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1. Introduction

In this chapter we survey recent developments in the theory of two-dimensional cylindric
algebras. In particular, we will deal with varieties of two-dimensional diagonal-free cylindric
algebras and with varieties of two-dimensional cylindric algebras with the diagonal. It is well
known that two-dimensional diagonal-free cylindric algebras correspond to the two variable
equality-free fragment of classical first-order logic FOL, whereas two-dimensional cylindric
algebras with the diagonal correspond to the two variable fragment of FOL with equality.
It is also well known that one-dimensional cylindric algebras, also called Halmos monadic
algebras, provide algebraic completeness for the one variable fragment of FOL. For a system-
atic discussion on the connection between various fragments of FOL and classes of (cylindric)
algebras that correspond to these fragments we refer to [2].

The variety Df1 of one-dimensional cylindric algebras has a lot of ‘nice’ properties: Df1 is
finitely axiomatizable, it is generated by its finite algebras, and has a decidable equational
theory. Moreover, the lattice of subvarieties of Df1 is rather simple: it is an (ω + 1)-chain.
Every proper subvariety of Df1 is finitely generated, finitely axiomatizable and has a decidable
equational theory (see [22], [23] and [44]). In contrast to this, the three variable fragment of
FOL corresponding to three-dimensional cylindric algebras is much more complicated and no
longer has ‘nice’ properties. It has been shown by Maddux [28] that the equational theory of
three-dimensional cylindric algebras is undecidable. Moreover, every subvariety in between
the variety of all representable three-dimensional cylindric algebras and the variety of all three-
dimensional cylindric algebras is undecidable. Kurucz [27] strengthened this by showing that
none of these varieties are generated by their finite algebras. It follows from Monk [36] and
Johnson [24] that varieties of all representable three-dimensional cylindric algebras with and
without diagonals are not finitely axiomatizable.

Our aim is to show that the two-dimensional case is not as complicated as the three-
dimensional one, but is not as simple as the one-dimensional case. It has been known for a
long time that the variety Df2 of two-dimensional diagonal-free cylindric algebras is generated
by its finite algebras and has a decidable equational theory. Moreover, every Df2-algebra is
representable. The variety CA2 of two-dimensional cylindric algebras with the diagonal is
also generated by its finite algebras and has a decidable equational theory. However, not
every CA2-algebra is representable. Representable CA2-algebras form a subvariety of CA2

denoted by RCA2. Unlike the three-dimensional case, RCA2 can be axiomatized by adding
only one axiom to the axiomatization of CA2. In this chapter we will mainly concentrate
on the lattices of subvarieties of Df2, CA2 and RCA2, respectively. As we will see below,
the lattice of subvarieties of Df2, although more complicated than the one-dimensional case,
is still countable. Moreover, every subvariety of Df2 is finitely axiomatizable and has a
decidable equational theory. The lattices of subvarieties of CA2 and RCA2, respectively, have
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a more complex structure. In particular, it is known that unlike Df2, CA2 and RCA2 have
continuum many subvarieties. As a result, there is a continuum of non-finitely axiomatizable
and undecidable subvarieties of CA2 and RCA2. We will show that every proper subvariety
of Df2 is locally finite and every subvariety of Df2 is generated by its finite algebras. On
the other hand, we will prove that there are continuum many non-locally finite subvarieties
of CA2 and RCA2. It is still an open problem whether every subvariety of CA2 and RCA2 is
generated by its finite algebras.

Our main technique in studying varieties of two-dimensional cylindric algebras will be
the duality between two-dimensional cylindric algebras and Stone spaces enriched with two
commuting equivalence relations. The topology-free analogue of this duality is thoroughly
discussed in [23, Section 2.7]. Stone-like topological dualities are extensively used to inves-
tigate modal logics (see, e.g, [10, 12]). In fact, many of the results discussed in this chapter
are proved using techniques developed in modal logic. These techniques apply to Df2 and
CA2-algebras since they are algebraic models of cylindric modal logic (see [Venema’s chapter]).

The chapter is organized as follows: in Section 2 we recall the definition of Df2 and CA2-
algebras and their topological representation. We also recall the functor from CA2 to Df2 that
forgets the diagonal and discuss some of its basic properties. In Section 3 we recall repre-
sentable cylindric algebras and a topological characterization of representable CA2-algebras.
We also construct rather simple non-representable CA2-algebras. In Section 4 we discuss the
cardinality of the lattices of subvarieties of CA2 and RCA2. Section 5 reviews a criterion of
local finiteness for subvarieties of Df2 and Section 6 discusses a classification of subvarieties
of Df2. In Section 7 we review local finiteness of subvarieties of CA2 and RCA2. Section 8
is devoted to finitely generated varieties of Df2 and CA2-algebras, and finally, we close the
chapter by discussing some open problems.

Acknowledgment The author is grateful to Ian Hodkinson for his comments on the
earlier version of this chapter. Special thanks go to the referee for valuable suggestions and
pointers to the literature that substantially improved the presentation of this chapter.

2. Cylindric algebras and cylindric spaces

In this section we recall the basic duality for two-dimensional cylindric algebras that will
be used throughout this chapter.

Definition 2.1. [23, Definition 1.1.2] A triple B = 〈B, c1, c2〉 is said to be a two-dimensional
diagonal-free cylindric algebra, or a Df2-algebra for short, if B is a Boolean algebra and

ci : B → B, i = 1, 2, are unary operations satisfying the following axioms for all a, b ∈ B:

(C1) ci0 = 0,
(C2) a ≤ cia,
(C3) ci(cia · b) = cia · cib,
(C4) c1c2a = c2c1a.

Let Df2 denote the variety of all two-dimensional diagonal-free cylindric algebras.

Definition 2.2. [23, Definition 1.1.1] A quadruple B = 〈B, c1, c2, d〉 is said to be a two-
dimensional cylindric algebra, or a CA2-algebra for short, if 〈B, c1, c2〉 is a Df2-algebra and

d ∈ B is a constant satisfying the following axioms for all a ∈ B and i = 1, 2.

(C5) ci(d) = 1,
(C6) ci(d · a) ≤ −ci(d · −a).
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Let CA2 denote the variety of all two-dimensional cylindric algebras.

Cylindric algebras were first introduced in [13] without explicitely mentioning the term ‘cylin-
dric algebra’. The full definition later appeared in [25], [47] and [46].

