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Abstract. Stable logics are modal logics characterized by a class of frames closed under relation
preserving images. These logics admit all filtrations. Since many basic modal systems such as K4
and S4 are not stable, we introduce the more general concept of an M-stable logic, where M is an
arbitrary normal modal logic that admits some filtration. Of course, M can be chosen to be K4
or S4. We give several characterizations of M-stable logics. We prove that there are continuum
many S4-stable logics and continuum many K4-stable logics between K4 and S4. We axiomatize
K4-stable and S4-stable logics by means of stable formulas, and discuss the connection between
S4-stable logics and stable superintuitionistic logics. We conclude the paper with many examples
(and non-examples) of stable, K4-stable, and S4-stable logics and provide their axiomatization in
terms of stable rules and formulas.

1. Introduction

One direction in the study of modal logic has been to identify classes of modal logics that are
finitely axiomatizable, have the finite model property (fmp), and are decidable. To give a few
examples:

(i) Bull [10] and Fine [17] proved that every extension of S4.3 has the fmp, is finitely axioma-
tizable, and hence decidable;

(ii) Segerberg [32] showed that every logic above K4 of finite depth has the fmp;
(iii) Fine [18] proved that every subframe logic above K4 has the fmp; and
(iv) Zakharyaschev [37] showed that the same holds for cofinal subframe logics above K4.

One of the most standard techniques for proving the fmp in modal logic is the method of filtration,
which gives rise to yet another important class of modal logics enjoying the fmp. If a model N is
a filtration of a model M, then N is an image of M under a relation preserving map. We call such
maps stable maps1. Thus, if a modal logic is characterized by a class of frames closed under images
of stable maps, its fmp can be proved via filtration. Such logics were called stable in [3].

Examples of stable logics are the basic modal logic K, the logic T of all reflexive frames, the logic
D of all serial frames, the epistemic logic S5, the logic KMT of the frames where each point sees a
reflexive point, etc. Stable logics enjoy the following strong property: they admit all filtrations.

There are modal logics that are not stable but still admit particular filtrations. For example,
the well-known modal systems K4 and S4 admit transitive filtrations, but they do not admit all
filtrations, hence are not stable. This generates a problem of how to deal with logics that only
admit some filtrations. As a solution, we weaken the notion of stability by parametrizing it over
a ground logic. If a modal logic M admits a filtration, we define M-stable logics as logics that are
stable over M (meaning that they are characterized by a class of frames closed under those stable
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1In model theory such maps are called homomorphisms, but we reserve the term “homomorphism” for opera-

tion preserving maps between modal algebras. Ghilardi [20] calls such maps continuous, but we reserve the term
“continuous” for structure preserving maps between topological spaces. Thus, we follow [3] in calling such maps
“stable.”
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images that validate M). A stable logic is then simply a K-stable logic. It is our goal to develop
the theory of M-stable modal logics.

In many ways stable logics parallel subframe logics. The defining property of subframe logics is
that their classes of frames are closed under subframes. Transitive subframe logics admit selective
filtration, and hence have the fmp. They also admit a uniform axiomatization via the so-called
subframe formulas [18]. Subframe formulas are obtained from Zakharyaschev’s canonical formulas
[36, 37] and subframe rules are obtained from Jeřábek’s canonical rules [22] by dropping the extra
parameter D of closed domains. Similarly, stable rules are obtained from the stable canonical rules
of [3] by dropping the extra parameter D of stable closed domains. Consequently, every stable logic
is axiomatizable by stable rules. Stable rules are best described by their semantic property. The
stable rule of a finite frame F is refuted on a frame G iff F is an image of G via a stable map. Thus,
if a logic L is axiomatized by the stable rules of finite frames {Fi | i ∈ I}, then it is characterized
by the class of finite frames omitting (not having as stable images) every Fi. This gives a geometric
intuition in analogy with that for subframe formulas (see, e.g., [38]).

Another analogy between (elementary) subframe logics and stable logics arises from the model-
theoretic perspective. It is a well known result of  Loś and Tarski that a first-order sentence is
preserved by submodels iff it is equivalent to a set of universal sentences (see, e.g., [14, Thm. 3.2.2]).
Consequently, if a modal logic L is characterized by a class of frames that is definable by universal
sentences, then L is a subframe logic. On the other hand, by Lyndon’s theorem, a first-order
sentence is preserved by surjective homomorphisms (stable maps) iff it is equivalent to a set of
positive sentences (see, e.g., [14, Thm. 3.2.4]). As a result, if a modal logic L is characterized
by a class of frames that is definable by positive sentences, then L is stable. We will use this
characterization to show that many well-known logics above K4 and S4 are K4-stable and S4-stable,
respectively.

There are also essential differences between non-transitive subframe logics and stable logics.
Since the method of filtration works well in the non-transitive case, every stable logic has the fmp,
which in general is not true for subframe logics (see, e.g., [13, Exa. 11.32]). There even exists a
transfinite chain of Kripke-incomplete subframe logics [35]. Stable logics form a well-behaved class
also from a proof-theoretic perspective as every stable logic enjoys the so-called bounded proof
property (the bpp) [7]. Whether all subframe logics enjoy the bpp is still an open problem.

Our main results include several characterizations of M-stable modal logics. Since logics above
K4 and S4 play an important role in modal logic, we pay special attention to K4-stable and S4-stable
logics. For logics above K4, we can turn every stable rule ρ(F) of a rooted frame F into a stable
formula γ(F), which behaves similarly to ρ(F) on rooted frames. As a consequence, every K4-stable
logic is axiomatizable by stable formulas. The converse is not true for logics above K4, but we
prove that it is true for logics above S4; that is, every logic axomatized by S4-stable formulas is
S4-stable.

We also investigate the connection between S4-stable logics and stable superintuitionistic logics
(si-logics) studied in [2, 4]. We prove that the intuitionstic fragment ρM of every S4-stable logic
M is a stable si-logic. In fact, given an axiomatization of M via stable formulas of finite rooted
S4-frames {Fi | i ∈ I}, we can obtain an axiomatization of ρM by the stable intuitionistic formulas
of the intuitionistic frames {Fi | i ∈ I}, where Fi is obtained from Fi by unfolding each cluster into a
chain. Conversely, stability is preserved by the least modal companion of a si-logic, and if the stable
formulas of {Gi | i ∈ I} axiomatize a stable si-logic, then the S4-stable formulas of {Gi | i ∈ I}
axiomatize its least modal companion. However, stability is not preserved by the greatest modal
companion of a si-logic. This is in contrast with subframe logics, where both the least and greatest
companions of a subframe si-logic are subframe logics, and the intuitionistic fragment of every
subframe logic above S4 is a subframe si-logic (see, e.g., [13, Sec. 9.6]). We explicitly use these
connections between S4-stable logics and stable si-logics to give concrete axiomatizations of many
well-known K4-stable and S4-stable logics via stable formulas.
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The paper is organized as follows. In the next section we recall the necessary background and
central notions from [3]. In Section 3 we lay out the general theory of M-stable logics and show that
there are continuum many stable logics. In Section 4, we turn to more specific cases and discuss
M-stable logics, where M is a normal extension of K4. In Section 5 we discuss the connection
between S4-stable logics and stable si-logics. In the final section we present many examples (and
non-examples) of stable, K4-stable, and S4-stable logics and provide their axiomatizations in terms
of stable rules and formulas.

2. Preliminaries

We assume the reader is familiar with modal logic. We use [13, 23, 8, 34] as our main references
for modal logic, [11] for universal algebra, [30, 24] for modal consequence relations, and [22, 3] for
multi-conclusion modal consequence relations.

We recall that a modal algebra is a pair A = (A,♦) where A is a Boolean algebra and ♦ is a
unary function on A preserving all finite joins. We also recall that a modal space (aka a descriptive
frame) is a pair X = (X,R) where X is a Stone space (compact Hausdorff zero-dimensional space)
and R is a binary relation on X satisfying R[x] := {y ∈ X | xRy} is closed for every x ∈ X and
R−1[U ] := {x ∈ X | xRy for some y ∈ U} is clopen for every clopen U of X. If X is a finite modal
space, then the topology is discrete, and we view X as a finite Kripke frame.

We will often use the duality between modal algebras and modal spaces. The dual modal space
of a modal algebra A = (A,♦) is X = (X,R), where X is the Stone space of A (that is, the
points of X are the ultrafilters of A and the topology on X is generated by the basic open sets
ϕ(a) = {x ∈ X | a ∈ x} for all a ∈ A) and xRy iff (∀a ∈ A)(a ∈ y ⇒ ♦a ∈ x). If X = (X,R) is a
modal space, then its dual modal algebra is A = (A,♦), where A is the Boolean algebra of clopen
subsets of X and ♦a = R−1[a] for all a ∈ A.

Morphisms between modal algebras are modal algebra homomorphisms, morphisms between
modal spaces are continuous p-morphisms, and the duality extends to morphisms by taking preim-
ages of the morphisms in question.

We recall (see, e.g., [23, p. 174]) that an element a of a modal algebra A is an opremum if
a 6= 1 and for each b 6= 1 there is n ∈ ω with �nb ≤ a, where �0b = b, �n+1b = ��nb, and
�nb =

∧
k≤n�

kb. A modal algebra A is subdirectly irreducible iff it has an opremum.

An element x of a modal space X = (X,R) is a root if X = Rω[x] and a topo-root if Rω[x] is dense
in X, where R0[x] = {x}, Rn+1[x] = {y ∈ X | zRy for some z ∈ Rn[x]}, and Rω[x] =

⋃
n∈ω R

n[x].
We call X rooted if it has a root, and topo-rooted if the set of topo-roots is not co-dense (the interior
is nonempty). By [33, Thm. 2], a modal algebra A is subdirectly irreducible iff its dual modal space
X is topo-rooted. Therefore, if A is finite, then A is subdirectly irreducible iff X is rooted [31,
Thm. 3.1].

In this paper we will often be interested in maps between modal algebras that are not full modal
algebra homomorphisms, but preserve ♦ only “half-way.” Such maps were studied in [5] under the
name of semi-homomorphisms and in [20] under the name of continuous morphisms. We follow [3]
in calling them stable homomorphisms.

Definition 2.1. Let A = (A,♦) and B = (B,♦) be modal algebras.

(1) A Boolean homomorphism h : A→ B is stable provided ♦h(a) ≤ h(♦a) for all a ∈ A.
(2) We call A a stable subalgebra of B if A is a Boolean subalgebra of B and the inclusion

A ↪→ B is a stable homomorphism.

Dually stable homomorphisms correspond to continuous relation preserving maps (see [3, Lem.
3.3]).

Definition 2.2.
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(1) Let X = (X,R) and Y = (Y,R) be modal spaces. A map f : X → Y is called stable
provided it is continuous and xRy implies f(x)Rf(y).

(2) We call Y a stable image of X if there is an onto stable map f : X → Y .

A multi-conclusion rule is an expression of the form Γ/∆, where Γ and ∆ are finite sets of
formulas. A modal algebra A = (A,♦) validates a rule Γ/∆ (in symbols: A |= Γ/∆) if for every
valuation V : Prop→ A, from V (γ) = 1 for all γ ∈ Γ it follows that V (δ) = 1 some δ ∈ ∆. Just as
formulas correspond to equations, multi-conclusion rules correspond to universal clauses, namely
the rule Γ/∆ corresponds to the universal clause ∀x̄

∧
γ∈Γ γ(x̄) →

∨
δ∈∆ δ(x̄), where x̄ is a set of

variables containing a variable for each propositional letter used in the formulas from Γ and ∆.
We recall the stable rules of [3, Sec. 7]. Let A = (A,♦) be a finite modal algebra. For every

a ∈ A, let pa be a propositional letter such that a 6= b implies pa 6= pb. The stable (multi-conclusion)
rule ρ(A) is defined as Γ/∆, where

Γ = {pa∨b ↔ pa ∨ pb | a, b ∈ A}∪
{p¬a ↔ ¬pa | a ∈ A}∪
{♦pa → p♦a | a ∈ A}

and

∆ = {pa | a ∈ A, a 6= 1}.
Stable rules generalize the Jankov rules of [22], which in model theory correspond to diagrams

of finite modal algebras [14, p. 68]. Recall that satisfying the diagram of a structure is equivalent
to the structure being isomorphically embeddable [14, Prop. 2.1.8]. On the other hand, refutation
of the stable rule of a finite modal algebra A is equivalent to A being stably embeddable:

Proposition 2.3. [3, Prop. 7.1] Let A,B be modal algebras with A finite. Then B 6|= ρ(A) iff there
is a stable embedding h : A� B.

