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Abstract. We develop the theory of stable modal logics, a class of modal logics introduced in [3].
We give several new characterizations of stable modal logics, and show that there are continuum
many such. Since some basic modal systems such as K4 and S4 are not stable, for a modal logic L,
we introduce the concept of an L-stable extension of L. We prove that there are continuum many
S4-stable modal logics, and continuum many K4-stable modal logics between K4 and S4. We
axiomatize K4-stable and S4-stable modal logics by means of stable canonical formulas of [3], and
discuss the connection between S4-stable modal logics and stable superintuitionistic logics of [2].
We conclude the paper with examples of K4-stable modal logics, and compare K4-stable modal
logics to subframe and splitting transitive modal logics.

1. Introduction

Stable multi-conclusion consequence relations and stable modal logics were introduced in [3].
The defining feature of these systems is that they admit filtration and hence have the finite model
property. As was shown in [3], these systems can be axiomatized by stable rules. It is the goal
of this article to develop further the theory of stable modal systems. We will obtain several new
characterizations of stable modal systems, and will show that there are continuum many such
systems. We will also show that some basic modal logics such as K4 and S4 are not stable.
Because of this, for a modal system S, we will introduce the concept of a S-stable extension of
S. We will mostly concentrate on K4-stable and S4-stable logics, for which we obtain several
useful characterizations. We will also show that there are continuum many S4-stable logics, and
continuum many K4-stable logics between K4 and S4. We conclude the paper with many examples
of K4-stable modal logics, and compare the class of K4-stable modal logics to those of subframe
and splitting transitive modal logics.

The paper is organized as follows. In the next two sections we recall the definitions of stable
consequence relations and stable modal logics from [3] and provide new characterizations of these.
We also show that there are continuum many such systems. It turns out that many standard
modal logics are not stable. This suggests to relativize the concept of stability to that of L-
stability, where L is some normal modal logic. This is discussed in Section 4. In Section 5 we study
K4-stable and S4-stable logics. These are special instances of L-stable logics. We obtain several
useful characterizations of K4-stable and S4-stable logics, and show that they can be axiomatized
by stable formulas. In Section 6 we discuss the connection between S4-stable logics and stable
superintuitionistic logics of [2]. We show that the superintuitionistic fragment of an S4-stable logic
is stable, and that the least modal companion of a stable superintuionistic logic is S4-stable. We
also show that there are continuum many S4-stable logics and continuum many K4-stable logics
in between K4 and S4. In the final section we present many examples (and non-examples) of K4-
stable and S4-stable logics, provide their axiomatizations in terms of stable formulas, and compare
them to subframe and splitting logics.
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2. Stable consequence relations

We will assume the reader’s familiarity with modal logic. We will use [9, 11, 6, 17] as our main
references for the basic theory of normal modal logics, [7] for universal algebra, [14, 12] for modal
consequence relations, and [10, 3] for multi-conclusion modal consequence relations. We will use
the same notation as in [3]. We will freely use the duality between modal algebras and modal
spaces (descriptive frames). In fact, we will often do not distinguish between modal algebras and
their duals.

Definition 2.1.
(1) Let A = (A,♦) and B = (B,♦) be modal algebras. A Boolean homomorphism h : A→ B is

stable provided ♦h(a) ≤ h(♦a) for all a ∈ A.
(2) We call A a stable subalgebra of B if A is a Boolean subalgebra of B and the inclusion

A ↪→ B is a stable embedding.
(3) A class K of modal algebras is stable provided for modal algebras A and B, if B ∈ K and

there is a stable embedding A� B, then A ∈ K.

Definition 2.2.
(1) Let X = (X,R) and Y = (Y,R) be modal spaces. A map f : X → Y is stable if it is

continuous and xRy implies f(x)Rf(y).
(2) A class K of modal spaces is stable provided for modal spaces X and Y, if X ∈ K and there

is an onto stable map f : X � Y , then Y ∈ K.

By [3, Lem. 3.3], h : A → B is stable iff its dual h∗ : B∗ → A∗ is stable. Consequently, a class
K of modal algebras is stable iff its dual class K∗ of modal spaces is stable.

Definition 2.3. A normal modal multi-conclusion consequence relation S is stable provided the
corresponding universal class U(S) := {A | A |= S} of modal algebras is stable.

Stable multi-conclusion consequence relations can be axiomatized as follows. Let A = (A,♦) be a
finite modal algebra. For every a ∈ A, let pa be a propositional letter. The stable (multi-conclusion)
rule ρ(A) is defined as Γ/∆, where

Γ = {pa∨b ↔ pa ∨ pb | a, b ∈ A}∪
{p¬a ↔ ¬pa | a ∈ A}∪
{♦pa → p♦a | a ∈ A}

and

∆ = {pa | a ∈ A, a 6= 1}.
By [3, Thm. 7.4], S is stable iff S is axiomatizable by stable rules, and by [3, Thm. 7.8], every
stable multi-conclusion consequence relation has the finite model property. We next give a con-
venient characterization of stable multi-conclusion consequence relations. We recall (see, e.g., [7,
Thm. V.2.20]) that a universal class U is generated by a class K iff U = ISPU (K), where I, S, and
PU are the operations of taking isomorphic copies, subalgebras, and ultraproducts. Note that in
general ISPU (K) differs from the variety generated by K.

Theorem 2.4. Let S be a normal multi-conclusion consequence relation. The following are equiv-
alent.

(1) S is stable.
(2) U(S) is generated by a stable class of modal algebras.
(3) U(S) is generated by a stable class of finite modal algebras.

Proof. The implication (3) ⇒ (2) is trivial. For the implication (2) ⇒ (1), suppose that K is a
stable class of modal algebras that generates U(S). Let A be the set of finite nonisomorphic modal



STABLE MODAL LOGICS 3

algebras not belonging to K. We claim that S is axiomatizable by the stable rules {ρ(A) | A ∈ A}.
First we show that each member of K satisfies ρ(A) for each A ∈ A. Indeed, if there are B ∈ K
and A ∈ A such that B 6|= ρ(A), then by [3, Prop. 7.1], there is a stable embedding A� B. Since
K is stable, A ∈ K, a contradiction. Because U(S) is generated by K, it follows that each member
of U(S) satisfies ρ(A) for each A ∈ A. Conversely, suppose that B satisfies ρ(A) for each A ∈ A.
If B 6∈ U(S), then there is a multi-conclusion rule Γ/∆ such that S ` Γ/∆ but B 6|= Γ/∆. By [3,
Thm. 7.8], there is a finite stable subalgebra B′ of B such that B′ 6|= Γ/∆. Since B′ is a stable
subalgebra of B, by [3, Prop. 7.1], B 6|= ρ(B′). As B satisfies ρ(A) for each A ∈ A, we see that
B′ ∈ K, so B′ ∈ U(S). But this contradicts to B′ 6|= Γ/∆. Therefore, B ∈ U(S), and so S is
axiomatizable by the stable rules {ρ(A) | A ∈ A}. Thus, S is stable by [3, Thm. 7.4].

Finally, for the implication (1) ⇒ (3), suppose S is stable. By [3, Thm. 7.8], S has the finite
model property, so U(S) is generated by the class K of its finite members. Since S is stable, U(S)
is stable by [3, Thm. 7.4]. Thus, K is stable, completing the proof. �

Remark 2.5. From next section on we will be mostly concerned with stable modal logics. But
all the results we obtain have obvious analogues for multi-conclusion modal consequence relations,
which often have even easier proofs. Because of this, we will often not discuss these analogues
explicitly.

3. Stable modal logics

Stable modal logics were introduced in [3]. They can be defined as those normal modal logics L
whose corresponding variety V(L) is generated by a stable universal class. By [3, Thm. 7.8], stable
modal logics have the finite modal property. The next theorem is an analogue of Theorem 2.4 and
provides a convenient characterization of stable modal logics.

We recall that an element a of a modal algebra A is an opremum if a 6= 1 and for each b 6= 1
there is n ∈ ω with �na ≤ c, where �0a = a, �n+1a = ��na, and �na =

∧
k≤n�

ka. A modal
algebra A is subdirectly irreducible iff it has an opremum.

