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Abstract. We describe the n-universal model U?(n) of the positive frag-
ment of the intuitionistic propositional calculus IPC. We show that U?(n)
is isomorphic to a generated submodel of U(n) – the n-universal model of
IPC. Using U?(n), we give an alternative proof of Jankov’s theorem stat-
ing that the intermediate logic KC, the logic of the weak law of excluded
middle, is the greatest intermediate logic extending IPC that proves ex-
actly the same positive formulas as IPC.

1 Introduction

In this paper, we use the tools of universal models to study the positive frag-
ment of intuitionistic propositional calculus IPC, i.e., formulas containing only
propositional variables, ∧, ∨ and →. Fragments of intuitionistic logic have been
thoroughly investigated in the literature. For a detailed historic account we refer
to [20]. Among these fragments, the locally finite ones, i.e., the fragments where
for each n ∈ ω there are only finitely many non-equivalent formulas in n vari-
ables, attracted more attention. For example, [13] proved a classic result that
the [∧,→]-fragment of IPC is locally finite. The positive fragment is not locally
finite, and as a result it has not received much attention in the literature. The
major interest for the study of this fragment comes from minimal logic [19], the
sublogic of intuitionistic logic obtained by dropping the axiom ⊥ → ϕ.

Universal models of intuitionistic logic can be seen as duals to free Heyting
algebras. The basic idea underlying the construction of universal models can be
traced back to [9]. Universal models for the full IPC were described in [1,16,21,22];
for a detailed exposition see also [6, Section 8.7], [4, Section 3.2] and [11, Sec-
tion 3]. We refer to [15, Section 3.2.1] for an overview of the history of universal
models. The universal model for the [∧,→]-fragment of IPC is characterized
in [14], [23] and [5]. Universal models for other locally finite fragments of IPC are
discussed1 in [10,17]. In this paper we focus on the [∧,∨,→]-fragment of IPC.

The contribution of the present paper can be listed as follows:

– We describe the n-universal model U?(n) of the positive fragment of IPC
and show that it is isomorphic to a generated submodel of the n-universal
model U(n) of IPC and at the same time is a (positive morphism) quotient
of U(n). We study the properties of U?(n) as well as its connection with the
n-Henkin model H?(n) for the positive fragment of IPC.

1 We note that [10,17] do not discuss universal (exact in their terminology) models of
non-locally finite fragments of IPC.



– Using U?(n), we give an alternative proof of Jankov’s theorem that the in-
termediate logic KC, the logic of the weak law of excluded middle, is the
greatest intermediate logic extending IPC that proves exactly the same pos-
itive formulas as IPC.

The paper is organized as follows: In Section 2, we recall all the basic no-
tions and results used consequently in the paper. We also discuss the top-model
property and its relationship with the positive fragment of IPC. In Section 3,
we define the universal models for the positive fragment of IPC. We also recall
the definition of positive morphisms and show that every finite Kripke model
can be mapped via a positive morphism into the universal model. We also de-
fine positive Jankov-de Jongh formulas and prove an analogue of the Jankov-de
Jongh theorem for these formulas. In Section 4, we discuss the relationship be-
tween the n-Henkin models and the n-universal models of the positive fragment
and in Section 5 we give an alternative proof of Jankov-de Jongh and Jankov’s
theorems. In Section 6 we summarize obtained results and discuss some future
research directions.

2 Preliminaries

2.1 Basic notations

In this section, we briefly recall the relational semantics for the intuitionistic
propositional calculus IPC. For a detailed study of IPC we refer to [6].

Definition 1 (Kripke frames and models) A Kripke frame is a pair F =
(W,R) where W is a set and R is a partial order on it. A Kripke model is a
triple M = (W,R, V ) where (W,R) is a Kripke frame and V is a partial map
V : Prop→P(W ) (where Prop is the set of propositional variables and P(W )
is the powerset of W ) such that for any w,w′ ∈ W we have that w ∈ V (p) and
wRw′ imply w′ ∈ V (p).

The valuation can be extended to all formulas in a standard way. We call the
upward closed subsets of W (with respect to R) upsets. The set of all upsets of
W is denoted by Up(W ). As usual w ∈ V (ϕ) will be denoted as w |= ϕ.

Definition 2 (General frames)

1. A general frame is a triple F = (W,R,P), where (W,R) is a Kripke frame
and P is a family of upsets containing ∅ and closed under ∩,∪ and the
following operation ⇒: for every X,Y ⊆W ,

X ⇒ Y = {x ∈W : ∀y ∈W (xRy ∧ y ∈ X → y ∈ Y )}.2

Elements of the set P are called admissible sets.
2. A general frame F = (W,R,P) is called refined if for any x, y ∈W ,

2 In fact, ⇒ is just the Heyting implication of the Heyting algebra of all upsets of W .



∀X ∈ P(x ∈ X → y ∈ X)⇒ xRy.

3. F is called compact, if for any families X ⊆ P and Y ⊆ {W\X : X ∈ P},
for which X ∪Y has the finite intersection property (i.e., finite intersections
of the elements of X ∪ Y are non-empty), we have

⋂
(X ∪ Y) 6= ∅.

4. A general frame F is called a descriptive frame if it is refined and compact.3

By an n-formula we mean a formula built from p1, . . . , pn. An n-model is a
model where Prop = {p1, . . . , pn}. Next we recall some frame and model con-
structions that will be used consequently.

Definition 3 (Generated subframe and generated submodel)

1. For any Kripke frame F = (W,R) and X ⊆W , the subframe of F generated
by X is FX = (R(X), R′), where R(X) = {w′ ∈W : wRw′ for some w ∈ X}
and R′ is the restriction of R to R(X). If X = {w}, then we denote FX by
Fw and R(X) by R(w).

2. For any Kripke frame F = (W,R), any valuation V on F and X ⊆ W , the
submodel of M = (F, V ) generated by X is MX = (FX , V

′), where V ′ is the
restriction of V to R(X). If X is a singleton {w}, then we denote MX by
Mw.

3. For any general frame F = (W,R,P) and any X ⊆ W , the (general)
subframe of F generated by X is FX = (R(X), R′,Q), where (R(X), R′)
is the subframe of (W,R) generated by X, and Q = {U ∩R(X) : U ∈ P}.

Let F = (W,R,P) be a descriptive frame and letW ′ ∈ P. Let G = (W ′, R′,Q)
denote a general frame such that R′ is the restriction of R to W ′ and Q =
{U ∩W ′ : U ∈ P}. For a proof of the next lemma we refer to, e.g., [23]. In terms
of Esakia spaces this lemma states that a restriction of the order and topology
of an Esakia space to a clopen upset in it yields again an Esakia space.

Lemma 4 Let F = (W,R,P) be a descriptive frame and let W ′ ∈ P. Then
G = (W ′, R′,Q) is a descriptive frame.

Let F = (W,R,P) be a descriptive frame. A descriptive (or an admissible)
valuation on F is a map V : Prop → P. A pair (F, V ) is a descriptive model
is F is a descriptive frame and V a descriptive valuation on F. The truth and
validity of formulas in Kripke and descriptive frames and models are defined in
a standard way. Next we recall the definition of p-morphisms.

