaces are those whose subspaces are still extremally
disconnected. By restricting our attention to this class of spaces, we guarantee that any
model restriction preserves the important structural properties that make the axioms of
the corresponding system sound, in this case, extremally disconnectedness of the initial
model. We then interpret updates 〈!ϕ〉ψ again as a topological update operator using
the restriction of the initial topology to its subspace induced by the new information
ϕ and show that we no longer encounter the problem with updates that rises in the
case of extremally disconnected spaces: hereditarily extremally disconnected spaces admit
updates. Further, we show that while the complete logic of knowledge on hereditarily
extremally disconnected spaces is actually S4.3, the complete logic of belief is still KD45.
We moreover give a complete axiomatization of the logic of knowledge and conditional
beliefs with respect to the class of hereditarily extremally disconnected spaces, as well
as a complete axiomatization of the corresponding dynamic logic. In addition, we show
that hereditarily disconnected spaces validate the AGM axiom 8, and that therefore our
proposed semantics for knowledge and conditional beliefs captures the AGM theory as a
theory of static belief revision.

This work can be seen as an extension of [3]: while the results in [3] and Section 3
of the current paper coincide, the proofs of our results can only be found in the latter.
The soundness and completeness results presented in [3] are merely based on extremally

5 AGM theory is considered to be static in the sense that it captures “the agent’s changing beliefs about
an unchanging world” [5, p. 14]. This static interpretation of AGM theory is mimicked by conditional
beliefs in a modal framework, in the style of dynamic epistemic logic, and embedded in the complete
system Conditional Doxastic Logic (CDL) introduced by Baltag and Smets in [4, 5]. The reader who is
not familiar with the logic CDL can find its syntax and proof system introduced in [5] in Appendix A.
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disconnected spaces. In this paper, however, we go further. We model knowledge and belief
on hereditarily extremally disconnected spaces and propose a topological semantics for
conditional beliefs and updates based on these spaces. We also provide the corresponding
soundness and completeness results together with the proof details.

The paper is organized as follows. In Section 2 we provide the topological preliminaries
used throughout this paper and the interior-based topological semantics for knowledge
as well as the topological soundness and completeness results for the systems S4 and
S4.2. Section 3 introduces Stalnakers combined logic and briefly outlines his analysis
regarding the relation between knowledge and belief. We then propose a topological
semantics for the system, in particular a topological semantics for full belief. We continue
with investigating the unimodal fragments S4.2 for knowledge and KD45 for belief of
Stalnakers system, and give topological completeness results for these logics, again with
respect to the class of extremally disconnected spaces. We also compare our topological
belief semantics with Steinsvold’s co-derived set semantics [45] in this section. Section 4
focuses on a topological semantics for belief revision, assuming the distinction between
static and dynamic belief revision and presents the semantics for conditional beliefs and
updates, respectively. Finally we conclude with Section 5 by giving a brief summary of
this work and pointing out a number of directions for future research.

The proofs of our results are presented in the Appendices. More precisely, Appendix A
includes some introductory material referred to in Section 1. Appendix B includes a brief
overview of the standard Kripke semantics and the proofs of the results stated in Section
2. Finally, the proofs of the results of Sections 3 and 4 are presented in Appendices C and
D, respectively.

2. Background

2.1. Topological Preliminaries

We start by introducing the basic topological concepts that will be used throughout this
paper. For a more detailed discussion of general topology we refer the reader to [23, 25].

A topological space is a pair (X, τ), where X is a non-empty set and τ is a family
of subsets of X containing X and ∅ and is closed under finite intersections and arbitrary
unions. The set X is called a space . The subsets of X belonging to τ are called open
sets (or opens) in the space; the family τ of open subsets of X is also called a topology
on X. Complements of opens are called closed sets. An open set containing x ∈ X is
called an open neighbourhood of x. The interior Int(A) of a set A ⊆ X is the largest
open set contained in A whereas the closure Cl(A) of A is the least closed set containing
A. In other words,

• Int(A) =
⋃
{U ∈ τ : U ⊆ A}

• Cl(A) =
⋂
{F : X \ F ∈ τ,A ⊆ F}

It is easy to see that Cl is the De Morgan dual of Int (and vice versa) and can be written
as Cl(A) = X \ Int(X \A).

Example. For any non-empty set X, (X,P(X)) is a topological space and every set
A ⊆ X is both closed and open (i.e., clopen). Another standard example of a topological
space is the real line R with the family τ of open intervals and their countable unions.
If A = [1, 2), then Int([1, 2)) = (1, 2) (the largest open interval included in [1, 2)) and
Cl([1, 2)) = [1, 2] (the least closed interval containing [1, 2)).
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Figure 1.: Real line and A = [1, 2)
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Cl(A) = [1, 2]

2.2. The Interior Semantics for Modal Logic

In this section, we introduce the formal background for the standard topological semantics
of basic modal (epistemic) logic, originating in the work of McKinsey and Tarski [35]. In
this semantics, the knowledge modality (the 2-type modality) is interpreted as the interior
operator on topological spaces. Referring to this fact and in order to make the distinction
between different topological semantics for the basic modal language clearer, we call
this semantics the interior semantics6. While presenting some important completeness
results (concerning logics of knowledge) of previous works, we also explain the connection
between the interior semantics and standard Kripke semantics and focus on the topological
(evidence-based) interpretation of knowledge.

Syntax and Semantics. We consider the standard unimodal language LK with a
countable set of propositional letters Prop, Boolean operators ¬,∧ and a modal operator
K. Formulas of LK are defined as usual by the following grammar

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ

where p ∈ Prop. Abbreviations for the connectives ∨, → and ↔ are standard. Moreover,
the epistemic possibility operator 〈K〉 is defined as ¬K¬ and ⊥ := p ∧ ¬p.

Given a topological space (X, τ), we define a topological model or simply a topo-
model (based on (X, τ)) asM = (X, τ, ν) where X and τ as before and ν : Prop→ P(X)
is a valuation function.

DEFINITION 1. Given a topo-model M = (X, τ, ν) and a state x ∈ X, we define the
interior semantics for the language LK recursively as:

M, x |= p iff x ∈ ν(p)
M, x |= ¬ϕ iff not M, x |= ϕ
M, x |= ϕ ∧ ψ iff M, x |= ϕ and M, x |= ψ
M, x |= Kϕ iff (∃U ∈ τ)(x ∈ U ∧ ∀y ∈ U, M, y |= ϕ)

where p ∈ Prop7.

We let [[ϕ]]M = {x ∈ X | M, x |= ϕ} denote the extension of a modal formula ϕ in
a topo-model M, i.e., the extension of a formula ϕ in a topo-model M is defined as the
set of points inM satisfying ϕ. We skip the index when it is clear in which model we are
working. It is now easy to see that [[Kϕ]] = Int([[ϕ]]) and [[〈K〉ϕ]] = Cl([[ϕ]]). We use this
extensional notation throughout the paper as it makes clear the fact that the modalities,

6 We will also discuss a topological semantics based on the derived set operator in future sections.
7 Originally, McKinsey and Tarski [35] introduce the interior semantics for the basic modal language.

Since we talk about this semantics in the context of knowledge, we use the basic epistemic language.
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K and 〈K〉, are interpreted in terms of specific and natural topological operators. In
particular, as stated above, in the case of the interior semantics we interpret K as the
interior operator and, dually, 〈K〉 as the closure operator.

We say that ϕ is true in M if it is true in all the states of M. We say that ϕ is valid
in a topological space (X, τ) if it is true in every model based on (X, τ). Finally, we say
that ϕ is valid in a class of topological spaces if it is valid in every member of the class
[10]. Equivalently,

• ϕ is true in M = (X, τ, ν) if [[ϕ]]M = X,

• ϕ is valid in (X, τ) if [[ϕ]]M = X for all topo-models M based on (X, τ), and

• ϕ is valid in a class of topological spaces if ϕ is valid in every member of the class.

Soundness and completeness with respect to the interior semantics are defined as usual.

Topo-completeness of S4 and S4.2. Epistemic logics S4 and S4.2 are of particular
interest in this paper and our work is built on previously given topological semantics -
the interior semantics - for knowledge and topological completeness results of the afore-
mentioned logics under this semantics8. We now briefly state these results and prepare
the ground for ours.

It is well known that the interior (Int) and the closure (Cl) operators of a topological
space (X, τ) satisfy the following properties (the so-called Kuratowski axioms) for any
A,B ⊆ X (see, e.g., [25, pp. 14-15]):

(I1) Int(X) = X (C1) Cl(∅) = ∅
(I2) Int(A) ⊆ A (C2) A ⊆ Cl(A)
(I3) Int(A ∩B) = Int(A) ∩ Int(B) (C3) Cl(A ∪B) = Cl(A) ∪ Cl(B)
(I4) Int(Int(A)) = Int(A) (C4) Cl(Cl(A)) = Cl(A)

Given the interior semantics, it is not hard to see that the above properties (Kuratowski
axioms) of the interior operator are the axioms of the system S4 written in topological
terms. This implies the soundness of S4 with respect to the class of all topological spaces
under the interior semantics (see, e.g., [10, 39, 16]). For completeness, we further need to
investigate the connection between Kripke frames and topological spaces.

Connection between Kripke frames and topological spaces. The interior semantics
is closely related to the standard Kripke semantics of S4 (and of its normal extensions):
every reflexive and transitive Kripke frame corresponds to a special kind of (namely,
Alexandroff) topological spaces.

Let us now fix some notation and terminology. We denote a Kripke frame by F =
(X,R), a Kripke model by M = (X,R, ν) and we let ‖ϕ‖M denote the extension of
a formula ϕ in a Kripke model M = (X,R, ν)9. A topological space (X, τ) is called
Alexandroff if τ is closed under arbitrary intersections, i.e.,

⋂
A ∈ τ for any A ⊆ τ.

Equivalently, a topological space (X, τ) is Alexandroff iff every point in X has a least open
neighborhood. As mentioned, there is a one-to-one correspondence between reflexive and
transitive Kripke frames and Alexandroff spaces. More precisely, given a reflexive and
transitive Kripke frame F = (X,R), we can construct a topological space, indeed an
Alexandroff space, X = (X, τR) by defining τR to be the set of all upsets10 of F . The

8 Axioms and inference rules of the system S4 can be found in Appendix A and the system S4.2 is
defined below.

9 The reader who is not familiar with standard Kripke semantics is referred to Appendix B.1 for a brief
introduction of the aforementioned notions.

10 A set A ⊆ X is called an upset of (X,R) if for each x, y ∈ X, xRy and x ∈ A imply y ∈ A.
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set R(x) = {y ∈ X | xRy} forms the least open neighborhood containing the point x.
Conversely, for every topological space (X, τ), the relation Rτ defined by

xRτy iff x ∈ Cl({y})

is reflexive and transitive. The pair (X,Rτ ) thus constitutes a reflexive and transitive
Kripke frame.

Moreover, the evaluation of modal formulas in a reflexive and transitive Kripke model
coincides with their evaluation in the corresponding (Alexandroff) topological space:

PROPOSITION 1. For all reflexive and transitive Kripke models M = (X,R, ν) and all
ϕ ∈ LK ,

‖ϕ‖M = [[ϕ]]MτR

where MτR = (X, τR, ν).

Proof. See [39, p. 306].

THEOREM 1 (McKinsey and Tarski, 1944). S4 is sound and complete with respect to
the class of all topological spaces under the interior semantics.

Proof. See Appendix B.2

In fact, aforementioned one-to-one correspondence between Alexandroff spaces and re-
flexive and transitive Kripke frames implies the following stronger result (see, e.g., [10, p.
238]):

PROPOSITION 2. Every normal extension of S4 that is complete with respect to the
standard Kripke semantics is also complete with respect to the interior semantics.

Since the normal extension S4.2 of S4 is of particular interest in our work, we also
elaborate on the topological soundness and completeness of S4.2.

S4.2 is a strengthening of S4 defined as

S4.2 = S4 + (〈K〉Kϕ→ K〈K〉ϕ)

where L +ϕ is the smallest normal modal logic containing L and ϕ. It is well known, see
e.g., [17] or [20] that S4.2 is sound and complete with respect to reflexive, transitive and
directed Kripke frames. Recall that a Kripke frame (X,R) is called directed11 (see Figure
2) if

(∀x, y, z)(xRy ∧ xRz)→ (∃u)(yRu ∧ zRu).

y z

x

u

Figure 2.: Directedness

The directedness condition on Kripke frames is needed to ensure the validity of (.2)-
axiom 〈K〉Kϕ → K〈K〉ϕ (see, e.g., [17, 21]), however, in the interior semantics it is a
special case of a more general condition called extremally disconnectedness:

11 Directedness is also called confluence or the Church-Rosser property.
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DEFINITION 2. A topological space (X, τ) is called extremally disconnected if the
closure of each open subset of X is open.

We give a few examples of extremally disconnected spaces. Alexandroff spaces corre-
sponding to reflexive, transitive and directed Kripke frames are extremally disconnected.
More precisely, for a given reflexive, transitive and directed Kripke frame (X,R), the
space (X, τR) is extremally disconnected (see, [38, Proposition 3] for its proof)12. Another
interesting example of an extremally disconnected space is the topological space (N, τ)
where N is the set of natural numbers and τ = {∅, all cofinite subsets of N}. In this
space, the set of all finite subsets of N together with ∅ and X completely describes the
set of closed subsets with respect to (N, τ). It is not hard to see that for any U ∈ τ ,
Cl(U) = N and Int(F ) = ∅ for any closed F with F 6= X. Also it is well known
that topological spaces that are Stone-dual to complete Boolean algebras and the Stone-
Čech compactification β(N) of the set of natural numbers with a discrete topology are
extremally disconnected [41]. Similarly to the case of the standard Kripke semantics, in the
interior semantics extremally disconnectedness is needed in order to ensure the validity of
the (.2)-axiom. More accurately, (.2)-axiom characterizes extremally disconnected spaces
under the interior semantics:

PROPOSITION 3. For any topological space (X, τ),

〈K〉Kϕ→ K〈K〉ϕ is valid in (X, τ) iff (X, τ) is extremally disconnected.

Proof. See Appendix B.3.

Proposition 3 and topological soundness of S4 imply that S4.2 is sound with respect to
the class of extremally disconnected spaces. As reflexive, transitive and directed Kripke
frames correspond to extremally disconnected Alexandroff spaces, the following topologi-
cal completeness result follows from the completeness of S4.2 with respect to the standard
Kripke semantics and Proposition 2:

THEOREM 2 (Folklore). S4.2 is sound and complete with respect to the class of
extremally disconnected spaces under the interior semantics.

Epistemic Interpretation: open sets as pieces of evidence. The original reason
for interpreting interior as knowledge was that the Kuratowski axioms for interior match
exactly the S4 axioms for knowledge, and in particular the principles

(T ) Kp→ p

of Truthfulness of Knowledge (“factivity”) and

(KK) Kp→ KKp

of Positive Introspection of Knowledge (known as axiom-(4) in modal logic).
Philosophically, one of the best arguments in favor of the topological semantics is

negative: namely, the fact that it does not validate the principle

¬Kp→ K¬Kp.

This principle, known as axiom-(5) or Negative Introspection, is rejected by essentially
all philosophers. One of its undesirable consequences is that it makes it impossible for
a rational agent to have wrong beliefs about her knowledge: she always knows whatever

12 This correspondence between extremally disconnected spaces and reflexive, transitive and directed
Kripke frames will be used in our completeness proof for KD45 in Section 3.2.
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she believes that she knows. This is known in the literature as Voorbraak’s paradox [49]:
it contradicts the day-to-day experience of encountering agents who believe they know
things that they do not actually know13.