An element x of a modal space X = (X,R) is a root if X = Rω[x] and a topo-root if Rω[x] is
dense in X, where R0[x] = {x}, Rn+1[x] = R[Rn[x]], and Rω[x] =

⋃
n∈ω R

n[x]. We call X rooted if
it has a root, and topo-rooted if the set of topo-roots is not co-dense (the interior is nonempty). By
[16, Thm. 2], a modal algebra A is subdirectly irreducible iff its dual modal space A∗ is topo-rooted.
Therefore, if A is finite, then A is subdirectly irreducible iff A∗ is rooted [15, Thm. 3.1]. Since the
topology on a finite modal spaces is discrete, we will identify finite modal spaces with finite Kripke
frames.

Theorem 3.1. Let L be a normal modal logic. The following are equivalent.

(1) L is stable.
(2) V(L) is generated by a stable class of modal algebras.
(3) V(L) is generated by a stable class of finite modal algebras.
(4) V(L) is generated by a stable class of finite subdirectly irreducible modal algebras.

Proof. The implications (4) ⇒ (3) ⇒ (2) are trivial. For the implication (2) ⇒ (1), suppose that
V(L) is generated by a stable class K. By Theorem 2.4, the universal class U(K) generated by K
is stable. Clearly U(K) and K generate the same variety V(L), so V(L) is generated by a stable
universal class, and hence L is stable. For the implication (1) ⇒ (3), suppose L is stable. Then
V(L) is generated by a stable universal class K. By Theorem 2.4, K is generated by its finite
members, which is a stable class since K is stable. Thus, V(L) is generated by a stable class of
finite modal algebras.

Finally, for the implication (3) ⇒ (4), suppose K is a stable class of finite modal algebras that
generates V(L). Let Ksi be the class of all subdirectly irreducible members of K. It is sufficient
to show that Ksi generates V(L), and for this it is sufficient to show that K is contained in the
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variety generated by Ksi. Suppose A ∈ K. If A is subdirectly irreducible, then A ∈ Ksi, and
there is nothing to prove. Otherwise A is a subdirect product of its finite subdirectly irreducible
homomorphic images. Therefore, to conclude that A is in the variety generated by Ksi, it is sufficient
to see that every subdirectly irreducible homomorphic image B of A belongs to this variety. Let B
be a subdirectly irreducible homomorphic image of A. Since A is finite, so is B. Therefore, the dual
Y = (Y,R) of B is rooted. Let Y′ = (Y ′, R′) be obtained from Y by adding a new reflexive root
that sees every point of Y; that is, Y ′ = Y ∪{r} for some r 6∈ Y and R′ = R∪{(r, x) | x ∈ Y ′}. Let
X be the dual of A. Since B is a homomorphic image of A, we see that Y is a generated subframe
of X. Since A is not subdirectly irreducible, but B is, X is not rooted, but Y is. So Y 6= X. Define
f : X → Y ′ by mapping the points of Y to themselves and every other point of X to r. It is easy
to see that f is an onto stable map. Therefore, there is a stable embedding from the dual algebra
B′ of Y′ to A. Since A ∈ K and K is stable, we conclude that B′ ∈ K. As Y′ is finite and rooted,
B′ is subdirectly irreducible, and hence B′ ∈ Ksi. Now, Y is a generated subframe of Y′, so B is
a homomorphic image of B′, and hence B belongs to the variety generated by Ksi, as desired. �

As we already pointed out, we will often not distinguish between modal algebras and their duals.
So if A is a finite modal algebra and X is its dual, then we often write ρ(X) instead of ρ(A). As
usual, we denote a reflexive point by and an irreflexive point by .

We let Form be the inconsistent logic, KD := K + (�p → ♦p) be the logic of serial frames,
and KT := K + (p→ ♦p) be the logic of reflexive frames. As follows from [3, Thm. 8.3], Form is

axiomatized by ρ( ), KD is axiomatized by ρ( ) and ρ( ), and KT is axiomatized by ρ( ) and

ρ( ). We give more examples in the next theorem.

Theorem 3.2.
(1) For a finite modal algebra A, let Stable(A) be the class of modal algebras that are iso-

morphic to stable subalgebras of A, and let L(Stable(A)) be the logic of Stable(A). Then
L(Stable(A)) is a stable modal logic.

(2) Every extension of S5 is a stable modal logic.

Proof. (1). Clearly Stable(A) is a stable class of finite modal algebras. Now apply Theorem 3.1.
(2). It is well known that an S5-algebra is subdirectly irreducible iff its dual is a cluster. It is

easy to see that the class of finite clusters is a stable class. Since S5 is the logic of this class, S5
is a stable logic by Theorem 3.1. It is also well known that for every extension L of S5 there is n
such that L is the logic of m-clusters for m ≤ n. This class is stable by the same reasoning. Thus,
every extension of S5 is stable. �

We next show that there are continuum many stable modal logics. In fact, we will see that there
are continuum many stable logics above the logic wK4 of weakly transitive frames, where a frame
F = (X,R) is weakly transitive provided xRy, yRz, and x 6= z imply xRz. For our proof we will
make use of Jankov formulas for finite wK4-algebras from [1]. For a finite subdirectly irreducible
wK4-algebra A let χ(A) be the Jankov formula of A. Then for a wK4-algebra B, we have

B 6|= χ(A) iff A is a subalgebra of a homomorphic image of B (see [1, Prop. 7.5]).

Dually, if F is a finite rooted weakly transitive frame and G is an arbitrary weakly transitive space,
then we have

G 6|= χ(F) iff F is a p-morphic image of a generated subframe of G.

Theorem 3.3. There is a continuum of weakly transitive non-transitive stable modal logics.

Proof. For n ≥ 3 let Cn = (Xn, Rn) be the irreflexive n-point cluster depicted in Figure 1; that is,
Xn = {x1, . . . xn} and Rn = {(xi, xj) ∈ Xn ×Xn | i 6= j}.
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. . .

Figure 1

Let N≥3 := {n ∈ N | n ≥ 3}. For I ⊆ N≥3 set

KI = {X | ∃n ∈ I such that X is a stable image of Cn}.
It is clear that KI is a stable class of modal spaces. Let LI be the logic of KI . Since KI is stable,
by Theorem 3.1, LI is a stable modal logic. We show that if I 6= J , then LI 6= LJ . For this we first
show that n ∈ I iff χ(Cn) /∈ LI . If n ∈ I, then Cn ∈ KI , so Cn |= LI . Clearly Cn 6|= χ(Cn), which
implies that χ(Cn) 6∈ LI . Conversely, suppose that χ(Cn) 6∈ LI . Since LI is the logic of KI , there
is X ∈ KI such that X 6|= χ(Cn). Therefore, Cn is a p-morphic image of a generated subframe of
X. But the only generated subframe of X is X, so KI is closed under generated subframes. Also a
p-morphic image of X is a stable image of X, and KI is closed under stable images. Thus, Cn ∈ KI .
If n /∈ I, then there is m ∈ I and an onto stable map f : Cm � Cn. Since m = |Cm| > |Cn| = n,
we see that f must identify at least two points of Cm. Therefore, there are distinct x, y ∈ Cm
with f(x) = f(y). Thus, xRmy and f(x)R�nf(y), which is a contradiction because f is stable.
Consequently, n ∈ I, and so n ∈ I iff χ(Cn) /∈ LI . Now, if I 6= J , then without loss of generality we
may assume that there is n ∈ I \ J . Therefore, χ(Cn) ∈ LJ \ LI , and hence LI 6= LJ . Since each
Cn is weakly transitive and non-transitive, we conclude that {LI | I ⊆ N≥3} is a continual family
of weakly transitive non-transitive stable logics. �

On the other hand, we will see in Section 7 that many well-known modal logics are not stable.
For example, by Theorem 7.6, none of the logics K4,S4,KB, and K5 is stable, and neither are
the logics GL, S4.Grz, K4.1, and S4.1. This motivates the key definition of the next section.

4. L-stable modal logics

Since many well-known modal logics are not stable, we require to relativize the concept of stability
as follows.

Definition 4.1.

(1) Suppose K and V are two classes of modal algebras with K ⊆ V. We say that K is V-stable
(or stable within V) provided for A,B ∈ V, if B ∈ K and there is a stable embedding
A� B, then A ∈ K.

(2) Suppose S is a normal modal multi-conclusion consequence relation and T is a normal
extension of S. We say that T is S-stable (or stable over S) provided the universal class
U(T ) is U(S)-stable.

(3) Suppose L is a normal modal logic and M is a normal extension of L. We say that M
is L-stable (or stable over L) provided the variety V(M) is generated by a universal class
which is V(L)-stable.