3 Descriptive general frames are essentially the same as Esakia spaces (see e.g., [4,
Section 2.3]). This topological perspective explains why compact general frames are
called “compact” (the corresponding topology is compact). This also explains why
Q in Definition 3(3) is defined this way.



Definition 5 (p-morphism)

1. Let F = (W,R) and F′ = (W ′, R′) be Kripke frames. A map f : W →W ′ is
called a p-morphism from F to F′ if

– wRw′ implies f(w)R′f(w′) for any w,w′ ∈W ;
– f(w)R′v′ implies ∃v ∈W (wRv ∧ f(v) = v′).

2. Let F = (W,R,P) and G = (V, S,Q) be general frames. We call a Kripke
frame p-morphism f of (W,R) to (V, S) a (general frame)p-morphism of F
to G, if

∀X ∈ Q, f−1(X) ∈ P.

3. A p-morphism f from M = (W,R, V ) to M′ = (W ′, R′, V ′) is a p-morphism
from (W,R) to (W ′, R′) such that w ∈ V (p) ⇔ f(w) ∈ V ′(p) for every p ∈
Prop. For models based on general frames, we also require the condition for
p-morphisms between general frames. For n-models, the definition is similar.

The extra condition on p-morphisms in Definition 5.2 is again best explained
by viewing descriptive frames as Esakia spaces. This condition is then just equiv-
alent to continuity.

Next we recall the definition of n-Henkin model, which is the canonical model
for the n-variable fragment of IPC.

Definition 6 (n-Henkin model)

1. An n-theory is a set of n-formulas closed under deduction in IPC.
2. A set of formulas Γ has the disjunction property, if for all n-formulas ϕ,ψ,

we have that ϕ ∨ ψ ∈ Γ implies ϕ ∈ Γ or ψ ∈ Γ .
3. The n-canonical model or n-Henkin model H(n) = (Wn, Rn, Vn) is a model

where Wn consists of all consistent n-theories with the disjunction property,
Rn is the subset relation, and Γ ∈ Vn(p) iff p ∈ Γ .

2.2 The n-universal model for the full language of IPC

In this section we recall the definition of the n-universal model for the full lan-
guage of IPC, state its main properties, recall the definition of the de Jongh
formulas and the statement of the Jankov-de Jongh theorem. Proofs of all the
results stated here can be found in [4, Chapter 3], [6, Section 8.6] and [11, Sec-
tion 3].

In the following, we use the terminology color to denote the valuation at
a world in an n-model. In general, an n-color (n can be omitted if it is clear
from the context) is a sequence c1 . . . cn of 0’s and 1’s. The set of all n-colors is
denoted by Cn. We define the order on colors as follows:

c1 . . . cn ≤ c′1 . . . c′n iff ci ≤ c′i, for 1 ≤ i ≤ n.



We write c1 . . . cn < c′1 . . . c
′
n if c1 . . . cn ≤ c′1 . . . c′n but c1 . . . cn 6= c′1 . . . c

′
n.

A coloring on F = (W,R) is a map col : W → Cn satisfying uRv ⇒ col(u) ≤
col(v). It is easy to see that colorings and valuations are in 1-1 correspondence.
Given M = (W,R, V ), we can reconstruct the valuation by the coloring colV :
W → Cn, where colV (w) = c1 . . . cn, and for each 1 ≤ i ≤ n we have ci = 1 if
w ∈ V (pi), and 0 otherwise. We call colV (w) the color of w under V .

In any frame F = (W,R), we say that X ⊆ W totally covers w (notation:
w ≺ X), if X is the set of all immediate successors of w. When X = {v}, we
write w ≺ v. A set X ⊆ W is called an anti-chain if |X| > 1 and for every
w, v ∈ X, w 6= v implies that ¬(wRv) and ¬(vRw). If uRv we say that u is
under v.

We can now inductively define the n-universal model U(n) by cumulative
layers U(n)k for k ∈ ω, where each layer contains all the points w such that the
longest chain starting from w has length k, omitting n if it is clear from the
context.

Definition 7 (n-universal model)

– The first layer U(n)1 consists of 2n nodes with the 2n different n-colors under
the discrete ordering.

– For k ≥ 1, under each element w in U(n)k, for each color s < col(w), we
put a new node v in U(n)k+1 such that v ≺ w with col(v) = s, and we take
the reflexive transitive closure of the ordering.

– For k ≥ 1, under any finite anti-chain X with at least one element in U(n)k

and any color s with s ≤ col(w) for all w ∈ X, we put a new element v in
U(n)k+1 such that col(v) = s and v ≺ X and we take the reflexive transitive
closure of the ordering.

The whole model U(n) is the union of its layers.

It is easy to see from the construction that every U(n)k is finite. As a conse-
quence, the generated submodel U(n)w is finite for any node w in U(n).

We now state some properties of the n-universal model. For a proof of the next
lemma, we refer to, e.g., [6, Section 8.6], [23, Theorem 3.2.3] and [11, Lemma 11].

Lemma 8 Let M be a finite rooted Kripke n-model. Then there exist a unique
w ∈ U(n) and a unique p-morphism f mapping M onto U(n)w.

The next theorem shows that U(n) is a counter-model to every n-formula not
provable in IPC. This justifies the name “universal model” for U(n). For a proof,
we refer to, e.g., [23, Theorem 3.2.4] and [11, Theorem 13].

Theorem 9

1. For any n-formula ϕ we have U(n) |= ϕ iff `IPC ϕ.
2. For any n-formulas ϕ and ψ, and for all w ∈ U(n) we have

(U(n), w |= ϕ⇒ U(n), w |= ψ) iff ϕ `IPC ψ.



In the following, we recall the definition of de Jongh formulas for the full lan-
guage of IPC and the fact that these formulas define point-generated submodels
of universal models.

For any node w in an n-model M, if w ≺ {w1, . . . , wm}, then we let

prop(w) = {pi|w |= pi, 1 ≤ i ≤ n},
notprop(w) = {qi|w 2 qi, 1 ≤ i ≤ n},

newprop(w) = {rj |w 2 rj and wi |= rj for each 1 ≤ i ≤ m, for 1 ≤ j ≤ n}.

Here newprop(w) denotes the set of atoms which are “about to be true in w”,
i.e., the atoms that are false in w but are true in its all proper successors. For
the definition of a depth of a point in a frame we refer to [6, p. 43] or [4, 3.1.9].
Roughly speaking, a point w of a universal model has depth k if belongs to the
k-th layer of U(n). The depth of a point w will be denoted by d(w).

Definition 10 Let w be a point in U(n). We inductively define the correspond-
ing de Jongh formulas ϕw and ψw:

If d(w) = 1, then let

ϕw =
∧

prop(w) ∧
∧
{¬pk|pk ∈ notprop(w), 1 ≤ k ≤ n},

and

ψw = ¬ϕw.