But, even beyond the issue of negative introspection, the topological semantics can
arguably give us a deeper insight into the nature of knowledge and its evidential basis
than the usual Kripke semantics. From an extensional point of view, the properties U
that are directly observable by an agent naturally form an open basis for a topology:
closure under finite intersections captures an agent’s ability to combine finitely many
pieces of evidence into a single piece14. A proposition P is true at world w if w ∈ P . If an
open U is included in a set P , then we can say that proposition P is entailed (supported,
justified) by evidence U . Open neighbourhoods U of the actual world w play the role of
sound (correct, truthful) evidence. The actual world w is in the interior of P iff there
exists such a sound piece of evidence U that supports P . So the agent “knows” P if
she has a correct justification for P (based on a sound piece of evidence supporting P ).
Moreover, open sets will then correspond to properties that are in principle verifiable by
the agent: whenever they are true they can be known. Dually, closed sets will correspond
to falsifiable properties. See Vickers [48] and Kelly [31] for more on this interpretation
and its connections to Epistemology, Logic and Learning Theory.

So the knowledge-as-interior conception can be seen as an implementation of one of
the most widespread intuitive responses to Gettier’s challenge: knowledge is “correctly
justified belief” (rather than being simply true justified belief). To qualify as knowledge,
not only the content of one’s belief has to be truthful, but its evidential justification has
to be sound.

3. The Topology of Full Belief and Knowledge

3.1. Stalnaker’s Combined Logic of Knowledge and Belief

In his paper [44], Stalnaker focuses on the properties of (justified or justifiable) belief
and knowledge and proposes an interesting analysis regarding the relation between the
two. As also pointed out in the introduction, most research in the formal epistemology
literature concerning the relation between knowledge and belief, in particular, dealing
with the attempt to provide a definition of the one in terms of the other, takes belief as a
primitive notion and tries to determine additional properties which render a piece of belief
knowledge (see, e.g., [32, 34, 37, 22, 40]). In contrast, Stalnaker chooses to start with a
notion of knowledge and weakens it to have a “good” notion of belief. He initially considers
knowledge to be an S4-type modality and analyzes belief based on the conception of
“subjective certainty”: from the point of the agent in question, her belief is subjectively
indistinguishable from her knowledge.

The bimodal language LKB of knowledge and (full) belief is given by the following
grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | Bϕ
where p ∈ Prop. Abbreviations for the connectives ∨, → and ↔ are standard. The exis-
tential modalities 〈K〉 and 〈B〉 are defined as ¬K¬ and ¬B¬ respectively. We will also
consider two unimodal fragments LK (having K as its only modality) and LB (having
only B) of the language LKB in later sections.

13 This common experience can be considered the starting point of all epistemological reflection, and
historically played such a role, see e.g. in Platonic dialogues.

14 See van Benthem and Pacuit [12] for a more general logical account of evidence-management which
relaxes this assumption: by using instead a neighbourhood semantics, this account can deal with agents
who have not yet managed to combine all their pieces of evidence.

"The Topological Theory of Belief".tex; 5/12/2015; 10:25; p.9



10

We call Stalnaker’s epistemic-doxastic system, given in the following table, KB:

Stalnaker’s Axioms

(K) K(ϕ→ ψ)→ (Kϕ→ Kψ) Knowledge is additive

(T) Kϕ→ ϕ Knowledge implies truth

(KK) Kϕ→ KKϕ Positive introspection for K

(CB) Bϕ→ ¬B¬ϕ Consistency of belief

(PI) Bϕ→ KBϕ (Strong) positive introspection of B

(NI) ¬Bϕ→ K¬Bϕ (Strong) negative introspection of B

(KB) Kϕ→ Bϕ Knowledge implies Belief

(FB) Bϕ→ BKϕ Full Belief

Inference Rules

(MP) From ϕ and ϕ→ ψ infer ψ. Modus Ponens

(K-Nec) From ϕ infer Kϕ. Necessitation

Table I.: Stalnaker’s System KB

The axioms seem very natural and uncontroversial: the first three are the S4 axioms
for knowledge; (CB) captures the consistency of beliefs, and in the context of the other
axioms will be equivalent to the modal axiom (D) for beliefs: ¬B⊥; (PI) and (NI) capture
strong versions of introspection of beliefs: the agent knows what she believes and what not;
(KB) means that agents believe what they know; and finally, (FB) captures the essence of
“full belief” as subjective certainty (the agent believes that she knows all the things that
she believes). Finally, the rules of Modus Ponens and Necessitation seem uncontroversial
(for implicit knowledge, if not for explicit knowledge) and are accepted by a majority of
authors (and in particular, they are implicitly used by Stalnaker). The above axioms yield
the belief logic KD45:

PROPOSITION 4 (Stalnaker, 2006). All axioms of the standard belief system KD45 are
provable in the system KB. More precisely, the axioms

(K) B(ϕ→ ψ)→ (Bϕ→ Bψ)

(D) Bϕ→ ¬B¬ϕ

(4) Bϕ→ BBϕ

(5) ¬Bϕ→ B¬Bϕ

are provable in KB.

Moreover, belief can be defined in terms of knowledge:

PROPOSITION 5. The following equivalence is provable in the system KB:

Bϕ↔ 〈K〉Kϕ

Proof. See Appendix C.1.
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Proposition 5 constitutes one of the most important features of Stalnaker’s combined
system KB. This equivalence allows us to have a combined logic of knowledge and belief
in which the only modality is K and the belief modality B is defined in terms of the
former. We therefore obtain “...a more economical formulation of the combined belief-
knowledge logic...” [44, p. 179]. Moreover, substituting 〈K〉K for B in the axiom (CB)
results in the modal axiom

〈K〉Kϕ→ K〈K〉ϕ
also known as the (.2)-axiom in the modal logic literature [17]. Recall that we obtain the
logic of knowledge S4.2 by adding the (.2)-axiom to the system S4. If we substitute 〈K〉K
for B in all the other axioms of KB, they turn out to be theorems of S4.2 [44]. Therefore,
given the equivalence Bϕ↔ 〈K〉Kϕ, we can obtain the unimodal logic of knowledge S4.2
by substituting 〈K〉K for B in all the axioms of KB implying that the logic S4.2 by itself
forms a unimodal combined logic of knowledge and belief. Stalnaker then argues that his
analysis of the relation between knowledge and belief suggests that the “true” logic of
knowledge should be S4.2 and that belief can be defined as the epistemic possibility of
knowledge:

Bϕ := 〈K〉Kϕ.
This equation leads to our proposal for a topological semantics for (full) belief.

3.2. Our Topological Semantics for Full Belief

In this section, we introduce a new topological semantics for the language LKB, which is
an extension of the interior semantics for knowledge with a new topological semantics for
belief given by the closure of the interior operator.

DEFINITION 3 (Topological Semantics for Full Belief and Knowledge). Given a topo-
model M = (X, τ, ν), the semantics for the formulas in LKB is defined for Boolean cases
and Kϕ the same way as in the interior semantics. The semantics for Bϕ is defined as

[[Bϕ]]M = Cl(Int([[ϕ]]M)).

Truth and validity of a formula is defined the same way as in the interior semantics.

PROPOSITION 6. A topological space validates all the axioms and rules of Stalnaker’s
system KB (under the semantics given above) iff it is extremally disconnected.

Proof. See Appendix C.2.

We now generalize the above semantics given on topological spaces to an extensional
framework independent from topologies and show that the most general extensional (and
compositional) semantics validating the axioms of the system KB is again topological
and based on extremally disconnected spaces.

DEFINITION 4 (Extensional Semantics for LKB). An extensional (and composi-
tional) semantics for the language LKB of knowledge and full belief is a triple (X,K,B),
where X is a set of possible worlds and K : P(X) → P(X) and B : P(X) → P(X) are
unary operations on (sub)sets of worlds.

Any extensional semantics (X,K,B), together with a valuation ν : Prop→ P(X), gives
us an extensional modelM = (X,K,B, ν), in which we can interpret the formulas ϕ of
LKB in the obvious way: the clauses for Boolean formulas are the same as in the interior
semantics, and the remaining cases are given by

[[Kϕ]]M = K[[ϕ]]M

[[Bϕ]]M = B[[ϕ]]M.
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As usual, a formula ϕ ∈ LKB is valid in an extensional semantics (X,K,B) if [[ϕ]]M = X
for all extensional models M based on (X,K,B).

A special case of extensional semantics for the language LKB is our proposed topological
semantics:

DEFINITION 5 (Topological Extensional Semantics). A topological extensional se-
mantics for the language LKB is an extensional semantics (X,Kτ ,Bτ ), where (X, τ) is
a topological space, Kτ = Int is the interior operator and Bτ = Cl(Int) is the closure of
the interior operator with respect to the topology τ .

We can now state one of the main results of this section; a Topological Representation
Theorem for extensional models of KB:

THEOREM 3 (Topological Representation Theorem). An extensional semantics
(X,K,B) validates all the axioms and rules of Stalnaker’s system KB iff it is a
topological extensional semantics given by an extremally disconnected topology τ on X,
such that K = Kτ = Int and B = Bτ = Cl(Int).

Proof. See Appendix C.3.

Theorem 3 shows that Stalnaker’s axioms form an alternative axiomatization of extremally
disconnected spaces, in which both the interior and the closure of the interior are taken
to be primitive operators (corresponding to the primitive modalities K and B in LKB,
respectively). The conclusion is that our topological semantics is indeed the most general
extensional (and compositional) semantics validating Stalnaker’s axioms.

THEOREM 4. The sound and complete logic of knowledge and belief on extremally
disconnected spaces is given by Stalnaker’s system KB.

Proof. See Appendix C.4.

Unimodal Case: The belief logic KD45. As emphasized in the beginning of Section
3, Stalnaker’s logic KB yields the system S4.2 as the logic of knowledge and KD45 as
the logic of belief (Proposition 4). It has already been proven that S4.2 is sound and
complete with respect to the class of extremally disconnected spaces under the interior
semantics (Theorem 2). In this section, we investigate the case for KD45 under our
proposed semantics for belief. More precisely, we focus on the unimodal case for belief
and consider the topological semantics for the unimodal language LB in which we interpret
belief as the closure of interior operator. We name our proposed semantics in this section
topological belief semantics. We then prove topological soundness and completeness
results for KD45 under the aforementioned semantics. Let us first recall the basic doxastic
language LB, the system KD45 and the topological belief semantics for the language LB.

The language LB is given by

ϕ := p | ¬ϕ | ϕ ∧ ϕ | Bϕ

and we again denote ¬B¬ with 〈B〉. Recall that

KD45 = K + (Bϕ→ 〈B〉ϕ) + (Bϕ→ BBϕ) + (〈B〉ϕ→ B〈B〉ϕ)

and given a topo-modelM = (X, τ, ν), the semantic clauses for the propositional variables
and the Boolean connectives are the same as in the interior semantics. For the modal
operator B, we put

[[Bϕ]]M = Cl(Int([[ϕ]]M))
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and the semantic clause for 〈B〉 is easily obtained as

[[〈B〉ϕ]]M = Int(Cl([[ϕ]]M)).

We are now ready to state the main results of this section:

THEOREM 5. The belief logic KD45 is sound with respect to the class of extremally
disconnected spaces under the topological belief semantics. In fact, a topological space
(X, τ) validates all the axioms and rules of the system KD45 (under the topological belief
semantics) iff (X, τ) is extremally disconnected.

Proof. See Appendix C.5.

THEOREM 6. In the topological belief semantics, KD45 is the complete logic of belief
with respect to the class of extremally disconnected spaces.

Theorem 6, though unsurprising, states technically the hardest and intriguing result
in this paper. The interested reader can find all the details of both soundness and com-
pleteness proofs in Appendix C.5 and C.6, respectively. The proof details however can be
skipped without loss of continuity.

3.3. Comparison with Related Work

Although (the interior-based) topological interpretation of knowledge has been studied
extensively together with its extensions to multi-agent cases [13, 11], to common
knowledge [11], to logics of learning known as topo-logic [39, 36], topological semantics
for belief has not been as deeply investigated and is a rather non-standard and new
approach. We compare now our topological interpretation of belief with a different (and
older) topological semantics that has been proposed for doxastic logic, using Cantor’s
derivative operator [45].

Cantor’s Derivative and its Dual. Let (X, τ) be a topological space. We recall that
a point x is called a limit point (limit points are also called accumulation points)
of a set A ⊆ X if for each open neighbourhood U of x we have (U \ {x}) ∩ A 6= ∅. Let
d(A) denote the set of all limit points of A. This set is called the derived set and d is
called the derived set operator . For each A ⊆ X we let t(A) = X \ d(X \ A). We call
t the co-derived set operator . Also recall that there is a close connection between the
derived and co-derived set operators and the closure and interior operators. In particular,
for each A ⊆ X we have Cl(A) = A ∪ d(A) and Int(A) = A ∩ t(A). Unlike the closure
operator there may exist elements of A that are not its limit points. In other words, in
general A 6⊆ d(A). Also note that for each x ∈ X we have x /∈ d(x), where d(x) is a
shorthand for d({x}).

DEFINITION 6. Given a topo-model M = (X, τ, ν) and a state x ∈ X, the co-derived
set semantics for LKB is obtained by extending the interior semantics for LK with the
following clause:

M, x |= Bϕ iff (∃U ∈ τ)(x ∈ U ∧ ∀y ∈ U \ {x}, M, y |= ϕ)

This immediately gives us that [[Bϕ]]M = t([[ϕ]]M) and that [[〈B〉ϕ]]M = d([[ϕ]]M). We
again skip the index M if it is clear from the context15.

15 This semantics was also first suggested by McKinsey and Tarski in [35], and later developed by Esakia
and his colleagues (see, e.g., [26, 15, 27]) among others.
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See [10, 39, 16] for an overview of the results on the co-derived set semantics.
Here we only mention the completeness results for the unimodal language LB with
the co-derived set semantics: the complete logic of belief over all topological spaces
is wK4 = K + ((ϕ ∧ Bϕ) → BBϕ) [26], while the doxastic logic KD45 is complete
with respect to so-called DSO-spaces. Here, a DSO-space is a topological space (X, τ)
satisfying the following conditions: the TD-separation axiom16; for every A ⊆ X the set
d(A) is open; and (X, τ) is dense-in-itself, i.e., d(X) = X. See [45, 47, 46] for more details.

Criticism and comparison with our conception. Under the co-derived set semantics,
as it is easy to notice, (justifiable) belief is modeled “just like knowledge except that it
may be false (in the actual world).” This interpretation yields one of the most desirable
properties of belief; namely the property of its being non-factive. All authors agree that
a right notion of belief should hold the possibility of error : it must be possible for an
agent to have false beliefs. In other words, any good semantics for belief should allow for
models and worlds at which some beliefs are false. However, we claim that, according to
the co-derived semantics the existence of false beliefs is a necessary fact (holding for all
possible agents at all possible worlds in all possible models!). To explain: as we pointed
out above, for any topological space (X, τ), any subset A ⊆ X and any x ∈ X, we have
x 6∈ d(x). Thus, for any singleton proposition {x}17, x 6∈ 〈B〉({x}). Hence, x ∈ B(X \{x})
meaning that the agent believes the proposition X \ {x} at the world x. However, X \ {x}
is in fact false at x since x 6∈ X \{x}. This argument holds for any topological space (X, τ)
and any x ∈ X implying that the co-derived set semantics entails not only the possibility
of error but also the necessity of error : “the actual world is always dis-believed” [3].