Recall that varieties are classes of algebras closed under the operations of taking homomorphic
images H, subalgebras S, and products P. There is a one-to-one correspondence between normal
modal logics and varieties of modal algebras. If Γ is set of formulas, then we denote by V(Γ)
the variety corresponding to the logic axiomatized by Γ. Just as formulas axiomatize varieties
of algebras, multi-conclusion rules axiomatize universal classes of algebras. These are classes of
algebras closed under the operations of taking isomorphic copies I, subalgebras S, and ultraproducts
PU. If K is a class of modal algebras, then we denote by V(K) the variety generated by K,
and by U(K) the universal class generated by K. It is well known that V(K) = HSP(K) and
U(K) = ISPU(K). Note that U(K) is contained in V(K), but in general the inclusion is proper.

Universal classes of modal algebras correspond to normal modal multi-conclusion consequence
relations. A normal modal multi-conclusion consequence relation is a set S of rules such that

ϕ/ϕ ∈ S;
ϕ,ϕ→ ψ/ψ ∈ S;
ϕ/�ϕ ∈ S;
/ϕ ∈ S for each theorem ϕ ∈ K;
if Γ/∆ ∈ S, then Γ,Γ′/∆,∆′ ∈ S;
if Γ/∆, ϕ ∈ S and Γ, ϕ/∆ ∈ S, then Γ/∆ ∈ S;
if Γ/∆ ∈ S and s is a substitution, then s(Γ)/s(∆) ∈ S.

If S is a normal modal multi-conclusion consequence relation, then we denote by U(S) the universal
class corresponding to S. As shown in [22, Thm. 2.2], S is complete with respect to U(S). If K
is a class of modal algebras, then SK = {Γ/∆ | A |= Γ/∆ for every A ∈ K} is a normal modal
multi-conclusion consequence relation. If R is a set of rules, then we denote by CR(R) the least
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normal modal multi-conclusion consequence relation containing R. If S = CR(R), then we say that
R axiomatizes S.

For a normal modal logic L, we denote by SL the normal modal multi-conclusion consequence
relation axiomatized by {/ϕ | ϕ ∈ L}. A set of rules R gives rise to the logic Log(R) = {ϕ | /ϕ ∈
CR(R)}. If L = Log(R), then we say that L is axiomatized by R. More generally, ifR is a set of rules
and M is a normal modal logic, then we say that the logic L = M+{ϕ | /ϕ ∈ CR(R)} is axiomatized
by R over M. We have V(Log(R)) = V(U(CR(R))) and V(M+{ϕ | /ϕ ∈ CR(R)}) = V(U(SM +R)).

3. M-stable modal logics

Stable modal logics are modal logics axiomatized by stable rules [3, Sec. 7]. As we pointed out in
the introduction, they admit all filtrations (where admitting filtration is meant in the weak sense,
see Definition 3.1(2)). Many logics that admit filtration do not admit all filtrations—e.g., K4 only
admits filtrations that produce transitive frames—and such logics are not stable. We therefore
relativize the concept of a stable logic to that of an M-stable logic, where M is a normal modal logic
admitting filtration (in the strong sense, see Definition 3.1(3)). Thus, M-stable logics are logics
above M that admit all M-filtrations (in the weak sense). To facilitate the study of M-stable logics,
we give several equivalent descriptions of M-stability. We also collect several observations on how
M-stable logics lie in the lattice of all modal logics. We conclude the section by showing that there
are continuum many (weakly transitive) stable logics.

We recall that an algebraic account of filtrations in modal logic was first given in [27, 28] (see
also [25, 26]). For a more recent discussion of filtrations algebraically we refer to [20, 15, 3]. Here
we follow the construction discussed in [3, Sec. 4].

Definition 3.1.
(1) Suppose A = (A,♦) is a modal algebra, V is a valuation on A, and Σ is a finite set of

formulas closed under subformulas. Let A′ be the Boolean subalgebra of A generated by
V (Σ). Then A′ is finite because Σ is finite. Set D = {V (ϕ) | ♦ϕ ∈ Σ}. Let ♦′ be a modal
operator on A′ and V ′ be a valuation on A′ = (A′,♦′) satisfying
• The inclusion A′ ↪→ A is a stable homomorphism;
• V ′(p) = V (p) for all propositional letters p ∈ Σ;
• ♦′a = ♦a for all a ∈ D.

Then (A′, V ′) is called a filtration of (A, V ) through Σ.
(2) A normal modal logic M admits filtration (in the weak sense) if for every non-theorem ϕ of

M, there is a counter-model (A, V ) of ϕ and a filtration (A′, V ′) of (A, V ) through some finite
set Σ of formulas containing ϕ and closed under subformulas such that A′ is an M-algebra.

(3) A normal modal logic M admits filtration (in the strong sense) if for every M-algebra A,
every valuation V on A, and every finite set Σ of formulas closed under subformulas, there
is a filtration (A′, V ′) of (A, V ) through Σ such that A′ is an M-algebra.

Our definition of admitting filtration in the weak sense follows [13, p. 142], and admitting fil-
tration in the strong sense follows [20, p. 201]. Clearly the latter is stronger than the former,
but the former is sufficient for proving the fmp. Indeed, by the Filtration Theorem (see, e.g., [13,
Thm. 5.23]), if (A′, V ′) is a filtration of (A, V ) through some Σ, then V (ϕ) = V ′(ϕ) for all ϕ ∈ Σ. It
follows that if a normal modal logic M admits filtration in the weak sense, then M has the fmp. On
the other hand, admitting filtration in the strong sense ensures the finite embeddability property
(see Remark 3.4).

Definition 3.2. Let M be a normal modal logic and let L be a normal extension of M.

(1) Suppose K and V are two classes of modal algebras with K ⊆ V. We say that K is V-stable
provided for A,B ∈ V, if B ∈ K and there is a stable embedding A� B, then A ∈ K.
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(2) Let K be a class of M-algebras. We say that K is M-stable if K is V(M)-stable. We say that
K is finitely M-stable provided for every finite M-algebra A and any B ∈ K, whenever there
is a stable embedding A� B, then A ∈ K.

(3) We say that L is M-stable if the variety V(L) is generated by an M-stable class.

Proposition 3.3. If M is a normal modal logic that admits filtration in the strong sense, then
every M-stable logic admits filtration in the weak sense, and hence has the fmp.

Proof. Let L be M-stable. Then V(L) is generated by an M-stable class K. If L 6` ϕ, then there
is A ∈ K and a valuation V on A such that A 6|= ϕ. Let Sub(ϕ) be the set of subformulas of ϕ.
Since M admits filtration in the strong sense, there is a finite M-algebra A′ and a valuation V ′ on
A′ such that (A′, V ′) is a filtration of (A, V ) through Sub(ϕ). Because K is M-stable, A′ ∈ K. Thus,
L admits filtration in the weak sense, and hence L has the fmp. �

Roughly speaking, whenever L is M-stable and M admits filtration in the strong sense, the fmp
of L can be shown with the “same proof” as the fmp for M.

Remark 3.4. We briefly discuss connection between M-stability and the notion of the finite em-
beddability property (fep for short) [19, Sec. 6.5]. The fep is equivalent to the finite model property
for quasi-equations [16, 9], so it is a slightly stronger notion than the fmp. If a normal modal
logic M admits filtration in the strong sense, then the corresponding variety of modal algebras has
the fep. Every M-stable class of algebras has the fep, but in general we do not know whether the
variety V(L) corresponding to an M-stable logic L has the fep since by Definition 3.2(3), V(L) is
only generated by an M-stable class and may itself not be an M-stable class. However, if L is a
normal extension of K4, then it follows from [22, Lem. 3.23] that the notions of fmp and fmp for
quasi-equations coincide. As the fmp for quasi-equations is equivalent to the fep, we conclude that
the notions of fmp and fep coincide for normal extensions of K4. Therefore, Proposition 3.3 yields
that if L is K4-stable, then V(L) has the fep.

In what follows, we will mainly be interested in admitting filtration in the strong sense, and will
simply refer to this condition as admitting filtration.

Lemma 3.5. Let M be a normal modal logic that admits filtration and let K be a finitely M-stable
class of M-algebras.

(1) SK is axiomatized over SM by the stable rules of finite M-algebras.
(2) U(K) = U(Kfin), where Kfin is the class of finite members of K.

Proof. (1). Suppose that K is finitely M-stable. LetA be the set of finite non-isomorphic M-algebras
that do not belong to K and let Ψ = {ρ(A) | A ∈ A}. We show that SK is axiomatized over SM by
Ψ. For this it is sufficient to show that U(K) is exactly the class of M-algebras satisfying Ψ. First
we show that each member of K satisfies Ψ. If there are B ∈ K and A ∈ A such that B 6|= ρ(A),
then by Proposition 2.3, there is a stable embedding A � B. Since K is finitely M-stable and A
is finite, A ∈ K, a contradiction. Because U(K) is generated by K, it follows that each member
of U(K) satisfies Ψ. Conversely, suppose that an M-algebra B satisfies ρ(A) for each A ∈ A. If
B 6∈ U(K), then there is a multi-conclusion rule Γ/∆ such that K |= Γ/∆ but B 6|= Γ/∆. Let B′

be an M-filtration of B through Sub(Γ∪∆) with B′ 6|= Γ/∆. Since B′ is a stable subalgebra of B,
we have B 6|= ρ(B′) by Proposition 2.3. As B satisfies ρ(A) for each A ∈ A, we see that B′ ∈ K,
so B′ ∈ U(K). But this contradicts to B′ 6|= Γ/∆. Therefore, B ∈ U(K).

(2). The inclusion U(Kfin) ⊆ U(K) is obvious. To see the reverse inclusion, let Γ/∆ be a multi-
conclusion rule that is refuted in U(K). Then there is A ∈ K that refutes Γ/∆. Let A′ be an
M-filtration of A through Sub(Γ ∪∆). Then A′ refutes Γ/∆ and A′ ∈ K since A′ is finite and K is
finitely M-stable. Thus, A′ ∈ Kfin, and so U(Kfin) refutes Γ/∆. �

Definition 3.6. Let F = (W,R) be a finite Kripke frame. We call r ∈W a strong root of F if rRw
for all w ∈W .
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Note that if r is a strong root, then it is reflexive. In algebraic terms, a strong root corresponds
to an atom a of a finite modal algebra A such that a ≤ ♦b for all 0 6= b ∈ A.

Definition 3.7.
(1) Let F = (W,R) be a finite Kripke frame and let r /∈ W . We set Fr = (W ′, R′) where

W ′ = W ∪ {r} and R′ = R ∪ {(r, w) | w ∈ W ′}. Figuratively speaking, Fr is obtained by
adding a strong root beneath F.

(2) We say that a normal modal logic M has the (∗)-property if for each finite M-frame F we
have that Fr is also an M-frame.

If A = (A,♦) is the dual algebra of F, then the dual algebra of Fr is the algebra A′ = (A′,♦′),
where A′ is the Boolean algebra generated by A and a fresh atom a with ♦′a = a and ♦′b = ♦b∨ a
for every atom b ∈ A. Consequently, a normal modal logic M has the (∗)-property if for every finite
M-algebra A = (A,♦), the algebra A′ = (A′,♦′) is an M-algebra. Examples of normal modal logics
satisfying the (∗)-property are K, D, T, K4, and S4. On the other hand, the logics KB, S5, and GL
do not satisfy the (∗)-property.

For a class K, we let Ksi be the class of subdirectly irreducible members of K.

Theorem 3.8. Suppose M is a normal modal logic that admits filtration and L is a normal extension
of M. The following are equivalent.

(1) L is M-stable.
(2) V(L) is generated by a finitely M-stable class.
(3) V(L) is generated by an M-stable class of finite modal algebras.
(4) L is axiomatizable over M by stable rules of finite M-algebras.
(5) V(L) is generated by an M-stable universal class of modal algebras.