We recall that a Df1-algebra or a Halmos monadic algebra is a pair 〈B, c〉 such that B is a
Boolean algebra and c is a unary operator on B satisfying conditions C1-C3 of Definition 2.1;
see, e.g., [22, p.40]. The unary operator c is called a monadic operator, and Df1-algebras are
widely known as monadic algebras. A systematic investigation of monadic algebras has been
carried out by Halmos [22], Bass [3], Monk [37], and Kagan and Quackenbush [26].

Now we turn to a topological representation of two-dimensional cylindric algebras. This
duality (see [5, Section 2.2] and [6, Section 2]) is based on a standard Jónsson-Tarski duality
for modal algebras [25] (see also [10, Section 5.5] and [12, Section 8.2]). A topological duality
for Df1-algebras was developed by Halmos [22]. We recall that a Stone space is a compact,
Hausdorff space with a basis of clopen (simultaneously closed and open) sets. For a Stone
space X, we denote by CP(X) the set of all clopen subsets of X. For an arbitrary binary
relation R on X, x ∈ X and A ⊆ X, we let R(x) = {y ∈ X : xRy}, R−1(x) = {y ∈ X : yRx},
R(A) =

⋃
x∈AR(x) and R−1(A) =

⋃
x∈AR−1(x). A relation R on a Stone space X is said

to be point-closed if for each x ∈ X the set R(x) is closed, and R is called a clopen relation,
if A ∈ CP(X) implies R−1(A) ∈ CP(X). Note that if R is an equivalence relation, then
R(x) = R−1(x) and R(A) = R−1(A). In such a case we call R(A) the R-saturation of A.

A Df2-space is a triple X = 〈X,E1, E2〉, where X is a Stone space, and E1 and E2 are
point-closed and clopen equivalence relations on X such that

(∀x, y, z ∈ X)((xE1y ∧ yE2z) → (∃u ∈ X)(xE2u ∧ uE1z)).

Given two Df2-spaces X = 〈X,E1, E2〉 and X ′ = 〈X ′, E′

1, E
′

2〉, a map f : X → X ′ is said to
be a Df2-morphism if f is continuous, and for each x ∈ X and i = 1, 2 we have fEi(x) =
E′

if(x). We denote by DS the category of Df2-spaces and Df2-morphisms. Then Df2 is
dual (dually equivalent) to DS. In particular, every Df2-algebra 〈B, c1, c2〉 can be represented
as 〈CP(X), E1, E2〉, for the corresponding Df2-space 〈X,E1, E2〉. We recall that 〈X,E1, E2〉
is constructed as follows: X is the set of all ultrafilters of B, ϕ(a) = {x ∈ X : a ∈ x},
{ϕ(a)}a∈B is a basis for the topology on X, and xEiy if (cia ∈ x ⇔ cia ∈ y), for each a ∈ B
and i = 1, 2. We call 〈X,E1, E2〉 the dual of 〈B, c1, c2〉. As an easy corollary of this duality,
we obtain that the category FinDf2 of finite Df2-algebras is dual to the category FinDS of
finite Df2-spaces with the discrete topology. Hence, every finite Df2-algebra is represented as
the algebra 〈P(X), E1, E2〉 for the corresponding finite Df2-space 〈X,E1, E2〉, where P(X)
denotes the powerset of X (see [23, Theorem 2.7.34]). For i = 1, 2 we call the Ei-equivalence
classes of X the Ei-clusters.

The dual spaces of CA2-algebras are obtained as easy extensions of Df2-spaces. A quadruple
〈X,E1, E2,D〉 is said to be a CA2-space if 〈X,E1, E2〉 is a Df2-space and D is a clopen subset
of X such that for each i = 1, 2, each Ei-cluster of X contains a unique point from D. This
implies that in each CA2-space 〈X,E1, E2,D〉, unlike Df2-spaces, the cardinality of the set
of all E1-clusters of X is always equal to the cardinality of the set of all E2-clusters of X.
Given two CA2-spaces 〈X,E1, E2,D〉 and 〈X ′, E′

1, E
′

2,D
′〉, a map f : X → X ′ is said to be a

CA2-morphism if f is a Df2-morphism and in addition f−1(D′) = D. We denote the category
of CA2-spaces and CA2-morphisms by CS. Then CA2 is dual to CS. In particular, every CA2-
algebra B = 〈B, c1, c2, d〉 can be represented as 〈CP(X), E1, E2,D〉 for the corresponding
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CA2-space 〈X,E1, E2,D〉. The construction of 〈X,E1, E2,D〉 is the same as in the Df2-case
with the addition that we let D = ϕ(d) = {x ∈ X : d ∈ x}. We call 〈X,E1, E2,D〉 the dual of
〈B, c1, c2, d〉. As an easy corollary of this duality we obtain that the category FinCA2 of finite
CA2-algebras is dual to the category FinCS of finite CA2-spaces with the discrete topology.
In particular, every finite CA2-algebra is represented as the algebra 〈P(X), E1, E2,D〉 for the
corresponding finite CA2-space 〈X,E1, E2,D〉 (see [23, Theorem 2.7.34]).

Remark 2.3. We point out a close connection between Df2 and CA2-spaces and cylindric
atom structures defined in [23]. Recall from [23, Definition 2.7.32] that if B = 〈B, c1, c2, d〉 is
a CA2-algebra (the case of Df2-algebras is similar) such that B is an atomic Boolean algebra,
then the cylindric atom structure of B is defined as the quadruple AtB = 〈AtB,E1, E2,D〉,
where AtB is the set of all atoms of B; Ei is defined by setting: xEiy if cix = ciy, for
x, y ∈ AtB, i = 1, 2; and D = {x ∈ AtB : x ≤ d}.

Now suppose B = 〈B, c1, c2, d〉 is an arbitrary CA2-algebra. Let Bσ = 〈Bσ, cσ1 , c
σ
2 , d

σ〉 be
the canonical extension of B, and let i : B → Bσ be the canonical embedding [23, Definition
2.7.4]. Then it is well known that Bσ is complete and atomic. Let AtBσ be the cylindric
atom structure of Bσ. For a ∈ B let Oa = {x ∈ AtBσ : x ≤ i(a)}. We make AtBσ into a
topological space by letting {Oa}a∈B to be a basis for the topology τ . Then it can be shown
that 〈AtBσ, τ〉 is a CA2-space, and that 〈AtBσ, τ〉 is isomorphic to the dual of B. We note
that this connection applies not only to cylindric algebras, but, in general, to any Boolean
algebra with operators; see, e.g, [49, Section 5].