If d(w) > 1, and {w1, . . . , wm} is the set of all immediate successors of w, then
define

ϕw =
∧

prop(w) ∧ (
∨

newprop(w) ∨
m∨
i=1

ψwi
→

m∨
i=1

ϕwi
),

and

ψw = ϕw →
m∨
i=1

ϕwi .

The most important properties of the de Jongh formulas are recalled in the
following proposition. For a proof, we refer to [4, Theorem 3.3.2].

Proposition 11 For every w ∈ U(n), we have:

– V (ϕw) = R(w),
– V (ψw) = U(n)\R−1(w), where R−1(w) = {w′ ∈ U(n) : w′Rw}.

Now we state more properties of the universal model and de Jongh formulas.
For a proof of the next proposition we refer to [11, Corollary 19]. We let

Cnn(ϕ) = {ψ : ψ is an n-formula such that `IPC ϕ→ ψ},
Thn(M, w) = {ϕ : ϕ is an n-formula such that M, w |= ϕ},

We will omit n if it is clear from the context.



Proposition 12 For any point w in U(n), Thn(U(n), w) = Cnn(ϕw).

The next lemma states that U(n)w is isomorphic to the submodel of H(n)
generated by the theory axiomatized by the de Jongh formula of w. For a proof,
we refer to [11, Lemma 20].

Lemma 13 For any w ∈ U(n), let ϕw be the de Jongh formula of w, then we
have that H(n)Cn(ϕw) is isomorphic to U(n)w.

Let Upper(M) denote the submodel M{w∈W |d(w)<ω} generated by all the
points of finite depth. Intuitively, Upper(M) is the “upper” part of M. It can
be shown that the n-universal model is isomorphic to the upper part of the n-
Henkin model, i.e., to Upper(H(n)). For a proof, we refer to, e.g., [4, Theorem
3.2.9] and [11, Theorem 39].

Theorem 14 Upper(H(n)) is isomorphic to U(n).

The following result follows from Proposition 11 and Lemma 13. For a proof
see [11, Corollary 21].

Proposition 15 Let M be any model and w be a point in U(n) = (W,R, V ).
For any point x in M, if M, x |= ϕw, then there exists a unique point v satisfying
M, x |= ϕv,M, x 2 ϕv1 , . . . ,M, x 2 ϕvm , where v ≺ {v1, . . . , vm}, and wRv.

In the following we state the Jankov-de Jongh theorem for the full language
of IPC. For a proof we refer to [4, Theorem 3.3.3] and [11, Theorem 26].

Theorem 16 (Jankov-de Jongh theorem for IPC) Let G be a descriptive
frame and w ∈ U(n) for some n ∈ ω. Then G 2 ψw iff there is an n-valuation V
on G such that U(n)w is a p-morphic image of a generated submodel of (G, V ).

Notice that for each finite rooted frame F there is a valuation V such that
(F, V ) is isomorphic to U(n)w for some n ∈ ω and w ∈ U(n). (For this it is
sufficient to introduce a new propositional variable ps for each s in F and let
V (ps) = R(s).) So the above theorem applies to any finite rooted F.

2.3 The top-model property

The positive fragment of IPC consists of the formulas constructed only by ∧,∨,→.
We denote this language by L∧,∨,→. Formulas in this fragment will be called
positive formulas4. For the other fragments of IPC the notation is similar.

By replacing every occurrence of ⊥ by ¬(p → p), every formula is IPC-
equivalent to a ⊥-free formula. For simplicity of discussion, we restrict our at-
tention to ⊥-free formulas (i.e. formulas in L∧,∨,→,¬) only.

Definition 17 (Top model) A Kripke model M = (W,R, V ) is called a top
model, if it has a node t ∈W such that:

4 Notice that some authors, e.g., [6] call such formulas negative-free.



– t is a successor of all nodes, i.e., we have wRt for each w ∈W ;
– all propositional variables are true in t.

The node t is called the top point of M.

Definition 18 (Top-model property) We say that a formula ϕ has the top-
model property, if for all Kripke models M = (W,R, V ), all w ∈ W we have
M, w |= ϕ iff M+, w |= ϕ, where M+ = (W+, R+, V +) is obtained by adding a
top point t to M.

The next proposition states that there is a procedure which with any intu-
itionistic formula ϕ associates a positive formula ϕ∗ or ⊥ equivalent to ϕ over
top models. The algorithm describing how to compute ϕ∗ given ϕ is provided
in [12, Theorem 5].

Proposition 19 There is an algorithm which transforms any formula ϕ in
L∧,∨,→,¬ into a formula ϕ∗ in L∧,∨,→ ∪ {⊥} such that for any top model M
and any node w in M, we have M, w |= ϕ ↔ ϕ∗. Furthermore if ϕ∗ 6= ⊥ and
ψ∗ 6= ⊥ then (ϕ→ ψ)∗ = ϕ∗ → ψ∗, (ϕ∧ψ)∗ = ϕ∗ ∧ψ∗ and (ϕ∨ψ)∗ = ϕ∗ ∨ψ∗.

3 The universal models for the positive fragment of IPC

3.1 The universal model

We will now proceed by defining the n-universal model, U?(n), for the positive
fragment of IPC. This model closely resembles the n-universal model for IPC:
it is a generated submodel of it, and as we shall see below, is also a positive
morphism quotient (see Definition 22 and Lemma 27). We now define U?(n) =
(U?(n), R?, V ?) inductively in a similar way as we defined U(n).

Definition 20

– The first layer U?(n)1 consists of 2n− 1 nodes with all the different n-colors
— excluding the color 1 . . . 1 — under the discrete ordering.

– For k ≥ 1, under each element w in U?(n)k, for each color s < col(w), we
put a new node v in U?(n)k+1 such that v ≺ w with col(v) = s, and we take
the reflexive transitive closure of the ordering.

– For k ≥ 1, under any finite anti-chain X with at least one element in U?(n)k

and any color s with s ≤ col(w) for all w ∈ X, we put a new element v in
U?(n)k+1 such that col(v) = s and v ≺ X, and we take the reflexive transitive
closure of the ordering.

The whole model U?(n) is the union of its layers.

Notice that U?(1) is very different from the Rieger-Nishimura ladder U(1).
It is well known that U(1) is infinite while U?(1) consists of a single point that
does not satisfy p. The only formulas satisfied at this point are the classical
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Fig. 1. The first two layers of U?(2)

tautologies. For n > 1 we have that U?(n) is infinite. Below we present the first
two layers of U?(2). The third layer consists of 72 points.

It is known (see e.g., [4, Theorem 3.2.19]) that U(n), where n ≥ 2, has
uncountably many upsets, and therefore, as our language is countable, not all of
them are definable. A similar result holds for U?(n).

Lemma 21 There are uncountably many upsets in U?(n) for n ≥ 2. Thus, not
all upsets of U?(n) are definable.

Proof. We prove the result for n = 2. The case n > 2 follows since the underlying
frame of U?(2) is a generated subframe of the underlying frame of U?(n) for
n ≥ 2. We show that U?(2) has a countable anti-chain. As every subset of this
anti-chain generates a unique upset, the latter implies that there are 2ℵ0 upsets
of U?(2). This, in turn, means that not all upsets of U?(2) are definable.