Moreover, if M has the (∗)-property, then the above conditions are equivalent to the following ones:

(6) V(L) is generated by an M-stable class of finite subdirectly irreducible algebras.
(7) V(L) is generated by a V(M)si-stable class.
(8) V(L) is generated by a finitely M-stable class of subdirectly irreducible algebras.

Proof. The proof is similar to [3, Thm. 7.6]. The implication (1) ⇒ (2) is trivial since every M-
stable class is finitely M-stable. For the implication (2)⇒ (3), suppose that V(L) is generated by a
finitely M-stable class K. By Lemma 3.5(2), K and Kfin generate the same universal class, and hence
they generate the same variety. Thus, V(L) is generated by the M-stable class Kfin of finite modal
algebras. The implication (3)⇒ (2) is obvious. For the implication (2)⇒ (4), suppose that V(L) is
generated by a finitely M-stable class K. By Lemma 3.5(1), SK is axiomatized over SM by the stable
rules of finite M-algebras. Since the variety V(L) is generated by K, the same rules axiomatize L over
M. For the implication (4)⇒ (5), suppose that L is axiomatized over M by the set Ψ of stable rules.
As validity of stable rules is preserved by stable embeddings, the universal class U(SM + Ψ) is M-
stable. Since L = M+{ϕ | /ϕ ∈ CR(R)}, we have V(L) = V(M+{ϕ | /ϕ ∈ CR(R)}) = V(U(SM+Ψ)).
Because U(SM+Ψ) is an M-stable universal class, we conclude that V(L) is generated by an M-stable
universal class. The implication (5)⇒ (1) is obvious.

Finally, suppose that M has the (∗)-property. Obviously (6) ⇒ (7) ⇒ (8) ⇒ (2). Therefore,
it is sufficient to prove that (3) implies (6). Suppose K is a stable class of finite M-algebras that
generates V(L). It is sufficient to show that Ksi generates V(L), and for this it is sufficient to show
that K is contained in the variety generated by Ksi. Suppose A ∈ K. If A is subdirectly irreducible,
then A ∈ Ksi, and there is nothing to prove. Otherwise A is a subdirect product of its subdirectly
irreducible homomorphic images. Therefore, to conclude that A is in the variety generated by Ksi,
it is sufficient to see that every subdirectly irreducible homomorphic image B of A belongs to this
variety. Let B be a subdirectly irreducible homomorphic image of A. Since A is finite, so is B.
Let X = (X,R) be the dual of A and Y = (Y,R) the dual of B. Since B is finite and subdirectly
irreducible, Y is a finite rooted M-frame. Consider Yr = (Y ′, R′) (see Definition 3.7(1)). Because
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M has the (∗)-property, Yr is an M-frame. Since B is a homomorphic image of A, Y is a generated
subframe of X. As A is not subdirectly irreducible but B is, X is not rooted but Y is. So Y 6= X.
Define f : X → Y ′ by mapping the points of Y to themselves and the remaining points of X to r.
It is easy to see that f is an onto stable map. Therefore, there is a stable embedding from the dual
algebra B′ of Yr to A. Since A ∈ K and K is M-stable, we conclude that B′ ∈ K. As Yr is finite
and rooted, B′ is subdirectly irreducible, and hence B′ ∈ Ksi. Now, Y is a generated subframe of
Yr, so B is a homomorphic image of B′, and hence B belongs to the variety generated by Ksi, as
desired. �

Remark 3.9. The definition of a normal modal multi-conclusion consequence relation M admit-
ting filtration, the proof that such M has the fmp, the definition of M-stable multi-conclusion
consequence relations and an analogue of Theorem 3.8 are proved similarly, so we skip the details.
M-stable multi-conclusion consequence relations generalize the stable multi-conclusion consequence
relations studied in [3].

For a normal modal logic M, we denote by NExtM the sublattice of the lattice of all normal
modal logics consisting of normal extensions of M.

Proposition 3.10. Suppose M, L,N are normal modal logics with M ⊆ L ⊆ N.

(1) If N is M-stable, then N is L-stable.
(2) The converse of (1) is not true in general, i.e. if N is L-stable, then N may not be M-stable.
(3) If V(L) is a V(M)-stable class, then N is L-stable iff N is M-stable.
(4) The M-stable logics form a

∧
-subsemilattice of NExtM.

Proof. (1). Since N is M-stable, V(N) is generated by an M-stable class K. As K is M-stable, it is
obviously L-stable. Thus, N is L-stable.

(2). We will see in Section 6 that taking M = K, L = K4, and N = S4 provides the desired
example.

(3). One implication follows from (1). For the other, suppose that N is L-stable. Then V(N) is
generated by an L-stable class K. Since V(L) is V(M)-stable, K is also V(M)-stable. Therefore, N
is M-stable.

(4). Suppose {Li | i ∈ I} is a family of M-stable logics. Then every Li is generated by some M-
stable class Ki. Clearly the class

⋃
{Ki | i ∈ I} is also M-stable, and generates V(

∧
{Li | i ∈ I}). �

Problem 1. Suppose M is a normal modal logic that admits filtration. Do the M-stable logics
form a complete sublattice of NExtM? In particular, do the stable logics form a complete sublattice
of NExtK?

Remark 3.11. For a normal modal multi-conclusion consequence relation M, let NExtM be the
sublattice of the lattice of all normal modal multi-conclusion consequence relations consisting of
normal extensions of M. If M admits filtration, then the M-stable multi-conclusion consequence
relations do form a complete sublattice of NExtM. To see this, let {Si | i ∈ I} be a family of
M-stable multi-conclusion consequence relations. Then each Si is axiomatized overM by a set Σi

of stable rules of finite M-algebras. But then
∨
{Si | i ∈ I} is axiomatized by

⋃
{Σi | i ∈ I}, and

hence
∨
{Si | i ∈ I} isM-stable. That

∧
{Si | i ∈ I} isM-stable is proved as in Proposition 3.10(4).

The reason that the same argument does not work for M-stable logics is that if each logic Li is
axiomatizable above M by Σi, it is unclear whether

∨
{Li | i ∈ I} is axiomatizable by

⋃
{Σi | i ∈ I}.

In algebraic terms, if Vi is the variety corresponding to Li and Ui is the universal class of M-algebras
validating Σi, then Vi is generated by Ui. But it is unclear whether

⋂
{Vi | i ∈ I} is generated by⋂

{Ui | i ∈ I}.
As we will see in the next section, if M is a normal extension of K4 that admits filtration and

has the (∗)-property, then the M-stable logics do form a complete sublattice of NExtM.
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While it is unclear whether the M-stable logics form a
∨

-subsemilattice of NExtM, we will show
that the tabular M-stable logics do form a

∨
-subsemilattice of NExtM. For a variety V, let Vsi be

the class of subdirectly irreducible members of V.

Proposition 3.12. Let M be a normal modal logic admitting filtration and satisfying the (∗)-
property.

(1) If L is a tabular M-stable normal extension of M, then V(L)si is M-stable.
(2) The tabular M-stable logics form a

∨
-subsemilattice of NExtM.

Proof. (1). Since L is M-stable, by Theorem 3.8, there is an M-stable class K of subdirectly irre-
ducible algebras that generates V(L). Since L is tabular, we may assume that K is a finite class of
finite subdirectly irreducible algebras. Let B ∈ V(L)si and let C be a stable subalgebra of B. By
Jónsson’s Lemma, B ∈ HS(K), so there is A in S(K) such that B is a homomorphic image of A.
Since C is finite, it is subdirectly irreducible by [3, Prop. 6.4]. Therefore, it is sufficient to show
that C is an L-algebra. Let X be the dual of A, let Y be the dual of B, and let Z be the dual of
C. Then Y is a generated subframe of X and Z is a stable image of Y. Since K is M-stable, so is
S(K). Thus, all stable images of X are L-frames. If X = Y, then Z is a stable image of X, and so
Z is an L-frame. If X 6= Y, then by the (∗)-property, we may add a new strong root to Z to obtain
an M-frame Z′. As we observed in the proof of Theorem 3.8, Z′ is a stable image of X. Therefore,
Z′ is an L-frame, and hence so is Z. Thus, C ∈ V(L)si.

(2). Suppose {Li | i ∈ I} is a family of tabular M-stable logics. By (1), V(Li)si is M-stable for
all i ∈ I. Therefore, V(

∨
{Li | i ∈ I})si =

⋂
{V(Li)si | i ∈ I} is M-stable. Thus,

∨
{Li | i ∈ I} is

M-stable, and it is clearly tabular. �

Remark 3.13. The proof of Proposition 3.12 uses essentially that subdirectly irreducible L-algebras
are finite, and does not extend directly to non-tabular logics.

As we already pointed out, stable logics are simply the K-stable logics. In [3, Def. 7.5], Condition
(5) of Theorem 3.8 was used as a definition of stable logics. Theorem 3.8 then extends the charac-
terization of stable logics given in [3, Prop. 7.6]. The next theorem shows that there are infinitely
many stable logics.

Theorem 3.14.
(1) For a finite modal algebra A, let Stable(A) be the class of modal algebras that are isomor-

phic to stable subalgebras of A, and let Log(Stable(A)) be the logic of Stable(A). Then
Log(Stable(A)) is a stable modal logic.

(2) Every extension of S5 is a stable modal logic.

Proof. (1). Clearly Stable(A) is a stable class of finite modal algebras. Now apply Theorem 3.8.
(2). It is well known that an S5-algebra is subdirectly irreducible iff its dual is a cluster. It is

easy to see that the class of finite clusters is a stable class. Since S5 is the logic of this class, S5
is a stable logic by Theorem 3.8. It is also well known that for every extension L of S5 there is n
such that L is the logic of m-clusters for m ≤ n. This class is stable by the same reasoning. Thus,
every extension of S5 is stable. �

We conclude this section by showing that there are continuum many stable logics. In fact, we
will show that there are continuum many stable logics above the logic wK4 of weakly transitive
frames, where a frame F = (X,R) is weakly transitive provided xRy, yRz, and x 6= z imply xRz
for all x, y, z ∈ X. For our proof we will make use of Jankov formulas for finite wK4-algebras (see
[29] or [1, Sec. 7.2]). For a finite subdirectly irreducible wK4-algebra A, let χ(A) be the Jankov
formula of A. Then for a wK4-algebra B, we have:

B 6|= χ(A) iff A is a subalgebra of a homomorphic image of B (see, e.g., [1, Prop. 7.5]).
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Dually, if F is a finite rooted weakly transitive frame and X is an arbitrary weakly transitive space,
then we have:

X 6|= χ(F) iff F is a p-morphic image of a generated subframe of X.

We will often not distinguish between modal algebras and their duals. If A is a finite modal algebra
and F is its dual, then we often write ρ(F) instead of ρ(A). As usual, we denote a reflexive point
by and an irreflexive point by .

Theorem 3.15. There is a continuum of weakly transitive non-transitive stable modal logics.

Proof. For n ≥ 2 let Cn = (Xn, Rn) be the irreflexive n-point cluster depicted in Figure 1; that is,
Xn = {x1, . . . xn} and Rn = {(xi, xj) ∈ Xn ×Xn | i 6= j}.

C2 C3 C4 C5

. . .

Figure 1

Let N≥2 = {n ∈ N | n ≥ 2}. For I ⊆ N≥2 set

KI = {X | ∃n ∈ I such that X is a stable image of Cn}.
It is clear that KI is a stable class of modal spaces. Let LI be the logic of KI . Since KI is stable,
LI is a stable modal logic. We show that if I 6= J , then LI 6= LJ . For this we first show that n ∈ I
iff χ(Cn) /∈ LI . If n ∈ I, then Cn ∈ KI , so Cn |= LI . Clearly Cn 6|= χ(Cn), which implies that
χ(Cn) 6∈ LI . Conversely, suppose that χ(Cn) 6∈ LI . Since LI is the logic of KI , there is X ∈ KI such
that X 6|= χ(Cn). Therefore, Cn is a p-morphic image of a generated subframe of X. But the only
generated subframe of X is X, so KI is closed under generated subframes. Also a p-morphic image
of X is a stable image of X, and KI is closed under stable images. Thus, Cn ∈ KI . If n /∈ I, then
there is m ∈ I and an onto stable map f : Cm � Cn. Since m = |Cm| > |Cn| = n, we see that f
must identify at least two points of Cm. Therefore, there are distinct x, y ∈ Cm with f(x) = f(y).
Thus, xRmy and f(x)R�nf(y), which is a contradiction because f is stable. Consequently, n ∈ I,
and so n ∈ I iff χ(Cn) /∈ LI . Now, if I 6= J , then without loss of generality we may assume that
there is n ∈ I \ J . Therefore, χ(Cn) ∈ LJ \ LI , and hence LI 6= LJ . Since each Cn is weakly
transitive and non-transitive, we conclude that {LI | I ⊆ N≥2} is a continual family of weakly
transitive non-transitive stable logics. �

4. Transitive M-stable logics

We next study M-stability when M is a normal extension of K4 that admits filtration and has the
(∗)-property. In this case we will show that M-stable logics are axiomatizable by stable formulas.
As a corollary we derive that the M-stable logics form a complete sublattice of NextM. If in addition
M is a normal extension of S4, then the converse is also true, and the M-stable logics are exactly
the normal extensions of M axiomatizable by stable formulas. At the end of the section we point
out that the results of this section can be further generalized by replacing K4 with a normal modal
logic that has a master modality, admits filtration, and satisfies the (∗)-property.