Having this duality at hand, we can obtain dual descriptions of important algebraic concepts
of Df2 and CA2-algebras. A subset U of a Df2-space (resp. of a CA2-space) is said to be
saturated if E1(U) = E2(U) = U . For each Df2-algebra B (resp. CA2-algebra B), the lattice
of all congruences of B (resp. B) is dually isomorphic to the lattice of all closed saturated
subsets of its dual space. A Df2-space 〈X,E1, E2〉 (resp. a CA2-space 〈X,E1, E2,D〉) is called
rooted if

(∀x, y ∈ X)(∃z ∈ X)(xE1z ∧ zE2y).

(By the commutativity of E1 and E2, if such a z exists, then there exists u ∈ X such that
xE2u and uE1y). Rooted spaces correspond to subdirectly irreducible and simple cylindric
algebras. In particular, a Df2-algebra (resp. a CA2-algebra) is subdirectly irreducible iff it is
simple iff its dual space is rooted [23, Theorems 2.4.43 and 2.4.14]. As a result of the above, we
obtain that both Df2 and CA2 are semi-simple and congruence distributive varieties with the
congruence extension property. As shown in [41], these results also follow from the fact that
Df2 and CA2 are discriminator varieties. The aforementioned properties are also discussed in
[49, Section 4] in a wider context of Boolean algebras with operators.

Now we are ready to recall the definition of the reduct functor Df : CA2 → Df2 [23,
Definition 1.1.2] (see also [6, Section 2.2]). For each CA2-algebra 〈B, c1, c2, d〉 we set

Df〈B, c1, c2, d〉 = 〈B, c1, c2〉.

Thus, Df forgets the diagonal element d from the signature of CA2-algebras.
Next we will give a simple argument showing that Df is not onto (see [23, Corollary

5.1.4(ii)]). In fact, the set of isomorphism types of Df2 − Df(CA2) is infinite. For this,
we define the reduct functor Rd : CS → DS. For each CA2-space 〈X,E1, E2,D〉 we set

Rd〈X,E1, E2,D〉 = 〈X,E1, E2〉.
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Figure 1. Some CA2-spaces and their reducts

Suppose a Df2-space 〈Y,E1, E2〉 is rooted. We call 〈Y,E1, E2〉 a quasi-square if the cardinal-
ities of the sets of all E1 and E2-clusters of Y coincide. It is not hard to see that a rooted
〈Y,E1, E2〉 is a reduct of some CA2-space iff it is a quasi-square. Note that not every rooted
space from DS is a quasi-square. The simplest examples of rooted Df2-spaces that are not
quasi-squares are rectangle Df2-spaces (for the definition of a rectangle consult the next sec-
tion). Since there are infinitely many rectangle Df2-spaces (as we will see below), the set
DS−Rd(CS) is infinite.

We call a Df2-algebra B a quasi-square algebra if its dual space is a quasi-square. As follows
from the above, for each simple CA2-algebra B, its Df2-reduct is a quasi-square algebra.
Therefore, the set Df2 −Df(CA2) is infinite. Moreover, one Df2-algebra can be the reduct of
many non-isomorphic CA2-algebras. For instance, a Df2-algebra whose dual space is shown in
Figure 1(a) is the reduct of the CA2-algebras whose dual CA2-spaces are shown in Figures 1(b)
and 1(c), where dots represent points of the spaces, while big dots represent the points
belonging to the (diagonal) set D.

More algebraic properties of Df2 are discussed in [23, Section 5.1] and [5]. In particular, a
characterization of finitely approximable Df2-algebras, projective and injective Df2-algebras,
and absolute retracts in Df2 is given in [5, Sections 3.1 and 3.2].

3. Representable cylindric algebras

In this section we recall some basic facts about representable two-dimensional cylindric
algebras.

Let W and W ′ be sets. We define on the Cartesian product W × W ′ two equivalence
relations E1 and E2 by setting

(w,w′)E1(v, v
′) if w′ = v′,

(w,w′)E2(v, v
′) if w = v,

for w, v ∈ W and w′, v′ ∈ W ′. We call 〈W × W ′, E1, E2〉 a rectangle. If W = W ′ then we
call 〈W ×W,E1, E2〉 a square. For a square 〈W ×W,E1, E2〉 we set D = {(w,w) : w ∈ W}.
We call 〈W × W,E1, E2,D〉 a cylindric square. A generalized rectangle is a disjoint union
of rectangles, a generalized square is a disjoint union of squares, and a generalized cylindric

square is a disjoint union of cylindric squares. It is easy to see that for each (generalized) rec-
tangle 〈U,E1, E2〉, the algebra 〈P(U), E1, E2〉 is a Df2-algebra and that for each (generalized)
cylindric square 〈U,E1, E2,D〉 the algebra 〈P(U), E1, E2,D〉 is a CA2-algebra.
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We call a Df2-algebra 〈P(U), E1, E2〉 a (generalized) rectangular Df2-algebra,
1 if 〈U,E1, E2〉

is a (generalized) rectangle and we call 〈P(U), E1, E2〉 a (generalized) square Df2-algebra if
〈U,E1, E2〉 is a (generalized) square. We call the CA2-algebra 〈P(U), E1, E2,D〉 a (generalized)
square CA2-algebra, if 〈U,E1, E2,D〉 is a (generalized) square. Let (GRECT) RECT denote
the class of all (generalized) rectangular Df2-algebras, let (GSQ) SQ denote the class of all
(generalized) square algebras, and let (GCSQ) CSQ denote the class of all (generalized) square
CA2-algebras. Finally, we let FinRECT, FinSQ and FinCSQ denote the classes of all finite
rectangular, finite square and finite cylindric square algebras, respectively.