Lemma 4.2. Suppose L,M,N are normal modal logics with L ⊆M ⊆ N .

(1) If M is stable, then M is L-stable.
(2) If N is L-stable, then N is M -stable.
(3) If V(M) is a V(L)-stable class, then N is M -stable iff N is L-stable.

Proof. (1). Since M is stable, V(M) is generated by a stable universal class K. As K is stable, it
is obviously V(L)-stable. Thus, M is L-stable.

(2). Apply an argument similar to (1).
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(3). One implication follows from (2). For the other, suppose N is M -stable. Then V(N)
is generated by a universal class K which is V(M)-stable. Since V(M) is V(L)-stable, K is also
V(L)-stable. Therefore, N is L-stable. �

We next show that Theorem 3.1 has an obvious generalization to L-stable logics, provided L
admits filtration. We recall the algebraic account of filtrations given in [3, Sec. 4].

Definition 4.3. Suppose A = (A,♦) is a modal algebra, V is a valuation on A, and Σ is a finite
set of formulas closed under subformulas. Let A′ be the Boolean subalgebra of A generated by V (Σ).
Then A′ is finite because Σ is finite. Set D = {V (ϕ) | ♦ϕ ∈ Σ}. Let ♦′ be a modal operator on A′

and V ′ be a valuation on A′ = (A′,♦′) satisfying

• The inclusion A′ ↪→ A is a stable embedding;
• V ′(p) = V (p) for all propositional letters p ∈ Σ;
• ♦′a = ♦a for all a ∈ D.

Then (A′, V ′) is called a filtration of (A, V ) through Σ.

By the Filtration Lemma (see [3, Lem. 4.4]), if (A′, V ′) is a filtration of (A, V ) through Σ, then
V (ϕ) = V ′(ϕ) for all ϕ ∈ Σ.

Definition 4.4. A normal modal logic L admits filtration if for every L-algebra A, every valuation
V on A, and every finite set Σ of formulas closed under subformulas, there is a filtration (A′, V ′)
of (A, V ) through Σ such that A′ is an L-algebra.

It is easy to see that if L admits filtration, then L has the finite model property. Indeed, if
L 6` ϕ, then there is an L-algebra A and a valuation V on A such that A 6|= ϕ. Let Σ be the set of
subformulas of ϕ. Since L admits filtration, there is a finite L-algebra A′ and a valuation V ′ on A′

such that (A′, V ′) is a filtration of (A, V ) through Σ. By the Filtration Lemma, A′ 6|= ϕ. Thus, L
has the finite model property.

Theorem 4.5. Suppose L is a normal modal logic that admits filtration and M is a normal exten-
sion of L. The following are equivalent.

(1) M is L-stable.
(2) M is axiomatizable over L by stable rules of finite L-algebras.
(3) V(M) is generated by a V(L)-stable class of modal algebras.
(4) V(M) is generated by a V(L)-stable class of finite modal algebras.

Proof. The proof is very similar to the proofs of Theorem 3.1 and [3, Thm. 7.4]. One simply has
to use L-filtrations instead of arbitrary filtrations in the corresponding steps. As an example, we
prove the implication (1) ⇒ (2). Suppose that M is L-stable. Then V(M) is generated by an
L-stable universal class K. Let A be the set of finite nonisomorphic L-algebras not belonging to K.
Let B be an L-algebra. We claim that B ∈ K iff B |= ρ(A) for each A ∈ A. Suppose B ∈ K. If
there is A ∈ A with B 6|= ρ(A), then by [3, Prop. 7.1], there is a stable embedding A� B. Since
K is L-stable, A ∈ K, contradicting A ∈ A. Therefore, B |= ρ(A) for each A ∈ A. Conversely,
suppose B satisfies ρ(A) for each A ∈ A. If B 6∈ K, then since K is a universal class, there is
a multi-conclusion rule Γ/∆ such that K |= Γ/∆ but B 6|= Γ/∆. Let V be a valuation on B
refuting Γ/∆, and let Σ be the set of subformulas of Γ ∪ ∆. Since L admits filtration, there is a
finite L-algebra A and a valuation V ′ on A such that (A, V ′) is a filtration of (B, V ) through Σ.
Therefore, A refutes Γ/∆, yielding A 6∈ K. Thus, A ∈ A. On the other hand, since A is a stable
subalgebra of B, by [3, Prop. 7.1], B 6|= ρ(A). The obtained contradiction proves that B ∈ K iff
B |= ρ(A) for each A ∈ A. Since K generates V(M), we conclude that M is axiomatized over L by
{ρ(A) | A ∈ A}. �

Remark 4.6. If the finite frames of L are closed under the operation of adding a new reflexive
root that sees every point, then a straightforward adjustment of the proof of Theorem 3.1 shows
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that another equivalent condition for M to be L-stable is that M is generated by an L-stable class
of finite subdirectly irreducible L-algebras. Examples of such logics are K4 and S4.

Remark 4.7. The definition of a normal modal multi-conclusion consequence relation S admitting
filtration, the proof that such S has the finite model property, and an analogue of Theorem 4.5 are
proved similarly, so we skip the details.

5. K4-stable and S4-stable logics

We next concentrate on the well-known modal logics K4 and S4, and study K4-stable and S4-
stable logics. Since both K4 and S4 admit filtration, Theorem 4.5 and Remark 4.6 hold for both
logics.

Let A = (A,♦) be a K4-algebra. As usual, for a ∈ A, we set ♦+a = a ∨ ♦a and �+a = a ∧�a.
Then A+ = (A,♦+) is an S4-algebra. We call A well-connected if ♦+a ∧ ♦+b = 0 implies a = 0 or
b = 0. Equivalently, A is well-connected if �+a∨�+b = 1 implies a = 1 or b = 1. Each subdirectly
irreducible K4-algebra is well-connected. To see this, suppose A is subdirectly irreducible and
�+a ∨ �+b = 1. If a, b 6= 1, then since A is subdirectly irreducible, it has an opremum c 6= 1,
so a, b 6= 1 implies �+a,�+b ≤ c, so �+a ∨ �+b ≤ c 6= 1, a contradiction. Therefore, a = 1 or
b = 1, and hence A is well-connected. While the converse is not true in general, it is true for finite
K4-algebras.

For a K4-space X = (X,R), let R+ be the reflexive closure of R. Then X+ = (X,R+) is an
S4-space. Since in a K4-space Rω = R+, we see that a K4-space is rooted iff there is x ∈ X
such that X = R+[x]. It is well known that a K4-algebra is well-connected iff its dual K4-space is
rooted.

Lemma 5.1. Suppose A = (A,♦A) and B = (B,♦B) are K4-algebras. If A is well-connected and
B is a stable subalgebra of A, then B is well-connected.

Proof. Since B is a stable subalgebra of A, we see that ♦Ab ≤ ♦Bb for all b ∈ B. Therefore,
♦+Ab ≤ ♦

+
Bb for all b ∈ B. Now, let a, b ∈ B with ♦+Ba ∧ ♦

+
Bb = 0. Then ♦+Aa ∧ ♦

+
Ab = 0. As A is

well-connected, a = 0 or b = 0. Thus, B is well-connected. �

As was shown in [3, Sec. 6.2], if A is a finite subdirectly irreducible K4-algebra, then the stable
rule ρ(A) = Γ/∆ can be rewritten as the stable formula

γ(A) :=
∧
{�+γ | γ ∈ Γ} →

∨
{�+δ | δ ∈ ∆}

so that for every K4-algebra B, we have B 6|= γ(A) iff there is a subdirectly irreducible homomor-
phic image C of B such that A is isomorphic to a stable subalgebra of C. If B is well-connected,
then one implication of this equivalence can be strengthened.

Lemma 5.2. Suppose A is a finite subdirectly irreducible K4-algebra and B is a well-connected
K4-algebra. If h : A� B is a stable embedding, then B 6|= γ(A).

Proof. Let V be a valuation on A such that V (pa) = a, and let V ′ := h ◦ V . As in the proof of
[3, Thm. 6.8], we have that V ′(�+γ) = 1 for all γ ∈ Γ and V ′(�+δ) 6= 1 for all δ ∈ ∆. Therefore,
V ′(

∧
{�+γ | γ ∈ Γ) = 1, and since B is well-connected, V ′(

∨
{�+δ | δ ∈ ∆) 6= 1. Thus, V ′

witnesses that B 6|= γ(A). �

Example 5.3. The converse of Lemma 5.2 is not true in general. Let A and B be the K4-algebras
that are dual to the K4-frames F and G shown below.