Let A = (A,♦) be a K4-algebra. As usual, for a ∈ A, we set ♦+a = a∨♦a and�+a = a∧�a. Then
A+ = (A,♦+) is an S4-algebra. Following [28, Def. 1.10], we call A well-connected if ♦+a∧♦+b = 0
implies a = 0 or b = 0. Equivalently, A is well-connected if �+a ∨�+b = 1 implies a = 1 or b = 1.
Each subdirectly irreducible K4-algebra is well-connected. To see this, suppose A is subdirectly
irreducible and �+a ∨ �+b = 1. If a, b 6= 1, then since A is subdirectly irreducible, it has an
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opremum c 6= 1, so a, b 6= 1 implies �+a,�+b ≤ c, so �+a ∨ �+b ≤ c 6= 1, a contradiction.
Therefore, a = 1 or b = 1, and hence A is well-connected. While the converse is not true in general,
it is true for finite K4-algebras.

For a class K of K4-algebras, we use the following notation:

• Ksi denotes the subdirectly irreducible members of K;
• Kfsi denotes the finite subdirectly irreducible members of K;
• Kwc denotes the well-connected members of K.

For a K4-space X = (X,R), let R+ be the reflexive closure of R. Then X+ = (X,R+) is an
S4-space. Since in a K4-space Rω = R+, we see that a K4-space is rooted iff there is x ∈ X such
that X = R+[x]. It is well known that a K4-algebra is well-connected iff its dual K4-space is rooted.

Lemma 4.1. Suppose A = (A,♦A) and B = (B,♦B) are K4-algebras. If B is well-connected and
there is a stable embedding h : A→ B, then A is well-connected.

Proof. Since h is stable, we see that ♦Bh(a) ≤ h(♦Aa) for all a ∈ A. Therefore, ♦+
Bh(a) ≤ h(♦+

Aa)

for all a ∈ A. Now, let a, b ∈ A with ♦+
Aa ∧ ♦

+
Ab = 0. Then ♦+

Bh(a) ∧ ♦+
Bh(b) = 0. As B is

well-connected, h(a) = 0 or h(b) = 0. Since h is an embedding, a = 0 or b = 0. Thus, A is
well-connected. �

As was shown in [3, Sec. 6.2], if A is a finite subdirectly irreducible K4-algebra, then the stable
rule ρ(A) = Γ/∆ can be rewritten as a formula.

Definition 4.2. The stable formula of a finite subdirectly irreducible K4-algebra A is defined as

γ(A) :=
∧
{�+γ | γ ∈ Γ} →

∨
{�+δ | δ ∈ ∆}.

If F is a finite rooted K4-frame, then we write γ(F) for the stable formula of the dual algebra of F.

As follows from [3, Thm. 6.8], for every K4-algebra B, we have B 6|= γ(A) iff there is a subdirectly
irreducible homomorphic image C of B such that A is isomorphic to a stable subalgebra of C. If B
is well-connected, then one implication of this equivalence can be strengthened.

Lemma 4.3. Suppose A is a finite subdirectly irreducible K4-algebra and B is a well-connected
K4-algebra. If h : A� B is a stable embedding, then B 6|= γ(A).

Proof. Let V be a valuation on A such that V (pa) = a, and let V ′ = h ◦ V . As in the proof of [3,
Thm. 6.8], we have that V ′(�+γ) = 1 for all γ ∈ Γ and V ′(�+δ) 6= 1 for all δ ∈ ∆. Therefore,
V ′(
∧
{�+γ | γ ∈ Γ) = 1, and since B is well-connected, V ′(

∨
{�+δ | δ ∈ ∆) 6= 1. Thus, V ′

witnesses that B 6|= γ(A). �

Example 4.4. The converse of Lemma 4.3 is not true in general. Let A and B be the K4-algebras
that are dual to the K4-frames F and G shown below.

F G

Clearly both F,G are rooted and F is a generated subframe of G. So A is a subdirectly irreducible
homomorphic image of B, and hence B 6|= γ(A). On the other hand, F is not a stable image of G
since an onto stable map would send the root of G to the root of F. But the root of G is reflexive
while the root of F is irreflexive, a contradiction. Thus, there does not exist a stable embedding of
A into B.

Of course, the key is that the root of F is irreflexive. The next lemma shows that this is essential.
Note that for finite K4-frames, strong roots from Definition 3.7 are the same as reflexive roots.



12 GURAM BEZHANISHVILI, NICK BEZHANISHVILI, JULIA ILIN

Lemma 4.5. Let F = (X,R), G = (Y,Q), and G′ = (Y ′, Q′) be finite K4-frames such that F is a
stable image of G and G is a generated subframe of G′.

(1) There is a finite K4-frame F′ = (X ′, R′) such that F is a generated subframe of F′, F′ is a
stable image of G′, and the following diagram commutes.

G F

G′ F′

(2) If in addition F has a strong root, then F is a stable image of G′ and the following diagram
commutes.

G F

G′

Proof. (1). If G = G′, then there is nothing to show as we can take F′ to be F. Otherwise we let F′

be obtained by adding a strong root r to F. It is easy to see that F′ is a K4-frame and that F is a
generated subframe of F′. Moreover, the same argument as in the proof of Theorem 3.8 yields that
F′ is a stable image of G′. Furthermore, it follows from the definition that the diagram commutes.

(2). Let f : Y → X be an onto stable map. Define g : Y ′ → X so that the restriction of g to Y
is f and g maps Y ′ \ Y to the reflexive root r of F (provided Y ′ \ Y 6= ∅). Then it is easy to see
that g is an onto stable map, and that the diagram commutes. �

We can reformulate Lemma 4.5 in algebraic terms as follows.

Lemma 4.6. Let A, B, and B′ be finite K4-algebras such that there is a stable embedding of A
into B and B is a homomorphic image of B′.

(1) There is a finite K4-algebra A′ such that A is a homomorphic image of A′, A′ is isomorphic
to a stable subalgebra of B′, and the following diagram commutes.

B A

B′ A′

(2) If in addition A has an atom a such that a ≤ ♦b for all 0 6= b ∈ A, then there is a stable
embedding of A into B′ and the following diagram commutes.

B A

B′

We next build on Theorem 3.8 and obtain several more convenient characterizations of M-stability
when M is a normal extension of K4 that admits filtration and satisfies the (∗)-property. For a class
K of K4-algebras, let Kwc be the class of well-connected members of K and let Kfsi be the class of
finite subdirectly irreducible members of K.
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Theorem 4.7. Let M be a normal extension of K4 that admits filtration and has the (∗)-property.
For a normal extension L of M, the following are equivalent.

(1) L is M-stable.
(2) V(L)wc is M-stable.
(3) V(L)si is finitely M-stable.
(4) V(L)fsi is M-stable and generates V(L).

Moreover, each M-stable logic is axiomatizable by stable formulas.

Proof. For the implication (1)⇒ (2), assume that L is M-stable. By Theorem 3.8, V(L) is generated
by an M-stable class K of finite M-algebras.

Claim 4.8. For any finite subdirectly irreducible M-algebra A, if A 6|= L, then γ(A) ∈ L.

Proof. It is sufficient to prove that γ(A) 6∈ L implies A |= L. Suppose that γ(A) 6∈ L. Since K
generates V(L), there is B ∈ K such that B 6|= γ(A). By [3, Thm. 6.8], there is a subdirectly
irreducible homomorphic image C of B and a stable embedding of A into C. By Lemma 4.6(1),
there is a finite K4-algebra D such that D is isomorphic to a stable subalgebra of B and A is a
homomorphic image of D. Since M has the (∗)-property, it follows from the proof of Lemma 4.5(1)
that D is an M-algebra. As K is M-stable and B ∈ K, we have that D ∈ K. Because V(L) is closed
under homomorphic images, A ∈ V(L). Therefore, A |= L. �

Now suppose A,B are M-algebras with B ∈ V(L)wc and there is a stable embedding of A into
B. Since B is well-connected, so is A by Lemma 4.1. If A 6|= L, then A 6|= ϕ for some ϕ ∈ L.
As M admits filtration, there is a finite M-algebra C such that C is a stable subalgebra of A and
C 6|= ϕ. But then there is a stable embedding of C into B. Since C is finite and well-connected,
it is subdirectly irreducible. By Claim 4.8, γ(C) ∈ L. Because there is a stable embedding of C
into B, it follows from Lemma 4.3 that B 6|= γ(C), which contradicts to B |= L. Thus, A |= L, so
A ∈ V(L)wc, and hence V(L)wc is M-stable.

The implication (2)⇒ (3) follows from the fact that every subdirectly irreducible K4-algebra is
well-connected. For the implication (3)⇒ (4), observe that if V(L)si is finitely M-stable, then V(L)fsi

is M-stable. By Lemma 3.5(2), V(L)si and V(L)fsi generate the same universal class, and hence the
same variety. Therefore, V(L) is generated by V(L)fsi. The implication (4)⇒ (1) is obvious.

Finally, we show that M-stable logics are axiomatizable by stable formulas. Suppose that L is M-
stable. Let A be the set of finite non-isomorphic subdirectly irreducible M-algebras not belonging
to V(L). We claim that L = M + {γ(A) | A ∈ A}. The inclusion M + {γ(A) : A ∈ A} ⊆ L follows
from Claim 4.8. For the reverse inclusion, let V be the variety corresponding to M+{γ(A) : A ∈ A}.
As subdirectly irreducible members of V generate V, it is sufficient to show that each subdirectly
irreducible member of V belongs to V(L). Let B be a subdirectly irreducible member of V. If
B 6|= L, then since M admits filtration, there is a finite M-algebra B′ such that B′ is a stable
subalgebra of B and B′ 6|= L. Because B is subdirectly irreducible, it is well-connected. Therefore,
B′ is well-connected by Lemma 4.1. Thus, as B′ is finite, it is subdirectly irreducible. So B′ ∈ A.
Now, B 6|= γ(B′) by Lemma 4.3. Consequently, B 6∈ V, a contradiction. This yields that B |= L,
and hence L = M + {γ(A) | A ∈ A}. �

Corollary 4.9. If M is a normal extension of K4 that admits filtration and has the (∗)-property,
then the M-stable logics form a complete sublattice of NExtM.

Proof. Let {Li | i ∈ I} be a family of M-stable logics. By Theorem 4.7, each Li is axiomatized above
M by a set Σi of stable formulas of finite subdirectly irreducible M-algebras. But then

∨
{Li | i ∈ I}

is axiomatized by
⋃
{Σi | i ∈ I}, and hence

∨
{Li | i ∈ I} is M-stable. That

∧
{Li | i ∈ I} is

M-stable follows from Proposition 3.10(4). �

In particular, since K4 admits filtration and has the (∗)-property, we obtain:
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Corollary 4.10. Let L be a normal extension of K4. The following are equivalent.

(1) L is K4-stable.
(2) V(L)wc is K4-stable.
(3) V(L)si is finitely K4-stable.
(4) V(L)fsi is K4-stable and generates V(L).

Moreover, each K4-stable logic is axiomatizable by stable formulas, and hence the stable K4-logics
form a complete sublattice of NExtK4.

Example 4.11. On the other hand, there exist logics above K4 that are axiomatizable over K4
by stable formulas, but are not K4-stable logics. To see this, consider the K4-frames F, G, and H
shown below.