We think this consequence is an intuitively undesirable property. It generally prevents
any act of learning (updating with) the actual world. Indeed, the main problem of Formal
Learning Theory (learning the true world, or the correct possibility, from a given set
of possibilities) becomes automatically unattainable. Similarly, the physicist’s dream of
finding a true “theory of everything” is declared impossible by fiat, as a matter of logic.
More importantly, even if necessity of error might seem realistic within a Lewisian “large-
world interpretation” of possible-world semantics (in which each world must really come
with a full description of all the myriad of ontic facts of the world), this property seems
completely unrealistic when we adopt the more down-to-earth “small-world” models that
are common in Computer Science, Game theory and other applications. In these fields,
the “worlds” in any usable model come only with the description of the facts that are
relevant for the problem at hand: e.g. in a scenario involving the throwing of a fair coin,
the relevant fact is the upper face of the coin. A model for this scenario will involve
typically only two possible worlds: Head and Tail. Requiring that the agent must always
have a false belief means in this context that the agent can never find out which of the
coin’s faces is the upper one: an obviously absurd conclusion!

There is another objection, maybe even more decisive, against the co-derived set se-
mantics, namely that it can be easily “Gettierized”. For any topological space (X, τ) and
any A ⊆ X, we have

Int(A) = t(A) ∩A.

Assuming that the interior operator corresponds to the knowledge modality, the above
topological identity of Int leads to

KP := BP ∧ P

16 Recall that the TD separation axiom states that every point is the intersection of a closed and open
set. This condition is equivalent to d(d(A)) ⊆ d(A), see e.g., [25].

17 We can consider the singleton proposition {x} as the complete description of the world x.

"The Topological Theory of Belief".tex; 5/12/2015; 10:25; p.14



15

for any proposition P . Therefore, the co-derived set interpretation of belief together with
the interior-based interpretation of knowledge yields that knowledge is true belief. Even
if true belief comes with a canonical justification, it can easily be ‘Gettierized’.

The last argument concerning the advantages of our proposal over the co-derived set
semantics is of a more technical nature. While the belief logic KD45 is sound and complete
with respect to the class of extremally disconnected spaces under the topological belief
semantics, it is sound and complete with respect to only the class of DSO-spaces under
the co-derived semantics. Therefore, as the following proposition shows, our topological
interpretation “works” on a larger class of models than the co-derived set semantics:

PROPOSITION 7. Every DSO-space is extremally disconnected. However, not every
extremally disconnected space is a DSO-space.

Proof. See Appendix C.7.

4. Topological Models for Belief Revision: Static and Dynamic Conditioning

Conditioning (with respect to some qualitative plausibility order or to a probability
measure) is the most widespread way to model the learning of “hard” information18.
The prior plausibility/probability assignment (encoding the agent’s original beliefs
before the learning) is changed to a new such assignment, obtained from the first one
by conditioning with the new information P . In the qualitative case, this means just
restricting the original order to P -worlds; while in the probabilistic case, restriction has
to be followed by re-normalization (to ensure that the probabilities newly assigned to
the remaining worlds add up to 1). In Dynamic Epistemic Logic (DEL), one makes also
a distinction between simple (“static”) conditioning and dynamic conditioning (also
known as “update”). The first essentially corresponds to conditional beliefs: the change
is made only locally, affecting only one occurrence of the belief operator Bϕ (which is
thus locally replaced by conditional belief BPϕ) or of the probability measure (which is
locally replaced by conditional probability). In contrast, an update is a global change, at
the level of the whole model (thus recursively affecting the meaning of all occurrences of
the belief/probability operators). In this section, we investigate the natural topological
analogues of static and dynamic conditioning.

4.1. Static Conditioning: Conditional Beliefs

Conditional Beliefs. In DEL, static belief revision captures the agent’s revised beliefs
about how the world was before learning new information and is implemented by con-
ditional belief operators Bϕψ. Using van Benthem’s terminology, “[c]onditional beliefs
pre-encode beliefs that we would have if we learnt certain things.” [9, p. 139]. The
statement Bϕψ says that if the agent would learn ϕ, then she would come to believe
that ψ was the case before the learning [5, p. 12]. That means conditional beliefs are
hypothetical by nature, hinting at possible future belief changes of the agent. In the DEL
literature, the semantics for conditional beliefs is generally given in terms of plausibility
models (or equivalently, in terms of sphere models), see, e.g., [9, 5, 12].

In this section, we explore the topological analogue of static conditioning by providing
a topological semantics for conditional belief modalities. As conditional beliefs capture

18 This term is used to denote information that comes with an inherent warranty of veracity, e.g. because
of originating from an infallibly truthful source.
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hypothetical belief changes of an agent in case she would learn a piece of new information
ϕ, we can obtain the semantics for a conditional belief modality Bϕψ in a natural and
standard way by relativizing the semantics for the simple belief modality to the extension
of the learnt formula ϕ. By relativization we mean a local change in the sense that it
only affects one occurrence of the belief modality Bϕ. It does not cause a change in the
model, i.e. it does not lead to a global change, due to its static nature.

Semantics of conditional beliefs. We start by recalling some properties of extremally
disconnected spaces and the topological belief semantics. As we know a topological space
(X, τ) is extremally disconnected if the closure of every open set in it is open. Therefore,
a topological space (X, τ) is extremally disconnected if and only if for any A ⊆ X we have

Cl(Int(A)) = Int(Cl(Int(A))).

Hence, given a topological extensional frame (X,Kτ ,Bτ ) based on an extremally
disconnected topology τ , we obtain

Bτ (A)
(1)
= Cl(Int(A))

(2)
= Int(Cl(Int(A)))

for any A ⊆ X. Therefore, a topological extensional frame based on an extremally dis-
connected space provides two (extensionally) equivalent meaning for the belief modality
B. However, when we generalize the belief operator B by relativizing the closure and the
interior operators to the extension of a learnt formula ϕ in order to obtain a semantics
for conditional belief modalities, the resulting clauses no longer remain equivalent.

We now briefly look at the relativization of Cl(Int) and explain why we do not think
it provides a sufficiently “good” semantics for conditional beliefs. We then continue
with our main proposal for topological conditional belief semantics: the relativization of
Int(Cl(Int)).

The basic topological semantics for conditional beliefs. As pointed out above, for
every subset P of a topological space (X, τ), we can generalize the belief operator B on
the topological extensional frames in a natural way by relativizing the closure and the
interior operators to the set P . More precisely, we define the conditional belief operator
BP : P(X)→ P(X) as

BP(A) = Cl(P ∩ Int(P → A))

for any A ⊆ X where P → A := (X \ P ) ∪ A is the set-theoretic version of material
implication. This immediately gives us a topological semantics for the language LKCB
of knowledge and conditional beliefs obtained by adding the conditional belief modalities
Bϕψ to LKB. Given a topological model M = (X, τ, ν), the additional semantic clause
reads

[[Bϕψ]]M = B[[ϕ]]M [[ψ]]M = Cl([[ϕ]]M ∩ Int([[ϕ]]M → [[ψ]]M)).

As hinted, we do not find this semantics for conditional beliefs sufficiently “good” for
several reasons we are about to explain. First of all, it validates the equivalence

Kϕ↔ ¬B¬ϕ> ↔ ¬B¬ϕ¬ϕ

which gives a rather unusual definition of knowledge in terms of conditional beliefs: this
identity corresponds neither to the definition of knowledge in [4, 5] in terms of conditional
beliefs nor to the definition of “necessity” in [43] in terms of doxastic conditionals (see
also, e.g., [19]). Moreover, the first of these equivalences shows that the conditional
belief operator is not a normal modality : it does not obey the Necessitation Rule, and in
particular the formula Bϕ> is not in general a validity. The second equivalence above
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shows that in our theory the AGM Success Postulate Bϕϕ written in terms of conditional
beliefs is not always valid. Ideally, we would like to have all the AGM postulates in the
appropriate form stated in terms of conditional beliefs to be valid with respect to our
semantics. However, one can show that while the AGM Postulates 2-6, written in terms
of conditional beliefs, are valid with respect to the above semantics, the postulates 1,
7 and 8 are not19. The basic topological semantics for conditional beliefs is thus not
optimal in capturing all of the AGM postulates for static belief revision. This motivates
the search for an alternative semantics for conditional beliefs which captures more of
the AGM postulates and is compatible with the notion of belief in Stalnaker’s system.
Fortunately, as mentioned, the definition of extremally disconnected spaces suggests an
alternative semantics for conditional beliefs: the relativization of Int(Cl(Int)).

A ‘refined’ topological semantics for conditional beliefs. For every P ⊆ X, we can
define the new conditional belief operator BP : P(X)→ P(X) as

BP (A) = Int(P → Cl(P ∩ Int(P → A)))

for any A ⊆ X. This again immediately gives us a topological semantics for the language
LKCB. Given a topological model M = (X, τ, ν), the additional semantic clause reads

[[Bϕψ]]M = Int([[ϕ]]M → Cl([[ϕ]]M ∩ Int([[ϕ]]M → [[ψ]]M))).

We consider this semantics an improvement of the basic topological semantics of condi-
tional beliefs and knowledge, since, as we will see in Theorem 8, it is more successful in
capturing the rationality postulates of AGM theory. We refer to this semantics as the
refined topological semantics for conditional beliefs and knowledge. Another, and simpler,
possible justification for the above semantics of conditional belief is that it validates an
equivalence that generalizes the one for belief in a natural way:

PROPOSITION 8. The following equivalence is valid in all topological spaces with respect
to the refined topological semantics for conditional beliefs and knowledge

Bϕψ ↔ K(ϕ→ 〈K〉(ϕ ∧K(ϕ→ ψ))).

Proof. Follows immediately from the semantic clauses of conditional beliefs and
knowledge.

This shows that, just like simple beliefs, conditional beliefs can be defined in terms of
knowledge and this identity corresponds to the definition of the “conditional connective
⇒” in [19]. Moreover, as a corollary of Proposition 8, we obtain that the equivalences

B>ψ
(1)↔ K(> → 〈K〉(> ∧K(> → ψ))

(2)↔ K〈K〉Kψ (3)↔ 〈K〉Kψ

are valid in the class extremally disconnected spaces20. Interestingly, unlike the case of
simple belief, knowledge can be defined in terms of conditional belief:

PROPOSITION 9. The following equivalences are valid in all topological spaces with
respect to the refined topological semantics for conditional beliefs and knowledge

Kϕ ↔ B¬ϕ⊥ ↔ B¬ϕϕ.

19 The interested reader can find a more detailed discussion about this semantics in [38].
20 In fact, equivalences (1) and (2) are valid in the class of all topological spaces, however, equivalence

(3) is valid only in the class of extremally disconnected spaces.
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Proof. Follows immediately from the semantic clauses of conditional beliefs and
knowledge.

Proposition 9 constitutes another argument in favor of the refined semantics for condi-
tional beliefs over the basic one: as also stated in [5], this identity coincides with the
definition of “necessity” in [43] in terms of doxastic conditionals (see also, e.g., [4], [19]).

Therefore, the logic KCB of knowledge and conditional beliefs, KB, and even the
unimodal fragment of KB having K as the only modality (which is in fact the system S4.2
in this setting) and the unimodal fragment CB having only conditional belief modalities,
have the same expressive power, since we can define simple beliefs and conditional beliefs
in terms of knowledge (Proposition 5 and Proposition 8, respectively), and we can define
simple beliefs and knowledge in terms of conditional beliefs (Proposition 8 and Proposition
9, respectively). As neither knowledge nor conditional beliefs can be defined in terms of
simple beliefs, the unimodal fragment of KB having B as the only modality (which is in
fact the system KD45 in this setting) is less expressive than the aforementioned systems.

KCB KB

S4.2 KD45

CB

Figure 3.: Expressivity diagram

As for completeness, this can be obtained trivially:

THEOREM 7. The logic KCB of knowledge and conditional beliefs is axiomatized com-
pletely by the system S4.2 for the knowledge modality K together with the following
equivalences:

1. Bϕψ ↔ K(ϕ→ 〈K〉(ϕ ∧K(ϕ→ ψ)))

2. Bϕ↔ B>ϕ

Proof. See Appendix D.1.

Finally, we evaluate the success of the refined semantics in capturing the rationality
postulates of AGM theory.

THEOREM 8. The following formulas are valid in all topological spaces with respect to
the refined topological semantics for conditional beliefs and knowledge

Normality: Bθ(ϕ→ ψ)→ (Bθϕ→ Bθψ)
Truthfulness of Knowledge: Kϕ→ ϕ
Persistence of Knowledge: Kϕ→ Bθϕ
Strong Positive Introspection: Bθϕ→ KBθϕ
Success of Belief Revision: Bϕϕ
Consistency of Revision: ¬K¬ϕ→ ¬Bϕ⊥
Inclusion: Bϕ∧ψθ → Bϕ(ψ → θ)
Cautious Monotonicity: Bϕψ ∧Bϕθ → Bϕ∧ψθ
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Moreover, the Necessitation rule for conditional beliefs:

From ` ϕ infer ` Bψϕ

preserves validity.

Proof. See Appendix D.2.

The validity of the Normality principle and the Necessitation rule shows that, unlike
in case of the basic topological semantics for conditional beliefs, the conditional belief
modality is a normal modal operator with respect to the refined semantics. Moreover, the
refined semantics also validates the Success Postulate. However, in this case, we have to
restrict the principle of Consistency of Belief Revision to the formulas that are consistent
with the agent’s knowledge. This is in fact a desirable restriction taking into account the
agent’s knowledge and is perfectly compatible with the corresponding dynamic system
that we will present in the next section. Intuitively, if the agent knows ¬ϕ with some
degree of certainty, she should not revise her beliefs with ϕ. As conditional beliefs pre-
encode possible future belief changes of an agent and the future belief changes must
be based on the new information consistent with the agent’s knowledge, her consistent
conditional beliefs must pre-encode the possibilities that are in fact consistent with her
knowledge.

More generally, all the axioms of the system CDL except for Strong Negative Intro-
spection and Rational Monotonicity are valid on all topological spaces with respect to the
refined topological semantics for conditional beliefs and knowledge. In fact, the failure of
Strong Negative Introspection is an expected result for the following reasons. First of all,
observe that Theorem 7 and Theorem 8 imply that all the formulas stated in Theorem 8
are theorems of the system KCB. Recall that

¬Bθϕ→ K¬Bθϕ

is the principle of Strong Negative Introspection. If this principle were a theorem of
KCB, then in particular ¬B¬ϕϕ → K¬B¬ϕϕ would be a theorem of KCB. Then, by
Proposition 9, we would obtain

¬Kϕ→ K¬Kϕ
as a theorem of KCB. However, Theorem 7 states that the knowledge modality of KCB
is an S4.2-type modality implying that ¬Kϕ→ K¬Kϕ is not a theorem of the system.

Moreover, even the extremally disconnected spaces fail to validate Rational Monotonic-
ity, which captures the AGM postulate of Superexpansion, with respect to the refined
topological semantics for conditional beliefs and knowledge. However, a weaker principle,
namely, the principle of Cautious Monotonicity is valid in all topological spaces. This
principle says that if the agent would come to believe ψ and would also come to believe θ
if she would learn ϕ, her learning ψ should not defeat her belief in θ and vice versa. In [33],
the authors state that D. Gabbay also gives a convincing argument to accept Cautious
Monotonicity: “if ϕ is an enough reason to believe ψ and also to believe θ, then ϕ and
ψ should also be enough to make us believe θ, since ϕ was enough anyway and, on this
basis, ψ was accepted” [33, p. 178].

The refined conditional belief semantics therefore captures the AGM postulates 1-7
together with a weaker version of 8 on all topological spaces. It is thus more successful
than the basic one in modeling static belief change of a rational agent. Moreover, we
will show in Section 4.2 that the refined semantics for conditional beliefs and knowledge
validates Rational Monotonicity in a restricted class of topological spaces, namely in the
class of hereditarily extremally disconnected spaces, and therefore it is able to capture
the AGM postulates 1-8 stated in terms of conditional beliefs.
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Summing up the work that has been done so far in this paper, a new topological
semantics for belief on extremally disconnected spaces is proposed in [3, 38] and it has
been proven, in this setting, that the complete logic of knowledge and belief is Stalnaker’s
system KB, the complete logic of knowledge is S4.2 and the complete logic of belief is
KD45 in this setting. Moreover, we provided a semantics for conditional beliefs again
on extremally disconnected spaces as well as complete axiomatizations of the correspond-
ing static systems. These results on extremally disconnected spaces, however, encounter
problems when extended to a dynamic setting by adding update modalities formalized as
model restriction by means of subspaces.