The proof proceeds similarly to the proof that U(2) has a countable anti-chain
(see e.g., [4, Theorem 3.2.19(2)]). The points of the first layer of U?(2) are of the
colors 01, 00 and 10. It is easy to see that we can embed the Rieger-Nishimura
ladder into the submodel of U?(2) that contains the points that are not below
the 10-point. Hence there exists a countable chain of points below the 00-point,
let us call them an (where anR

?am for n ≥ m), such that the upsets they
generate do not contain the 10-point. This means that the 10-point and an form
an anti-chain for each n ∈ ω. Therefore for each n ∈ ω there exists a point bn
totally covered by an and the 10-point. We will now argue that {bn : n ∈ ω} is a
countable anti-chain. Indeed, let m 6= n. We have that ¬(anR

?bm), which implies
that ¬(bnR

?bm) by the definition of bn. By a symmetric argument, we also have
¬(amR

?bn) and thus ¬(bmR
?bn). This concludes the proof of the lemma.

ut

3.2 Positive morphisms

We will now recall the definition of positive morphisms between descriptive
frames and models. In [6, Section 9.1] these morphisms are called dense subreduc-
tions. Positive morphisms are closely related to strong partial Esakia morphisms
of [2]. However, strong Esakia morphisms satisfy additional conditions which



guarantee a duality between these morphisms and (∧,∨,→)-homomorphisms
between Heyting algebras.

Given two intuitionistic models (W,R, V ) and (W ′, R′, V ′) and a partial map
f : W →W ′, for each X ⊆W ′ we let f∗(X) = W \R−1(f−1[W ′ \X]).

Definition 22 Let (W,R, V ) and (W ′, R′, V ′) be models. A positive morphism
is a partial map f : (W,R, V )→ (W ′, R′, V ′) such that:

1. If w, v ∈ dom(f) and wRv then f(w)R′f(v) (forth condition);
2. If w ∈ dom(f) and f(w)R′v, then there exists some u ∈ dom(f) such that

f(u) = v and wRu (back condition);
3. If w ∈ dom(f) and vRw, then v ∈ dom(f);
4. For every p ∈ Prop we have V (p) = f∗(V ′(p)).

The last condition of Definition 22 guarantees that f∗(V ′(p)) is an admissi-
ble upset. For descriptive frames (W,R,P) and (W ′, R′,P ′′), the corresponding
condition is: U ∈ P ′ implies f∗(U) ∈ P, which ensures that f∗ is a well-defined
map between P ′ and P. In fact, conditions (1)-(2) ensure that it preserves ∧
and →, and condition (3) yields that it also preserves ∨, so f∗ is a (∧,∨,→)-
homomorphism.

Lemma 23 Let f : W →W ′ be a positive morphism. If X ⊆W ′ is an upset of
W ′, then f∗(X) = f−1[X] ∪ (W \ dom(f)).

Proof. Let X be an upset of W ′. Then W ′ \ X is a downset of W ′. By Def-
inition 22(3), w ∈ dom(f) and u ∈ R−1(w) imply u ∈ dom(f) and Defini-
tion 22(1) yields f(u)Rf(w). Since W ′ \ X is a downset, w ∈ f−1[W ′ \ X]
implies u ∈ f−1[W ′ \X]. Thus, R−1(f−1[W ′ \X]) = f−1[W ′ \X].

Therefore, we have that f∗(X) = W \R−1(f−1[W ′ \X]) = W \ f−1[W ′ \X].
But W \ f−1[W ′ \X] = f−1[X] ∪ (W \ dom(f)), which finishes the proof of the
lemma. ut

We will now give a more convenient characterization of positive morphisms.

Lemma 24 A partial function f : (W,R, V ) → (W ′, R′, V ′) is a positive mor-
phism iff the following conditions hold:

1∗. If w, v ∈ dom(f) and wRv then f(w)R′f(v);
2∗. If w ∈ dom(f) and f(w)R′v then there exists some u ∈ dom(f) such that

f(u) = v and wRu;
3∗. If w ∈ dom(f) and vRw, then v ∈ dom(f);
4∗. For every p ∈ Prop and w ∈ dom(f) we have w ∈ V (p) ⇐⇒ f(w) ∈ V ′(p);
5∗. dom(f) ⊇ {w ∈W : ∃p ∈ Prop w /∈ V (p)}.

Proof. We need to prove that under the assumptions (1)-(3) of the definition of
positive morphisms, (4) is equivalent to (4∗) and (5∗).

Let us assume (4∗) and (5∗). By Lemma 23 we have that f∗(V ′(p)) =
f−1[V ′(p)] ∪W \ dom(f). By (4∗) we have that f−1[V ′(p)] = V (p) ∩ dom(f).



We also have that (5∗) implies W \ dom(f) ⊆ V (p) since every element out-
side the domain of f satisfies all propositional variables. Therefore V (p) =
(V (p) ∩ dom(f)) ∪W \ dom(f) and thus f∗(V ′(p)) = V (p).

For the other direction assume (4). Then w ∈ dom(f) and f−1[V ′(p)] ∪W \
dom(f) = V (p) yield that w ∈ V (p) iff f(w) ∈ V ′(p). So (4∗) holds. Also, for
any p ∈ Prop we have that W \ dom(f) ⊆ V (p) and hence all elements outside
the domain of f satisfy all propositional variables. So (5∗) holds. ut

From now on, we will use this alternative characterization of positive mor-
phisms. Obviously, every p-morphism is a positive morphism. Moreover, notice
that if for all w ∈ W , there is some propositional variable p such that p is not
satisfied in w, then the positive morphisms are p-morphisms. Finally, it is easy
to check that the composition of two positive morphisms is a positive morphism.

The essential difference between p-morphisms and positive morphisms is that
the latter are partial maps – domains of such maps may not contain worlds that
satisfy all propositional variables. The reason why we can ignore these worlds
when dealing with the positive fragment of IPC lies in a simple fact (which can
be easily checked by induction) that in such worlds all positive formulas are true.
Next we show that positive morphisms preserve positive formulas.

Proposition 25 Let f : (W,R, V )→ (W ′, R′, V ′) be a positive morphism. Then
for every positive formula ϕ and w ∈ dom(f) we have

(W,R, V ), w |= ϕ iff (W ′, R′, V ′), f(w) |= ϕ.

Proof. We proceed by induction on the complexity of ϕ. The base case, i.e. when
ϕ is a propositional variable, follows directly from Lemma 24(4). Now suppose
that f preserves the positive formulas ϕ and ψ. That f also preserves ϕ∨ψ and
ϕ ∧ ψ trivially follows from the semantic definitions of the connectives and the
induction hypothesis.

Let us now assume that (W,R, V ), w |= ϕ→ ψ. Let f(w)R′v and assume that
(W ′, R′, V ′), v |= ϕ. Then by the definition of the positive morphisms, there is
some u ∈ dom(f) such that f(u) = v and wRu. By the induction hypothesis,
we have (W,R, V ), u |= ϕ. Hence (W,R, V ), u |= ψ, which by the induction
hypothesis gives us that (W ′, R′, V ′), f(u) |= ψ. So (W ′, R′, V ′), f(w) |= ϕ→ ψ.