F G
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Clearly both F,G are rooted and F is a generated subframe of G. So A is a subdirectly irreducible
homomorphic image of B, and hence B 6|= γ(A). On the other hand, F is not a stable image of G
since an onto stable map would send the root of G to the root of F. But the root of G is reflexive
while the root of F is irreflexive, a contradiction. Thus, there does not exist a stable embedding of
A into B.

Of course, the key is that the root of F is irreflexive. The next lemma shows that this is essential.

Lemma 5.4. Let F = (X,R), G = (Y,Q), and G′ = (Y ′, Q′) be finite K4-frames such that F is a
stable image of G and G is a generated subframe of G′.

(1) There is a finite K4-frame F′ = (X ′, R′) such that F is a generated subframe of F′, F′ is a
stable image of G′, and the following diagram commutes.

G F

G′ F′

(2) If in addition F has a reflexive root, then F is a stable image of G′ and the following diagram
commutes.

G F

G′

Proof. (1). Let f : G � F be an onto stable map. If G = G′, then there is nothing to show as we
can take F′ to be F. Otherwise we construct F′ by adding a reflexive root to F; that is, X ′ = X∪{r}
for some r 6∈ X and R′ = R∪{(r, x) | x ∈ X}∪ {(r, r)}. It is easy to see that F′ is a K4-frame and
that F is a generated subframe of F′. Define g : Y ′ → X ′ so that the restriction of g to Y is f and
g maps Y ′ \ Y to the root r of F′; that is,

g(y) =

{
f(y) if y ∈ Y
r otherwise.

Since f is onto and Y ′ \Y 6= ∅, it is clear that g is a well-defined onto map. To see that g is stable,
let x, y ∈ Y ′ with x ≤ y. If x ∈ Y , then there is nothing to verify as f is stable. Otherwise g(x) = r
is the reflexive root, and so g(x)R′g(y). Finally, it follows from the definition that the diagram
commutes.

(2). Define g : Y ′ → X so that the restriction of g to Y is f and g maps Y ′ \ Y to the reflexive
root r of F (provided Y ′ \Y 6= ∅). An argument similar to the above shows that g is an onto stable
map, and that the diagram commutes. �

Using duality theory, we can reformulate Lemma 5.4 in algebraic terms. For a K4-algebra
A = (A,♦) consider the condition:

(∗) There is an atom a ∈ A such that a ≤ ♦b for each b 6= 0.

If A is the dual of F, then it is easy to see that F has a reflexive root iff A satisfies (∗). Thus,
Lemma 5.4 can be reformulated as follows.

Lemma 5.5. Let A, B, and B′ be finite K4-algebras such that there is a stable embedding of A
into B and B is a homomorphic image of B′.
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(1) There is a finite K4-algebra A′ such that A is a homomorphic image of A′, A′ is isomorphic
to a stable subalgebra of B′, and the following diagram commutes.

B A

B′ A′

(2) If in addition A satisfies (∗), then there is a stable embedding of A into B′ and the following
diagram commutes.

B A

B′

We next build on Theorem 4.5 and obtain several more convenient characterizations for a logic
above K4 to be K4-stable. For a class K of K4-algebras, we let Kwc denote the class of well-
connected members of K.

Theorem 5.6. Let L be a normal extension of K4. The following are equivalent.

(1) L is K4-stable.
(2) L is axiomatizable over K4 by stable rules of finite K4-algebras.
(3) V(L) is generated by a K4-stable class of K4-algebras.
(4) V(L) is generated by a K4-stable class of finite K4-algebras.
(5) V(L)wc is K4-stable.
(6) If A,B are subdirectly irreducible K4-algebras, A |= L, and B is a stable subalgebra of A,

then B |= L.

Moreover, each K4-stable logic is axiomatizable by stable formulas.

Proof. Since K4 admits filtration, the equivalence of the first four conditions follows from Theo-
rem 4.5. To prove the implication (4)⇒ (5), we require the following claim.

Claim 5.7. Suppose V(L) is generated by a K4-stable class K of finite K4-algebras, A is a finite
subdirectly irreducible K4-algebra, and A 6|= L. Then γ(A) ∈ L.

Proof. Suppose that γ(A) 6∈ L. Since K generates V(L), there is B ∈ K such that B 6|= γ(A). By
[3, Thm. 6.8], there is a subdirectly irreducible homomorphic image C of B and a stable embedding
of A into C. By Lemma 5.5(1), there is a K4-algebra D such that D is isomorphic to a stable
subalgebra of B and A is a homomorphic image of D. Since K is K4-stable and B ∈ K, we have
that D ∈ K. Because V(L) is closed under homomorphic images, A ∈ V(L), which contradicts to
A 6|= L. Therefore, γ(A) ∈ L, as desired. �

Now, suppose A,B are K4-algebras, with B ∈ V(L)wc, and there is a stable embedding of A
into B. Since B is well-connected, so is A by Lemma 5.1. If A 6|= L, then A 6|= ϕ for some ϕ ∈ L.
As K4 admits filtration, there is a finite K4-algebra C such that C is a stable subalgebra of A and
C 6|= ϕ. But then there is a stable embedding of C into B. Since B is well-connected, so is C by
Lemma 5.1. Therefore, as C is finite, it is subdirectly irreducible. By Claim 5.7, γ(C) ∈ L. Because
there is a stable embedding of C into B, it follows by Lemma 5.2 that B 6|= γ(C), which contradicts
to B |= L. Thus, A |= L, so A ∈ V(L)wc, and hence V(L)wc is K4-stable.

The implication (5)⇒ (6) follows from the fact that every subdirectly irreducible K4-algebra is
well-connected. To see the implication (6) ⇒ (4), we show that L is the logic of finite subdirectly
irreducible L-algebras. Indeed, if L 6` ϕ, then there is a subdirectly irreducible L-algebra A such



10 GURAM BEZHANISHVILI, NICK BEZHANISHVILI, JULIA ILIN

that A 6|= ϕ. Since K4 admits filtration, there is a finite K4-algebra C such that C is a stable
subalgebra of A and C 6|= ϕ. As A is subdirectly irreducible, it is well-connected. Therefore, so is C
by Lemma 5.1. Thus, since C is finite, it is subdirectly irreducible. But then (6) yields that C |= L.
Consequently, V(L) is generated by the class of finite subdirectly irreducible L-algebras. Since this
class is K4-stable, (4) follows.

Finally, we show that K4-stable logics are axiomatizable by stable formulas. Suppose that
L is a K4-stable logic. Let A be the set of finite nonisomorphic subdirectly irreducible K4-
algebras not belonging to V(L). We claim that L = K4 + {γ(A) : A ∈ A}. The inclusion
K4 + {γ(A) : A ∈ A} ⊆ L follows from Claim 5.7. For the reverse inclusion, let V be the variety
corresponding to K4 + {γ(A) : A ∈ A}. As subdirectly irreducible members of V generate V, it
is sufficient to show that each subdirectly irreducible member of V belongs to V(L). Let B be a
subdirectly irreducible member of V. If B 6|= L, then since K4 admits filtration, there is a finite
K4-algebra B′ such that B′ is a stable subalgebra of B and B′ 6|= L. Because B is subdirectly
irreducible, it is well-connected. Therefore, B′ is well-connected by Lemma 5.1. Thus, as B′ is
finite, it is subdirectly irreducible. So B′ ∈ A. Now, B 6|= γ(B′) by Lemma 5.2. Consequently,
B 6∈ V, a contradiction. This yields that B |= L, and hence L = K4 + {γ(A) : A ∈ A}. �

Example 5.8. On the other hand, there exist logics above K4 that are axiomatizable over K4
by stable formulas, but are not K4-stable logics. To see this, consider the K4-frames F, G, and H
shown below.

F H G

We set L = K4 + γ(F). Clearly H is the only non-singleton rooted upset of H and F is not a stable
image of H since H has a reflexive root and F has an irreflexive root. Therefore, H |= γ(F), and so
H |= L. Next consider the map H → G indicated in the picture above. It is easy to see that it is
a stable map from H onto G. If L were K4-stable, Theorem 5.6 would yield G |= γ(F). However,
G 6|= γ(F) as we already discussed in Example 5.3. Thus, L is not K4-stable.