4.2. Dynamic Conditioning: Updates

In DEL, update (dynamic conditioning) corresponds to change of beliefs through learning
hard information. Unlike the case for conditional beliefs, update induces a global change
in the model.

The most standard topological analogue of this corresponds to taking the restriction
of a topology τ on X to a subset P ⊆ X. This way, we obtain a subspace of a given
topological space.

DEFINITION 7 (Subspace). Given a topological space (X, τ) and a non-empty set P ⊆
X, a space (P, τP ) is called a subspace of (X, τ) where τP = {U ∩ P : U ∈ τ}.

We can define the closure operator ClτP and the interior operator IntτP of the subspace
(P, τP ) in terms of the closure and the interior operators of the space (X, τ) as follows21:

ClτP (A) = Cl(A) ∩ P

IntτP (A) = Int(P → A) ∩ P .

Topological semantics for update modalities. We now consider the language L!KCB
obtained by adding to the language LKCB (existential) dynamic update modalities 〈!ϕ〉ψ
associated with updates. 〈!ϕ〉ψ means that ϕ is true and after the agent learns the new
information ϕ, ψ becomes true. The dual [!ϕ] is defined as ¬〈!ϕ〉¬ as usual and [!ϕ]ϕ
means that if ϕ is true then after the agent learns the new information ϕ, ψ becomes
true.

Given a topo-model (X, τ, ν) and ϕ ∈ L!KCB, we denote byMϕ the restricted model
Mϕ = ([[ϕ]], τ[[ϕ]], ν[[ϕ]]) where [[ϕ]] = [[ϕ]]M, τ[[ϕ]] = {U∩[[ϕ]] | U ∈ τ} and ν[[ϕ]](p) = ν(p)∩[[ϕ]]
for any p ∈ Prop. Then, the semantics for the dynamic language L!KCB is obtained by
extending the semantics for LKCB with:

[[〈!ϕ〉ψ]]M = [[ψ]]Mϕ .

To explain the problem: Given that the underlying static logic of knowledge and (condi-
tional) belief is the logic of extremally disconnected spaces (see e.g., Theorems 2, 4, 6 and
7) and extremally disconnectedness is not inherited by arbitrary subspaces22, we cannot
guarantee that the restricted model induced by an arbitrary formula ϕ remains extremally
disconnected. As we work with rational, highly idealized, logically omniscient agents, we
demand our agents not to lose logical omniscience and require them to hold consistent
beliefs after an update with true, new information. Under our proposed topological belief
semantics, we satisfy these requirements if and only if the resulting structure is extremally

21 See [25, pp. 65-74].
22 In other words, extremally disconnectedness is, in general, not a hereditary property where a topo-

logical property is said to be hereditary if for any topological space (X, τ) that has the property, every
subspace of (X, τ) also has it [25, p. 68].
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disconnected: under the topological belief semantics, both the (K)-axiom (also known as
the axiom of Normality)

B(ϕ ∧ ψ)↔ (Bϕ ∧Bψ)

and the axiom of Consistency of Belief

Bϕ→ ¬B¬ϕ

characterize extremally disconnected spaces (see, Propositions 12 and 13, respectively,
in Appendix C.4). Therefore, if the restricted model is not extremally disconnected, the
agent comes to have inconsistent beliefs after an update with true information. To be
more precise, we illustrate this problem with the following example:

Consider the topo-model M = (X, τ, ν) where X = {x1, x2, x3, x4}, τ = {X, ∅, {x4},
{x2, x4}, {x3, x4}, {x2, x3, x4}} and ν(p) = {x4} and ν(q) = {x2, x4} for some
p, q ∈ Prop (see Figure 4). It is easy to check that (X, τ) is an extremally dis-
connected space and Bq → ¬B¬q is true in M. We stipulate that x1 is the
actual world and the agent receives the information ¬p from an infallible, truth-
ful source. The updated (i.e., restricted) model is then M¬p = ([[¬p]]M, τ¬p, ν¬p)
where [[¬p]]M = {x1, x2, x3}, τ¬p = {[[¬p]]M, ∅, {x2}, {x3}, {x2, x3}}, ν¬p(p) = ∅ and
ν¬p(q) = {x2}. Here, ([[¬p]]M, τ¬p) is not an extremally disconnected space since
{x3} is an open subset of ([[¬p]]M, τ¬p) but Clτ¬p({x3}) = {x1, x3} is not open in

([[¬p]]M, τ¬p). Moreover, as x1 ∈ [[Bq]]M¬p = Clτ¬p(Intτ¬p({x2})) = {x1, x2} and

x1 ∈ [[B¬q]]M¬p = Clτ¬p(Intτ¬p({x1, x3})) = {x1, x3}, the agent comes to believe
both q and ¬q.

Figure 4.: (X, τ) and ([[¬p]]M, τ¬p)

One possible solution for this problem is extending the class of spaces we work
with: we can focus on all topological spaces instead of working with only extremally
disconnected spaces and provide semantics for belief in such a way that the aforementioned
axioms which were problematic on extremally disconnected spaces would be valid on
all topological spaces. This way, we do not need to worry about any additional
topological property that is supposed to be inherited by subspaces. This solution,
however unsurprisingly, leads to a weakening of the underlying static logic of knowledge
and belief. It is very well-known that the knowledge logic of all topological spaces under
the interior semantics is S4 and we explored the (weak) belief logic of all topological
spaces under the topological belief semantics in [2]. In this work, we propose another
solution which approaches the issue from the opposite direction: we further restrict our
attention to hereditarily extremally disconnected spaces, thereby, we guarantee that no
model restriction leads to inconsistent beliefs. As the logic of hereditarily extremally
disconnected spaces under the interior semantics is S4.3, the underlying static logic, in
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this case, would consist in S4.3 as the logic of knowledge but again KD45 as the logic
of belief (see Theorems 9 and 10 below).

DEFINITION 8. A topological space (X, τ) is called hereditarily extremally discon-
nected (h.e.d.) if every subspace of (X, τ) is extremally disconnected.

For hereditarily extremally disconnected spaces, we can think of Alexandroff spaces
corresponding to total preorders, in particular, corresponding to reflexive, transitive and
linear Kripke frames. Recall that a Kripke frame (X,R) is called linear if

(∀x, y, z)((xRy ∧ xRz)→ (yRz ∨ zRy ∨ y = z))23.

Another interesting and non-Alexandroff example of a hereditarily extremally discon-
nected space is the topological space (N, τ) where N is the set of natural numbers and
τ = {∅, all cofinite subsets of N}. We elaborated on this topological space in Section
2.2. Furthermore, every countable Hausdorff extremally disconnected space is hereditarily
extremely disconnected [18]. For more examples of hereditarily extremally disconnected
spaces, we refer to [18].

Recall that S4.3 as well is a strengthening of S4 (and also of S4.2) defined as

S4.3 := S4 +K(Kϕ→ ψ) ∨K(Kψ → ϕ).

THEOREM 9 ([14]). S4.3 is sound and complete with respect to the class of hereditarily
extremally disconnected spaces under the interior semantics.

Proof. See Appendix D.3

As Stalnaker also observed in [44], the derived logic of belief with belief modality
defined as epistemic possibility of knowledge, i.e., as 〈K〉K, is KD45 in case K is an S4.3
modality:

THEOREM 10. In the topological belief semantics, KD45 is the complete logic of belief
with respect to the class of hereditarily extremally disconnected spaces.

Proof. See Appendix D.4

Then, we again obtain a complete logic KCB′ of knowledge and conditional beliefs
trivially, yet, with respect to the class of hereditarily extremally disconnected spaces:

THEOREM 11. The logic KCB′ of knowledge and conditional beliefs is axiomatized
completely by the system S4.3 for the knowledge modality K together with the following
equivalences:

1. Bϕψ ↔ K(ϕ→ 〈K〉(ϕ ∧K(ϕ→ ψ)))

2. Bϕ↔ B>ϕ

PROPOSITION 10. The following formula

Bϕ(ψ → θ) ∧ ¬Bϕ¬ψ → Bϕ∧ψθ,

called the axiom of Rational Monotonicity for conditional beliefs, is valid on hereditarily
extremally disconnected spaces.

23 This property is also called no branching to the right (see, e.g., [17, p. 195]) and it boils down to
(∀x, y, z)((xRy ∧ xRz)→ (yRz ∨ zRy)), if R is reflexive.
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Proof. See Appendix D.5

We can then conclude, by Theorem 8 and Proposition 10, that the refined semantics
for conditional beliefs on hereditarily extremally disconnected spaces captures the AGM
postulates 1-8 (written in terms of conditional belief modalities as given in the system
CDL in [4, 5]).

We now implement updates on hereditarily extremally disconnected spaces and show
that the problems occurred when we work with extremally disconnected spaces do not
arise here: we in fact obtain a complete dynamic logic of knowledge and conditional beliefs
with respect to the class of hereditarily extremally disconnected spaces. We again consider
the language L!KCB and semantics for update modalities 〈!ϕ〉ψ by means of subspaces
exactly the same way as formalized in the beginning of the current section, i.e., by using
the restricted model Mϕ with the semantic clause

[[〈!ϕ〉ψ]]M = [[ψ]]Mϕ .

In this setting, however, as the underlying static logic KCB′ is the logic of hereditarily
extremally disconnected spaces, we implement updates on those spaces. Since the resulting
restricted modelMϕ is always based on a hereditarily extremally disconnected (sub)space,
we do not face the problem of loosing some validities of the corresponding static system:
all the axioms of KCB′ (and, in particular, of S4.3 and KD45) will still be valid in the
restricted space. Moreover, we obtain a complete axiomatization of the dynamic logic of
knowledge and conditional beliefs:

THEOREM 12. The complete and sound dynamic logic !KCB′ of knowledge and con-
ditional beliefs with respect to the class of hereditarily extremally disconnected spaces is
obtained by adding the following reduction axioms to any complete axiomatization of the
logic KCB′:

1. 〈!ϕ〉p ↔ (ϕ ∧ p)

2. 〈!ϕ〉¬ψ ↔ (ϕ ∧ ¬〈!ϕ〉ψ)

3. 〈!ϕ〉(ψ ∧ θ) ↔ (〈!ϕ〉ψ ∧ 〈!ϕ〉θ)

4. 〈!ϕ〉Kψ ↔ (ϕ ∧K(ϕ→ 〈!ϕ〉ψ))

5. 〈!ϕ〉Bθψ ↔ (ϕ ∧B〈!ϕ〉θ〈!ϕ〉ψ)

6. 〈!ϕ〉〈!ψ〉χ↔ 〈!〈!ϕ〉ψ〉χ

Proof. See Appendix D.6.

5. Conclusion and Future Work

Summary. In this work, we proposed a new topological semantics for belief in terms of
the closure of the interior operator. Combining it with the interior semantics for knowl-
edge, our topological semantics for (full) belief constitutes the most general extensional
semantics for Stalnaker’s system of full belief and knowledge. Moreover, our proposal
provides an intuitive interpretation of Stalnaker’s conception of (full) belief as subjective
certainty due to the nature of topological spaces, in particular, through the definitions of
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interior and closure operators. Recall that for any subset P of a topological space (X, τ)
and any x ∈ X,

x ∈ Int(P ) iff (∃U ∈ τ)(x ∈ U ∧ U ⊆ P ).

In other words, a state x is in the interior of P iff there is an open neighborhood U of x
such that U ∩ (X \ P ) = ∅, i.e., x can be sharply distinguished from all non-P states by
an open neighborhood U . Therefore, under this interpretation, we can say that an agent
knows P at a world x iff she can sharply distinguish it from all the non-P worlds. Dually,

x ∈ Cl(P ) iff (∀U ∈ τ)(x ∈ U → U ∩ P 6= ∅)

meaning that a state x is in the closure of P iff it is very close to P , i.e., it cannot be
sharply distinguished from P states. Thus, according to our topological belief semantics,
an agent (fully) believes P at a state x iff she cannot sharply distinguish x from the worlds
in which she has knowledge of P , i.e., the agent cannot sharply distinguish the states in
which she has belief of P from the states in which she has knowledge of P . Belief, under
this semantics, therefore becomes subjectively indistinguishable from knowledge, implying
that our topological semantics perfectly captures the conception of belief as “subjective
certainty”. The majority of approaches to knowledge and belief take belief – the weaker
notion, – as basic and then strengthen it to obtain a “good” concept of knowledge. Our
work provides a semantics for Stalnaker’s system which approaches the issue from the
other direction, i.e. taking knowledge as primitive. The formal setting developed in our
studies therefore adds a precise semantic framework to a rather non-standard approach
to knowledge and belief, providing a novel semantics to Stalnaker’s system and imparting
if not additional momentum at least an additional interpretation of it.

Furthermore, we explore topological analogues of static and dynamic conditioning
by providing a topological semantics for conditional belief and update modalities. We
evaluated two, basic and refined, topological semantics for conditional beliefs directly
obtained from the semantics of simple belief by conditioning and argued that the latter is
an improvement of the former. We demonstrated that the refined semantics for conditional
beliefs quite successfully captures the rationality postulates of AGM theory: it validates
the appropriate versions of the AGM postulates 1-7 and a weaker version of postulate 8
(see Theorem 8). We moreover gave a complete axiomatization of the logic of conditional
beliefs and knowledge. Although the semantics proposed for the aforementioned static
notions (namely; knowledge, (full) belief and conditional beliefs) completely captures their
intended meanings, modelling these notions on extremally disconnected spaces causes
the problem of preserving the important structural properties of these spaces given that
extremally disconnectedness is not a hereditary property as explained in Section 4.2 and
also stated in [2]. In this paper, we solved this problem by restricting the class of spaces we
work with to the class of hereditarily extremally disconnected spaces and we formalized
knowledge, belief and conditional beliefs also on hereditarily extremally disconnected
spaces together with updates and provide complete axiomatizations for the corresponding
logics. As a result of working on hereditarily extremally disconnected spaces, the unimodal
logic of knowledge becomes S4.3 whereas the unimodal logic of belief remains to be KD45.
We also showed that hereditarily extremally disconnected spaces validate the AGM axiom
8, stated as Rational Monotonicity in terms of conditional beliefs, and concluded that
our topological semantics can capture the theory of belief revision AGM as a static one
formalized in a modal setting in terms of conditional beliefs.

Future Research. In this paper, we focused on providing a topological semantics for sin-
gle agent logics for knowledge, belief, conditional beliefs and updates. However, reasoning
about knowledge, belief and especially about information change becomes particularly
interesting when applied to multi-agent cases. One natural continuation of this work
therefore consists in extending our framework to a multi-agent setting and providing
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topological semantics for operators, such as common knowledge and common belief, in
line with, e.g., [13, 45].

In on-going work, we also explore topological semantics for evidence and its connection
to topological (evidence-based) knowledge and belief. We therefore build topological
evidence models generalizing those of van Benthem and Pacuit [12] and also interpret
evidence dynamics on such models following the aforementioned work.