For the converse direction, let us assume that (W ′, R′, V ′), f(w) |= ϕ → ψ
and for some u such that wRu we have (W,R, V ), u |= ϕ. If u ∈ dom(f), then
the induction hypothesis readily implies that (W,R, V ), u |= ψ. If u /∈ dom(f),
then by Lemma 24(5) for every propositional variable p we have that u ∈ V (p),
which implies that (W,R, V ), u |= ψ, since all positive formulas are true in such
worlds. ut

The next corollary is a consequence of the proposition above.

Corollary 26 Every formula in L∧,∨,→ ∪ {⊥} has the top-model property.

Proof. Let M = (W,R, V ) be an arbitrary Kripke model. We define a partial
map f : M+ →M such that it is the identity on all the elements of W and it is



undefined in the top node. It is easy to see that f is a positive morphism. The
result now follows directly from Proposition 25 for positive formulas. Finally,
notice that for ⊥ the result is trivially true. ut

By the construction of the two universal models, we can see that U?(n) con-
tains all the points in U(n) which are not below the node where all propo-
sitional variables are true. Therefore, it follows that U?(n) is isomorphic to
N = (N,R, V ) with N = {w ∈ U(n) : w? /∈ R(w)}, a generated submodel
of U(n), where w? is the greatest node of U(n) such that col(w?)i = 1 for every
i ≤ n. By Corollary 26, (U?(n))+ satisfies the same positive formulas as U?(n).
Again, by the construction of the models, it follows that (U?(n))+ is (isomorphic
to) a generated submodel of U(n), whose domain consists of the elements of U(n)
whose only successor of depth 1 satisfies all propositional variables. Let us call
this submodel M(n), and let G : (U?(n))+ →M(n) be this isomorphism.

The models U?(n) and (U?(n))+ can be viewed as two different ways of
describing the universal models of the positive fragment of IPC. In the first
approach, there are IPC-satisfiable positive formulas (for example p1 ∧ . . . ∧ pn)
that are satisfied nowhere in U?(n) and hence are indistinguishable from ⊥ in
this model. This is not the case in U(n), where every IPC-satisfiable formula is
satisfied in some world. In (U?(n))+ all positive formulas are satisfied at the
topmost point, and hence this model can distinguish positive formulas from ⊥.
As we will see below, every finite rooted model can be mapped onto a generated
submodel of U?(n) via a positive morphism, which is not the case for (U?(n))+.
On the other hand, for every finite rooted model M, the model M+ can be
mapped onto a generated submodel of (U?(n))+ via a p-morphism.

Lemma 27 There exists a surjective positive morphism F : U(n)→ U?(n) with
dom(F ) = {w ∈ U(n) : ∃p ∈ Prop(w /∈ V (p))}, and for every w ∈ dom(F ) we
have that the restriction of F to U(n)w maps U(n)w onto U?(n)F (w).

Proof. We will define F by induction on the depth of the elements of U(n) in
such a way that the color of F (w) is the same as the color of w. If d(w) = 1,
then F (w) = w′, where d(w′) = 1 and col(w) = col(w′). Let us now assume
that F is defined for the elements of U(n) of depth m. Let d(w) = m + 1 and
let us assume that w ≺ {w1, . . . , wk}. Let A ⊆ F [{w1, . . . , wk}] be the set of
the R-minimal elements of F [{w1, . . . , wk}]. Then A is finite as it is a subset
of a finite set. If A is empty then let F (w) be the element of U?(n) of depth 1
with the same color as w. If A = {u} and u has the same color as w, then let
F (w) = u. Otherwise, by the construction of U?(n), there is a unique v ≺ A (by
the induction hypothesis for F ) with the same color as w and we let F (w) = v.

It remains to show that F is a surjective positive morphism, and that for
every w ∈ dom(F ), the restriction of F to U(n)w maps U(n)w onto U?(n)F (w).

That w ∈ V (p) if an only if F (w) ∈ V ?(p) follows from the construction of F .
It is also easy to see by the above construction that if uRw then F (u)R?F (w).
The surjectivity of F can be shown by viewing U?(n) as the generated submodel
N of U(n) presented above. Then it is routine to check that F is the identity
function on N .



Next we show that the restriction of F to U(n)w maps U(n)w onto U?(n)F (w).
Since all elements of U?(n) have finite depth, it suffices to show that for all
u ∈ dom(F ), all the immediate successors of F (u) are images of successors of
u. Indeed, from the definition of F , the immediate successors of F (w) form a
subset of F [{w1, . . . , wk}], where w1, . . . , wk are the only immediate successors
of w. Therefore, by an easy induction on immediate successors we can show that
every element in U?(n)F (w) is the image of some element in U(n)w.

Finally, the back clause that F (w)R?v implies the existence of some u with
wRu and such that F (u) = v follows from the fact that the restriction of F to
U(n)w maps U(n)w onto U?(n)F (w). ut

In the proof of Lemma 27 the map F is defined explicitly. An alternative
proof of this lemma can be obtained by describing the same map F indirectly
in the following way. Let us fix the injective partial map i : (U?(n))+ → U?(n)
between the two versions of the universal models to be the identity on U?(n)
and undefined in the top node of (U?(n))+ (similarly to the positive morphism
defined in the proof of Corollary 26). Moreover, by Proposition 25, for every w ∈
U(n) we have that w satisfies the same positive formulas in U(n) and (U(n))+.
Furthermore, by Lemma 8, there exists a unique p-morphism fw from ((U(n))+)w
to U(n), and in particular toM(n) (see the paragraph after Corollary 26), since
M(n) is a top model. By the uniqueness, we have that f =

⋃
w∈U(n) fw is a

p-morphism from (U(n))+ onto M(n). Then we can define F = i ◦ G−1 ◦ f
(where G is as in the paragraph after Corollary 26). This function is a positive
morphism since it is a composition of positive morphisms. It is onto because f
coversM(n) and G−1 and i are onto. Finally, since f was a union of maps from
((U(n))+)w onto U(n)f(w), it follows that the restriction of F to U(n)w maps
U(n)w onto U?(n)F (w).

Lemma 27 gives analogues of Lemma 8 and Theorem 9 for positive mor-
phisms.

Lemma 28 Let M = (W,R, V ) be a finite rooted intuitionistic n-model such
that there exist x ∈ W and p ∈ Prop with x /∈ V (p). Then there exist a unique
w ∈ U?(n) and a unique positive morphism f mapping M onto U?(n)w.

Proof. Given any finite rooted intuitionistic n-model M, Lemma 8 implies that
there is a unique w ∈ U(n) and a p-morphism f from M onto U(n)w. By taking
the F from Lemma 27, it follows that F ◦ f (with domain {x ∈ W : f(x) ∈
dom(F )}) is a positive morphism (as a composition of positive morphisms) of
M onto U?(n)F (w). Finally, since there exist x ∈ W and p ∈ Prop such that
x /∈ V (p) it follows that dom(F ◦ f) 6= ∅.