F H G

We set L = K4 + γ(F). Clearly H is the only non-singleton rooted upset of H and F is not a stable
image of H since H has a reflexive root and F has an irreflexive root. Therefore, H |= γ(F), and so
H |= L. Next consider the map H → G indicated in the picture above. It is easy to see that it is
a stable map from H onto G. If L were K4-stable, Theorem 4.7 would yield G |= γ(F). However,
G 6|= γ(F) as we already discussed in Example 4.4. Thus, L is not K4-stable.

Remark 4.12. It is of interest to study further the class of logics axiomatized by K4-stable formulas
over K4. It is not even clear whether all such logics have the fmp, which we leave as an open question
here.

In Example 4.11 it was essential that the root of G was irreflexive. We next show that every
logic that is axiomatizable over K4 by stable formulas of finite K4-frames with strong roots is K4-
stable. In algebraic terms we will show that a logic is K4-stable if it is axiomatizable over K4 by
stable formulas of finite K4-algebras that have an atom a such that a ≤ ♦b for each b 6= 0. For
convenience, we call such algebras strongly subdirectly irreducible.

Proposition 4.13.
(1) Let A be a finite strongly subdirectly irreducible K4-algebra. For a well-connected K4-algebra

B we have B 6|= γ(A) iff there is a stable embedding of A into B.
(2) Suppose L = K4 + {γ(Ai) | i ∈ I}, where each Ai is a finite strongly subdirectly irreducible

K4-algebra. Then L is K4-stable.

Proof. (1). The right to left direction was already proven in Lemma 4.3. For the left to right
direction, let B be a K4-algebra such that B 6|= γ(A). (Note that for this direction it is not needed
that B is well-connected.) Since K4 admits filtration, there is a finite K4-algebra C that is a stable
subalgebra of B and C 6|= γ(A). By [3, Thm. 6.8], there is a subdirectly irreducible homomorphic
image D of C and a stable embedding of A into D. Since A is strongly subdirectly irreducible, by
Lemma 4.6(2), there is a stable embedding of A into C, and hence a stable embedding of A into B.

(2). It is immediate from (1) that the class of well-connected algebras of L is K4-stable. Now
apply Theorem 4.7. �

Since every finite subdirectly irreducible S4-algebra is strongly subdirectly irreducible, Proposi-
tion 4.13 yields:

Corollary 4.14. Let A be a finite subdirectly irreducible S4-algebra. For every well-connected
S4-algebra B we have B 6|= γ(A) iff there is a stable embedding of A into B.



STABLE MODAL LOGICS 15

This immediately yields that if M is a normal extension of S4 that admits filtration and has the
(∗)-property, then all logics axiomatizable over M by stable formulas of finite subdirectly irreducible
M-algebras are M-stable. Thus, we obtain the following improvement of Theorem 4.7.

Corollary 4.15. Let M be a normal extension of S4 that admits filtration and has the (∗)-property.
For a normal extension L of M, the following are equivalent.

(1) L is M-stable.
(2) L is axiomatizable over M by stable rules of finite M-algebras.
(3) L is axiomatizable over M by stable formulas of finite subdirectly irreducible M-algebras.
(4) V(L) is generated by an M-stable class of M-algebras.
(5) V(L) is generated by an M-stable class of finite M-algebras.
(6) V(L)wc is M-stable.
(7) V(L)si is finitely M-stable.
(8) V(L)fsi is M-stable and generates V(L).

In particular, since S4 admits filtration and has the (∗)-property, Corollary 4.15 is true for S4.

Remark 4.16. We recall (see, e.g., [34, Sec. 5]) that a normal modal logic M has a master modality
if there is a compound-box [m] such that for every M-algebra A and every a ∈ A we have [m]a ≤ �a
for each compound box �. Such logics are also known under the name of ω-transitive logics. If M
is an extension of K4, then �+ acts as a master modality. If [m] is a master modality of M, then
an M-algebra A is well-connected iff [m]a ∨ [m]b = 1 implies a = 1 or b = 1 for all a, b ∈ A.

Let A be a finite subdirectly irreducible M-algebra. Define the stable formula γ(A) of A as

γ(A) :=
∧
{[m]γ | γ ∈ Γ} →

∨
{[m]δ | δ ∈ ∆},

where Γ/∆ is the stable rule of A.
The results of this section generalize to the following: Let M be a normal modal logic that has

a master modality, admits filtration, and satisfies the (∗)-property. For a normal extension L of M,
the following are equivalent.

(1) L is M-stable.
(2) The well-connected L-algebras are an M-stable class.
(3) V(L)si is finitely M-stable.
(4) V(L)fsi is M-stable and generates V(L).

Moreover, each M-stable logic is axiomatizable by stable formulas of finite subdirectly irreducible
M-algebras. Furthermore, the same proof as in [22, Lem. 3.23] shows that M has the fmp iff it has
the fmp for quasi-equations. Thus, as discussed in Remark 3.4, similarly to K4-stable logics, every
M-stable logic has the fep.

5. Connection with stable superintuitionistic logics

In this section we will study the relationship between S4-stable logics and stable superintuition-
istic logics (si-logics). We will show that the intuitionistic fragment of an S4-stable logic is a stable
si-logic, and that the least modal companion of a stable si-logic is S4-stable. We also translate
axiomatizations of stable si-logics to axiomatizations of S4-stable logics and vice versa. We then
discuss similar connections between K4-stable logics and S4-stable logics. We summarize our find-
ings in Table 1. Since there are continuum many stable si-logics, our observations allow us to show
that there are continuum many S4-stable logics, and continuum many K4-stable logics between K4
and S4.

From now on we will mainly work with frames instead of algebras to utilize their geometric
intuition. We start by recalling a few facts about intuitionistic fragments of normal extensions
of S4 and modal companions of si-logics. We follow the notation of [13, Sec. 9.6]. Let M be a
normal extension of S4 and let L be a si-logic. The intuitionistic fragment of M is defined as
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ρM := {ϕ | t(ϕ) ∈ M}, where t(ϕ) is the Gödel translation of ϕ. If L = ρ(M), then M is called a
modal companion of L. It is well known that every si-logic L has a least modal companion that we
denote by τ(L). For an S4-frame F = (X,R) its skeleton ρF = (ρX, ρR) is obtained by modding out
the clusters of F. Clearly ρF is an intuitionistic frame. It is well known (see, e.g., [13, Lem. 9.67])
that for every S4-frame F, we have F |= τL iff ρF |= L, and if F is a partial order, then F |= M iff
F |= ρM.

Next we recall some relevant facts from [2, Sec. 6] about stable si-logics. Suppose F and G are
finite intuitionistic frames. We call F a stable image of G if there is an order preserving map from
G onto F. If F is rooted, then we denote the stable (intuitionistic) formula of F by γ(F).2 We have
G |= γ(F) iff F is a stable image of G. A si-logic L is stable iff L is axiomatizable by stable formulas
of some finite rooted frames.

The next theorem shows that stability is preserved by least modal companions, allowing us to
translate axiomatizations of stable si-logics to axiomatizations of their least modal companions.
We will use these results in Section 6 to axiomatize S4-stable logics. We point out that the greatest
modal companion of a stable si-logic is not necessarily S4-stable. For instance, the Grzegorczyk
logic S4.Grz is the greatest modal companion of IPC, and we will see in Section 6 that it is not
S4-stable.

Theorem 5.1.
(1) Let F = (X,R) and G = (Y,R) be finite rooted S4-frames. If G is a stable image of F, then

ρG is a stable image of ρF.
(2) If L is a stable si-logic, then τL is S4-stable.
(3) If L = IPC + {γ(Gi) | i ∈ I}, then τL = S4 + {γ(Gi) | i ∈ I}.

Proof. (1). Let f : X → Y be an onto stable map. Since the quotient map πY : Y → ρY is an
onto p-morphism, the composition πY ◦ f : X → ρY is onto and stable. Define g : ρX → ρY by
g(πX(x)) = πY (f(x)). Because πY ◦ f is stable, g is well defined, and it is clear that g is onto and
stable. Therefore, ρG is a stable image of ρF.

(2). Let L be a stable si-logic. By [2, Thm. 6.8], L has the fmp. Therefore, so does τL (see,
e.g., [13, p. 328]). Thus, τL is the logic of its finite rooted frames. We show that this class is
S4-stable. Let F be a finite rooted τL-frame and G be a finite rooted S4-frame that is a stable
image of F. Since F is a τL-frame, ρF is an L-frame. By (1), ρG is a stable image of ρF. As L is
stable, ρG |= L. Therefore, G |= τL, and hence the class of finite rooted τL-frames is S4-stable.
Thus, by Corollary 4.15, τL is an S4-stable logic.

(3). Let M = S4 + {γ(Gi) | i ∈ I}. By Corollary 4.15 and (2), both τL and M are S4-stable.
Therefore, to see that τL = M, it is sufficient to check that the two logics have the same finite
rooted frames. Let F be a finite rooted S4-frame. If F 6|= τL, then ρF 6|= L, so Gi is a stable image
of ρF for some i ∈ I. Since ρF is a stable image of F, we conclude that Gi is a stable image of F.
Thus, F 6|= γ(Gi), and hence F 6|= M. Conversely, if F 6|= M, then Gi is a stable image of F for some
i ∈ I. From (1) it follows that ρGi is a stable image of ρF. Since Gi is partially ordered, Gi

∼= ρGi,
implying that Gi is a stable image of ρF. Thus, ρF 6|= L, and so F 6|= τL. �

Next we will show that stability is preserved by intuitionistic fragments, which will allow us to
translate axiomatizations of S4-stable logics to axiomatizations of their intuitionistic fragments.

For a finite rooted S4-frame F = (X,R), let F = (X,R) be the partially ordered S4-frame
that is obtained from F by unraveling each n-cluster into an n-chain (see Figure 2); that is, if
X = C1 ∪ · · · ∪Ck is the division of F into clusters, with Ci = {xi1, . . . , xini

}, then for all x = xil and

2Stable formulas in the modal and intuitionistic case, while syntactically different, have similar semantic behavior.
This justifies the same name and notation in both cases. It should always be clear from the context which formula
we are working with.
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y = xjm, we have

xRy iff

{
i = j and l ≥ m or

i 6= j and xRy,

where 1 ≤ i, j ≤ k and 1 ≤ l ≤ ni, 1 ≤ m ≤ nj . Note that xini
is the root of the chain Ci in F.

Theorem 5.2.
(1) Let F = (X,R) and G = (Y,R) be finite rooted S4-frames, with G being partially ordered.

Then F is a stable image of G iff F is a stable image of G.
(2) If M is S4-stable, then ρM is stable.
(3) If M = S4 + {γ(Fi) | i ∈ I}, then ρM = IPC + {γ(Fi) | i ∈ I}.

Proof. (1). Since F is easily seen to be a stable image of F, the implication from right to left is
obvious. Conversely, suppose that f : G→ F is an onto stable map. We transform f into a stable
map f : G → F by shuffling the values of f belonging to some cluster of F. Let Ci be a cluster
of F and let Y ′ = f−1(Ci). We view Y ′ as a subframe of G, and define f : Y ′ → Ci by induction
on the depth of points in Y ′. The idea is to map the points of the smallest depth injectively onto
the first ni − 1 points of Ci and all the other points of Y ′ to the root xini

. More precisely, suppose
{y1, . . . , ym} ⊆ Y ′ are the points of depth d and we have mapped all the points of Y ′ of smaller
depth injectively onto {xi1, . . . , xil}. If m ≤ ni − l, then set f(yh) = xil+h for all 1 ≤ h ≤ m. If

m 6≤ ni − l, then define f as before for all yl with l ≤ m− (ni − l) and map all the other points of
Y ′ to xini

. It is straightforward to check that f is stable.
(2). Since M is S4-stable, it has the fmp. Therefore, so does ρM (see, e.g., [13, p. 328]). It thus

suffices to show that the finite rooted ρM-frames form a stable class. Suppose G is a stable image
of a finite rooted ρM-frame F. From F |= ρM it follows that F |= M. Since M is S4-stable, G |= M.
Consequently, G |= ρM.