For a class K of algebras, we denote by H(K), S(K) and P(K) the closure of K under
homomorphic images, subalgebras and products, respectively. We say that a variety V is
generated by a class K of algebras if V = HSP(K). The classes S(RECT), S(SQ), S(CSQ),
S(GRECT), and S(GCSQ) in [23, Definitions 3.1.1 and 5.1.33] are denoted by Csdf2, Csudf2,
Cs2, Gsdf2, and Gs2, respectively. The algebras in these classes are called two-dimensional:
diagonal-free cylindric set algebras, diagonal-free uniform cylindric set algebras, cylindric set

algebras, diagonal-free generalized cylindric set algebras, and generalized cylindric set alge-

bras, respectively. Since we only work with two-dimensional cylindric algebras, we find our
terminology and notations more suggestive.

Definition 3.1. [23, Definitions 5.1.33(v), 3.1.1(vii) and Remark 1.1.13]

(i) A Df2-algebra B is said to be representable if B ∈ S(GRECT).

(ii) A CA2-algebra B is said to be representable if B ∈ S(GCSQ).

The classes of representable Df2 and CA2-algebras are usually denoted by RDf2 and RCA2,
respectively. For the proof of the next theorem we refer to [23, Corollary 5.1.35, Theorems
5.1.43 and 5.1.47] for (1) (see also [17, Corollary 5.10]), to [23, Corollary 3.1.108] for (2), and
to [23, Lemmas 2.6.41 and 2.6.42] for (3).

Theorem 3.2.

(i) RDf2 = Df2 = HSP(RECT) = HSP(SQ) = SP(RECT) = SP(SQ) = S(GSQ).

(ii) RCA2 = HSP(CSQ) = SP(CSQ).

(iii) RCA2 ( CA2.

Let
(H) = ci(a · −b · cj(a · b)) ≤ cj(−d · cia), i 6= j, i, j = 1, 2.

and
(V) = d · ci(−a · cja) ≤ cj(−d · cia), i 6= j, i, j = 1, 2.

We call (H) and (V) the Henkin and Venema axioms, respectively. Then RCA2 is axioma-
tized by adding either of these axioms to the axiomatization of CA2; see, e.g., [23, Theorem
3.2.65(ii)] or [48, Proposition 3.5.8]). We denote by V+ (Ax) the addition of the axiom (Ax)
to the axiomatization of a variety V. Then

Theorem 3.3. RCA2 = CA2+(H) = CA2+(V).

Next we recall from [48] and [6] a dual characterization of representable CA2-algebras, and
construct rather simple finite non-representable CA2-algebras. For this purpose we recall that

1Note that the concept of a ‘rectangular algebra’ is different from the one of a ‘rectangular element’ defined
in [23, Definition 1.10.6].
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on each Df2-space 〈X,E1, E2〉 and on each CA2-space 〈X,E1, E2,D〉 we can define yet another
equivalence relation that naturally arises from E1 and E2. We define E0 by: xE0y if xE1y
and xE2y, for each x, y ∈ X. In other words, E0 = E1 ∩ E2. We call E0-equivalence classes
E0-clusters. Suppose 〈X,E1, E2,D〉 is a CA2-space. We call x ∈ D a diagonal point, and we
call x ∈ X −D a non-diagonal point. We also call an E0-cluster C a diagonal E0-cluster if it
contains a diagonal point. Otherwise we call C a non-diagonal E0-cluster.

Definition 3.4. ([6, Definition 3.3]) A CA2-space 〈X,E1, E2,D〉 is said to satisfy (∗) if there
exists a diagonal point x0 ∈ D such that E0(x0) = {x0} and there exists a non-singleton

E0-cluster C whose elements are either E1 or E2-related to x0.

The (∗) condition is equivalent to Venema’s condition NH7 of [48, Definition 3.2.5] (see
also [Definition 1.3, Venema’s chapter]). In the terminology of [23] a CA2-space satisfies the
condition (∗) of Definition 3.4 iff the corresponding CA2-algebra has at least one so-called
defective atom (for details see [23, Lemma 3.2.59]). Next we recall a dual characterization of
representable CA2-algebras. There are at least three different proofs of Theorem 3.5. The one
given in [23, Lemma 3.2.59] uses Henkin’s axioms, the proof of [48, Theorem 3.2.6] (see also
[Proposition 1.5, Venema’s chapter]) is based on a powerful technique of modal logic called
Sahlqvist correspondence and [6, Theorem 3.4] applies Venema’s axioms and order-topological
methods.

Theorem 3.5. A CA2-algebra B is representable iff its dual CA2-space X does not satisfy

(∗).

Using this criterion it is easy to see that the CA2-algebras corresponding to the CA2-spaces
shown in Figure 1(c) (big spots denote the diagonal points) are representable, while the
CA2-algebras corresponding to the CA2-spaces shown in Figure 1(b) are not. Moreover, the
smallest non-representable CA2-algebra is the algebra corresponding to the CA2-space shown
in Figure 1(b), where the non-singleton E0-cluster contains only two points.

4. The finite model property and cardinality of lattices of varieties

There is a wide variety of proofs available for the decidability of classical first-order logic
with two variables. Equivalent results were stated and proved using quite different methods
in first-order, modal and algebraic logic. We present a short historic overview.

Decidability of the validity of equality-free first-order sentences in two variables was proved
by Scott [43]. The proof uses a reduction to the set of prenex formulas of the form ∃2∀nϕ,
whose validity is decidable by Gödel [18]. The result was stated with equality in the language,
because at that time it was still believed that the validity problem for ∃2∀n formulas containing
equality is decidable. This belief was however refuted in Goldfarb [19]. Scott’s result was
extended by Mortimer [39], who included equality in the language and showed that such
sentences cannot enforce infinite models, obtaining decidability as a corollary. A simpler proof
was provided in Grädel et al. [20]. They showed that any satisfiable formula can actually be
satisfied in a model whose size is single exponential in the length of the formula. Adding
two unary function symbols to the language with only one variable leads to undecidability,
as shown in Gurevich [21]. Segerberg [45] proved the finite model property and decidability
for so-called ‘two-dimensional modal logic’, which is essentially cylindric modal logic (see
[Venema’s chapter]) enriched with the operation of involution. For an algebraic proof we
refer to [23, Lemma 5.1.24 and Theorem 5.1.64]. A mosaic type proof can be found in Marx
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and Mikulás [33]. A proof using quasimodels is provided in [17, Theorem 5.22], and [35,
Proposition 7.4.3] and [7, Theorem 6.1.1] give simple proofs via the filtration method.