Acknowledgements A. Özgün would like to acknowledge the support of the European
Research Council grant EPS 313360. S. Smets’ contribution to this paper has received
funding from the European Research Council under the European Community’s 7th
Framework Programme/ERC Grant agreement no. 283963. This work was presented (in
part) at the following workshops and conferences: The Fourth International Workshop on
Logic, Rationality and Interaction (LORI 2013); The Second LogiCIC Workshop-Social
Dynamics of Information Chance (LogiCIC 2013); Epistemic Logic for Individual, Social,
and Interactive Epistemology Workshop (ELISIEM 2014) and International Workshop on
Topological Methods in Logic IV (ToLo 2014). We are grateful to the conference organizers
and participants who have provided us with valuable feedback on this work in the last
years.

"The Topological Theory of Belief".tex; 5/12/2015; 10:25; p.25



26

References

1. Alchourrón, C. E., P. Gärdenfors, and D. Makinson: 1985, ‘On the Logic of Theory Change: Partial
Meet Contraction and Revision Functions’. J. Symb. Log. 50(2), 510–530.
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Appendices

A. Introduction

The system S4.

Name Axiom

K K(ϕ→ ψ)→ (Kϕ→ Kψ)

T Kϕ→ ϕ

4 Kϕ→ KKϕ

Inference Rules

Modus Ponens From ϕ and ϕ→ ψ infer ψ

Necessitation From ϕ infer Kϕ

Table II.: The system S4

The logic of conditional beliefs (CDL) [4, 5]24. The syntax of CDL is given by

ϕ := p | ¬ϕ | ϕ ∧ ϕ | Bϕϕ

and the semantics is given on plausibility models as above. In this system, knowledge
and belief are defined as Kϕ := B¬ϕϕ and Bϕ := B>ϕ, where > := ¬(p ∧ ¬p) is some
tautological sentence. A sound and complete system of CDL (with respect to plausibility
models) is given as follows:

The inference rules and axioms of propositional logic

Necessitation Rule: From ` ϕ infer ` Bψϕ
Normality: Bθ(ϕ→ ψ)→ (Bθϕ→ Bθψ)
Truthfulness of Knowledge: Kϕ→ ϕ
Persistence of Knowledge: Kϕ→ Bθϕ
Strong Positive Introspection: Bθϕ→ KBθϕ
Strong Negative Introspection: ¬Bθϕ→ K¬Bθϕ
Success of Belief Revision: Bϕϕ
Consistency of Revision: ¬K¬ϕ→ ¬Bϕ⊥
Inclusion: Bϕ∧ψθ → Bϕ(ψ → θ)
Rational Monotonicity: Bϕ(ψ → θ) ∧ ¬Bϕ¬ψ → Bϕ∧ψθ

24 This system was first introduced in [4] with common knowledge and common belief operators. We
work with the simplified version introduced in [5].
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B. Background

B.1. The Standard Kripke Semantics

DEFINITION 9 (Kripke Frame/Model). A Kripke frame F = (X,R) is a pair where
X is a non-empty set and R is a binary relation on X. A Kripke model M = (X,R, ν) is
a tuple where (X,R) is a Kripke frame and ν is a valuation, i.e. a map ν : Prop→ P(X).

DEFINITION 10 (Standard Kripke Semantics). Let M = (X,R, ν) be a Kripke model
and x be a state in X. The truth of modal formulas at a world x in M is defined recursively
as:

M,x |= p iff x ∈ ν(p)
M,x |= ¬ϕ iff not M,x |= ϕ
M,x |= ϕ ∧ ψ iff M,x |= ϕ and M,x |= ψ
M,x |= Kϕ iff (∀y ∈ X)(xRy →M,y |= ϕ)

It is useful to note that

M,x |= 〈K〉ϕ iff (∃y ∈ X)(xRy ∧M,y |= ϕ).

Truth and validity of a formula with respect to the standard Kripke semantics
are defined as usual, i.e., the same way as in the interior semantics. We let
‖ϕ‖M = {x ∈ X : M,x |= ϕ} and call ‖ϕ‖M the extension of the modal formula
ϕ in M .

B.2. Proof of Theorem 1

The soundness proof is a routine check and immediately follows from the Kuratowski
axioms for the interior operator (see, e.g., [10, p. 237] for a detailed proof). For com-
pleteness, let ϕ ∈ LK such that ϕ is not a theorem of S4, i.e., S4 6` ϕ. Then, by
the relational completeness of S4, there exists a reflexive and transitive Kripke model
M = (X,R, ν) such that ‖ϕ‖M 6= X. Hence, by Proposition 1, we have that [[ϕ]]MτR 6= X
where MτR = (X, τR, ν) is the corresponding topo-model (see also, e.g., [16]).

B.3. Proof of Proposition 3 [10, p. 253]

Let (X, τ) be a topological space and M = (X, τ, ν) be a topo-model on (X, τ). Then,

[[〈K〉Kϕ→ K〈K〉ϕ]]M = X iff Cl(Int([[ϕ]]M)) ⊆ Int(Cl([[ϕ]]M))

iff Cl(Int([[ϕ]]M)) = Int(Cl(Int([[ϕ]]M)))

iff (X, τ) is extremally disconnected.

C. The Topology of Full Belief and Knowledge

C.1. Proof of Proposition 5

(⇒) Bϕ→ 〈K〉Kϕ

1. K¬Kϕ→ B¬Kϕ Ax.(KB)
2. B¬Kϕ→ ¬BKϕ Ax.(CB)
3. ¬BKϕ→ ¬Bϕ Ax.(FB)
4. K¬Kϕ→ ¬Bϕ Propositional tautology and MP, 1, 2, 3
5. Bϕ→ 〈K〉Kϕ Contraposition, 4
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(⇐) 〈K〉Kϕ→ Bϕ

1. ¬Bϕ→ K¬Bϕ Ax.(NI)
2. ¬Bϕ→ ¬Kϕ Ax.(KB)
3. K(¬Bϕ→ ¬Kϕ) K-Nec, 2
4. K(¬Bϕ→ ¬Kϕ)→ (K¬Bϕ→ K¬Kϕ) Ax.(K)
5. K¬Bϕ→ K¬Kϕ MP, 3, 4
6. ¬Bϕ→ K¬Kϕ Propositional tautology and MP, 1, 5
7. 〈K〉Kϕ→ Bϕ Contraposition, 6

C.2. Proof of Proposition 6

Observe that for any topo-model (X, τ, ν) and for any ϕ, ψ ∈ LKB,

[[ϕ→ ψ]] = X iff [[ϕ]] ⊆ [[ψ]].

Let (X, τ) be a topological space and ν be an arbitrary valuation on (X, τ). We know, by
the soundness of S4 under the interior semantics, that the axioms (K), (T), (KK) and
the inference rules of KB are valid on all topological spaces. In addition, (NI), (KB) and
(FB) are also valid in all topological extensional semantics. Here, we demonstrate only
the proof for the validity of (NI):

(NI):

X = [[¬Bϕ→ K¬Bϕ]] iff [[¬Bϕ]] ⊆ [[K¬Bϕ]]

iff X \ (Cl(Int([[ϕ]]))) ⊆ Int(X \ (Cl(Int([[ϕ]]))))

iff Int(Cl(X \ [[ϕ]])) ⊆ Int(Int(Cl(X \ [[ϕ]])))

Since Int(Cl(X \ [[ϕ]])) = Int(Int(Cl(X \ [[ϕ]]))) is true in all topological spaces (by (I4) in
Section 2.2), the result follows. The proofs for the validity of the axioms (KB) and (FB)
follow similarly.

Moreover, both (CB) and (PI) are valid on (X, τ) (under our proposed semantics) iff
(X, τ) is extremally disconnected:

(CB):

X = [[Bϕ→ ¬B¬ϕ]] iff [[Bϕ]] ⊆ [[〈B〉ϕ]]

iff Cl(Int([[ϕ]])) ⊆ Int(Cl([[ϕ]]))

iff Cl(Int([[ϕ]])) = Int(Cl(Int([[ϕ]])))

iff (X, τ) is extremally disconnected.

(PI):

X = [[Bϕ→ KBϕ]] iff [[Bϕ]] ⊆ [[KBϕ]]

iff Cl(Int([[ϕ]])) ⊆ Int(Cl(Int([[ϕ]])))

iff (X, τ) is extremally disconnected.

Therefore, (X, τ) validates the axioms and rules of KB iff it is extremally disconnected.

C.3. Proof of Theorem 3

(⇐) This direction is proven in Proposition 6.
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(⇒) Let (X,K,B) be an extensional semantics and suppose it validates all the axioms and
rules of KB. Then, the validity of the S4 axioms implies that K satisfies the Kuratowski
conditions for topological interior, and so it gives rise to a topology τ in which K = Int,
by the Theorem 5.3 in [23, p. 74] (see also Proposition 1.2.9 in [25, p. 23]). Then, since
(X,K,B) validates all the axioms of KB, we have [[Bϕ↔ 〈K〉Kϕ]]M = X for any model
M = (X,K,B, ν) and for all ϕ ∈ LKB (by Proposition 5). Hence, [[Bϕ]]M = B[[ϕ]]M =
Cl(Int([[ϕ]]M), i.e., B = Cl(Int). Thus, (X,K,B) is a topological extensional semantics.
Finally, the validity of the axiom (CB) proves that (X, τ) is extremally disconnected (see
the proof of Proposition 6).

C.4. Proof of Theorem 4

Since axioms of KB are Sahlqvist formulas, KB is canonical, hence, complete with respect
to its canonical model. However, the canonical model of KB is in fact an extensional model
validating all of its axioms. Thus, Topological Representation Theorem for extensional
models of KB (Theorem 3 in Section 3.2), we have that KB is sound and complete with
respect to the class of extremally disconnected spaces.

C.5. Proof of Theorem 5

PROPOSITION 11. For any topo-model M = (X, τ, ν) and any ϕ ∈ LB we have

1. [[Bϕ→ BBϕ]] = X,

2. [[〈B〉ϕ→ B〈B〉ϕ]] = X.

Proof. Let M = (X, τ, ν) be a topo-model and ϕ ∈ LB. Recall that for any ϕ,ψ ∈ LB
we have

[[ϕ→ ψ]] = X iff [[ϕ]] ⊆ [[ψ]]. (1)

1. By (1), it suffices to show that [[Bϕ]] ⊆ [[BBϕ]]. By our semantics, we have

[[Bϕ]] = Cl(Int([[ϕ]])) and [[BBϕ]] = Cl(Int(Cl(Int([[ϕ]])))).

As known, the closure of an open set is a closed domain25 [25, p. 20]. We then have

Cl(Int([[ϕ]])) = Cl(Int(Cl(Int([[ϕ]])))).

as Int([[ϕ]]) is open in (X, τ). Therefore, we obtain [[Bϕ]] = [[BBϕ]] which implies
[[Bϕ→ BBϕ]] = X.

2. Similar to part-(a), it suffices to show that [[〈B〉ϕ]] ⊆ [[B〈B〉ϕ]] and the proof follows:

[[〈B〉ϕ]] = Int(Cl([[ϕ]]))
⊆ Cl(Int(Cl([[ϕ]]))) (by (C2))
= Cl(Int(Int(Cl([[ϕ]])))) (by (I4))
= [[B〈B〉ϕ]].

Therefore, by (1), we have [[〈B〉ϕ→ B〈B〉ϕ]] = X.

25 A subset A of a topological space is called closed domain if A = Cl(Int(A)) [25, p. 20]. In the literature,
a closed domain is also called regular closed.
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It follows from Proposition 11 that all topological spaces validate the axioms (4) and
(5) under the topological belief semantics. However, the K-axiom Bϕ ∧ Bψ ↔ B(ϕ ∧ ψ)
and the D-axiom Bϕ→ 〈B〉ϕ are not valid on all topological spaces but are valid on all
extremally disconnected spaces:

LEMMA 1. For any topological space (X, τ), we have

U ∩ Cl(A) ⊆ Cl(U ∩A)

for any U ∈ τ and A ⊆ X.

Proof. Let (X, τ) be a topological space, U ∈ τ , A ⊆ X and x ∈ X. Suppose x ∈
U ∩ Cl(A). Since x ∈ Cl(A), for all open neighbourhoods V of x, V ∩ A 6= ∅. Let W be
an open neightbourhood of x. Then, since τ is closed under finite intersection and x is an
element of both W and U , the set W ∩U is an open neighbouhood of x as well. Thus, by
the assumption that x ∈ Cl(A), (W ∩ U) ∩A 6= ∅, i.e., W ∩ (U ∩A) 6= ∅. As W has been
chosen arbitrarily, x ∈ Cl(U ∩A).

LEMMA 2. The following conditions are equivalent for any topological space (X, τ):

1. (X, τ) is extremally disconnected.

2. Cl(U) ∩ Cl(V ) = Cl(U ∩ V ) for all U, V ∈ τ .

3. Cl(U) ∩ Cl(V ) = ∅ for all U, V ∈ τ with U ∩ V = ∅.

Proof. Let (X, τ) be a topological space.

(1⇒ 2) Suppose (X, τ) is extremally disconnected and let U, V ∈ τ . We always have
Cl(U ∩ V ) ⊆ Cl(U) ∩ Cl(V ) by (C2). For the other direction, we have

Cl(U) ∩ Cl(V ) ⊆ Cl(Cl(U) ∩ V ) (by Lemma 1 and Cl(U) being open)
⊆ Cl(U ∩ V ) (by Lemma 1 and V being open)

(2⇒ 3) Suppose (2). Let U, V ∈ τ such that U∩V = ∅. Then, by (C1), Cl(U∩V ) = ∅.
Thus, by (2), we have Cl(U) ∩ Cl(V ) = ∅.

(3 ⇒ 1) Suppose (3) and let U ∈ τ . We want to show that Cl(U) is open, i.e.,
Int(Cl(U)) = Cl(U). By (I2), we have Int(Cl(U)) ⊆ Cl(U). For the other direction,
let x ∈ X and suppose x ∈ Cl(U) but x 6∈ Int(Cl(U)). x 6∈ Int(Cl(U)) implies that
x ∈ Cl(Int(X \U)). Hence, Cl(U)∩Cl(Int(X \U)) 6= ∅. However, as Int(X \U) is open
and U ∩ Int(X \U) = ∅, we have Cl(U) ∩Cl(Int(X \U)) = ∅ (by (3)). Contradiction!

PROPOSITION 12. A topological space (X, τ) validates the K-axiom iff (X, τ) is
extremally disconnected.

Proof. Let (X, τ) be a topological space andM = (X, τ, ν) be a topo-model on (X, τ).
Then,

X = [[Bϕ ∧Bψ ↔ B(ϕ ∧ ψ)]]

iff [[Bϕ ∧Bψ]] = [[B(ϕ ∧ ψ)]]

iff Cl(Int([[ϕ]])) ∩ Cl(Int([[ψ]])) = Cl(Int([[ϕ]] ∩ [[ψ]]))

iff Cl(Int([[ϕ]])) ∩ Cl(Int([[ψ]])) = Cl(Int([[ϕ]]) ∩ Int([[ψ]])) (by (I3))

iff (X, τ) is extremally disconnected (by Lemma 2)
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PROPOSITION 13. A topological space (X, τ) validates the D-axiom iff (X, τ) is
extremally disconnected.

Proof. Let (X, τ) be a topological space andM = (X, τ, ν) be a topo-model on (X, τ).
Then,

X = [[Bϕ→ 〈B〉ϕ]] iff [[Bϕ]] ⊆ [[〈B〉ϕ]]

iff Cl(Int([[ϕ]])) ⊆ Int(Cl([[ϕ]]))

iff Cl(Int([[ϕ]])) = Int(Cl(Int([[ϕ]])))

iff (X, τ) is extremally disconnected.