To show the uniqueness, we first observe that given two positive morphisms
g1, g2 from M to U?(n), we have

dom(g1) = dom(g2) = {x ∈W : ∃p ∈ Prop(x /∈ V (p))},

because there do not exist points of U?(n) that satisfy all p ∈ Prop. Notice
that when restricted to dom(g1) both g1 and g2 become p-morphisms. Thus, if



g1 6= g2, then there exist two different p-morphisms (g1 and g2) from dom(g1)
to U(n) (since U?(n) is a generated subframe of U(n)), contradicting Lemma
8. ut

The next theorem shows that U?(n) is indeed a “universal model” for all
positive formulas.

Theorem 29 For every positive n-formula ϕ, U?(n) |= ϕ iff `IPC ϕ.

Proof. The right to left direction is trivial. For the converse, let us assume that
0IPC ϕ, i.e. there is a finite rooted model M such that M, x 2 ϕ, where x is
the root of M. Since ϕ is positive, we have that x does not satisfy all propo-
sitional variables. Then, by Lemma 28, there exists a unique w ∈ U?(n) and a
positive morphism f from M onto U?(n)w. By Proposition 25, it follows that
U?(n), f(x) 2 ϕ. ut

3.3 The Jankov-de Jongh formulas

We will now define the de Jongh formulas for the positive fragment of IPC (for
the description of the de Jongh formulas for the [∧,→]-fragment of IPC, see [5]).
These will be used in the next section for proving Jankov’s theorem. We will
present two ways of constructing the formulas: one that mirrors the construction
of the standard de Jongh formulas, and one that derives the formulas through
the procedure cited in Section 2.3. For w ∈ U?(n) let prop(w),newprop(w) and
notprop(w) be defined as for the elements of U(n).

Definition 30 Let w ∈ U?(n). We will define the formulas ϕ?
w and ψ?

w by
induction on the depth of w:

– If d(w) = 1, then define

ϕ?
w =

∧
prop(w) ∧ (

∨
notprop(w)→

∧
notprop(w))

and

ψ?
w = ϕ?

w →
∧
i∈n

pi.

– If d(w) > 1, then let w ≺ {w1, . . . , wr} and define

ϕ?
w =

∧
prop(w) ∧ (

∨
newprop(w) ∨

∨
i≤r

ψ?
wi
→
∨
i≤r

ϕ?
wi

)

and

ψ?
w = ϕ?

w →
∨
i≤r

ϕ?
wi
.



The construction is motivated by the following observation: As we noted
(U?(n))+ is a generated submodel of U?(n). Using the original de Jongh formula
ϕw, for w the greatest element of (U?(n))+, we can define the de Jongh formulas
from depth 2, using exactly the same construction as for the standard de Jongh
formulas. Only now there is no need to take into consideration the ψw formula.
This is because every positive formula is satisfied in a world that satisfies all
propositional variables, and hence all positive formulas are true in w.

The above leads to the second way of constructing the de Jongh formulas for
U?(n).

Definition 31 For every w ∈ U?(n), we define ϕ?
w and ψ?

w as [ϕG(w)]
∗ and

[ψG(w)]
∗ respectively, where [·]∗ is the operation discussed in Proposition 19.

The next proposition shows that the two definitions are in fact equivalent.

Proposition 32 The formulas defined in Definitions 30 and 31 are equivalent.

Proof. The proof is by induction on the depth of w. For d(w) = 1, we note that
[ϕG(w)]

∗ is
∧

prop(w) ∧ (
∨

notprop(w)→
∧

prop(w) ∧
∧

notprop(w)), which is
clearly equivalent to

∧
prop(w) ∧ (

∨
notprop(w) →

∧
notprop(w)). So ϕ?

w is
equivalent to [ϕG(w)]

∗. Next we show that ψ?
w is equivalent to [ψG(w)]

∗. Since
G(w) is of depth 2 and its only successor is the node w? where all propositional
variables are true, by Proposition 19, [ψG(w)]

∗ = [ϕG(w) → ϕw? ]∗ = [ϕG(w)]
∗ →

[ϕw? ]∗ = [ϕG(w)]
∗ →

∧
i∈n pi, which is equivalent to ψ?

w = ϕ?
w →

∧
i∈n pi.

For d(w) = k + 1, since ϕ and ψ formulas are inductively constructed in the
same manner (in Definitions 10 and 30), by the induction hypothesis and the
preservation of operations mentioned in Proposition 19, the equivalence follows
immediately. ut

We can now show that these formulas are indeed “positive analogues” of the
standard de Jongh formulas (see Proposition 11).

Proposition 33 For every w ∈ U?(n), we have:

– V ?(ϕw) = R?(w);
– V ?(ψw) = U?(n) \ (R?)−1(w).

Proof. By Proposition 19 we have that any formula σ is equivalent to [σ]∗ in the
top models. Hence ϕ?

w is satisfied in the same worlds ofM(n) (which is isomor-
phic to (U?(n))+, see the paragraph after Corollary 26) as ϕw (and likewise for
ψw). But since ϕ?

w are positive formulas, by Corollary 26, they will be satisfied
in the same worlds in (U?(n)). ut

The proposition above implies that two distinct points of U?(n) can be dis-
tinguished via a positive formula. Indeed, if w1 6= w2 are two worlds in U?(n),
then either ¬(w1Rw2) or ¬(w2Rw1). In the first case U?(n), w2 2 ϕw1 , while in
the second case U?(n), w1 2 ϕw2 .



4 n-Henkin models

Let us denote the n-Henkin model for the positive fragment of IPC by H?(n).
We write

Cn?
n(ϕ) = {ψ ∈ L∧,∨,→ : ψ is an n-formula and `IPC ϕ→ ψ}

and

Th?
n(M, w) = {ϕ ∈ L∧,∨,→ : ϕ is an n-formula and M, w |= ϕ}.

The following proposition is analogous to Proposition 12.

Proposition 34 For any point w ∈ U?(n) we have Th?
n(U?(n), w) = Cn?

n(ϕ?
w).

Proof. It follows from Proposition 33 that the right hand side is a subset of the
left hand side. For the other direction, assume U?(n), w |= σ. Then if 0IPC ϕ

?
w →

σ, there is a finite model M whose root, x, satisfies ϕ?
w and does not satisy

σ. Then, since x does not satisfy all positive formulas, it does not satisfy all
propositional variables. Hence there is a positive morphism f with non-empty
domain from M to U?(n). Since x satisfies ϕw, by Proposition 25 we have that
f(x) also satisfies ϕw. By Proposition 33, this implies that f(x) ∈ R?(w). Finally,
since U?(n), w |= σ we get U?(n), f(x) |= σ, which contradicts Proposition 25 as
M, x 2 σ. ut

The next lemma will be used in the proof that the universal model is isomor-
phic to the upper part of the Henkin model (Theorem 37).

Lemma 35 Let Γ be an n-theory of the positive fragment of IPC. If Γ ⊇
Cn?

n(ϕ?
w) for some w ∈ U?(n), then either there exists some v ∈ R?(w) such

that Γ = Cn?
n(ϕ?

v), or Γ contains all positive formulas.