The fact that CA2 is generated by its finite algebras and has a decidable equational theory
was first proved by Henkin [23, Lemma 2.5.4 and Theorem 4.2.7] (see also [7, Theorem 7.1.1]
for a proof using the filtration method). That RCA2 is generated by its finite algebras and
has a decidable equational theory follows from Mortimer [39] (see also [23, Theorem 4.2.9],
[34, Theorem 2.3.5] and [31]). Summing all this up we arrive at the following result.

Theorem 4.1. Df2, CA2 and RCA2 are generated by their finite algebras and have decidable

equational theories.

However, Df2 is not only generated by its finite algebras, but it is also generated by its
finite rectangular and finite square algebras. This result follows from Segerberg [45]. A short
algebraic proof can be found in Andréka and Németi [1]. For a frame-theoretic proof using
quasimodels see [17, Theorem 5.25]. Another frame-theoretic proof is given in [7, Theorem
6.11]. All these proofs can be adjusted to show that RCA2 is generated by finite cylindric
square algebras. This result also follows from Mortimer [39]. Thus, we arrive at the following
theorem.

Theorem 4.2.

(i) Df2 = HSP(FinRECT) = HSP(FinSQ).

(ii) RCA2 = HSP(FinCSQ).

Now we turn to lattices of subvarieties of two-dimensional cylindric algebras. Let Λ(Df2)
denote the lattice of subvarieties of Df2, Λ(CA2) denote the lattice of subvarieties of CA2 and
Λ(RCA2) denote the lattice of subvarieties of RCA2. We also let Λ(Df1) denote the lattice of
subvarieties of Df1-algebras. This lattice is easy to describe. The lattice of all subvarieties of
Df1 is an (ω+1)-chain that converges to Df1 (see [44, Theorem 4] and [23, Theorem 4.1.22]).
As we will see below, the lattice Λ(Df2) is also countable, although much more complex than
Λ(Df1). The lattices Λ(CA2) and Λ(RCA2), however, are not countable [23, Theorem 4.1.27
and Remark 4.1.28]. We will sketch the proof of this fact by using the technique of Jankov-
Fine formulas, which is a standard tool in modal logic. For an overview on Jankov-Fine
formulas we refer to [12, Section 9.4], [10, Section 3.4] or [7, Section 3.4]. This proof will also
underline the difference between the finite square Df2 and CA2-algebras.

Let B and B′ be simple CA2-algebras. We write

B ≤ B′ iff B is a subalgebra of B′.

Next we construct simple ≤-antichains of finite simple RCA2-algebras. It follows from [8]
that there do not exist any infinite ≤-antichains of finite simple Df2-algebras. For the proof
of the next lemma we refer to [23, Theorem 4.1.27] (see also [6, Lemma 4.1] or [7, Lemma
7.1.13]).

Lemma 4.3. Every two non-isomorphic finite cylindric square algebras are ≤-incomparable.

Applying the standard technique of Jankov-Fine formulas to two-dimensional cylindric
algebras [7, Section 7.1.2], as an immediate consequence of Lemma 4.3, we obtain the following
result ([23, Theorem 4.1.27], (see also [6, Theorem 4.2] or [7, Theorem 7.1.14]).

Theorem 4.4. The cardinality of Λ(RCA2) is that of the continuum.
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Moreover, by replacing a singleton non-diagonal E0-cluster with a two-element E0-cluster
in each finite cylindric square, we obtain an infinite ≤-antichain of finite rooted CA2-spaces
satisfying (∗). Therefore, the corresponding algebras do not belong to RCA2. Applying
Jankov-Fine formulas again we obtain the following result [23, Remark 4.1.28], (see also [6,
Theorem 4.4, Corollary 4.5] or [7, Theorem 7.16, Corollary 7.1.17]).

Theorem 4.5.

(i) The cardinality of Λ(CA2)− Λ(RCA2) is that of the continuum.

(ii) There exists a continuum of varieties in between RCA2 and CA2.

Note that there are only countably many finitely axiomatizable varieties and there are
only countably many varieties with a decidable equational theory. Therefore, Theorem 4.4
also implies that there exists a continuum of non-finitely axiomatizable subvarieties of CA2

(resp. of RCA2), and there exists a continuum of subvarieties of CA2 (resp. of RCA2) with an
undecidable equational theory. We also remark that for an uncountable α, CAα has 2α many
subvarieties [40, p. 246]. It is still an open problem whether the same result holds for RCAα

[23, Problem 4.2] and [38]. We will see in the next section that Λ(Df2) is countable.

5. Locally finite subvarieties of Df2

In this section we investigate locally finite subvarieties of Df2. We recall that a variety V

is called locally finite if every finitely generated V-algebra is finite. It is well known (see e.g.,
Halmos [22]) that Df1 is locally finite. It was Tarski who first noticed that Df2 is not locally
finite. Detailed proofs of this fact can be found in [23, Theorem 2.1.11], [22, p.92], [15], [7,
Example 6.2.1].

Let B be a simple Df2-algebra and X its dual rooted Df2-space. Let also i = 1, 2 and n > 0.
We say that X is of Ei-depth n if the number of Ei-clusters of X is exactly n. The Ei-depth
of X is said to be infinite if X has infinitely many Ei-clusters. B is said to be of Ei-depth

n < ω if the Ei-depth of X is n. The Ei-depth of B is said to be infinite if X is of infinite
Ei-depth. V ⊆ Df2 is said to be of Ei-depth n < ω if n is the maximal Ei-depth of the simple
members of V, and V is of Ei-depth ω if there is no bound on the Ei-depth of simple members
of V. For a simple Df2-algebra B and its dual X , let di(B) and di(X ) denote the Ei-depth
of B and X , respectively. Similarly, let di(V) denote the Ei-depth of a variety V ⊆ Df2. We
note that there exists a formula measuring the depth of a subvariety of Df2 (see [5, Theorem
4.2] or [7, Theorem 6.2.4]).

Definition 5.1. For a variety V, let SI(V) and S(V) denote the classes of all subdirectly

irreducible and simple V-algebras, respectively. Let also FinSI(V) and FinS(V) denote the

class of all finite subdirectly irreducible and simple V-algebras, respectively.

We recall from [4] a criterion of local finiteness.

Theorem 5.2. A variety V of a finite signature is locally finite iff the class SI(V) is uniformly

locally finite; that is, for each natural number n there is a natural number M(n) such that for

each n-generated A ∈ SI(V) we have |A| ≤ M(n).