It follows from Proposition 12 and Proposition 13 that the K-axiom and the D-
axiom are not only valid on extremally disconnected spaces, they also characterize
extremally disconnected spaces (under the topological belief semantics). Hence, the
class of extremally disconnected spaces is the largest class of topological spaces which
validates the K-axiom and the D-axiom. The fact that both K-axiom and the D-axiom
characterizing extremally disconnectedness might seem surprising at first sight. However,
given that we interpret the knowledge modality K as the interior and the belief modality
B as the closure of the interior operators on topological spaces, we obtain that the formula
(Bϕ → 〈B〉ϕ) is equivalent to (〈K〉Kϕ → K〈K〉ϕ), which is the (.2)-axiom, and the
formula (Bϕ∧Bψ ↔ B(ϕ∧ψ)) is equivalent to (〈K〉Kϕ∧〈K〉Kψ ↔ 〈K〉K(ϕ∧ψ)). Thus,
the above propositions only state that a topological space validates (〈K〉Kϕ→ K〈K〉ϕ)
iff it validates (〈K〉Kϕ ∧ 〈K〉Kψ ↔ 〈K〉K(ϕ ∧ ψ)) iff it is extremely disconnected. In
fact, these results together with Proposition 11 yield the soundness of KD45:

THEOREM 5. The belief logic KD45 is sound with respect to the class of extremally
disconnected spaces in topological belief semantics. In fact, a topological space (X, τ)
validates all the axioms and rules of the system KD45 in the topological belief semantics
iff (X, τ) is extremally disconnected.

Proof. Follows from Propositions 11, 12 and 13.

C.6. Proof of Theorem 6

Throughout this proof, we use the notation [ϕ]M for the extension of a formula ϕ ∈ LK
with respect to the interior semantics in order to make clear in which semantics we work.
We reserve the notation [[ϕ]]M for the extension of a formula ϕ ∈ LB with respect to the
topological belief semantics. We skip the index when confusion is unlikely to occur.

DEFINITION 11 (Translation (.)∗ : LB → LK). For any ϕ ∈ LB, the translation (ϕ)∗ of
ϕ into LK is defined recursively as follows:

1. (p)∗ = p, where p ∈ Prop

2. (¬ϕ)∗ = ¬ϕ∗

3. (ϕ ∧ ψ)∗ = ϕ∗ ∧ ψ∗

4. (Bϕ)∗ = 〈K〉Kϕ∗

It is useful to note that (〈B〉ϕ)∗ = K〈K〉ϕ∗.
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PROPOSITION 14. For any topo-model M = (X, τ, ν) and for any formula ϕ ∈ LB, we
have

[[ϕ]]M = [ϕ∗]M.

Proof. We prove the lemma by induction on the complexity of ϕ. The cases for ϕ = p,
ϕ = ¬ψ and ϕ = ψ ∧ χ are straightforward. Now let ϕ = Bψ, then

[[ϕ]]M = [[Bψ]]M

= Cl(Int([[ψ]]M)) (by the topological belief semantics for LB)
= Cl(Int([ψ∗]M)) (by I.H.)
= [〈K〉Kψ∗]M (by the interior semantics for LK .)
= [(Bψ)∗]M (by the translation.)
= [ϕ∗]M.

We prove the topological completeness of KD45 by using the translation (.)∗ of the
language LB into the language LK given in Definition 11 and the completeness of S4.2
with respect to the class of extremally disconnected spaces in the interior semantics.

For the topological completeness proof of KD45 we also make use of the completeness
of KD45 and S4.2 in the standard Kripke semantics. We first recall some frame conditions
concerning the relational completeness of the corresponding systems. Let (X,R) be a
transitive Kripke frame. A non-empty subset C ⊆ X is a cluster if

(1) for each x, y ∈ C we have xRy, and

(2) there is no D ⊆ X such that C ⊂ D and D satisfies (1).

A point x ∈ X is called a maximal point if there is no y ∈ X such that xRy and
¬(yRx). We call a cluster a final cluster if all its points are maximal. It is not hard to
see that for any final cluster C of (X,R) and any x ∈ C, we have R(x) = C. A transitive
Kripke frame (X,R) is called cofinal if it has a unique final cluster C such that for each
x ∈ X and y ∈ C we have xRy. We call a cofinal frame a brush if X \C is an irreflexive
antichain, i.e., for each x, y ∈ X \ C we have ¬(xRy) where C is the final cluster. A
brush with a singleton X \ C is called a pin . By definition, every brush and every pin is
transitive. Finally, a transitive frame (X,R) is called rooted , if there is an x ∈ X, called
a root, such that for each y ∈ X with x 6= y we have xRy. Hence, every rooted brush is
in fact a pin. Figure 5 illustrates brushes and pins, respectively.

Cluster

... ... ...

Cluster

a. brush b. pin

Figure 5.: Brush and Pin

LEMMA 3.

1. Each reflexive and transitive cofinal frame is an S4.2-frame. Moreover, S4.2 is sound
and complete with respect to the class of finite rooted reflexive and transitive cofinal
frames.
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2. Each brush is a KD45-frame. Moreover, KD45 is sound and complete with respect
to the class of finite brushes, indeed, with respect to the class of finite pins.

Proof. See, e.g., [20, Chapter 5].

For any reflexive and transitive cofinal frame (X,R) we define RB on X by

xRBy if y ∈ C

for each x, y ∈ X where C is the final cluster of (X,R). It is easy to see that for each
x ∈ X, we have RB(x) = C. Recall that we denote the extension of a modal formula ϕ
(either in LB or in LK) in a Kripke model M = (X,R, ν) by ‖ϕ‖M .

LEMMA 4. For any reflexive and transitive cofinal frame (X,R),

1. (X,RB) is a brush.

2. For any valuation ν on X and for each formula ϕ ∈ LB we have

‖ϕ∗‖M = ‖ϕ‖MB

where M = (X,R, ν) and MB = (X,RB, ν).

Proof. Let (X,R) be a reflexive and transitive cofinal frame.

1. By definition, RB is transitive. We can also show that the final cluster C of (X,R)
is also a cluster (X,RB). For each x, y ∈ C, xRBy by definition of RB. Moreover,
suppose for a contradiction that there is a D ⊆ X such that C ⊂ D and for each
x, y ∈ D we have xRBy. As C ⊂ D, there is an x0 ∈ D such that x0 6∈ C contradicting
that xRBx0 for all x ∈ D. Hence, C is a cluster of (X,RB) too. By definition of RB,
we also have that for any x ∈ X, RB(x) = C, i.e., for any x ∈ X and y ∈ C we have
xRBy. Hence, (X,RB) is a cofinal frame with the final cluster C. Now consider X \C.
Suppose there is an x ∈ X \ C such that xRBx. This implies, by definition of RB,
that x ∈ C contradicting our assumption. Hence, each point x ∈ X \ C is irreflexive.
Suppose also that X \ C is not an antichain, i.e., there exist x, y ∈ X \ C such that
either xRBy or yRBx. W.l.o.g, assume xRBy. This also implies, by definition of RB,
that y ∈ C contradicting y ∈ X \ C. Hence, (X,RB) is a brush.

2. We prove this item by induction on the complexity of ϕ. Let M = (X,R, ν) be a
model on (X,R). The cases for ϕ = p, ϕ = ¬ψ, ϕ = ψ ∧ χ are straightforward. Let
ϕ = Bψ.

(⊆) Let x ∈ ‖(Bψ)∗‖M = ‖〈K〉Kψ∗‖M . Then, by the standard Kripke semantics,
there is a y ∈ X with xRy such that R(y) ⊆ ‖ψ∗‖M . Since (X,R) is a cofinal frame,
we have C ⊆ R(y), hence, C ⊆ ‖ψ∗‖M . Then, by induction hypothesis, C ⊆ ‖ψ‖MB .
Since RB(x) = C in the brush (X,RB), we have RB(x) ⊆ ‖ψ‖MB implying that
x ∈ ‖Bψ‖MB .

(⊇) Let x ∈ ‖Bψ‖MB . Then, by the standard Kripke semantics, for all y ∈ X with
xRBy we have y ∈ ‖ψ‖MB , i.e.,RB(x) ⊆ ‖ψ‖MB . Then, C ⊆ ‖ψ‖MB , sinceRB(x) = C.
Hence, by induction hypothesis, C ⊆ ‖ψ∗‖M . By definition of a final cluster, we have
R(y) = C for any y ∈ C. Hence, y ∈ ‖Kψ∗‖M for any y ∈ C. Since (X,R) is a cofinal
frame, xRy for any y ∈ C. Thus, x ∈ ‖〈K〉Kψ∗‖M , i.e., x ∈ ‖(Bψ)∗‖M .

For each Kripke frame (X,R) we let R+ to be the reflexive closure of R defined as
R+ = R ∪ {(x, x) | x ∈ X}.
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LEMMA 5. For any brush (X,R),

1. (X,R+) is a reflexive and transitive cofinal frame.

2. For any valuation ν on X and for each formula ϕ ∈ LB we have

‖ϕ‖M = ‖ϕ∗‖M+

where M = (X,R, ν) and M+ = (X,R+, ν).

Proof. Let (X,R) be a brush.

1. Since a brush is also a transitive cofinal frame, (X,R+) is also transitive and cofinal.
Moreover, R+ is reflexive by definition. Therefore, (X,R+) is a reflexive and transitive
cofinal frame.

Cluster

... ... ...

R+

−−→

Cluster

... ... ...

Figure 6.: From (X,R) to (X,R+)

2. We prove (2) by induction on the complexity of ϕ. Let M = (X,R, ν) be a model on
(X,R). The cases for ϕ = p, ϕ = ¬ψ, ϕ = ψ ∧ χ are straightforward. Let ϕ = Bψ.

(⊆) Let x ∈ ‖Bψ‖M . Then, by the standard Kripke semantics, for all y ∈ X with
xRy we have y ∈ ‖ψ‖M , i.e., R(x) ⊆ ‖ψ‖M . This implies, since M is a model based

on a brush, C ⊆ ‖ψ‖M . By I.H., C ⊆ ‖ψ∗‖M+
. Since (X,R+) is in fact just a reflexive

brush, C ⊆ R+(x). Hence there is a z ∈ C such that xRz and, since R+(z) = C and

C ⊆ ‖ψ∗‖M+
, z ∈ ‖Kψ∗‖M+

. Therefore, x ∈ ‖〈K〉Kψ∗‖M+
= ‖(Bψ)∗‖M+

.

(⊇) Let x ∈ ‖(Bψ)∗‖M+
= ‖〈K〉Kψ∗‖M+

. Then, by the standard Kripke semantics,

there is a y ∈ X with xR+y such that R+(y) ⊆ ‖ψ∗‖M+
. Observe that either y = x

or xRy (equivalently, y ∈ C).

If x = y, R+(y) ⊆ ‖ψ∗‖M+
meaning that R+(x) ⊆ ‖ψ∗‖M+

. Then, since R(x) ⊆
R+(x), we have R(x) ⊆ ‖ψ‖M by induction hypothesis. Therefore, x ∈ ‖Bψ‖M .

If xRy, i.e., y ∈ C, we have R(x) = R+(y). Hence, by induction hypothesis, R(x) ⊆
‖ψ‖M . Therefore, x ∈ ‖Bψ‖M .

LEMMA 6. For each formula ϕ ∈ LB,

S4.2 ` ϕ∗ iff KD45 ` ϕ.

Proof. Let ϕ ∈ LB.

(⇒) Suppose KD45 6` ϕ. By Lemma 3(2), there exists a Kripke model M = (X,R, ν)
where (X,R) is a finite pin such that ‖ϕ‖M 6= X. Then, by Lemma 5, M+ is a model

based on the finite reflexive and transitive cofinal frame (X,R+) and ‖ϕ∗‖M+ 6= X.
Hence, by Lemma 3(1), we have S4.2 6` ϕ∗.
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(⇐) Suppose S4.2 6` ϕ∗. By Lemma 3(1), there exists a Kripke model M = (X,R, ν)
where (X,R) is a finite reflexive and transitive cofinal frame such that ‖ϕ∗‖M 6= X.
Then, by Lemma 4, MB is a model based on the brush (X,RB) and ‖ϕ‖MB 6= X.
Hence, by Lemma 3(2), we have KD45 6` ϕ.

THEOREM 6. In the topological belief semantics, KD45 is the complete logic of belief
with respect to the class of extremally disconnected spaces.

Proof. Let ϕ ∈ LB such that KD45 6` ϕ. By Lemma 6, S4.2 6` ϕ∗. Hence, by topological
completeness of S4.2 with respect to the class of extremally disconnected spaces in the
interior semantics, there exists a topo-modelM = (X, τ, ν) where (X, τ) is an extremally
disconnected space such that [ϕ∗]M 6= X. Then, by Proposition 14, [[ϕ]]M 6= X. Thus, we
found an extremally disconnected space (X, τ) which refutes ϕ in the topological belief
semantics. Hence, KD45 is complete with respect to the class of extremally disconnected
spaces in the topological belief semantics.

C.7. Proof of Proposition 7

Let (X, τ) be a DSO-space and U ∈ τ . Recall that for any A ⊆ X, Cl(A) = d(A)∪A. So
Cl(U) = d(U)∪U . Since (X, τ) is a DSO-space, d(U) is an open subset of X. Thus, since
U is open as well, Cl(U) is open. Therefore, (X, τ) is an extremally disconnected space.

Now consider the topological space (X, τ) where X = {1, 2, 3} and τ = {X, ∅, {2}, {1, 2}}.
It is easy to check that for all U ∈ τ , Cl(U) is open (in fact, for each U ∈ τ with
U 6= ∅, Cl(U) = X). Hence, (X, τ) is an extremally disconnected space. However, as
Cl(X \ {2}) = {1, 3}, we have 2 6∈ d(X). Thus, (X, τ) is not dense in itself and thus not
a DSO-space.

D. Topological Models for Belief Revision: Static and Dynamic Conditioning

D.1. Proof of Theorem 7

The validity of (1) and (2) is given by Proposition 8. While (2) reduces belief to conditional
belief, (1) reduces conditional beliefs to knowledge. Hence, the proof follows from the
topological completeness of S4.2.

D.2. Proof of Theorem 8

By Proposition 8, we know that each of the axioms can be rewritten by using only the
knowledge modality K. We also know that the logic of knowledge S4 is complete with
respect to to the class of reflexive and transitive Kripke frames. In this proof, we will
first show that each of the axioms is a theorem of S4 by using Kripke frames and the
relational completeness of S4. Then, we can conclude that these axioms are also valid
on all topological spaces, since S4 is sound with respect to the class of all topological
spaces under the interior semantics. Recall that the semantic clauses for knowledge in
the interior semantics and in the refined topological semantics for conditional beliefs and
knowledge coincide.

Let (X,R) be a reflexive and transitive Kripke frame, M = (X,R, ν) a model on
(X,R) and x any element of X.
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1. Normality: Bθ(ϕ→ ψ)→ (Bθϕ→ Bθψ)
By Proposition 8, we can rewrite the Normality principle as

K(θ → 〈K〉(θ ∧K(θ → (ϕ→ ψ))))→
(K(θ → 〈K〉(θ ∧K(θ → ϕ)))→ K(θ → 〈K〉(θ ∧K(θ → ψ)))).

Suppose x ∈ ‖K(θ → 〈K〉(θ ∧K(θ → (ϕ→ ψ))))‖ and x ∈ ‖K(θ → 〈K〉(θ ∧K(θ →
ϕ)))‖ . This implies,

R(x) ⊆ ‖θ → 〈K〉(θ ∧K(θ → (ϕ→ ψ)))‖ (2)

R(x) ⊆ ‖θ → 〈K〉(θ ∧K(θ → ϕ))‖ (3)

We want to show that R(x) ⊆ ‖θ → 〈K〉(θ ∧K(θ → ψ))‖

Let y ∈ X such that xRy, i.e. y ∈ R(x). Suppose y ∈ ‖θ‖. Then,

y ∈ ‖〈K〉(θ ∧K(θ → (ϕ→ ψ))‖ by (2)
y ∈ ‖〈K〉(θ ∧K(θ → ϕ))‖ by (3)

These imply that there exists a y1 ∈ X with yRy1 such that y1 ∈ ‖θ ∧K(θ → (ϕ →
ψ))‖, and there exists a y2 ∈ X with yRy2 such that y2 ∈ ‖θ ∧K(θ → ϕ)‖. Since R is
transitive and xRyRy2, we also have y2 ∈ ‖θ → 〈K〉(θ ∧K(θ → (ϕ→ ψ))‖, by (A.1).
Similar as above, there exists y′2 ∈ X with y2Ry

′
2 such that y′2 ∈ ‖θ∧K(θ → (ϕ→ ψ))‖.