(3). Since M is S4-stable, ρM is stable by (2). Let L = IPC + {γ(Fi) | i ∈ I}. By [2, Thm. 6.11],
L is stable. Therefore, both ρM and L have the fmp, and hence it suffices to show that the two
logics have the same finite rooted frames. Suppose G is a finite rooted partially ordered frame. If
G 6|= L, then there is i ∈ I such that G 6|= γ(Fi). Therefore, Fi is a stable image of G. By (1), Fi
is a stable image of G. Thus, G 6|= γ(Fi), and so G 6|= M. Since G is a partially ordered frame, we
conclude that G 6|= ρM. Conversely, if G 6|= ρM, then G 6|= M, and hence G 6|= γ(Fi) for some i ∈ I.
Therefore, Fi is a stable image of G. By (1), Fi is a stable image of G. Thus, G 6|= γ(Fi), yielding
that G 6|= L. �

Corollary 5.3.

(1) A si-logic L is stable iff τL is S4-stable.
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(2) A S4-stable logic is the least modal companion of a si-logic iff it can be axiomatized by stable
formulas of finite rooted partially ordered S4-frames.

Proof. (1). It is well known that L = ρ τL (see, e.g., [13, Thm. 9.57]). Now apply Theorems 5.1(3)
and 5.2(3).

(2). Suppose M is the least modal companion of a si-logic L. Then M = τL, and so L = ρM.
Since M is S4-stable, L is stable by Theorem 5.2(2). Therefore, by [2, Thm. 6.11], there are
finite rooted partially ordered frames {Fi | i ∈ I} such that L = IPC + {γ(Fi) | i ∈ I}. Thus,
M = S4 + {γ(Fi) | i ∈ I} by Theorem 5.1(3). Conversely, if M = S4 + {γ(Fi) | i ∈ I} for some finite
rooted partially ordered S4-frames {Fi | i ∈ I}, then ρM = IPC+{γ(Fi) | i ∈ I} by Theorem 5.2(3).
Since Fi = Fi for all i ∈ I, we conclude that τρM = IPC + {γ(Fi) | i ∈ I} = M, and hence M is the
least modal companion of ρM. �

Next we discuss connections between S4-stable and K4-stable logics. For a formula ϕ, let ϕ+ be
obtained from ϕ by replacing each subformula of ϕ of the form �ψ by ψ ∧ �ψ. If L = S4 + Γ is
a normal extension of S4, let L+ = K4 + Γ+, where Γ+ = {ϕ+ | ϕ ∈ Γ}. For a binary relation R
on X, let R+ := R ∪ {(x, x) | x ∈ X} be the reflexive closure of R. For a K4-space F = (X,R),
define the reflexivization of F as F+ = (X,R+). Then F+ is an S4-space and F |= L+ iff F+ |= L.
Therefore, L+ is the logic of {F | F+ |= L} (see, e.g., [13, Sec. 3.9]).

Lemma 5.4.
(1) Let F be a finite S4-frame and let G be a K4-space. Then F is a stable image of G iff F is

a stable image of G+.
(2) If L = S4 + {γ(Fi) | i ∈ I}, where the Fi are S4-frames, then L+ = K4 + {γ(Fi) | i ∈ I}.
(3) If L is S4-stable, then L+ is K4-stable.

Proof. (1). Immediate since F is reflexive.
(2). By (1) and Corollary 4.14, if G is a rooted K4-space, then G |= γ(Fi) iff G+ |= γ(Fi).

Therefore, G |= L+ iff G+ |= L iff G+ |= {γ(Fi) | i ∈ I} iff G |= {γ(Fi) | i ∈ I}. Thus, L+ and
K4 + {γ(Fi) | i ∈ I} have the same K4-spaces, and hence the two logics coincide.

(3). If L is S4-stable, then L is axiomatizable by stable formulas of S4-frames. By (2), L+ is
axiomatized by the same stable formulas. In particular, L+ is axiomatizable by stable formulas of
frames with reflexive roots. Thus, L+ is K4-stable by Proposition 4.13. �

For two normal modal logics L and M, let L ∨M denote the join of these logics in the lattice of
normal modal logics.

Lemma 5.5. Let L be a normal extension of K4.

(1) If S4 ⊆ L, then L is K4-stable iff L is S4-stable.
(2) If L is K4-stable, then S4 ∨ L is S4-stable.
(3) If L = K4 + {γ(Fi) | i ∈ I}, then S4 ∨ L = S4 + {γ(Fi) | Fi = F+

i }.
(4) If L = K4 + {γ(Fi) | i ∈ I}, then L ⊆ S4 iff each Fi contains an irreflexive point.

Proof. (1). Observe that V(S4) is a V(K4)-stable class and apply Proposition 3.10(3).
(2). By Theorem 4.7, the rooted L-spaces are K4-stable. Therefore, the rooted (S4 ∨ L)-spaces

are S4-stable. Thus, S4 ∨ L is S4-stable by Corollary 4.15.
(3). Let G be a rooted S4-space. We have G |= S4 ∨ L iff G |= L iff G |= γ(Fi) for all i ∈ I. It is

obvious that G |= γ(Fi) for every Fi that contains an irreflexive point because no such Fi can be a
stable image of a reflexive space. Therefore, G |= γ(Fi) for all i ∈ I is equivalent to G |= γ(Fi) for
all Fi with Fi = F+

i . Thus, S4 ∨ L = S4 + {γ(Fi) | Fi = F+
i }.

(4). First suppose that each Fi contains an irreflexive point. Then Fi 6= F+
i for all i ∈ I.

Therefore, (3) implies that S4 ∨ L = S4, and hence L ⊆ S4. Conversely, suppose that some Fi is
reflexive. Since Fi 6|= L and Fi is an S4-frame, we see that L 6⊆ S4. �
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In the following table we summarize the main results of this section.

τ ρ S4 ∨ − (−)+

preserves stability X X X X
reflects stability X - - X
IPC + {γ(Fi) | i ∈ I} S4 + {γ(Fi) | i ∈ I} × × ×
S4 + {γ(Fi) | i ∈ I} × IPC + {γ(Fi) | i ∈ I} × K4 + {γ(Fi) | i ∈ I}
K4 + {γ(Fi) | i ∈ I} × × S4 + {γ(Fi) | Fi = F+

i } ×

“X” means yes; “-” means no; “×”means not applicable.

Table 1

• That τ preserves and reflects stability is the content of Corollary 5.3(1).
• That ρ preserves stability follows from Theorem 5.2(3). That ρ does not reflect stability

follows from the fact that IPC is stable, S4.Grz is not S4-stable (see the next section), and
that ρ(S4.Grz) = IPC.
• That S4 ∨ − preserves stability follows from Lemma 5.5(2). It does not reflect stability

because GL ∨ S4 is the inconsistent logic, which is S4-stable, but as we will see in the next
section, GL is not K4-stable.
• That (−)+ preserves stability follows from Lemma 5.4(3). It also reflects stability because

S4 ∨ − preserves stability and for every normal extension M of S4 we have S4 ∨M+ = M.
• The axiomatization results follow from Theorems 5.1(3) and 5.2(3) and Lemmas 5.5(3) and

5.4(2).

We conclude this section by showing that there are continuum many K4-stable and S4-stable
logics.

Theorem 5.6.
(1) There are continuum many K4-stable logics above S4.
(2) There are continuum many K4-stable logics between K4 and S4.

Proof. (1). By [2, Thm. 6.13], there are continuum many stable si-logics. Since L 6= L′ implies
τL 6= τL′, this together with Lemma 5.1 yields continuum many S4-stable logics above S4. By
Lemma 5.5(1), these logics are also K4-stable. Thus, there are continuum many K4-stable logics
above S4.

(2). Consider the sequence {Fn | n ∈ N≥1}, shown in Figure 3, where N≥1 = {n ∈ N | n ≥ 1}.
By [2, Lem. 6.12], Fn is not a stable image of Fm for n 6= m. We slightly modify the sequence. For
n ∈ N≥1, let Gn be the K4-frame that is obtained from Fn by making x1 irreflexive. The proof of
[2, Lem. 6.12] shows that Gn is not a stable image of Gm for n 6= m.

For I ⊆ N≥1 let LI = K4 + {γ(Gn) | n ∈ I}. Since each Gn has a reflexive root, by Proposi-
tion 4.13, every LI is K4-stable. As each Gn has a an irreflexive point, by Lemma 5.5(4), LI ⊆ S4
for every I ⊆ N≥1. Thus, every LI is a K4-stable logic between K4 and S4. Finally, if n ∈ I \ J ,
then γ(Gn) ∈ LJ \ LI , so the cardinality of {LI | I ⊆ N≥1} is that of continuum, completing the
proof. �

6. Examples of stable, K4-stable, and S4-stable logics

In this final section we will give many examples (and non-examples) of stable, K4-stable, and S4-
stable logics. Moreover, we will look at the concept of stability from the model-theoretic perspective,
especially in relation with Lyndon’s theorem.3

3We are grateful to one of the referees for sharing his/her observations about the connection between stable logics
and Lyndon’s theorem, which led to the results in the first part of this section.
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As we pointed out in the introduction, stable logics parallel subframe logics. It is well known
(see, e.g., [13, Thm. 11.21]) that a normal extension of K4 is a subframe logic iff it is the logic of
a class of Kripke frames closed under subframes. We start by showing that a parallel result holds
for stable logics, and more generally for M-stable logics when M admits filtration.

Proposition 6.1. Let L and M be normal modal logics with M admitting filtration.

(1) L is stable iff L is the logic of a class of Kripke frames closed under stable images.
(2) If M ⊆ L, then L is M-stable iff L is the logic of an M-stable class of Kripke frames.

Proof. We only show (1), the proof of (2) is an easy adaption. The left to right implication follows
from Theorem 3.8. For the right to left implication, suppose L is the logic of a class K of Kripke
frames closed under stable images. We show that the corresponding class Cm(K) := {Cm(F) | F ∈
K} of complex algebras4 is finitely stable. Let A ∈ Cm(K) and let B be a finite stable subalgebra
of A. Then A = Cm(F) for some F ∈ K and B = Cm(G) for some finite frame G. Since B is
a finite stable subalgebra of A, we see that G is a finite stable image of F. As K is closed under
stable images, G ∈ K, and hence B ∈ Cm(K). Therefore, L is the logic of a finitely stable class of
modal algebras. Thus, L is stable by Theorem 3.8. �

We recall that a first-order formula is positive if it is built from atomic formulas via the connec-
tives ∧,∨ and quantifiers ∀,∃. By Lyndon’s theorem, a consistent first-order theory is preserved
under homomorphisms iff it has a set of positive axioms (see, e.g., [14, Thm. 3.2.4]). For Kripke
frames, homomorphisms correspond to stable maps. Therefore, from Lyndon’s theorem and Propo-
sition 6.1 we immediately obtain:

Corollary 6.2. Suppose L and M are normal modal logics, M admits filtration and is characterized
by a class C of Kripke frames.

(1) If L is the logic of a class of frames definable by positive formulas, then L is stable.
(2) If L is the logic of a class of frames definable by positive formulas within C, then L is

M-stable.

Recall that a normal modal logic L is elementary if there is a set Ψ of first-order formulas such
that L is the logic of the class of Kripke frames that validate all formulas in Ψ. It is known (see,
e.g., [13, Thm. 11.26]) that a subframe logic L above K4 is elementary iff L is the logic of a class of
Kripke frames axiomatized by universal formulas.

4As usual, the complex algebra of a frame F = (X,R) is the modal algebra Cm(F) = (℘(X), R−1); see, e.g., [8,
Def. 5.21].
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Problem 2. Suppose L is a stable logic. Is L elementary iff L is the logic of a class of frames
definable by positive formulas?

In relation to Problem 2, we do not even have an example of a stable logic (or a K4-stable logic
or an S4-stable logic) which is not elementary. We point out that there are well-known examples of
non-elementary subframe logics such as GL and S4.Grz. As we will see in Theorem 6.9, these logics
are not stable. Thus, we have the following open problem.

Problem 3. Is every stable logic (K4-stable logic or S4-stable logic) elementary?

Some examples of positive first-order formulas are:

reflexivity: ∀x (xRx);
seriality: ∀x∃y (xRy);
universality: ∀x∀y (xRy);
every world sees a reflexive world: ∀x∃y (xRy ∧ yRy).

The logics of the corresponding classes of Kripke frames are:

T = K +�p→ p;
D = K +�p→ ♦p;
S5 = T + (��p→ �p) + (p→ �♦p);
KMT = K + {♦ ((�p1 → p1) ∧ · · · ∧ (�pn → pn)) | n ≥ 1}.