Remark 5.9. It is of interest to study further the class of modal logics axiomatized by stable
formulas. It is not even clear whether all such logics have the finite model property.

In Example 5.8 it was essential that the root of G was irreflexive. We next show that every
logic that is axiomatized over K4 by stable formulas of finite K4-frames with reflexive roots are
K4-stable. In algebraic terms we will show that every logic that is axiomatized over K4 by stable
formulas of finite K4-algebras that satisfy (∗) are K4-stable.

Proposition 5.10.
(1) Let A be a finite K4-algebra satisfying (∗). For a well-connected K4-algebra B we have

B 6|= γ(A) iff there is a stable embedding of A into B.
(2) Suppose L = K4 + {γ(Ai) | i ∈ I}, where each Ai satisfies (∗). Then L is K4-stable.

Proof. (1). The right to left direction was already proven in Lemma 5.2. For the left to right
direction, let B be a K4-algebra such that B 6|= γ(A). Note that for this direction it is not needed
that B is well-connected. Since K4 admits filtration, there is a finite K4-algebra C that is a stable
subalgebra of B and C 6|= γ(A). By [3, Thm. 6.8], there is a subdirectly irreducible homomorphic
image D of C and a stable embedding of A into D. Since A satisfies (∗), by Lemma 5.5(2), there is
a stable embedding of A into C, and hence a stable embedding of A into B.

(2). It is immediate from (1) that the class of well-connected algebras of L is K4-stable. Now
apply Theorem 5.6. �
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Since every finite subdirectly irreducible S4-algebra satisfies (∗), Proposition 5.10 yields:

Corollary 5.11. Let A be a finite subdirectly irreducible S4-algebra. For every well-connected
S4-algebra B we have B 6|= γ(A) iff there is a stable embedding of A into B.

This immediately yields that all logics axiomatizable over S4 by stable formulas of finite sub-
directly irreducible S4-algebras are S4-stable. Thus, for normal extensions of S4 we obtain the
following improvement of Theorem 5.6.

Corollary 5.12. Let L be a normal extension of S4. The following are equivalent.

(1) L is S4-stable.
(2) L is axiomatizable over S4 by stable rules of finite S4-algebras.
(3) L is axiomatizable over S4 by stable formulas of finite subdirectly irreducible S4-algebras.
(4) V(L) is generated by a S4-stable class of S4-algebras.
(5) V(L) is generated by a S4-stable class of finite S4-algebras.
(6) V(L)wc is S4-stable.
(7) If A,B are subdirectly irreducible S4-algebras, A |= L, and B is a stable subalgebra of A,

then B |= L.

6. Connection with stable superintuionistic logics

In this section we discuss the connection between K4-stable logics and S4-stable logics, as well
as between S4-stable logics and stable superintuionistic logics of [2]. We conclude the section by
showing that there are continuum many S4-stable logics, and continuum many K4-stable logics
between K4 and S4. While most of the results in the previous sections are stated in terms of
algebras, from now on we will mainly work with frames, and utilize their geometric intuition.

We follow the notation of [9, Sec. 9.6]. If L is a superintuitionistic logic, then we denote by τL
the least modal companion of L. Also, if M is a normal extension of S4, then we denote by ρM the
superintuitionistic fragment of M . For an S4-frame F = (X,R), let ρF = (ρX, ρR) be the skeleton
F, which is obtained by modding out the clusters of F. It is well known (see, e.g., [9, Lem. 9.67])
that for every S4-frame F, we have F |= τL iff ρF |= L.

Theorem 6.1.
(1) Let F = (X,R) and G = (Y,R) be finite rooted S4-frames. If G is a stable image of F, then

ρG is a stable image of ρF.
(2) If L is a stable superintuitionistic logic, then τL is S4-stable.
(3) If L = IPC + {γ(Gi) | i ∈ I}, then τL = S4 + {γ(Gi) | i ∈ I}.

Proof. (1). Let f : X → Y be an onto stable map. Since the quotient map πY : Y → ρY is an
onto p-morphism, the composition πY ◦ f : X → ρY is onto and stable. Define g : ρX → ρY by
g(πX(x)) = πY (f(x)). Because πY ◦ f is stable, g is well defined, and it is clear that g is onto and
stable. Therefore, ρG is a stable image of ρF.

(2). Let L be a stable superintuitionistic logic. By [2, Thm. 6.8], L has the finite model property.
Therefore, so does τL (see, e.g., [9, p. 328]). Thus, τL is the logic of its finite rooted frames. We
show that this class is S4-stable. Let F be a finite rooted τL-frame and G be a finite rooted S4-
frame that is a stable image of F. Since F is a τL-frame, ρF is an L-frame. By (1), ρG is a stable
image of ρF. As L is stable, ρG |= L. Therefore, G |= τL, and hence the class of finite rooted
τL-frames is S4-stable. Thus, by Corollary 5.12, τL is an S4-stable logic.

(3). Let M = S4 + {γ(Gi) | i ∈ I}. By (1) and Corollary 5.12, both τL and M are S4-stable.
Therefore, to see that τL = M , it is sufficient to check that the two logics have the same finite
rooted frames. Let F be a finite rooted S4-frame. If F 6|= τL, then ρF 6|= L, so Gi is a stable image
of ρF for some i ∈ I. Since ρF is a stable image of F, we conclude that Gi is a stable image of F.
Thus, F 6|= γ(Gi), and hence F 6|= M . Conversely, if F 6|= M , then Gi is a stable image of F for some
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·· ·

F

n

n

F

Figure 2

i ∈ I. From (1) it follows that ρGi is a stable image of ρF. Since Gi is partially ordered, Gi
∼= ρGi,

implying that Gi is a stable image of ρF. Thus, ρF 6|= L, and so F 6|= τL. �

For a finite rooted S4-frame F = (X,R), let F = (X,R) be the partially ordered S4-frame
that is obtained from F by unraveling each n-cluster into an n-chain (see Figure 2); that is, if
X = C1 ∪ · · · ∪ Ck is the division of F into clusters, with Ci = {xi1 , . . . , xini

}, then for all x = xil
and y = xjm , we have

xRy iff

{
i = j and l ≥ m or

i 6= j and xRy.
.

Note that wini
is the root of the chain Ci in F.

Theorem 6.2.
(1) Let F = (X,R) and G = (Y,R) be finite rooted S4-frames, with G being partially ordered.

Then F is a stable image of G iff F is a stable image of G.
(2) If M is S4-stable, then ρM is stable.
(3) If M = S4 + {γ(Fi) | i ∈ I}, then ρM = IPC + {γ(Fi) | i ∈ I}.

Proof. (1). Since F is easily seen to be a stable image of F, the implication from right to left is
obvious. Conversely, suppose that f : G→ F is an onto stable map. We transform f into a stable
map f : G → F by shuffling the values of f belonging to some cluster of F. Let Ci be a cluster of
F and let Y ′ = f−1(Ci). We view Y ′ as a subframe of G, and define f : Y ′ → Ci by induction on
the depth of points in Y ′. The idea is to map the points of the smallest depth injectively onto the
first ni − 1 points of Ci and all the other points of Y ′ to the root wini

. More precisely, suppose

{y1, . . . , ym} ⊆ Y ′ are the points of depth d and we have mapped all the points of Y ′ of smaller
depth injectively onto {wi1 , . . . , wil}. If m ≤ ni − l, then set f(yh) = xil+h

for all 1 ≤ h ≤ m. If

m 6≤ ni − l, then define f as before for all yl with l ≤ m− (ni − l) and map all the other points of
Y ′ to wini

. It is straightforward to check that f is stable.

(2). Since M is S4-stable, it has the finite model property. Therefore, so does ρM (see, e.g., [9,
p. 328]). It thus suffices to show that the finite rooted ρM -frames form a stable class. Suppose G
is a stable image of a finite rooted ρM -frame F. From F |= ρM it follows that F |= M . Since M is
stable, G |= M . Consequently, G |= ρM .

(3). Since M is S4-stable, ρM is stable by (2). Let L = IPC+{γ(Fi) | i ∈ I}. By [2, Thm. 6.11],
L is stable. Therefore, both ρM and L have the finite model property, and hence it suffices to show
that the two logics have the same finite rooted frames. Suppose G is a finite rooted frame such
that G |= ρM . If G 6|= L, then there is i ∈ I such that G 6|= γ(Fi). Therefore, Fi is a stable image
of G. By (1), Fi is a stable image of G. Thus, G 6|= γ(Fi), and so G 6|= M , contradicting G |= ρM .
Consequently, G |= L. Conversely, if G 6|= ρM , then G 6|= M , and hence G 6|= γ(Fi) for some i ∈ I.
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Therefore, Fi is a stable image of G. By (1), Fi is a stable image of G. Thus, G 6|= γ(Fi), yielding
that G 6|= L. �

Corollary 6.3.