Hence, we have

y′2 ∈ ‖θ‖, and (4)

R(y′2) ⊆ ‖θ → (ϕ→ ψ)‖. (5)

As y2 ∈ ‖K(θ → ϕ)‖, y2Ry′2 and R is transitive, y′2 ∈ ‖K(θ → ϕ)‖ as well. Hence,

R(y′2) ⊆ ‖θ → ϕ‖. (6)

Thus, since ((θ → (ϕ → ψ)) ∧ (θ → ϕ)) → (θ → ψ) is a tautology, R(y′2) ⊆ ‖θ → ψ‖
by (5) and (6).
Hence, y′2 ∈ ‖K(θ → ψ)‖. Then, by (4), y′2 ∈ ‖θ ∧K(θ → ψ)‖.
Thus, as yRy2Ry

′
2 and R is transitive, we have y ∈ ‖〈K〉(θ ∧K(θ → ψ))‖. Therefore,

y ∈ ‖θ → 〈K〉(θ ∧K(θ → ψ))‖. Since we have chosen y arbitrarily from R(x),

R(x) ⊆ ‖θ → 〈K〉(θ ∧K(θ → ψ))‖, implying that

x ∈ ‖K(θ → 〈K〉(θ ∧K(θ → ψ)))‖.

2. Success of Belief Revision: Bϕϕ
By Proposition 8, we can rewrite this axiom as

K(ϕ→ 〈K〉(ϕ ∧K(ϕ→ ϕ))).

We want to show that x ∈ ‖K(ϕ→ 〈K〉(ϕ ∧K(ϕ→ ϕ)))‖, i.e., that
R(x) ⊆ ‖ϕ→ 〈K〉(ϕ ∧K(ϕ→ ϕ))‖.
Let y ∈ X such that y ∈ R(x) and y ∈ ‖ϕ‖. As R is reflexive,

y ∈ ‖〈K〉ϕ‖ (7)
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Observe that (ϕ ∧ K(ϕ → ϕ)) ↔ ϕ. Thus, (7) implies y ∈ ‖〈K〉(ϕ ∧ K(ϕ → ϕ))‖.
Therefore, y ∈ ‖ϕ → 〈K〉(ϕ ∧K(ϕ → ϕ))‖. Since we have chosen y arbitrarily from
R(x),

R(x) ⊆ ‖ϕ→ 〈K〉(ϕ ∧K(ϕ→ ϕ))‖, implying that

x ∈ ‖K(ϕ→ 〈K〉(ϕ ∧K(ϕ→ ϕ)))‖.

3. Truthfulness of Knowledge: Kϕ→ ϕ
This is the T axiom of S4, hence its validity immediately follows from the soundness
of S4 with respect to the class of reflexive and transitive frames.

4. Persistence of Knowledge: Kϕ→ Bψϕ
By Proposition 8, we can rewrite this axiom as

Kϕ→ K(ψ → 〈K〉(ψ ∧K(ψ → ϕ))).

Suppose x ∈ ‖Kϕ‖ and let y ∈ X such that xRy and y ∈ ‖ψ‖. By the first assumption,
y ∈ ‖ϕ‖ as well. As x ∈ ‖Kϕ‖, x ∈ ‖K(ψ → ϕ)‖. Then, since xRy and R is
transitive, y ∈ ‖K(ψ → ϕ)‖ too. Thus, y ∈ ‖ψ ∧ K(ψ → ϕ)‖ and by reflexivity
of R, y ∈ ‖〈K〉(ψ ∧K(ψ → ϕ))‖. Hence, y ∈ ‖ψ → 〈K〉(ψ ∧K(ψ → ϕ))‖. As y has
been chosen arbitrarily from R(x), x ∈ ‖K(ψ → 〈K〉(ψ ∧K(ψ → ϕ)))‖.

5. Strong Positive Introspection: Bψϕ→ KBψϕ
By Proposition 8, we can rewrite this axiom as

K(ψ → 〈K〉(ψ ∧K(ψ → ϕ)))→ KK(ψ → 〈K〉(ψ ∧K(ψ → ϕ))).

Obviously, it is an instance of the 4-axiom. Hence, it is valid.

6. Inclusion: Bϕ∧ψθ → Bϕ(ψ → θ)
By Proposition 8, we can rewrite this axiom as

K((ϕ ∧ ψ)→ 〈K〉(ϕ ∧ ψ ∧K(ϕ ∧ ψ → θ)))→ K(ϕ→ 〈K〉(ϕ ∧K(ϕ→ (ψ → θ))))

Suppose x ∈ ‖K((ϕ ∧ ψ) → 〈K〉(ϕ ∧ ψ ∧ K(ϕ ∧ ψ → θ)))‖. This implies,
R(x) ⊆ ‖(ϕ ∧ ψ)→ 〈K〉(ϕ ∧ ψ ∧K(ϕ ∧ ψ → θ))‖, i.e.,
R(x) ⊆ ‖ϕ→ (ψ → 〈K〉(ϕ ∧ ψ ∧K(ϕ ∧ ψ → θ))‖.

We want to show that R(x) ⊆ ‖ϕ→ 〈K〉(ϕ ∧K(ϕ→ (ψ → θ)))‖.
Let y ∈ X with y ∈ R(x) such that y ∈ ‖ϕ‖. Then, by assumption,

y ∈ ‖ψ → 〈K〉(ϕ ∧ ψ ∧K(ϕ ∧ ψ → θ))‖.

Case 1: y 6∈ ‖ψ‖
Suppose for contradiction that y 6∈ ‖〈K〉(ϕ ∧ K(ϕ → (ψ → θ)))‖. This implies,
for every z ∈ X with yRz, z 6∈ ‖ϕ ∧K(ϕ → (ψ → θ))‖. Hence, for every z ∈ X
with yRz, z 6∈ ‖ϕ‖ or z 6∈ ‖K(ϕ → (ψ → θ))‖. Then, since y ∈ ‖ϕ‖ and R is
reflexive, y 6∈ ‖K(ϕ → (ψ → θ))‖. Thus, there is a z0 ∈ X with yRz0 such that
z0 6∈ ‖ϕ→ (ψ → θ)‖, i.e., z0 ∈ ‖ϕ‖, z0 ∈ ‖ψ‖ but z0 6∈ ‖θ‖.

On the other hand, as xRyRz0 and R being transitive,
z0 ∈ ‖ϕ→ (ψ → 〈K〉(ϕ ∧ ψ ∧K(ϕ ∧ ψ → θ)))‖ by the first assumption.
Thus, z0 ∈ ‖〈K〉(ϕ ∧ ψ ∧K(ϕ ∧ ψ → θ))‖. This implies, there is a z1 ∈ X with
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z0Rz1 such that z1 ∈ ‖ϕ ∧ ψ ∧K(ϕ ∧ ψ → θ)‖. Hence, z1 ∈ ‖K(ϕ ∧ ψ → θ)‖.

Then, as yRz0Rz1, we have by the first assumption of this case that z1 6∈ ‖ϕ‖ or
z1 6∈ ‖K(ϕ→ (ψ → θ))‖, which contradictions above fact. Hence,

y ∈ ‖〈K〉(ϕ ∧K(ϕ→ (ψ → θ)))‖.

Case 2: y ∈ ‖〈K〉(ϕ ∧ ψ ∧K(ϕ ∧ ψ → θ))‖
This implies that ∃z0 ∈ X with yRz0 such that z0 ∈ ‖ϕ ∧ ψ ∧ K(ϕ ∧ ψ → θ)‖.
Hence, z0 ∈ ‖ϕ ∧K(ϕ ∧ ψ → θ)‖ as well. Thus,

y ∈ ‖〈K〉(ϕ ∧K(ϕ→ (ψ → θ)))‖.

Therefore, y ∈ ‖ϕ→ 〈K〉(ϕ∧K(ϕ→ (ψ → θ)))‖. Since y has been chosen arbitrarily,

x ∈ ‖K(ϕ→ 〈K〉(ϕ ∧K(ϕ→ (ψ → θ))))‖.

7. Cautious Monotonicity: Bϕψ ∧Bϕθ → Bϕ∧ψθ
By Proposition 8, we can rewrite this axiom as

K(ϕ→ 〈K〉(ϕ ∧K(ϕ→ ψ))) ∧K(ϕ→ 〈K〉(ϕ ∧K(ϕ→ θ)))→
K((ϕ ∧ ψ)→ 〈K〉((ϕ ∧ ψ) ∧K((ϕ ∧ ψ)→ θ))).

Suppose x ∈ ‖K(ϕ→ 〈K〉(ϕ ∧K(ϕ→ ψ))) ∧K(ϕ→ 〈K〉(ϕ ∧K(ϕ→ θ)))‖. Then,

R(x) ⊆ ‖ϕ→ 〈K〉(ϕ ∧K(ϕ→ ψ))‖, and (8)

R(x) ⊆ ‖ϕ→ 〈K〉(ϕ ∧K(ϕ→ θ))‖ (9)

We want to show that R(x) ⊆ ‖(ϕ ∧ ψ)→ 〈K〉((ϕ ∧ ψ) ∧K((ϕ ∧ ψ)→ θ))‖
Let y ∈ R(x) such that y ∈ ‖ϕ∧ψ‖. Then, by (8) and (9), we have y ∈ ‖〈K〉(ϕ∧K(ϕ→
ψ))‖ and y ∈ ‖〈K〉(ϕ ∧K(ϕ→ θ))‖, respectively. These imply there exists a z0 ∈ X
with yRz0 such that

z0 ∈ ‖ϕ ∧K(ϕ→ ψ)‖ (10)

and there exists a z1 ∈ X with z1Ry such that

z1 ∈ ‖ϕ ∧K(ϕ→ θ)‖. (11)

Hence, as R is reflexive, we have z0 ∈ ‖ψ‖ and thus z0 ∈ ‖ϕ ∧ ψ‖ by (10). Then,
since xRyRz0 and R is transitive, we have z0 ∈ ‖ϕ → 〈K〉(ϕ ∧K(ϕ → θ))‖, by (9).
Thus, as z0 ∈ ‖ϕ‖, we obtain z0 ∈ ‖〈K〉(ϕ ∧ K(ϕ → θ))‖. This implies that these
is a z2 ∈ X with z0Rz2 such that z2 ∈ ‖ϕ ∧K(ϕ → θ)‖. Then, since R is transitive
and z0 ∈ ‖K(ϕ → ψ)‖, we have z2 ∈ ‖K(ϕ → ψ)‖. Hence, since R is reflexive and
z2 ∈ ‖ϕ‖, we get z2 ∈ ‖ψ‖ implying that z2 ∈ ‖ϕ∧ψ‖. Moreover, z2 ∈ ‖K(ϕ→ ψ)‖ and
z2 ∈ ‖K(ϕ→ θ)‖ imply that z2 ∈ ‖K((ϕ∧ψ)→ θ)‖. Therefore, z2 ∈ ‖(ϕ∧ψ)∧K((ϕ∧
ψ)→ θ)‖. Hence, as yRz0Rz2 and R is transitive, y ∈ ‖〈K〉((ϕ∧ψ)∧K((ϕ∧ψ)→ θ))‖.
Hence, y ∈ ‖(ϕ ∧ ψ) → 〈K〉((ϕ ∧ ψ) ∧ K((ϕ ∧ ψ) → θ))‖. Sinca y has been chosen
arbitrarily from R(x), we have R(x) ⊆ ‖(ϕ ∧ ψ)→ 〈K〉((ϕ ∧ ψ) ∧K((ϕ ∧ ψ)→ θ))‖,
i.e.

x ∈ ‖K((ϕ ∧ ψ)→ 〈K〉((ϕ ∧ ψ) ∧K((ϕ ∧ ψ)→ θ)))‖.

Therefore, each of the above axioms is valid on all reflexive and transitive Kripke
frames. Thus, they are theorems of S4, since S4 is complete with respect to the class
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of all reflexive and transitive Kripke frames (see, e.g., [17, 21]). Then, by Theorem 1,
we obtain that they are valid on all topological spaces in the interior semantics. As
the semantic clause of knowledge in the interior semantics and the semantic clause of
knowledge in the refined topological semantics for conditional beliefs and knowledge
are the same, by Proposition 8, the above axioms are also valid in all topological
spaces with respect to the refined semantics .

We finally prove that the Necessitation Rule for conditional beliefs preserves validity:

Let ϕ,ψ ∈ LKCB such that Bψϕ is not valid. Then, there exists a topo-model M =
(X, τ, ν) such that [[Bψϕ]]M 6= X, i.e., Int([[ψ]]→ Cl([[ψ]]∧ Int([[ψ]]→ [[ϕ]]))) 6= X. Now
suppose [[ϕ]] = X. Then,

Int([[ψ]]→ Cl([[ψ]] ∩ Int([[ψ]]→ [[ϕ]]))) = Int((X \ [[ψ]]) ∪ Cl([[ψ]] ∩ Int((X \ [[ψ]]) ∪X)))

= Int((X \ [[ψ]]) ∪ Cl([[ψ]]))

= Int(X)

= X

contradicting [[Bψϕ]] = X. Hence, [[ϕ]] 6= X

D.3. Proof of Theorem 9

The proof of this theorem can be found in [14]. We present it here in order to keep the
paper self-contained. Also our proof is slightly different than that of [14].

Since S4.3 Kripke frames correspond to hereditarily extremally disconnected spaces, we
obtain the completeness by Proposition 2. For soundness, we only need to show that
(.3)-axiom is sound w.r.t. the class of hereditarily extremally disconnected spaces under
the interior semantics (since topological soundness of S4 has already been proven, see
Theorem 1). However, we here show a stronger result: (.3)-axiom characterizes hereditarily
extremally disconnected spaces under the interior semantics.

DEFINITION 12. Given a topological space (X, τ), any two subsets A,B of X are said
to be separated if Cl(A) ∩B = ∅ = Cl(B) ∩A.

PROPOSITION 15 ([18]). For any arbitrary topological space (X, τ), the followings are
equivalent

1. (X, τ) is h.e.d.

2. any two separated subsets of X have disjoint closures.

Therefore (by Proposition 15), a topological space (X, τ) is h.e.d. iff for any A,B ⊆ X
with Cl(A) ∩B = ∅ = Cl(B) ∩A, we have Cl(A) ∩ Cl(B) = ∅.

LEMMA 7. For any topological space (X, τ), Y ⊆ X and U, V ∈ τ , if (U∩Y )∩(V ∩Y ) = ∅
then (U ∩ Cl(Y )) ∩ (V ∩ Cl(Y )) = ∅

Proof. Let (X, τ) be a topological space, Y ⊆ X and U, V ∈ τ . Suppose (U ∩Y )∩ (V ∩
Y ) = ∅ and (U ∩ Cl(Y )) ∩ (V ∩ Cl(Y )) 6= ∅. Thus, there is an x ∈ X such that x ∈ U ,
x ∈ V and x ∈ Cl(Y ).
x ∈ Cl(Y ) iff for all V ′ ∈ τ with x ∈ V ′, V ′ ∩ Y 6= ∅. However, we have that x ∈ U ∩ V

and U ∩ V is an open neighbourhood of x and, by assumption, U ∩ V ∩ Y = ∅ leading to
a contradiction. Therefore, (U ∩ Cl(Y )) ∩ (V ∩ Cl(Y )) = ∅
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PROPOSITION 16. For any topological space (X, τ),

K(Kϕ→ ψ) ∨K(Kψ → ϕ) is valid in (X, τ) iff (X, τ) is h.e.d.
Proof.