Proof. Let Γ ⊇ Cn?
n(ϕ?

w) and let v be such that wRv and ϕ?
v ∈ Γ while for all

immediate successors of v (let v1, . . . , vk be all the immediate successors of v)
we have that Γ ∩ {ϕ?

v1 , . . . , ϕ
?
vk
} = ∅.

If this v is unique we can see that Γ = Cn?
n(ϕ?

v). The right to left inclusion
is trivial. For the converse inclusion we observe that for every σ ∈ Γ we have
σ ∧ ϕ?

v 0 ϕ?
v1 ∨ · · · ∨ ϕ

?
vk

which implies by Theorem 29 that there is a point of
U?(n) that satisfies σ ∧ ϕ?

v but not ϕ?
v1
∨ · · · ∨ ϕ?

vk
. By Proposition 33, there is

only one such element, v. Hence σ ∈ Th?
n(U?(n), v), which by Proposition 34

means that σ ∈ Cn?
n(ϕ?

v).
To complete the proof, we will show that the aforementioned v is unique or

has depth 1. If d(v) > 1 and there is an element u (v 6= u) with the aforemen-
tioned property, then Proposition 33 implies that ¬(vR?w) and ¬(wR?v) and
hence ψ?

v ∈ Th?
n(U?(n), u), thus ψ?

v ∈ Γ . Therefore, since Γ has the disjunction
property, there is some immediate successor vi of v, such that ϕ?

vi
∈ Γ . This is

a contradiction. So if d(v) > 1, then v is unique.



Finally, if ϕ?
v, ϕ

?
u ∈ Γ , where v 6= u and d(v) = d(u) = 1, then we can assume

without loss of generality that there is some propositional variable q true in v
but not true in u. By the definition of ϕ?

v we have that q ∈ Γ . By the definition
of ϕ?

u we have that q →
∧

i≤n pi ∈ Γ . Hence all propositional variables are in Γ ,
which implies that Γ contains all positive formulas. ut

The next three statements are the positive-fragment analogues of Lemmas 13
and 14 and Proposition 15, respectively. Notice that the n-Henkin model here
contains a top point where every positive formula is true.

Lemma 36 For any w ∈ U?(n) we have that H?(n)Cn?(ϕ?
w) is isomorphic to

(U?(n)w)+.

Proof. We will show that the function g : (U?(n)w)+ → H?(n)Cn?(ϕ?
w), where

g(v) = Cn?
n(ϕ?

v) and the topmost element is mapped to the set of all positive
formulas, is the required isomorphism. Proposition 33 implies that g is injective
and Lemma 35 implies that g is surjective. The frame relations are preserved
back and forth by the following chain of equivalences:

uR?v
iff R?(v) ⊆ R?(u)
iff V ?(ϕ?

v) ⊆ V ?(ϕ?
u) (Proposition 33)

iff `IPC ϕ?
v → ϕ?

u (Theorem 29)
iff ϕ?

u ∈ Cn?
n(ϕ?

v)
iff Cn?

n(ϕ?
u) ⊆ Cn?

n(ϕ?
v)

iff g(u) ⊆ g(v).

ut

The next theorem shows that in the same way n-universal models for IPC are
the “upper-parts” of the n-Henkin models, the n-universal models for positive
IPC are the “upper-parts” of the n-Henkin models of positive IPC.

Theorem 37 Upper(H?(n)) is isomorphic to (U?(n))+.

Proof. As above, the isomorphism will be given by the function g : (U?(n))+ →
Upper(H?(n)), such that g(v) = Cn?

n(ϕ?
v) and the topmost element is mapped to

the set of all positive formulas. That this map is injective follows from Proposi-
tion 34 and the fact that two distinct points of (U?(n))+ are separated by a pos-
itive formula (see the paragraph after Proposition 33). That the map preserves
the relation follows from the fact that intuitionistic truth is upward preserving.
What is left to show is that it is onto. Let x ∈ Upper(H?(n)), and x does not
contain all positive formulas. Then, by Lemma 28, there is a positive morphism,
f (which is non-empty by the assumptions for x) from Upper(H?(n))x onto
some U?(n)w. Then we observe by Proposition 25 that Th?

n(U?(n), w) = x, i.e.,
by Proposition 34, x = Cn?

n(ϕ?
w). Therefore, g is surjective. ut



Corollary 38 Let M = (W,R, V ) be any n-model and let X ⊆ V (ϕ?
w) be a

non-empty set for some w ∈ U?(n). Then there is a unique positive morphism
f from MX to U?(n)w. Furthermore, if MX is rooted and does not satisfy all
positive formulas, then there is a unique v ∈ U?(n) with wR?v and such that f
maps MX onto U?(n)v.

Proof. Since X ⊆ V (ϕ?
w), for each x ∈ X and y ∈ W with xRy we have

Th?
n(M, y) ⊇ Cn?

n(ϕ?
w). By Lemma 35 such a theory is equal to some Cn?

n(ϕ?
v)

or contains all positive formulas. We define a positive morphism f as follows:

f(y) =

{
u, if ∃u such that Th?

n(M, y) = Cn?
n(ϕ?

u);
undefined, otherwise.

If the domain of f is empty then it is vacuously a positive morphism. If the
domain is non-empty, by the definition of f the only non-trivial step to show
that f is a positive morphism is the back condition. For this we have: if vR?u
and f(y) = v, then by Proposition 33, it is the case that M, y 2 ψ?

u. Hence there
is some z ∈W with yRz such that M, z |= ϕ?

u and M, z 2
∨

i≤l ϕ
?
ui

. This yields

that Th?
n(M, z) = Cn?

n(ϕ?
u), i.e. f(z) = u.

Finally, if MX is rooted and does not satisfy all positive formulas, then the
root, x, is in the domain of f . Then we let v = f(x). The back condition imme-
diately yields that f is onto. ut

Note that the underlying Kripke frame of U?(n)w = (U?(n)w, R
?(n)w, V

?(n)w)
described in the previous lemma can be viewed as the general frame (U?(n)w,
R?(n)w, Up(U?(n)w)), which is a descriptive frame since W is finite.

5 Jankov’s theorem for KC

In this section, we will first prove an analogue of the Jankov-de Jongh theorem
(Theorem 16). This theorem will be used afterwards for an alternative proof of
Jankov’s theorem for KC.

Theorem 39 (Jankov-de Jongh theorem for positive fragment of IPC)
For every descriptive frame G and w ∈ U?(n) we have that G 2 ψ?

w iff there is an
n-valuation V on G such that U?(n)w is the image, through a positive morphism,
of a generated submodel of (G, V ).

Proof. Let U?(n)w be the image, through a positive morphism f , of a generated
submodel K of (G, V ). Proposition 33 implies that U?(n)w, w 2 ψ?

w. Since f is a
positive morphism, Proposition 25 yields that K, x 2 ψ?

w for every x ∈ f−1[{w}].
Now, because K is a generated submodel of (G, V ), we have that (G, V ), x 2 ψ?

w,
i.e. G 2 ψ?

w.
For the other direction, let us assume that there is some valuation and some

x such that (G, V ), x 2 ψ?
w. This implies that there is some y0 such that xRy0

and (G, V ), y0 |= ϕ?
w, while (G, V ), y0 2 ϕ?

wi
, for all immediate successors wi of

w.