The next theorem is an important tool in characterizing locally finite subvarieties of Df2.
Its proof, which can be found in [5, Lemma 4.4] or [7, Lemma 6.2.7], relies on the fact that
the variety of Df1-algebras is locally finite.
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Theorem 5.3. Every subvariety V ⊆ Df2 such that d1(V) < ω or d2(V) < ω is locally finite.

Now we are in a position to prove that every proper subvariety of Df2 is locally finite.

Theorem 5.4. If a variety V ⊆ Df2 is not locally finite, then V = Df2.

Proof. We sketch the main idea of the proof. Suppose V is not locally finite. Then there
exists a finitely generated infinite V-algebra B. Let X be the dual of B. Then either there
exists an infinite rooted saturated subset of X , or X consists of infinitely many finite rooted
saturated subsets.

First suppose that X contains an infinite rooted saturated subset X0. If either the E1 or
E2-depth of X0 is finite, then the Df2-algebra, call it B0, corresponding to X0 belongs to some
variety V′ ⊆ Df2 of a finite E1 or E2-depth. Then B0 is a homomorphic image of B and
is finitely generated. Moreover, by our assumption, X0 and hence B0 is infinite. This is a
contradiction, since by Theorem 5.3, V′ is locally finite. Thus, both the E1 and E2-depths
of X0 are infinite. Next we can show (see [5, Claim 4.7] or [7, Claim 6.2.10]) that for each
n ∈ ω, the square 〈W ×W,E1, E2〉 with |W | = n is a Df2-morphic image of X0. By duality,
this means that the algebra 〈P(W ×W ), E1, E2〉 is a subalgebra of 〈CP(X0), E1, E2〉 for each
n < ω. Since Df2 is generated by finite square algebras (see Theorem 3.2) this implies that
V = Df2.

Now suppose that X consists of infinitely many finite rooted spaces which we denote by
{Xj}j∈J . If either the E1 or E2-depth of the members of {Xj}j∈J is bounded by some
integer n, then their corresponding algebras belong to some variety V′ ⊆ Df2 with d1(V

′) < n
or d2(V

′) < n. This means that there is an infinite finitely generated algebra in V′. By
Theorem 5.3, this is a contradiction. Therefore, we can assume that neither the E1 nor E2-
depth of {Xj}j∈J is bounded by any integer. Then we can again show that every finite square
algebra is a subalgebra of 〈CP(X0), E1, E2〉. This, by Theorem 3.2, means that V = Df2.

Thus, if V is not locally finite, then V = Df2, which completes the proof of the theorem. �

Recall that a variety V is called pre-locally finite if V is not locally finite but every proper
subvariety of V is locally finite. We also recall that every locally finite variety is generated by
its finite algebras. Therefore, we arrive at the following theorem.

Corollary 5.5.

(i) V ∈ Λ(Df2) is locally finite iff V is a proper subvariety of Df2.

(ii) Df2 is the only pre-locally finite subvariety of Df2.

(iii) Every variety V ⊆ Df2 is generated by its finite algebras.

In fact, Corollary 5.5(iii) can be significantly strengthened. It is proved in [9] (see also [7,
Section 8.2]) that the (bi-)modal logic corresponding to every proper subvariety of Df2 has
the poly-size model property. Moreover, using combinatorial set theory, namely, the theory
of better-quasi-orderings, [8] (see also [7, Section 8.1]) proves that every subvariety of Df2
is finitely axiomatizable. Combining this with Corollary 5.5(iii) gives us that the equational
theory of every subvariety of Df2 is decidable. However, even more is true. It is proved in [8]
(see also [7, Section 8.4]) that the equational theory of every subvariety of Df2 is NP-complete.

We finish this section by mentioning the analogy of these results with those obtained by
Monk [37] for two-dimensional polyadic algebras. Two-dimensional polyadic algebras are
obtained by adding four extra unary operations to the signature of Df2-algebras (see [23,
Definition 5.4.1] or [37]). Using the methods very similar to ours Monk [37] proves that the
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variety PA2 of two-dimensional polyadic algebras has only countably many subvarieties, each
subvariety is finitely axiomatizable, is determined by its finite members and has a decidable
equational theory. Moreover, similarly to Df2, each proper subvariety of PA2 is locally finite.
As was noted in [23, Theorem 5.4.5 and Remark 5.4.6], the results on subvarieties of PA2

do not immediately transfer to subvarieties of Df2. For example, the subvarieties of Df2

axiomatized by the equations (c1x = x) and (c2x = x), respectively, are distinct, while the
subvarieties of PA2 axiomatized by these equations coincide. This also means that PA2 is not
a conservative extension of Df2.

6. Classification of subvarieties of Df2

In this section we will see that Corollary 5.5 enables us to give a classification of subvarieties
of Df2 in terms of E1 and E2-depths (see [5, Section 4] or [7, Section 6.3]). It follows from
Corollary 5.5(iii) that every subvariety V of Df2 is generated by FinS(V).

Theorem 6.1. For every proper subvariety V of Df2 there exists a natural number n such that

FinS(V) can be divided into three disjoint sets FinS(V) = F1⊎F2⊎F3, where d2(F1), d1(F2) ≤ n
and d1(F3), d2(F3) ≤ n. (Note that any two of the sets F1,F2 and F3 may be empty.)

Proof. We sketch the proof. Suppose V is a proper subvariety of Df2. By Theorem 3.2, Df2 is
generated by finite square algebra. Therefore, there exists n ∈ ω and a square 〈W×W,E1, E2〉
such that |W | = n and 〈P(W ×W ), E1, E2〉 /∈ FinS(V). Let n be the minimal such number.
We consider three subclasses of FinS(V): F1 = {B ∈ FinS(V) : d1(B) > n}, F2 = {B ∈
FinS(V) : d2(B) > n} and F3 = {B ∈ FinS(V) : d1(B), d2(B) ≤ n}. It is obvious that
FinS(V) = F1 ∪ F2 ∪ F3. We prove that F1, F2 and F3 are disjoint.