(⇒) Let (X, τ) be a topological space, ϕ,ψ ∈ LK . Suppose [[K(Kϕ → ψ) ∨ K(Kψ →
ϕ)]] = X. This means that for any A,B ⊆ X, we have

Int((X \ Int(A)) ∪B) ∪ Int((X \ Int(B)) ∪A) = X and equivalently, we have

Cl(Int(A) ∩ (X \B)) ∩ Cl(Int(B) ∩ (X \A)) = ∅. (12)

We want to show that (X, τ) is h.e.d., i.e., for any subspace (Y, τY ) of (X, τ) and for
every two disjoint open subsets UY , VY of (Y, τ), we have ClY (UY ) ∩ ClY (VY ) = ∅.

Let (Y, τY ) be a subspace of (X, τ) and UY , VY ∈ τY such that UY ∩ VY = ∅. We
know that UY = U ∩ Y and VY = V ∩ Y for some U, V ∈ τ .

Then, by Lemma 7, we have (U ∩Cl(Y ))∩ (V ∩Cl(Y )) = U ∩ V ∩Cl(Y ) = ∅. Thus,

V ∩ Cl(Y ) ⊆ Cl(Y ) \ U ⊆ X \ U (13)

and similarly,

U ∩ Cl(Y ) ⊆ Cl(Y ) \ V ⊆ X \ V (14)

By equation (12), we have Cl(U ∩(X \V ))∩Cl(V ∩(X \U)) = ∅. Hence, by equations
(13) and (14), we have

Cl(U ∩ (Cl(Y ) \ V )) ∩ Cl(V ∩ (Cl(Y ) \ U)) ⊆ Cl(U ∩ (X \ V )) ∩ Cl(V ∩ (X \ U)) = ∅. (15)

We also have

ClY (UY ) = ClY (U ∩ Y ) ⊆ Cl(U ∩ Cl(Y )) (16)

ClY (VY ) = ClY (V ∩ Y ) ⊆ Cl(V ∩ Cl(Y )) (17)

Then,

ClY (UY ) ∩ ClY (VY )
⊆ Cl(U ∩ Cl(Y )) ∩ Cl(V ∩ Cl(Y )) by eqns. (16) and (17)
⊆ Cl(U ∩ (Cl(Y ) \ V )) ∩ Cl(V ∩ (Cl(Y ) \ U)) by eqns. (13) and (14)
= ∅ by eqn. (15)

(⇐) Let (X, τ) be a h.e.d.-space. This boils down showing that for any A,B ⊆ X,

Int((X \ Int(A)) ∪B) ∪ Int((X \ Int(B)) ∪A) = X.

Equivalently, we can show

Cl(Int(A) ∩ (X \B)) ∩ Cl(Int(B) ∩ (X \A)) = ∅.
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By Proposition 15, it suffices to show that

Cl(Int(A)∩(X \B))∩(X \A)∩Int(B)
(1)
= ∅ (2)

= Cl(Int(B)∩(X \A))∩(X \B)∩Int(A).

For equation (1), we have

Cl(Int(A) ∩ (X \B)) ∩ (X \A) ∩ Int(B)

⊆ Cl(Int(A) ∩ (X \B) ∩ Int(B)) ∩ (X \A) (by Lemma 1)

= ∅ (since (X \B) ∩ Int(B) = ∅.)

Proof of equation (2) is analogous to (1). Then, since (X, τ) is h.e.d., by Proposition
15 we have

Cl(Int(A) ∩ (X \B)) ∩ Cl(Int(B) ∩ (X \A)) = ∅, thus

Int((X \ Int(A)) ∪B) ∪ Int((X \ Int(B)) ∪A) = X.

D.4. Proof of Theorem 10

LEMMA 8. For each formula ϕ ∈ LB,

S4.3 ` ϕ∗ iff KD45 ` ϕ,

where ϕ∗ is given in Definition 11, Appendix C.6.
Proof. The proof in analogous to the proof of Lemma 6 in Appendix C.6.

Theorem 10 follows from Lemma 8 in a similar way as Theorem 6 follows from Lemma 6.

D.5. Proof of Proposition 10

We prove this proposition in a similar way as Theorem 8. By Proposition 8, we know that
we can rewrite the axiom of Rational Monotonicity by using only the knowledge modality
K. We also know that the logic of knowledge S4.3 is complete with respect to the class
of reflexive, transitive and linear Kripke frames (called S4.3 frames). We first show that
the axiom of Ratinal Monotonicity written by using only the K modality is a theorem
of S4.3 by using Kripke frames and the relational completeness of S4.3. Then, we can
conclude that this axiom is also valid on all h.e.d. spaces, since S4.3 is sound with respect
to the class of h.e.d. spaces under the interior semantics (See Theorem 9). Recall that the
semantic clauses for knowledge in the interior semantics and in the refined topological
semantics for conditional beliefs and knowledge coincide.

Let (X,R) be a reflexive, transitive and linear Kripke frame, M = (X,R, ν) a model
on (X,R) and x any element of X.

Rational Monotonicity: Bϕ(ψ → θ) ∧ ¬Bϕ¬ψ → Bϕ∧ψθ.
By Proposition 8, we can rewrite the the following main subformulas of the above

formula as

Bϕ(ψ → θ) := K(ϕ→ 〈K〉(ϕ ∧K((ϕ ∧ ψ)→ θ)))

¬Bϕ¬ψ := 〈K〉(ϕ ∧K(ϕ→ 〈K〉(ϕ ∧ ψ)))

Bϕ∧ψθ := K((ϕ ∧ ψ)→ 〈K〉((ϕ ∧ ψ) ∧K((ϕ ∧ ψ)→ θ)))
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Suppose x ∈ ‖Bϕ(ψ → θ)‖ and x ∈ ‖¬Bϕ¬ψ‖ and suppose toward a contradiction
x 6∈ ‖Bϕ∧ψθ‖, i.e.,

x ∈ ‖K(ϕ→ 〈K〉(ϕ ∧K((ϕ ∧ ψ)→ θ)))‖ (18)

x ∈ ‖〈K〉(ϕ ∧K(ϕ→ 〈K〉(ϕ ∧ ψ)))‖ (19)

x 6∈ ‖K((ϕ ∧ ψ)→ 〈K〉((ϕ ∧ ψ) ∧K((ϕ ∧ ψ)→ θ)))‖ (20)

(19) implies that there exist a y0 ∈ R(x) such that

y0 ∈ ‖ϕ ∧K(ϕ→ 〈K〉(ϕ ∧ ψ))‖ (21)

and (20) implies that there exist a x0 ∈ R(x) such that x0 ∈ ‖ϕ∧ψ‖ and x0 6∈ ‖〈K〉((ϕ∧
ψ) ∧K((ϕ ∧ ψ)→ θ))‖, i.e.,

x0 ∈ ‖K(¬ϕ ∨ ¬ψ ∨ 〈K〉(ϕ ∧ ψ ∧ ¬θ))‖. (22)

Since R is reflexive, transitive and linear, we have either x0Ry0 or y0Rx0.

Case 1: xRx0Ry0

Since xRy0 and y0 ∈ ‖ϕ‖, by (18), we obtain y0 ∈ ‖〈K〉(ϕ ∧K((ϕ ∧ ψ)→ θ))‖. This
means there exists a z0 ∈ R(y0) such that z0 ∈ ‖ϕ ∧K((ϕ ∧ ψ) → θ)‖. Since y0Rz0
and z0 ∈ ‖ϕ‖, by (21), z0 ∈ ‖〈K〉(ϕ ∧ ψ)‖. Thus, there exists t0 ∈ R(z0) such that
t0 ∈ ‖ϕ ∧ ψ‖. Since x0Ry0Rz0Rt0, by transitivity, we have x0Rt0. Then, by (22) and
t0 ∈ ‖ϕ∧ψ‖, we obtain t0 ∈ ‖〈K〉(ϕ∧ψ ∧¬θ)‖. This implies, there exists w0 ∈ R(t0)
such that w0 ∈ ‖ϕ ∧ ψ ∧ ¬θ‖, in particular, w0 ∈ ‖ϕ ∧ ψ‖ and w0 ∈ ‖¬θ‖ = X \ ‖θ‖.
However, since z0Rw0 and z0 ∈ ‖K((ϕ∧ψ)→ θ)‖, we obtain w0 ∈ ‖θ‖, contradicting
w0 ∈ ‖¬θ‖.

Case 2: xRy0Rx0

Since xRx0 and x0 ∈ ‖ϕ‖, by (18), we obtain x0 ∈ ‖〈K〉(ϕ ∧K((ϕ ∧ ψ)→ θ))‖. This
means there exists a z0 ∈ R(x0) such that z0 ∈ ‖ϕ∧K((ϕ∧ψ)→ θ)‖. Since y0Rx0Rz0,
by transitivity, y0Rz0. Therefore, since z0 ∈ ‖ϕ‖, by (21), z0 ∈ ‖〈K〉(ϕ ∧ ψ)‖. Thus,
there exists t0 ∈ R(z0) such that t0 ∈ ‖ϕ∧ψ‖. Since x0Rz0Rt0, by transitivity, we have
x0Rt0. Then, by (22) and t0 ∈ ‖ϕ∧ψ‖, we obtain t0 ∈ ‖〈K〉(ϕ∧ψ∧¬θ)‖. This implies,
there exists w0 ∈ R(t0) such that w0 ∈ ‖ϕ∧ ψ ∧¬θ‖, in particular, w0 ∈ ‖ϕ∧ ψ‖ and
w0 ∈ ‖¬θ‖ = X \ ‖θ‖. However, since z0Rw0 and z0 ∈ ‖K((ϕ ∧ ψ) → θ)‖, we obtain
w0 ∈ ‖θ‖, contradicting w0 ∈ ‖¬θ‖.

Therefore, x ∈ ‖K((ϕ∧ψ)→ 〈K〉((ϕ∧ψ)∧K((ϕ∧ψ)→ θ)))‖. We then conclude that
the axiom of Rational Monotonicity written in terms of the knowledge modality is true in
M . Therefore, since (X,R) and the model M on (X,R) have been chosen arbitrarily, the
above formula is valid in all reflexive, transitive and linear Kripke frames. Thus, it is a
theorem of S4.3, since S4.3 is complete with respect to the class of all reflexive, transitive
and linear Kripke frames (see, e.g, [17, 21]). Then, by Theorem 9, we obtain that it is
valid in all h.e.d. spaces in the interior semantics. As the semantic clause of knowledge
in the interior semantics and the semantic clause of knowledge in the refined topological
semantics for conditional beliefs and knowledge are the same, by Proposition 8, the axiom
of Rational Monotonicity is also valid in all h.e.d. spaces under the refined semantics.

D.6. Proof of Theorem 12

The result follows from the validity of the new axioms. The cases for (1-3) are straightfor-
ward. We only prove the validity of (4), (5) and (6). Let M = (X, τ, ν) be a topo-model
and ϕ,ψ, θ and χ be formulas in LKCB. Then,
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4.

[[〈!ϕ〉Kψ]]M = [[Kψ]]Mϕ

= Intτ[[ϕ]]
([[ψ]]Mϕ)

= Intτ[[ϕ]]
([[〈!ϕ〉ψ]]M)

= Int([[ϕ]]M → [[〈!ϕ〉ψ]]M) ∩ [[ϕ]]M

= [[K(ϕ→ 〈!ϕ〉ψ)]]M ∩ [[ϕ]]M

= [[K(ϕ→ 〈!ϕ〉ψ) ∧ ϕ]]M

5.

[[〈!ϕ〉Bθψ]]M

= [[Bθψ]]Mϕ

= Intτ[[ϕ]]
([[θ]]Mϕ → Clτ[[ϕ]]

([[θ]]Mϕ ∩ Intτ[[ϕ]]
([[θ]]Mϕ → [[ψ]]Mϕ)))

= Int([[ϕ]]→ ([[θ]]Mϕ → Clτ[[ϕ]]
([[θ]]Mϕ ∩ Intτ[[ϕ]]

([[θ]]Mϕ → [[ψ]]Mϕ)))) ∩ [[ϕ]]

= Int(([[ϕ]] ∧ [[θ]]Mϕ)→ (Clτ[[ϕ]]
([[θ]]Mϕ ∩ Intτ[[ϕ]]

([[θ]]Mϕ → [[ψ]]Mϕ)))) ∩ [[ϕ]]

= Int(([[ϕ]] ∧ [[θ]]Mϕ)→ (Cl([[θ]]Mϕ ∩ Intτ[[ϕ]]
([[θ]]Mϕ → [[ψ]]Mϕ)) ∩ [[ϕ]])) ∩ [[ϕ]]

= Int([[θ]]Mϕ → (Cl([[θ]]Mϕ ∩ Intτ[[ϕ]]
([[θ]]Mϕ → [[ψ]]Mϕ)) ∩ [[ϕ]])) ∩ [[ϕ]]

= Int([[θ]]Mϕ → (Cl([[θ]]Mϕ ∩ (Int([[ϕ]] ∩ [[θ]]Mϕ)→ [[ψ]]Mϕ) ∩ [[ϕ]]))) ∩ [[ϕ]]

= Int([[〈!ϕ〉θ]]M → (Cl([[〈!ϕ〉θ]]M ∩ (Int([[ϕ]] ∩ [[〈!ϕ〉θ]]M)→ [[〈!ϕ〉ψ]]M) ∩ [[ϕ]]))) ∩ [[ϕ]]

= [[B〈!ϕ〉θ〈!ϕ〉ψ]]M ∩ [[ϕ]]

= [[ϕ ∧B〈!ϕ〉θ〈!ϕ〉ψ]]M

6. We will use the following lemma in the proof of this item.

LEMMA 9. For any topo-model M = (X, τ, ν) and any ϕ,ψ ∈ LKCB,

(Mϕ)ψ =M〈!ϕ〉ψ.

Proof. It suffices to show that the domains of (Mϕ)ψ and M〈!ϕ〉ψ are equivalent as the
corresponding topologies and valuation functions are just the restriction of the initial model
to the updated domains.

By definition of the restricted model,

(Mϕ)ψ = ([[ϕ]]M ∩ [[ψ]]Mϕ , τ[[ϕ]]M∩[[ψ]]Mϕ , ν[[ϕ]]M∩[[ψ]]Mϕ ).

Then we have,

[[ϕ]]M ∩ [[ψ]]Mϕ = [[ϕ]]M ∩ [[〈!ϕ〉ψ]]M = [[ϕ ∧ 〈!ϕ〉ψ]]M = [[〈!ϕ〉ψ]]M.

Therefore, the domains of (Mϕ)ψ and M〈!ϕ〉ψ are equivalent, thus,

(Mϕ)ψ = ([[ϕ]]M ∩ [[ψ]]Mϕ , τ[[ϕ]]M∩[[ψ]]Mϕ , ν[[ϕ]]M∩[[ψ]]Mϕ )

= ([[〈!ϕ〉ψ]]M, τ[[〈!ϕ〉ψ]]M , ν[[〈!ϕ〉ψ]]M)

= M〈!ϕ〉ψ.

Then, the validity of (6) follows:

[[〈!ϕ〉〈!ψ〉χ]]M = [[〈!ψ〉χ]]Mϕ

= [[χ]](Mϕ)ψ

= [[χ]]M〈!ϕ〉ψ by Lemma 9

= [[〈!〈!ϕ〉ψ〉χ]]M.
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