(1) A superintuitionistic logic L is stable iff τL is S4-stable.
(2) An S4-stable logic is the least modal companion of a superintuitionistic logic iff it can be

axiomatized by stable formulas of finite rooted partially ordered S4-frames.

Proof. (1). It is well known that L = ρ τL (see, e.g., [9, Thm. 9.57]). Now apply Theorems 6.1(3)
and 6.2(3).

(2). Suppose M is the least modal companion of a superintuitionistic logic L. Then M = τ(L),
and so L = ρ(M). SinceM is S4-stable, L is stable by Theorem 6.2(2). Therefore, by [2, Thm. 6.11],
there are finite rooted partially ordered frames {Fi | i ∈ I} such that L = IPC + {γ(Fi) | i ∈ I}.
Thus, M = S4 + {γ(Fi) | i ∈ I} by Theorem 6.1(3). Conversely, if M = S4 + {γ(Fi) | i ∈ I} for
some finite rooted partially ordered S4-frames {Fi | i ∈ I}, then ρ(M) = IPC + {γ(Fi) | i ∈ I} by
Theorem 6.2(3). Since Fi = Fi for all i ∈ I, we conclude that τρ(M) = IPC+{γ(Fi) | i ∈ I} = M ,
and hence M is the least modal companion of ρ(M). �

Remark 6.4. On the other hand, the greatest modal companion of a stable superintuitionistic
logic is not necessarily S4-stable. For instance, the Grzegorczyk logic S4.Grz is the greatest modal
companion of the intuitionistic propositional calculus IPC, and we will see in Section 7 that it is
not S4-stable.

Next we discuss connections between S4-stable and K4-stable logics. For a formula ϕ, let ϕ+

be obtained from ϕ by replacing each subformula of ϕ of the form �ψ by ψ ∧�ψ. If L = S4 + Γ
is a normal extension of S4, let L+ = K4 + Γ+, where Γ+ = {ϕ+ | ϕ ∈ Γ}. For a binary relation
R on X, let R+ := R ∪ {(x, x) | x ∈ X} be the reflexive closure of R. For a K4-space F = (X,R),
define the reflexivization of F as F+ = (X,R+). Then F+ is an S4-space and F |= L+ iff F+ |= L.
Therefore, L+ is the logic of {F | F+ |= L} (see, e.g., [9, Sec. 3.9]).

Lemma 6.5.
(1) Let F be a finite S4-frame and let G be a K4-space. Then F is a stable image of G iff F is

a stable image of G+.
(2) If L = S4 + {γ(Fi) | i ∈ I}, where the Fi are S4-frames, then L+ = K4 + {γ(Fi) | i ∈ I}.
(3) If L is S4-stable, then L+ is K4-stable.

Proof. (1). Immediate since F is reflexive.
(2). By (1) and Corollary 5.11, if G is a rooted K4-space, then G |= γ(Fi) iff G+ |= γ(Fi).

Therefore, G |= L+ iff G+ |= L iff G+ |= {γ(Fi) | i ∈ I} iff G |= {γ(Fi) | i ∈ I}. Thus, L+ and
K4 + {γ(Fi) | i ∈ I} have the same rooted K4-spaces, and hence the two logics coincide.

(3). If L is S4-stable, then L is axiomatized by stable formulas of S4-frames. By (2), L+ is
axiomatized by the same stable formulas. In particular, L+ is axiomatized by stable formulas of
frames with reflexive roots. Thus, L+ is K4-stable by Proposition 5.10. �

For two normal modal logics L1 and L2, let L1 ∨L2 denote the join of these logics in the lattice
of normal modal logics.

Lemma 6.6. Let L be a normal extension of K4.

(1) If S4 ⊆ L, then L is K4-stable iff L is S4-stable.
(2) If L is K4-stable, then S4 ∨ L is S4-stable.
(3) If L = K4 + {γ(Fi) | i ∈ I}, then S4 ∨ L = S4 + {γ(Fi) | Fi = F+

i }.
(4) If L = K4 + {γ(Fi) | i ∈ I}, then L ⊆ S4 iff each Fi contains an irreflexive point.



14 GURAM BEZHANISHVILI, NICK BEZHANISHVILI, JULIA ILIN

Proof. (1). Observe that S4 is a K4-stable class and apply Lemma 4.2(3).
(2). By Theorem 5.6, the rooted L-spaces are K4-stable. Therefore, the rooted (S4 ∨ L)-spaces

are S4-stable. Thus, S4 ∨ L is S4-stable by Corollary 5.12.
(3). Let G be a rooted S4-space. We have G |= S4 ∨ L iff G |= L iff G |= γ(Fi) for all i ∈ I. It

is obvious that G |= γ(Fi) for every Fi that contains an irreflexive point because no such Fi can be
a stable image of a reflexive space. Therefore, G |= γ(Fi) for all i ∈ I is equivalent to G |= γ(Fi)
for all Fi with Fi = F+

i . Thus, S4 ∨ L = S4 + {γ(Fi) | Fi = F+
i }.

(4). First suppose that each Fi contains an irreflexive point. Then Fi 6= F+
i for all i ∈ I.

Therefore, (3) implies that L ∨ S4 = S4, and hence L ⊆ S4. Conversely, suppose that some Fi is
reflexive. Since Fi 6|= L and Fi is an S4-frame, we see that L 6⊆ S4. �

Theorem 6.7.
(1) There are continuum many K4-stable logics above S4.
(2) There are continuum many K4-stable logics between K4 and S4.

Proof. (1). By [2, Thm. 6.13], there are continuum many stable superintuitionistic logics. Since
L 6= L′ implies τL 6= τL′, this together with Lemma 6.1 yields continuum many S4-stable logics
above S4. By Lemma 6.6(1), these logics are also K4-stable. Thus, there are continuum many
K4-stable logics above S4.

(2). Consider the sequence {Fn | n ∈ N≥1} shown in Figure 3. By [2, Lem. 6.12], Fn is not
a stable image of Fm for n 6= m. We slightly modify the sequence. For n ∈ N≥1, let Gn be the
K4-frame that is obtained from Fn by making x1 irreflexive. The proof of [2, Lem. 6.12] shows
that Gn is not a stable image of Gm for n 6= m.

r

xn+1

xn

xn−1

x3

x2

x1

yn

yn−1

y3

y2

y1

Fn

r

xn+1

xn

xn−1

x3

x2

x1

yn

yn−1

y3

y2

y1

Gn

Figure 3

For I ⊆ N≥1 let LI = K4 + {γ(Gn) | n ∈ I}. Since each Gn has a reflexive root, by Proposi-
tion 5.10, every LI is K4-stable. As each Gn has a an irreflexive point, by Lemma 6.6(4), LI ⊆ S4
for every I ⊆ N≥1. Thus, every LI is a K4-stable logic between K4 and S4. Finally, if n ∈ I \ J ,
then γ(Gn) ∈ LJ \ LI , so the cardinality of {LI | I ⊆ N≥1} is that of continuum, completing the
proof. �

7. Examples of K4-stable and S4-stable logics

In this final section we give many examples of K4-stable and S4-stable logics, and compare them
to subframe and splitting transitive logics. We also show, as promised earlier, that some well-known
logics are not stable.

We start by considering the following well-known logics (see, e.g., [9, p. 116]):
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• D4 = K4 +�p→ ♦p, the logic of serial K4-frames;
• K4B = K4 + p→ �♦p, the logic of symmetric K4-frames;
• K4.2 = K4 + ♦(p ∧�q)→ �(p ∨ ♦q), the logic of directed K4-frames;
• K4.3 = K4 +�(�+p→ q) ∨�(�+q → p), the logic of connected K4-frames;
• K4BWn = K4 + bwn, the logic of K4-frames of width ≤ n, where

bwn :=

n−1∧
i=0

♦pi →
∨

0≤i 6=j≤n
♦(pi ∧ ♦+pj);

• K4Altn = K4 + altn, the logic of K4-frames such that each point has ≤ n alternatives,
where

altn := �p0 ∨�(p0 → p1) ∨ · · · ∨�(p0 ∧ · · · ∧ pn−1 → pn).