The logics T,D, and S5 are well known, and KMT is discussed in [21]. Observe that all T-frames
are reflexive and all D-frames are serial. In particular, both logics have the property that the class
of all Kripke frames is first-order definable.5 Since reflexivity and seriality are expressed by positive
formulas, both T and D are stable logics by Corollary 6.2.

The case of S5 is slightly different than that of T and D. On the one hand, having a universal
relation is expressed by a positive first-order formula, so S5 is the logic of a class of frames definable
by a positive formula, and hence S5 is stable. On the other hand, all S5-frames do not form a stable
class because equivalence relations are not preserved by stable images.

The logic KMT is yet of a different type. As shown in [21], KMT is the logic of the class of frames
in which every world sees a reflexive world. However, not all KMT-frames satisfy this condition. In
fact, it is shown in [21] that the class of all KMT-frames is not definable by any first-order formula.
Still, it is proved in [21] that a Kripke frame is a KMT-frame iff the successors of any world form a
non-finitely colorable subframe. This class is closed under stable images, and hence all KMT-frames
form a stable class.

By [3, Thm. 8.3], T is axiomatized by the stable rules ρ( ) and ρ( ), and D is axiomatized by
the stable rules ρ( ) and ρ( ). We next give axiomatizations of S5 and KMT. As in the proof of
Theorem 3.15, by Cn we denote the irreflexive n-cluster, and by C′n the frame that arises by adding
a strong root rn to Cn so that xiRrn for all 2 ≤ i ≤ n; in other words, the strong root rn is seen by
all elements of C′n except by x1. Observe that x1 does not see a reflexive world neither in Cn nor
in C′n, and hence Ψ := ∀x∃y (xRy ∧ yRy) is refuted in both Cn and C′n.

Theorem 6.3.

(1) S5 is axiomatized by Γ := {ρ( ), ρ( ), ρ( ), ρ( )}.
(2) KMT is axiomatized by ∆ := {ρ(Cn) | n ≥ 1} ∪ {ρ(C′n) | n ≥ 1}.

Proof. (1). First we show that a finite rooted frame validates Γ iff it is a cluster. Since none of

the frames , , , and is a cluster, and hence neither is a stable image of a cluster, every

finite cluster validates Γ. Conversely, suppose that F = (X,R) is a finite rooted frame that is not
a cluster. If F is a singleton, then it must be irreflexive, so is a stable image of F, and hence

5Logics axiomatizable by Sahlqvist formulas always have this property.
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F 6|= ρ( ). Suppose that F has at least two points. If F contains an irreflexive point x, then
is a stable image of F as mapping x to the irreflexive point of and the rest to the reflexive
point of is an onto stable map. Therefore, F 6|= ρ( ). Suppose that F is reflexive. If F
contains exactly two points x and y, then without loss of generality we may assume that xRy and

yR�x. Thus, mapping x to the root of and y to the other point of is stable and onto, and hence

F 6|= ρ( ). Suppose F has at least three points. Since F is not a cluster, without loss of generality we

may assume that there are x, y ∈ F with xR�y. Then mapping x to the top node, y to the bottom

right node, and all the other points to the bottom left node of provides an onto stable map.

This yields F 6|= ρ( ).
Now, let L be the logic axiomatized over K by Γ. Since S5 is the logic of finite clusters and each

such validates Γ, we see that L ⊆ S5. Conversely, by Theorem 3.8, L is the logic of a stable class of
finite rooted frames. Each such must be a cluster. Therefore, S5 ⊆ L, and hence S5 is axiomatized
over K by Γ.

(2). First we show that a finite frame validates ∆ iff it satisfies the positive formula Ψ. Suppose
that the finite frame F refutes ∆. Then there are n ≥ 1 and a stable onto map f : F → Cn or a
stable onto map g : F → C′n. Since Cn and C′n refute Ψ, we conclude that F refutes Ψ. For the
converse, suppose F refutes Ψ. Then F has a node u1 such that all successors of u1 are irreflexive.
Let u2, . . . , un be the successors of u1. If F consists only of u1, u2, . . . un, then define f : F→ Cn by
f(ui) = xi for all 1 ≤ i ≤ n. If F contains at least one other node, then define g : F→ C′n by

g(x) =

{
xi if x = ui for 1 ≤ i ≤ n,
rn otherwise.

In both cases it is easy to see that the defined map is stable and onto. Thus, F refutes ∆.
Let L be the normal modal logic axiomatized over K by ∆. It is shown in [21] that KMT has the

fmp and a finite frame is a KMT-frame iff it satisfies Ψ. Therefore, a finite frame is a KMT-frame
iff it validates ∆. Thus, since both KMT and L have the fmp and have the same finite frames, the
two logics coincide. Consequently, KMT is axiomatized over K by ∆. �

We next turn our attention to examples of K4-stable logics. The examples will illustrate that
K4-stability is in a way “more frequent” than stability. Roughly speaking, the reason is that some
first-order properties become positively definable modulo transitivity and rootedness.

We start by showing that D4 := K4 ∨ D, S4 := K4 ∨ T, and K4B := K4 + p → �♦p are K4-
stable logics. That D4 and S4 are K4-stable can, for example, be inferred from the stability of D
and T and Proposition 3.10. It is well known that K4B is the logic of symmetric K4-frames. It
is easy to see that this class is not preserved under stable images and hence is not definable by
positive formulas. Nevertheless, K4B is characterized by the stable class of rooted frames satisfying
∀xy (xRy) ∨ ∀xy (x = y), and so K4B is a K4-stable logic. Note that the additional condition of
transitivity is not needed since the latter clause implies transitivity.

Theorem 6.4. The following are axiomatizations of the K4-stable logics D4, S4, and K4B in terms
of stable formulas:

(1) D4 = K4 + γ( );
(2) S4 = K4 + γ( ) + γ( );

(3) K4B = K4 + γ( );

Proof. (1). Let X be a K4-space. It is sufficient to show that X |= �p → ♦p iff X |= γ( ). If
X 6|= �p → ♦p, then there is x ∈ X such that xR�y for all y ∈ X. Therefore, {x} is a closed
generated subframe of X, and Y = ({x},∅) is a finite rooted K4-frame. The unique map from Y
onto is stable, and so we conclude that X 6|= γ( ). Conversely, suppose that X 6|= γ( ). Then there
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is a stable map from a topo-rooted closed generated subframe Y of X onto . This implies that
Y is a singleton with no R-successors, and hence X contains a point with no R-successors. Thus,
X 6|= �p→ ♦p.

(2). Let X be a K4-space. It is sufficient to show that X |= p → ♦p iff X |= γ( ), γ( ). Suppose

X 6|= γ( ) or X 6|= γ( ). Then there is a topo-rooted closed generated subframe Y of X and a stable

map from Y onto or . Observe that under a stable map a preimage of an irreflexive point has

to be irreflexive. Now both of the latter frames contain an irreflexive point, so in either case Y
contains an irreflexive point. Therefore, so does X. Thus, X is not reflexive, and so X 6|= p → ♦p.
For the converse, suppose that x is an irreflexive point of X. Consider the closed generated subframe
Y := R+[x] of X, and let Y be the corresponding K4-space. Clearly x is a unique root of Y. Since
x /∈ R[x], there is a clopen subset of X separating x from R[x]. Therefore, x is an isolated point
of Y . Thus, Y is topo-rooted. If Y = {x}, then the unique map from Y onto is stable, and so
X 6|= γ( ). Otherwise mapping x to the root of and the rest of Y to the top point of gives rise

to a stable map, and hence X 6|= γ( ).

(3). Since K4B is a K4-stable logic, it has the fmp. Also, since K4 + γ( ) is axiomatized over

K4 by the stable formula of a finite rooted K4-frame with a reflexive root, it has the fmp by
Proposition 4.13. Therefore, it is sufficient to show that for any finite rooted K4-frame F = (X,R),
we have F |= p → �♦p iff F |= γ( ). Suppose F 6|= p → �♦p. Then F is not symmetric, and so

there are x, y ∈ X such that xRy but yR�x. Define f : F → by mapping R+[y] to the top node

of and the rest to the root of . It is easy to see that f is an onto stable map. Therefore, F 6|= .

Conversely, if F 6|= γ( ), then since F is rooted, by Lemma 4.3, there is a stable map from F onto .

Let x be a root of F and let y ∈ X be such that f(y) is the top point of . Since f is stable, xRy

but yR�x. Thus, F is not symmetric. This yields that F 6|= p→ �♦p. �

We next provide axiomatizations of some S4-stable logics. Recall that S4Altn := S4 + altn, where

altn := �p1 ∨�(p1 → p2) ∨ · · · ∨�(p1 ∧ · · · ∧ pn → pn+1).

The S4Altn-frames are the S4-frames such that each point has ≤ n alternatives; that is,

∀xx1 . . . xn+1 (
∧

1≤i≤n+1

xRxi →
∨

1≤i<j≤n+1

xi = xj).

Clearly this formula is not positive. It is not hard to see that this property is not preserved by
stable maps, and hence is not definable by positive formulas. But the rooted S4Altn-frames are
characterized by the positive formula

∃r∀x (rRx) ∧ ∀x1 . . . xn+1 (
∨

1≤i<j≤n+1

xi = xj),

implying that S4Altn is an S4-stable logic.

Proposition 6.5. The logics S5 and S4Altn are S4-stable. They are axiomatized over S4 by the
following stable formulas:

(1) S5 = S4 + γ( ).

(2) S4Altn = S4 + γ( ·· · ).

Proof. (1). Since S5 = S4 ∨ K4B, this follows from Lemma 5.5 connecting S4-stability and K4-
stability.

(2). Observe that there is a stable map from a finite rooted S4-frame F onto the (n+ 1)-cluster
·· · iff the cardinality of F is greater than n. The result follows since both S4Altn and S4+γ( ·· · )

have the fmp. �
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We next consider the following normal extensions of S4:

S4.2 = S4 + ♦�p→ �♦p, the logic of directed S4-frames;
S4.3 = S4 +�(�p→ q) ∨�(�q → p), the logic of upward connected S4-frames;;
S4BWn = S4 + bwn, the logic of S4-frames of width ≤ n, where

bwn :=

n∧
i=0

♦pi →
∨

0≤i 6=j≤n
♦(pi ∧ ♦pj);

S4BTWn, the logic of S4-frames of top width ≤ n.

The definitions of the first-order properties of S4-frames mentioned above are:

(strong) directedness: ∀xuv ((xRu ∧ xRv)→ ∃y (uRy ∧ vRy)).
(strong) upward connectedness: ∀xuv ((xRu ∧ xRv)→ (uRv ∨ vRu)).

bounded width: ∀y∀x1 . . . xn+1

(∧
1≤i≤n+1 yRxi →

∨
1≤i 6=j≤n+1 xiRxj

)
.

bounded top width:

∀y∀x1 . . . xn+1

 ∧
1≤i≤n+1

yRxi ∧
∧

1≤i≤n+1

∀z(xiRz → zRxi)→
∨

1≤i 6=j≤n+1

xiRxj

 .

Clearly none of these formulas is positive. It is not hard to see that none of the properties is
preserved by stable maps, and hence is not definable by positive formulas. Nevertheless, these
logics are S4-stable. One way to see this is to look at their intuitionistic fragments.

LC = IPC + (p→ q) ∨ (q → p), the Gödel-Dummett logic;
KC = IPC + ¬p ∨ ¬¬p, the logic of weak excluded middle;
BWn = IPC +

∨n
i=0(pi →

∨
j 6=i pj);

BTWn = IPC +
∧

0≤i≤j≤n ¬(¬pi ∧ ¬pj)→
∨n
i=0(¬pi →

∨
j 6=i ¬pj).

We have that S4.2 = τ(LC), S4.3 = τ(KC), and more generally, S4BWn = τ(BWn) and
S4BTWn = τ(BTWn) for every n. Lemma 5.1 together with the axiomatizations provided in
[2, Thm. 7.5] then yields:

Proposition 6.6. The logics S4.2 and S4.3 are S4-stable. More generally, S4BWn and S4BTWn

are S4-stable for every n. These logics are axiomatized by the following stable formulas:

(1) S4BWn = S4 + γ( ) + γ( ). In particular, S4.3 = S4 + γ( ) + γ( ).