Let us show that if B ∈ F1, then d2(B) ≤ n and if B ∈ F2, then d1(B) ≤ n. Suppose
B ∈ F1 ∪ F2, d1(B) = k, d2(B) = m and both k,m > n. Let X be the dual of B. Then we
can show that a finite square 〈W ×W,E1, E2〉 such that |W | = n is a Df2-morphic image of
X . By duality, this means that the square algebra 〈P(W ×W ), E1, E2〉 is a subalgebra of B
and therefore belongs to FinS(V), which is a contradiction. Thus, B ∈ F1 implies d1(B) > n
and d2(B) ≤ n, and B ∈ F2 implies d1(B) ≤ n and d2(B) > n. Also, if B ∈ F3, then
d1(B), d2(B) ≤ n. This shows that all the three sets are disjoint. �

From this theorem we obtain the following classification of subvarieties of Df2 (see [5,
Theorem 4.10] or [7, Theorem 6.3.4]).

Theorem 6.2. For each V ∈ Λ(Df2), either V = Df2, or V =
∨

i∈S Vi for some S ⊆ {1, 2, 3},
where d1(V1), d2(V2), d1(V3), d2(V3) < ω.

Proof. The proof follows Theorem 6.1, by setting Vi = HSP(Fi) for i = 1, 2, 3. �

We close this section by recalling from [5, Section 6] a characterization of rectangularly and
square representable subvarieties of Df2. First we give a general definition of representability
for varieties of Df2-algebras.

Definition 6.3. A variety V ⊆ Df2 is called representable by (algebras from class) K ⊆ Df2

if V = SP(K ∩ V).

For a variety V ⊆ Df2, we denote by (GRECTV) RECTV and (GSQV) SQV the classes of
(generalized) rectangular and (generalized) square V-algebras, respectively. By Definition 6.3,
V ⊆ Df2 is rectangularly representable if V = SP(RECTV) and V is square representable if V =
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SP(SQV). Moreover, we have that V ⊆ Df2 is rectangularly representable iff V = S(GRECTV)
and V is square representable iff V = S(GSQV). (This is a consequence of a general result of
modal logic concerning a duality between products of complete and atomic modal algebras
and disjoint unions of corresponding frames; see e.g., [49, Section 5.6].). Thus, square and
rectangular representability in the subvarieties of Df2 are restricted versions of the general
definition of representability (Definition 3.1).

For positive integers m and n let P(m × n) denote the rectangular algebra 〈P(W ×
W ′), E1, E2〉 such that |W | = m and |W ′| = n. Let n1 and n2 be positive integers. We
let V(ω,n1) = HSP({P(m × n1)}m∈ω) and V(n2,ω) = HSP({P(n2 ×m)}m∈ω). The next the-
orem provides a full characterization of rectangular and square representable subvarieties of
Df2.

Theorem 6.4. Let V ∈ Λ(Df2).

(i) V is square representable iff V = Df2 or V = HSP(P(n × n)) for some n ∈ ω.

(ii) V is rectangularly representable iff V = Df2 or V = V(ω,n1) ∨ V(n2,ω) ∨ V′, where V′ =∨r
i=1 HSP(P(mi × ki)) for some mi, ki, r ∈ ω.

7. Locally finite subvarieties of CA2

In the previous section we proved that Df2 is pre-locally finite. It is known (see, e.g., [23,
Theorem 2.1.11]) that RCA2, and hence every variety in the interval [RCA2,CA2], is not locally
finite. In this section, we present a criterion of local finiteness for varieties of CA2-algebras
(see [6, Section 5] or [7, Section 7.2]). We also show that there exists exactly one pre-locally
finite subvariety of CA2. The E1 and E2-depths of simple CA2-algebras are defined as in the
Df2-case. Since the number of the E1 and E2-clusters in every CA2-space is the same, for
each simple CA2-algebra B, we have d1(B) = d2(B). We denote it by d(B) and call it the
depth of B. The depth of a variety of CA2-algebras we denote by d(V). Our goal is to show
that a variety V of CA2-algebras is locally finite iff d(V) < ω. For this we need the following
definition.

Definition 7.1.

(i) Call a rooted CA2-space X uniform if every non-diagonal E0-cluster of X is a singleton

set, and every diagonal E0-cluster of X contains only two points.

(ii) Call a simple CA2-algebra B uniform if its dual rooted CA2-space X is uniform.

Finite uniform rooted spaces are shown in Figure 2, where big dots denote the diagonal
points. Let Xn denote the uniform rooted space of depth n. Also let Bn denote the uniform
CA2-algebra of depth n. It is obvious that Xn is (isomorphic to) the dual CA2-space of Bn. Let
U denote the variety generated by all finite uniform CA2-algebras; that is U = HSP({Bn}n∈ω).
Applying the criterion of Theorem 3.5, it is easy to check that U ⊆ RCA2. For the proof of
the next lemma we refer to [6, Lemma 5.2] or [7, Lemma 7.2.4].

Lemma 7.2.

(i) If B is a simple cylindric algebra of infinite depth, then each Bn is a subalgebra of B.

(ii) If B is a simple cylindric algebra of depth 2n, then Bn is a subalgebra of B.

Now we characterize varieties of CA2-algebras of infinite depth in terms of U.

Theorem 7.3. For a variety V of CA2-algebras, d(V) = ω iff U ⊆ V.
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Figure 2. Uniform rooted CA2-spaces

Proof. It is obvious that d(U) = ω. So, if U ⊆ V, then obviously d(V) = ω. Conversely,
suppose d(V) = ω. We want to show that every finite uniform CA2-algebra belongs to V. Since
d(V) = ω, the depth of the simple members of V is not bounded by any integer. So, either
there exists a family of simple V-algebras of increasing finite depth, or there exists a simple
V-algebra of infinite depth. In either case, it follows from Lemma 7.2 that {Bn}n∈ω ⊆ V.
Therefore, U ⊆ V, since {Bn}n∈ω generates U. �

Our next task is to show that U is not locally finite. For this we first need to observe
that every finite uniform algebra is 1-generated (see [6, Lemma 5.6] or [7, Lemma 7.2.6]).
Now Theorem 5.2 immediately implies that U is not locally finite. Next, using the fact that
the variety of Boolean algebras is locally finite, we show that varieties of CA2-algebras of
finite depth are locally finite. For the proof of this result we refer to [6, Theorem 5.10] or [7,
Theorem 7.2.9].

Theorem 7.4. If d(V) < ω, then V is locally finite.