We also let K4BTWn be the logic of K4-frames of top width ≤ n, and consider the following
normal extensions of S4:

• S5 = S4 ∨K4B;
• S4.2 = S4 ∨K4.2;
• S4.3 = S4 ∨K4.3;
• S4BWn = S4 ∨K4BWn;
• S4BTWn = S4 ∨K4BTWn;
• S4Altn = S4 ∨K4Altn.

Their corresponding superintuitionistic fragments are the following logics:

• CPC = IPC + p ∨ ¬p, the classical logic;
• LC = IPC + (p→ q) ∨ (q → p), the Gödel-Dummett logic;
• KC = IPC + ¬p ∨ ¬¬p, the logic of weak excluded middle;
• BWn = IPC +

∨n
i=0(pi →

∨
j 6=i pj);

• BTWn = IPC +
∧

0≤i≤j≤n ¬(¬pi ∧ ¬pj)→
∨n
i=0(¬pi →

∨
j 6=i ¬pj).

In fact, S5 = τ(CPC), S4.2 = τ(LC), S4.3 = τ(KC), and more generally, S4BWn = τ(BWn)
and S4BTWn = τ(BTWn) for every n. Lemma 6.1 together with the axiomatizations provided
in [2, Thm. 7.5] yield:

Proposition 7.1. The logics S4.2 and S4.3 are S4-stable. More generally, S4BWn and S4BTWn

are S4-stable for every n. These logics are axiomatized by the following stable formulas:

(1) S4BWn = S4 + γ( ) + γ( ). In particular, S4.3 = S4 + γ( ) + γ( ).

(2) S4BTWn = S4 + γ( ). In particular, S4.2 = S4 + γ( ).

Since K4.2 = S4.2+, K4.3 = S4.3+, and more generally, K4BWn = (S4BWn)+ and K4BTWn =
(S4BTWn)+ for every n, Proposition 7.1 together with Lemma 6.5 yield:

Proposition 7.2. The logics K4.2 and K4.3 are K4-stable. More generally, K4BWn and
K4BTWn are K4-stable for every n. These logics are axiomatized by the following stable for-
mulas:

(1) K4BWn = K4 + γ( ) + γ( ). In particular, K4.3 = K4 + γ( ) + γ( ).

(2) K4BTWn = K4 + γ( ). In particular, K4.2 = K4 + γ( ).

It is well known (see, e.g., [9]) that all these logics under consideration have the finite model
property, and hence are the logics of their finite rooted frames.

Theorem 7.3. The logics D4, S4, K4B, and K4Altn are K4-stable for all n. They are axiom-
atized by the following stable formulas:

(1) D4 = K4 + γ( );
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(2) S4 = K4 + γ( ) + γ( );

(3) K4B = K4 + γ( );

(4) K4Altn = K4 + γ( ·· · ), where ·· · denotes the (n+ 1)-cluster.

Proof. Since all the logics in the above list have the finite model property, they are logics of their
finite rooted frames. Therefore, to see that these logics are K4-stable, it suffices to show that their
finite rooted frames form a K4-stable class. But this is straightforward.

As an example, we show that the class of finite rooted frames for K4B is K4-stable. Let
F = (X,R) be a finite rooted KB-frame with root r. Then F is transitive and symmetric. Let
f : F → G be a stable map onto the finite K4-frame G = (Y,R). We show that G is symmetric.
Suppose that f(w)Rf(v). Since r is a root of F, rRw and rRv in F, and by symmetry, also vRr
implying f(r)Rf(w) and f(v)Rf(r). Thus, f(v)Rf(w) by transitivity of F.The stability of the other
logics can be proven similarly. Next we verify the axiomatizations in terms of stable formulas.

(1). Let X be a K4-space. It is sufficient to show that X |= �p → ♦p iff X |= γ( ). If
X 6|= �p→ ♦p, then there is x ∈ X such that xR�y for all y ∈ X. Therefore, {x} is a closed up-set
of X, and Y = ({x}, ∅) is a finite rooted K4-frame. The unique map from Y onto is stable, and
so we conclude that X 6|= γ( ). Conversely, suppose that X 6|= γ( ). Then there is a stable map from
a topo-rooted closed up-set Y of X onto . This implies that Y is a singleton with no R-successors,
and hence X contains a point with no R-successors. Thus, X 6|= �p→ ♦p.

(2). Let X be a K4-space. It is sufficient to show that X |= p → ♦p iff X |= γ( ), γ( ). Suppose

X 6|= γ( ) or X 6|= γ( ). Then there is a topo-rooted closed up-set Y of X and a stable map from

Y onto or . Observe that under a stable map a preimage of an irreflexive point has to be

irreflexive. Now both of the latter frames contain an irreflexive point, so in either case Y contains
an irreflexive point. Therefore, so does X. Thus, X is not reflexive, and so X 6|= p → ♦p. For the
converse, suppose that x is an irreflexive point of X. Consider the closed up-set Y := R+[x] of X,
and let Y be the corresponding K4-space. Clearly x is a unique root of Y. Since x /∈ R[x], there
is a clopen subset of X separating x from R[x]. Therefore, x is an isolated point of Y . Thus, Y is
topo-rooted. If Y = {x}, then the unique map from Y onto is stable, and so X 6|= γ( ). Otherwise
mapping x to the root of and the rest of Y to the top point of gives rise to a stable map, and

hence X 6|= γ( ).

(3). As we already pointed out, K4B has the finite model property. Also, since K4 + γ( ) is

axiomatized over K4 by the stable formula of a finite rooted K4-frame with a reflexive root, it has
the finite model property by Proposition 5.10. Therefore, it is sufficient to show that for any finite
rooted K4-frame F = (X,R), we have F |= p→ �♦p iff F |= γ( ). Suppose F 6|= p→ �♦p. Then F

is not symmetric, and so there are x, y ∈ X such that xRy but yR�x. Define f : F→ by mapping

R+[y] to the top node of and the rest to the root of . It is easy to see that f is an onto stable

map. Therefore, F 6|= . Conversely, if F 6|= γ( ), then since F is rooted, by Lemma 5.2, there is a

stable map from F onto . Let x be a root of F and let y ∈ X be such that f(y) is the top point of

. Since f is stable, xRy but yR�x. Thus, F is not symmetric. This yields that F 6|= p→ �♦p.
(4). Observe that there is a stable map from a finite rooted K4-frame F onto the (n + 1)-

cluster ·· · iff the cardinality of F is greater than n. The result follows since both K4Altn and

K4 + γ( ·· · ) have the finite model property. �

As a corollary to Theorem 7.3 we obtain:

Corollary 7.4. The logics S5 and S4Altn are S4-stable for all n. They are axiomatized over S4
by the following stable formulas:
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(1) S5 = S4 + γ( ).

(2) S4Altn = S4 + γ( ·· · ).

In the following table we summarize the axiomatizations of K4-stable and S4-stable logics ob-
tained above.

Table 1. Axiomatizations of some K4-stable and S4-stable logics

D4 = K4 + γ( ) S4 = K4 + γ( ) + γ( )

K4B = K4 + γ( ) S5 = S4 + γ( )

K4.2 = K4 + γ( ) S4.2 = S4 + γ( )

K4.3 = K4 + γ( ) + γ( ) S4.3 = S4 + γ( ) + γ( )

K4BWn = K4 + γ( ) + γ( ) S4BWn = S4 + γ( ) + γ( )

K4BTWn = K4 + γ( ) S4BTWn = S4 + γ( )
K4Altn = K4 + K4 + γ( ·· · ) S4Altn = S4 + γ( ·· · )

Remark 7.5. As we saw in Theorem 3.2, S5 is actually a stable logic. Therefore, by [3, Prop. 7.6],
it is axiomatizable over K by stable rules. We show that S5 is in fact axiomatized by the following

set Γ := {ρ( ), ρ( ), ρ( ), ρ( )} of stable rules. For this we first observe that a finite

rooted frame validates Γ iff it is a cluster. It is easy to see that none of the frames , , , and

is a stable image of a finite cluster, so every finite cluster validates Γ. Conversely, suppose
that F = (X,R) is a finite rooted frame that is not a cluster. There are several cases to consider.
If F is a singleton, then it is irreflexive, so is a stable image of F, and hence F 6|= ρ( ). Suppose
that F has at least two points. If F contains an irreflexive point x, then is a stable image of
F as mapping x to the irreflexive point of and the rest to the reflexive point of is an onto
stable map. Therefore, F 6|= ρ( ). Finally, suppose that F is reflexive. If F contains exactly two
points x and y, then without loss of generality we may assume that xRy and yR�x. Thus, mapping

x to the root of and y to the other point of is stable and onto, and hence F 6|= ρ( ). Suppose F

has at least three points. We show that there is a stable map from F onto . Since F is not a
cluster, without loss of generality we may assume that there are x, y ∈ F with xR�y. Then mapping
x to the top node, y to the bottom right node, and all the other points to the bottom left node

of provides a stable map that is also onto since F contains at least three points. This yields

F 6|= ρ( ).
Now, let L be the logic axiomatized over K by Γ. Since S5 is the logic of finite clusters and

each such validates Γ, we see that L ⊆ S5. Conversely, by Theorem 3.1, L is the logic of a stable
class of finite rooted frames. Each such must be a cluster. Therefore, S5 ⊆ L, and hence S5 is
axiomatized over K by Γ.