(2) S4BTWn = S4 + γ( ). In particular, S4.2 = S4 + γ( ).

We define K4.2 := S4.2+, K4.3 := S4.3+, K4BWn := (S4BWn)+, K4BTWn := (S4BTWn)+, and
K4Altn := (S4Altn)+. Since for a K4-frame F, we have F |= L iff F+ |= L+, from the first-order
characterizations of the corresponding logics above S4, we obtain:

• F is a K4.2-frame iff ∀xuv ((xRu ∧ xRv ∧ u 6= v)→ (∃y (uRy ∧ vRy) ∨ uRv ∨ vRv)).
• F is a K4.3-frame iff ∀xuv ((xRu ∧ xRv ∧ u 6= v)→ (uRv ∨ vRu)).
• F is a K4BWn-frame iff the width of F is ≤ n.
• F is a K4BTWn-frame iff the top width of F is ≤ n.
• F is a K4Altn-frame iff

∀xx1 . . . xn+1

 ∧
1≤i≤n+1

xRxi →

 ∨
1≤i<j≤n+1

xi = xj ∨
∨

1≤i≤n+1

xi = x

 .

Remark 6.7. In [13], the definitions of K4.2 and K4Altn are slightly different. Namely, K4.2 is
defined as K4 + dir where dir = ♦(�p ∧ q) → �(♦p ∨ q), and K4Altn is defined as K4 + altn for
n ≥ 1. The first-order condition corresponding to dir is

∀xuv ((xRu ∧ xRv ∧ u 6= v)→ ∃y (uRy ∧ vRy))
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and the first-order condition corresponding to altn is

∀xx1 . . . xn+1 (
∧

1≤i≤n+1

xRxi →
∨

1≤i<j≤n+1

xi = xj).

If we define K4.2 and K4Altn as in [13], then it is no longer the case that K4.2 = S4.2+ and
K4Altn = (S4Altn)+. Moreover, these logics are not K4-stable. To see that K4 + dir is not K4-
stable, observe that the K4-frame validates all these logics but its stable image refutes dir,

yielding that K4 + dir is not K4-stable. The same example shows that K4 + alt1 is not K4-stable,
and that K4 + altn is not K4-stable can be shown similarly. These facts and Proposition 6.8 below
justify our usage of the names K4.2 and K4Altn.

Clearly none of these formulas is positive. It is not hard to see that none of the properties is
preserved by stable maps, and hence is not definable by positive formulas. In fact, the classes
of transitive frames of the logics just described are not stable. Nevertheless, all these logics are
K4-stable. One way to see this is that in all these cases the classes of their transitive rooted frames
are definable by positive formulas:

• K4.2 is characterized by transitive frames satisfying

∃r∀x (r = x ∨ rRx) ∧ ∀uv(∃z(uRz ∧ vRz) ∨ u = v ∨ uRv ∨ vRu).

• K4.3 is characterized by transitive frames satisfying

∃r∀x (r = x ∨ rRx) ∧ ∀xy (x = y ∨ xRy ∨ yRx).

• K4BWn is characterized by transitive frames satisfying

∃r∀x (r = x ∨ rRx) ∧ ∀y∀x1 . . . xn+1

 ∨
1≤i 6=j≤n+1

xiRxj ∨
∨

1≤i≤n+1

xi = r

 .

• K4BTWn is characterized by transitive frames satisfying

∃r∀x (r = x ∨ rRx) ∧ ∃m1, . . .mn

∀y ∨
1≤i≤n

(yRmi ∨ y = mi)

 .

• K4Altn is characterized by transitive frames satisfying

∃r∀x (r = x ∨ rRx) ∧ ∀x1 . . . xn+1

 ∨
1≤i<j≤n+1

xi = xj ∨ xi = r

 .

Since K4.2 = S4.2+, K4.3 = S4.3+, K4BWn = (S4BWn)+, K4BTWn = (S4BTWn)+, and
K4Altn = (S4Altn)+, from Proposition 6.6 and Lemma 5.4 we conclude:

Proposition 6.8.

(1) K4BWn = K4 + γ( ) + γ( ). In particular, K4.3 = K4 + γ( ) + γ( ).

(2) K4BTWn = K4 + γ( ). In particular, K4.2 = K4 + γ( ).

(3) K4Altn = K4 + γ( ·· · ).

In the following table we summarize the axiomatizations of K4-stable and S4-stable logics ob-
tained above.
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D4 = K4 + γ( ) S4 = K4 + γ( ) + γ( )

K4B = K4 + γ( ) S5 = S4 + γ( )

K4.2 = K4 + γ( ) S4.2 = S4 + γ( )

K4.3 = K4 + γ( ) + γ( ) S4.3 = S4 + γ( ) + γ( )

K4BWn = K4 + γ( ) + γ( ) S4BWn = S4 + γ( ) + γ( )

K4BTWn = K4 + γ( ) S4BTWn = S4 + γ( )
K4Altn = K4 + γ( ·· · ) S4Altn = S4 + γ( ·· · )

Table 2. Axiomatizations of some K4-stable and S4-stable logics

Next, as promised, we show that several well-known logics are not stable. We point out that to
prove that a given logic L is not stable it is not sufficient to show that the class of all finite L-frames
is not stable. The difficulty is in proving that L is not characterized by any stable class of finite
L-frames. Consider the following well-known logics (see, e.g., [13, p. 116]):

KB = K + p→ �♦p, the logic of symmetric frames;
K5 = K + ♦�p→ �p, the logic of Eucliedean frames;
GL = K4 +�(�p→ p)→ �p, the logic of dually well-founded K4-frames;
S4.Grz = S4 +�(�(p→ �p)→ p)→ p, the logic of Noetherian S4-frames;
K4.1 = K4.1 +�♦p→ ♦�p, the logic of K4-frames with degenerate final clusters;
S4.1 = S4 ∨ K4.1, the logic of S4-frames with degenerate final clusters.

Theorem 6.9. None of the logics K4,S4,KB, and K5 is stable. Neither are the logics GL, S4.Grz,
K4.1, and S4.1. In fact, GL and K4.1 are not K4-stable and S4.Grz and S4.1 are neither K4-stable
nor S4-stable.

Proof. We start by showing that K4 is not stable. If K4 were stable, then by Theorem 3.8, there
would exist a stable class K of finite rooted K4-frames whose logic is K4. Consider the finite rooted
frames F,G and an onto stable map G� F shown below.

G F

Note that G is transitive, but F is not. Since G is a K4-frame and G 6|= γ(G), we see that K4 6|= γ(G).
Therefore, there is H ∈ K such that H 6|= γ(G). As G has a reflexive root, by Proposition 4.13(1),
G is a stable image of H. Thus, since K is stable, G ∈ K. The same reasoning yields F ∈ K. But
this is a contradiction as F is not transitive. Consequently, K4 is not a stable logic.

A similar reasoning gives that S4 is not a stable logic. We next show that KB is not a stable
logic. If it were, then by Theorem 3.8, there would exist a stable class K of finite rooted KB-frames
whose logic is KB.

Claim 6.10. There is F ∈ K containing distinct x, y that are not R-related to each other.

Proof. Clearly the KB-model

p q
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refutes bw1 = ♦p∧♦q → ♦(p∧♦+q)∨♦(q∧♦+p). Therefore, KB 6` bw1. Thus, there is F ∈ K such
that F 6|= bw1. It is easy to see that F has the desired property. �

For such an F = (X,R) define F′ = (X,R′), where R′ = R ∪ {(x, y)}. Then the identity map is
a stable map from F onto F′. Since K is stable, F′ ∈ K. But this is a contradiction as F′ is not
symmetric. Thus, KB is not a stable logic.

Next we show that K5 is not a stable logic. If K5 were stable, then there would be a stable class
K of finite rooted K5-frames whose logic is K5.

Claim 6.11. There is F ∈ K containing x, y such that xRy and xR�x.

Proof. Clearly the K5-model

p

refutes the formula ϕ := p→ ♦p ∨�⊥. Therefore, K5 6` ϕ. Thus, there is F ∈ K such that F 6|= ϕ.
It is easy to see that F has the desired property. �

For such an F = (X,R) define F′ = (X,R′), where R′ = R ∪ {(y, x)}. Then the identity map is
a stable map from F onto F′. Since K is stable, F′ ∈ K. But this is a contradiction as F′ is not
Euclidean because in an Euclidean frame every successor is reflexive. Thus, K5 is not a stable logic.

Next we show that S4.Grz is not a stable logic. By Proposition 3.10(1), it is sufficient to show
that S4.Grz is not S4-stable. It is easy to see that the map F� G between finite rooted S4-frames
depicted below is stable.

F G

Note that F is a S4.Grz-frame, while G is not. Therefore, by Corollary 4.15(6), S4.Grz is not
S4-stable. Thus, by Lemma 5.5(1), S4.Grz is not K4-stable.

The same argument yields that S4.1 is not S4-stable. Therefore, by Lemma 5.5(1), S4.1 is not
K4-stable. Since S4.1 = S4 ∨ K4.1, Lemma 5.5(2) yields that K4.1 is not K4-stable. Thus, neither
S4.1 nor K4.1 is stable by Proposition 3.10(1).

Finally, we show that GL is not stable. For this it is sufficient to show that GL is not K4-stable.
It is easy to see that the map depicted below is a stable map from a finite rooted GL-frame F onto
a finite rooted K4-frame G, which is not a GL-frame.

F G

The rest of the argument is the same as in the case of S4.Grz. �

We conclude the paper by providing examples that show that the classes of K4-stable logics,
transitive subframe, cofinal subframe, and union-splitting logics (these classes of logics are discussed
in detail in [13, Sec. 10.5 and 11.3]) are all different.
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transitive

subframe

transitive
cofinal

subframe
K4-

stable

S4-

stable

union

K4-splitting

union

S4-splitting

S4.2 - X X X X X
S4.Grz X X - - X X
GL X X - × - ×
τL - - X X X X
K4BTW3 - X X × - ×
S4BTW3 - X X X - -

“X” means the logic belongs to the class; “-” means the logic does not belong to the class; “×”means not applicable.

Table 3

• By Proposition 6.6, S4.2 is S4-stable. Therefore, by Lemma 5.5(1), S4.2 is K4-stable. It
is well known that S4.2 is S4-splitting (see, e.g., [29]). Since S4 is a union K4-splitting,
it follows that S4.2 is a union K4-splitting. Finally, it is well known that S4.2 is a cofinal
subframe logic (see, e.g., [13, Sec. 9.4]), and it is easy to see that S4.2 is not a subframe
logic.
• By Theorem 6.9, S4.Grz is neither S4-stable nor K4-stable. On the other hand, it is well

known that S4.Grz is a subframe logic (see, e.g., [13, Sec. 9.4]). Therefore, S4.Grz is a cofinal
subframe logic. Finally, it is well known that S4.Grz is a union S4-splitting (see, e.g., [12,
Exm. 1.11]). Thus, S4.Grz is a union K4-splitting.
• By Theorem 6.9, GL is not K4-stable, and it is well known that GL is not a union K4-splitting

(see, e.g., [13, Exe. 9.13]). On the other hand, it is well known that GL is a subframe logic
(see, e.g., [13, Sec. 9.4]). Thus, GL is a cofinal subframe logic.
• It was shown in [4] that there is a stable si-logic L which is not a cofinal subframe logic.

Therefore, neither is τL. Thus, τL is not a subframe logic. By Lemma 5.1, τL is S4-stable.
Since L is a tabular logic, it is a union splitting si-logic (see, e.g., [6, Thm. 3.4.27]). By [13,
Cor. 9.64], τL is a union S4-splitting logic, hence a union K4-splitting logic.
• It is easy to see that neither S4BTW3 nor K4BTW3 is a subframe logic. It follows from

[13, Sec. 9.4 and Cor. 9.64] that S4BTW3 is a cofinal subframe logic. Since K4BTW3 =
S4BTW3

+, it follows that K4BTW3 is a cofinal subframe logic. An adaptation of the proof
of [13, Prop. 9.50] shows that K4BTW3 is not a union K4-splitting logic and S4BTW3 is not
a union S4-splitting logic. On the other hand, by Proposition 6.6, S4BTW3 is S4-stable,
and by Proposition 6.8, K4BTW3 is K4-stable.
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