We note that Theorem 7.4 is a CA2-analogue of Theorem 5.3. Its proof, however, re-
lies on local finiteness of Boolean algebras, whereas the proof of Theorem 5.3 uses the fact
that Df1 is locally finite. Finally, combining Theorems 7.3 and 7.4, we obtain the following
characterization of locally finite varieties of CA2-algebras.

Theorem 7.5.

(i) For V ∈ Λ(CA2) the following conditions are equivalent:

(a) V is locally finite,

(b) d(V) < ω,
(c) U 6⊆ V.

(ii) U is the only pre-locally finite subvariety of CA2.

Therefore, in contrast to the diagonal-free case, there exist uncountably many subvarieties
of CA2 (RCA2) which are not locally finite. Since every locally finite variety is generated by
its finite algebras we obtain from Theorem 7.5 that every subvariety of CA2 of finite depth is
generated by its finite algebras. We leave it as an open problem whether each subvariety of
CA2 is generated by its finite algebras.
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8. Finitely generated varieties of cylindric algebras

Recall that a variety is called finitely generated if it is generated by a single finite algebra,
and that a variety is called pre-finitely generated if it is not finitely generated, but all its
proper subvarieties are finitely generated. In studying a lattice of subvarieties of a given
variety, finitely generated and pre-finitely generated varieties play an important role. Finitely
generated varieties constitute the ‘lower’ part of this lattice, whereas pre-finitely generated
ones are borderlines between the finitely generated and non-finitely generated ones. Pre-
finitely generated varieties are minimal among non-finitely generated ones. Moreover, an
explicit description of pre-finitely generated varieties provides a criterion for characterizing
finitely generated varieties. For varieties of modal and Heyting algebras there are few well-
known characterizations of pre-finitely generated varieties. Maksimova [29] showed that there
are exactly three pre-finitely generated varieties of Heyting algebras. Maksimova [30] and
Esakia and Meskhi [16] proved that there are exactly five pre-finitely generated varieties of
S4-algebras. Blok [11] showed that there is a continuum of pre-finitely generated varieties of
K4-algebras. On the other hand, Df1 is the only pre-finitely generated variety in the lattice
of subvarieties of Df1. For Df2 and CA2 the picture is more complex than for Df1. As follows
from [5, Theorem 5.4] and [7, Corollary 6.4.7] there are exactly six pre-finitely generated
varieties in Λ(Df2), there are exactly fifteen pre-finitely generated varieties in Λ(CA2), and
six of them belong to Λ(RCA2) (see [6, Corollary 6.6] and [7, Corollary 7.3.7]). These results
yield a characterization of finitely generated varieties of Df2 and CA2-algebras. A variety V is
finitely generated iff none of the pre-finitely generated varieties is a subvariety of V. Another
characterization of finitely generated varieties of Df2 and CA2-algebras can be found in [5,
Section 5] and [6, Section 7].

In Section 6 we gave a classification of subvarieties of Df2. We close this section with a
very rough description of Λ(CA2). We need the following notation: Let FG denote the class
of all finitely generated subvarieties of CA2. Also let DF denote the class of varieties of CA2-
algebras of finite depth which are not finitely generated varieties and let Dω denote the class
of varieties of CA2-algebras of infinite depth.

It follows from the results discussed in Sections 7 and 8 that the variety Vtr generated by
the trivial CA2-algebra is the least element of FG, that FG does not have maximal elements,
that DF has precisely fifteen minimal elements, that DF does not have maximal elements, and
that U and CA2 are the least and greatest elements of Dω, respectively.

The detailed investigation of the ‘lower’ part of Λ(CA2) can be found in [6, Section 7]. In
particular, a complete characterization of the lattice structure of the extensions of CA2 of
depth one is given in [6, Section 7.1]. Using the reduct functor Df : CA2 → Df2, we can define
a reduct functor from the lattice Λ(CA2) into the lattice Λ(Df2). This reduct functor and the
properties that are preserved and reflected by it are investigated in [6, Section 7].

9. Open problems

We close this chapter by listing some open problems.

(i) As we saw in Section 5, every subvariety of Df2 is generated by its finite members.
Moreover, corresponding logical systems have the poly-size model property and NP-
complete satisfiability problem. The same question for CA2-algebras remains open.
Every subvariety of CA2 of finite depth is locally finite and therefore is generated by its
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finite algebras. However, it is still an open (and rather complicated) question whether
every subvariety of CA2 and RCA2 of infinite depth is generated by its finite algebras.

(ii) Subvarieties of CAα (for both infinite and finite α) are investigated in [40, Section 1.1]. In
particular, a characterization of subvarieties of CAω with decidable equational theories
is given in [40]. An existence of such a characterization for finite α (especially in the
case α = 2) remains an open problem.

(iii) That Df2 (resp. CA2 and RCA2) does not have the amalgamation property was first
noticed by Comer [14] (see also Sain [42] and Marx [32]). In particular, it follows from
the proof of this result that every subvariety V of Df2 (resp. of CA2 and RCA2) such
that d1(V) > 2 or d2(V) > 2 lacks the amalgamation property. We leave it as an open
problem to give a full characterization of subvarieties of Df2 (resp. CA2 and RCA2) with
the amalgamation property.

(iv) In this chapter we considered two types of two-dimensional algebras: diagonal-free cylin-
dric algebras and cylindric algebras with the diagonal. However, in order to get the full
two-variable fragment of FOL (with substitution), we could have added to our signature
four extra unary operations (analogous to substitutions of first-order variables) used in
polyadic algebras. Then in addition to Df2-algebras and CA2-algebras we would have
two more similarity types of two-dimensional cylindric-like algebras: two-dimensional

polyadic algebras (PA2-algebras) and two-dimensional polyadic equality algebras (PEA2-
algebras), see [23, Section 5.4]. A PA2-like similarity type was also considered in [45].

As was pointed out earlier, it was shown by Monk [37] that subvarieties of the variety
of PA2-algebras have very similar (good) properties as subvarieties of Df2-algebras. We
leave it as an open problem to investigate the lattice of varieties of PEA2-algebras and
compare it with the lattices of varieties of PA2-algebras, Df2-algebras and CA2-algebras.
We also suggest studying the obvious reduct functors arising between these lattices. We
conjecture that in the same way most of the properties of (varieties of) Df2-algebras
hold for (varieties of) PA2-algebras, most of the properties of (varieties of) CA2-algebras
would hold for (varieties of) PEA2-algebras.
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