Next, as promised, we show that several well-known logics are not stable. Namely, consider the
following well-known logics (see, e.g., [9, p. 116]):

• KB = K + p→ �♦p, the logic of symmetric frames;
• K5 = K + ♦�p→ �p, the logic of Eucliedean frames;
• GL = K4 +�(�p→ p)→ �p, the logic of dually well-founded K4-frames;
• S4.Grz = S4 +�(�(p→ �p)→ p)→ p, the logic of Noetherian S4-frames;
• K4.1 = K4.1 +�♦p→ ♦�p, the logic of K4-frames with degenerate final clusters;
• S4.1 = S4 ∨K4.1, the logic of S4-frames with degenerate final clusters.
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Theorem 7.6. None of the logics K4,S4,KB, and K5 is stable. Neither are the logics GL,
S4.Grz, K4.1, and S4.1. In fact, GL and K4.1 are not K4-stable and S4.Grz and S4.1 are
neither K4-stable nor S4-stable.

Proof. We start by showing that K4 is not stable. If K4 were stable, then by Theorem 3.1, there
would exist a stable class K of finite rooted K4-frames whose logic is K4. Consider the finite rooted
frames F,G and an onto stable map G� F shown below.

G F

Note that G is transitive, but F is not. Since G is a K4-frame and G 6|= γ(G), we see that
K4 6|= γ(G). Therefore, there is H ∈ K such that H 6|= γ(G). As G has a reflexive root, by
Proposition 5.10(1), G is a stable image of H. Thus, since K is stable, G ∈ K. The same reasoning
yields F ∈ K. But this is a contradiction as F is not transitive. Consequently, K4 is not a stable
logic.

A similar reasoning gives that S4 is not a stable logic. We next show that KB is not a stable
logic. If it were, then by Theorem 3.1, there would exist a stable class K of finite rooted KB-frames
whose logic is KB.

Claim 7.7. There is F ∈ K containing distinct x, y that are not R-related to each other.

Proof. Clearly the KB-model

p q

refutes bw1 = ♦p ∧ ♦q → ♦(p ∧ ♦+q) ∨ ♦(q ∧ ♦+p). Therefore, KB 6` bw1. Thus, there is F ∈ K
such that F 6|= bw1. It is easy to see that F has the desired property. �

For such an F = (X,R) define F′ = (X,R′), where R′ = R ∪ {(x, y)}. Then the identity map is
a stable map from F onto F′. Since K is stable, F′ ∈ K. But this is a contradiction as F′ is not
symmetric. Thus, KB is not a stable logic.

Next we show that K5 is not a stable logic. If K5 were stable, then there would be a stable
class K of finite rooted K5-frames whose logic is K5.

Claim 7.8. There is F ∈ K containing x, y such that xRy and xR�x.

Proof. Clearly the K5-model

p

refutes the formula ϕ := p→ ♦p∨�⊥. Therefore, K5 6` ϕ. Thus, there is F ∈ K such that F 6|= ϕ.
It is easy to see that F has the desired property. �

For such an F = (X,R) define F′ = (X,R′), where R′ = R ∪ {(y, x)}. Then the identity map
is a stable map from F onto F′. Since K is stable, F′ ∈ K. But this is a contradiction as F′ is
not Euclidean because in an Euclidean frame every successor is reflexive. Thus, K5 is not a stable
logic.

Next we show that S4.Grz is not a stable logic. By Lemma 4.2(1), it is sufficient to show that
S4.Grz is not S4-stable. It is easy to see that the map F � G between finite rooted S4-frames
depicted below is stable.
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F G

Note that F is a S4.Grz-frame, while G is not. Therefore, by Corollary 5.12, S4.Grz is not
S4-stable. Thus, by Lemma 6.6(1), S4.Grz is not K4-stable.

The same argument yields that S4.1 is not S4-stable. Therefore, by Lemma 6.6(1), S4.1 is not
K4-stable. Since S4.1 = S4 ∨ K4.1, Lemma 6.6(2) yields that K4.1 is not K4-stable. Thus,
neither S4.1 nor K4.1 is stable by Lemma 4.2(1).

Finally, we show that GL is not stable. For this it is sufficient to show that GL is not K4-stable.
It is easy to see that the map depicted below is a stable map from a finite rooted GL-frame F onto
a finite rooted K4-frame G, which is not a GL-frame.

F G

The rest of the argument is the same as in the case of S4.Grz. �

We conclude the paper by comparing K4-stable logics to transitive subframe, cofinal subframe,
and union-splitting logics (these classes of logics are discussed in detail in [9, Sec. 10.5 and 11.3]).
Table 2 provides examples that tell these classes apart.

Table 2

transitive

subframe

transitive

cofinal

subframe

K4-

stable

S4-

stable

union

K4-splitting

union

S4-splitting

S4.2 - X X X X X
S4.Grz X X - - X X
GL X X - × - ×
τL - - X X X X
K4BTW3 - X X × - ×
S4BTW3 - X X X - -

“X” means the logic belongs to the class; “-” means the logic does not belong to the class; “×”means not applicable.

• By Proposition 7.1, S4.2 is S4-stable. Therefore, by Lemma 6.6(1), S4.2 is K4-stable. It
is well known that S4.2 is S4-splitting (see, e.g., [13]). Since S4 is a union K4-splitting,
it follows that S4.2 is a union K4-splitting. Finally, it is well known that S4.2 is a cofinal
subframe logic (see, e.g., [9, Sec. 9.4]), and it is easy to see that S4.2 is not a subframe
logic.
• By Theorem 7.6, S4.Grz is neither S4-stable nor K4-stable. On the other hand, it is well

known that S4.Grz is a subframe logic (see, e.g., [9, Sec. 9.4]). Therefore, S4.Grz is a
cofinal subframe logic. Finally, it is well known that S4.Grz is a union S4-splitting (see,
e.g., [8, Exm. 1.11]). Thus, S4.Grz is a union K4-splitting.
• By Theorem 7.6, GL is not K4-stable, and it is well known that GL is not a union K4-

splitting (see, e.g., [9, Exe. 9.13]). On the other hand, it is well known that GL is a subframe
logic (see, e.g., [9, Sec. 9.4]). Thus, GL is a cofinal subframe logic.
• It was shown in [4] that there is a stable superintuitionistic logic L which is not a cofinal

subframe logic. Therefore, neither is τL. Thus, τL is not a subframe logic. By Lemma 6.1,
τL is S4-stable. Since L is a tabular logic, it is a union splitting superintuionistic logic (see,
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e.g., [5, Thm. 3.4.27]). By [9, Cor. 9.64], τL is a union S4-splitting logic, hence a union
K4-splitting logic.
• It is easy to see that neither S4BTW3 nor K4BTW3 is a subframe logic. It follows from

[9, Sec. 9.4 and Cor. 9.64] that S4BTW3 is a cofinal subframe logic. Since K4BTW3 =
S4BTW3

+, it follows that K4BTW3 is a cofinal subframe logic. An adaptation of
the proof of [9, Prop. 9.50] shows that K4BTW3 is not a union K4-splitting logic and
S4BTW3 is not a union S4-splitting logic. On the other hand, by Proposition 7.1,
S4BTW3 is S4-stable, and by Proposition 7.2, K4BTW3 is K4-stable.
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