We take (G, V )V (ϕ?
w), the submodel of (G, V ) generated by V (ϕ?

w). We note
that by the above observation V (ϕ?

w) 6= ∅. Furthermore, we have that (G, V )V (ϕ?
w)

does not satisfy all positive formulas since y0 ∈ V (ϕ?
w) and (G, V ), y0 2 ϕ?

wi
, for

all immediate successors wi of w.
Therefore, by Corollary 38, we have that there is a positive morphism f from

(G, V )V (ϕ?
w) to U?(n)w. It is onto because Th?((G, V ), y0) = Cn?

n(ϕ?
w) and hence

f(y0) = w.
Finally, we have that (G, V )V (ϕw) is a descriptive model, by Lemma 4, since

it is based on V (ϕw). To show that the positive morphism is also descriptive,
we only need to show that f−1[R?(v)]∪ (G \ dom(f)) = V (ϕ?

v), for v ∈ U?(n)w.
For the left to right inclusion we observe that anything outside the domain of
f satisfies all positive formulas and f preserves positive formulas. For the right
to left assume that x ∈ V (ϕ?

v). Then x ∈ V (ϕ?
w) and by Lemma 35 we get that

f(x) ∈ R?(w) or x satisfies all propositional variables and hence it is not in the
domain of f . ut

We recall that KC is complete with respect to the finite frames with a topmost
node. Thus, by reflecting on Corollary 26, one can easily see that KC proves
exactly the same positive formulas as IPC. In [18], Jankov proved that KC is
maximal with that property (see also [6, Ex. 9.17] for a proof via Zakharyaschev’s
canonical formulas). In [11] an alternative proof based on the universal model
for IPC is given.

Using the universal model for positive formulas we will provide yet another
proof of this theorem, more perspicuous than the one in [11]. For this we will
need the following auxiliary lemma.

Lemma 40 Let F be a descriptive frame with a topmost element, let G be a
descriptive frame, V and V ′ be admissible valuations and f : (G, V ) → (F, V ′)
a descriptive positive morphism between models. Then f can be extended to a
descriptive frame p-morphism.

Proof. First assume that the map f is total. Then it is a frame p-morphism. Now
suppose f is not total. Then we extend f to f ′ such that for every y ∈ G\dom(f)
we have f ′(y) = x0, where x0 is the topmost element of F. We claim that f ′ is the
desired frame p-morphism. That the forth condition holds is easy to see, since
everything in F is below x0. For the back condition the only possible problem
may arise if some f ′(y)Rx0. In that case, if y ∈ dom(f) then f(y)Rx0 and by
the definition of positive morphisms a witness for the back condition exists. If
y /∈ dom(f) then the witness is y. It remains to show that the f ′-pre-image of an
admissible set is admissible. Let Q be an admissible set in F. By the construction
of f we have that f ′−1[Q] = f−1[Q]∪ (G\dom(f)), which is admissible since, by
Lemma 23, it is equal to f∗(Q) and f is a positive morphism between descriptive
frames. ut

Finally, we will give our alternative proof of Jankov’s theorem stating that KC
is the greatest intermediate logic that proves exactly the same positive formulas
as IPC.



Theorem 41 (Jankov) For every logic L * KC there exists some positive for-
mula σ such that L ` σ while IPC 0 σ.

Proof. Let us assume that L * KC. Then L ` χ and KC 0 χ for some formula χ.
As KC is complete with respect to finite rooted frames with a topmost element
(see, e.g., [6, Proposition 2.37 and Theorem 5.33]), there is a a finite rooted
frame with a topmost element, F = (W,R) with F 2 χ. We define a valuation,
V , on F such that each of its elements has a different color and that there
is a propositional variable, q, not satisfied at the topmost element. A way to
do this is to introduce a propositional variable px for each x ∈ W such that
V (px) = R(x) and V (q) = ∅. By Lemma 28, there is some w ∈ U(n) and a
positive morphism from (F, V ) onto U?(n)w. Since each element of (F, V ) has a
different color, the positive morphism is 1-1 and since in every element of W at
least one propositional variable is not satisfied, the positive morphism has W as
its domain, hence (F, V ) is isomorphic to U?(n)w.

We claim that the required positive formula, σ is ψ?
w. For contradiction, let us

assume that L 0 ψ?
w. Then, as every logic is complete with respect to descriptive

frames (e.g., [6, Theorem 8.36]), there exists a descriptive L-frame, G such that
G 2 ψ?

w. By Theorem 39 there is a valuation V ′ on G, a generated submodel K of
(G, V ′), and a descriptive positive morphism f , from K onto (F, V ). By Lemma
40, f can be extended to a descriptive frame p-morphism f ′. Since G is an L-
frame and χ ∈ L, we have that G |= χ. As f ′ is a descriptive frame p-morphism,
G |= χ implies that F |= χ, contradicting the assumption that F 2 χ. ut

6 Conclusions and future directions

In this paper we described the universal models for the positive fragment of IPC,
and using these models gave an alternative proof of Jankov’s theorem which
states that the logic KC of the weak law of excluded middle is the greatest logic
that proves the same positive formulas as IPC. The main technical ingredients
of our proofs are positive morphisms and Jankov-de Jongh formulas.

We also briefly underline some future research directions. In this paper we do
not discuss algebraic aspects of universal models for positive IPC. It would be
interesting to describe in all detail the algebraic counterparts of these universal
models together with a full duality theory for the corresponding algebras. We
refer to recent work [3] and [7] for topological dualities for similar algebraic
structures. Here we only give a small hint towards algebraic analogues of the
two different n-universal models U?(n) and (U?(n))+ for positive IPC discussed
in Section 3.

From an algebraic point of view, the two universal models correspond to
the Lindenbaum-Tarski algebras for the languages L∧,∨,→ and L∧,∨,→ ∪ {⊥},
respectively. In fact, one can show that the definable upsets of U?(n) form an
algebra isomorphic to the Lindenbaum-Tarski algebra of the positive IPC. On the
other hand, the definable upsets of (U?(n))+ form an algebra which is isomorphic
to the Lindenbaum-Tarski algebra of the positive IPC with an additional bottom
element ⊥.



Finally, we point out a connection with minimal logic. Minimal logic can be
seen as arising from positive intuitionistic logic by interpreting one propositional
variable as the falsum without giving it any special properties and defining nega-
tion in the standard manner. The n-universal model for minimal logic is there-
fore directly available as the n+ 1-universal model of positive intuitionistic logic
developed above. Recently, minimal logic with negation as a primitive and its
sublogics have been studied in [8]. Colacito extended this work in [7] with proof-
theoretic and algebraic results using top frames. We believe that the universal
models for positive intuitionistic logic described in this paper will find fruitful
application in this area as will the construction of the accompanying Jankov-de
Jongh formulas.
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