
A Propositional Dynamic Logic for Instantial

Neighborhood Semantics

Johan van Benthem, Nick Bezhanishvili, Sebastian Enqvist

Abstract

We propose a new perspective on logics of computation by combin-
ing instantial neighborhood logic INL with bisimulation safe operations
adapted from PDL. INL is a recently proposed modal logic, based on
a richer extension of neighborhood semantics which permits both uni-
versal and existential quantification over individual neighborhoods. This
language has a natural interpretation as a logic of computation in open
systems. Motivated by this interpretation, we show that a number of
familiar programs constructors can be adapted to the setting of instan-
tial neighborhood semantics to preserve invariance for instantial neigh-
borhood bisimulations, which give the appropriate bisimulation concept
for INL. We also prove that our extended logic IPDL is a conservative
extension of dual-free game logic, and its semantics generalizes the mono-
tone neighborhood semantics of game logic. Finally, we provide a sound
and complete system of axioms for IPDL, and establish its finite model
property and decidability.

1 Introduction

In this paper, we introduce a new modal logic of computation, in the style
of propositional dynamic logic, based on instantial neighborhood logic INL [6].
The logic INL is based on a recent variant of monotone neighborhood semantics
for modal logics, called instantial neighborhood semantics. In the standard
neighborhood semantics, the box operator has the interpretation: �p is true
at a point if there exists a neighborhood in which all the elements satisfy the
proposition p. So the box operator has a built-in fixed existential-universal
quantifier pattern. In instantial neighborhood logic, we allow both universal and
existential quantification over individual neighborhoods, so the basic modality
has the form �(p1, ..., pn; q). This formula is true at a point if there exists
a neighborhood N in which all the elements satisfy the proposition q, and
furthermore each of the propositions p1, ..., pn are satisfied by some elements of
N . INL is more expressive than monotone neighborhood logic, and comes with
a natural associated notion of bisimulation together with a Hennessy-Milner
theorem for finite models. It has a complete system of axioms, has the finite
model property, is decidable and PSpace-complete.

1



Formally, our proposal is to consider an extension of the base language INL
by bisimulation safe “program constructors”, as in the standard propositional
dynamic logic of sequential programs (PDL). The usual repertoire here consists
of choice, test, sequential composition and a Kleene star for program itera-
tion. Similar additions have already been studied extensively for the standard
(monotone) neighborhood semantics, where the constructors are interpreted as
methods of constructing complex games (this idea dates back to [18]). In the
neighborhood setting, some additional operations are available, including the
dual construction. This is a very powerful construction, and it is well known
that dynamic game logic is not contained in any fixed level of the µ-calculus
alternation hierarchy [8].

We think of our extended logic, which we call instantial PDL (IPDL for
short), as a dynamic logic for a richer notion of computation than sequential
programs, which is sometimes referred to as open systems [2]. In open systems,
a computational process is viewed as an agent acting in an uncertain environ-
ment that affects the outcome of each action. That is, each action by the agent
is followed by a response from the environment, which is not uniquely deter-
mined. This is in contrast with reactive systems, where the behaviour of the
system is non-deterministic but completely determined by the actions of the
agent [1]. Many different logics for open systems have been proposed, perhaps
the most well known being the alternating-time temporal logic ATL of Alur et
al. Dynamic game logic can be interpreted in a similar way, thinking of pro-
cesses as “games against the environment”. Game logic is usually interpreted
with a neighborhood semantics, in which neighborhoods of “worlds” in a model
are taken to represent powers of some player, i.e. goals that can be enforced by
some action or strategy. Instantial neighborhood semantics introduces a more
fine-grained perspective to this setting, with a more expressive language and
a finer bisimulation concept than standard neighborhood bisimilarity, namely
the instantial neighborhood bisimulations of [6]. Since INL formulas allow ex-
istential quantification over individual neighborhoods, this language is suitable
to describe not only what conditions an agent can enforce by some action, but
allows more precise reasoning about exactly what possible outcomes may result
from some action. Concretely, we introduce formulas of the following kind:

〈a〉(ψ1, ..., ψn;ϕ)

expressing the following property about the system/program a: “the agent can
act so as to ensure that ϕ holds, while allowing (for each i ∈ {1, ..., n}) the
possibility that the property ψi may hold”. In other words, instantial neighbor-
hood logic has a natural interpretation as a simple yet expressive modal logic
for computation in open systems.

However, given a computational interpretation, it is a standard wisdom that
one needs to extend the language to allow certain fixpoint constructions, since
most specifications of systems that turn up in practice – safety, liveness, fairness
etc. – involve fixpoints. There are many options available here, the most obvious
one being to simply add unrestricted fixpoint operators as in the full modal µ-
calculus. This route can already be claimed to be quite well understood: it was

2



noted in [6] that INL is a coalgebraic modal logic in a completely standard sense,
and so the µ-calculus extension of INL is a coalgebraic modal µ-calculus as in
[21, 14]. Such coalgebraic µ-calculi have been quite extensively studied, with
generic results on decidability and complexity, [11] and completeness [12, 13].
But there are also other versions of modal fixpoint logics, often corresponding
to fragments of µ-calculi. Most notably these include propositional dynamic
logics like PDL or game logic, and temporal logics like CTL or ATL. Thus an
obvious point on the agenda, for further exploration of INL as a modal logic
of computation, is to develop dynamic and temporal logic extensions of INL.
This paper deals with the former, and sets up a propositional dynamic logic
interpreted over instantial neighborhood semantics.

Overview of the paper

We first introduce syntax and semantics of instantial neighborhood logic, and
extensions of it leading up to the full language IPDL, provide sound and com-
plete systems of axioms, and establish bisimulation invariance and decidability.
The latter amounts to bisimulation safety for our program constructors. The
completeness proof for the language IPDL, including all the program construc-
tors that we consider, is based on the standard completeness proof for PDL (see
[9] for an exposition), but involves some non-trivial new features. In particu-
lar, the axiom system requires two distinct induction rules, corresponding to a
nested least fixpoint induction, and the model construction makes heavy use of
a normal form for INL-formulas established in [6]. Finally, we prove that our
logic is a conservative extension of the dual free fragment of dynamic game logic.

The paper is an extended version of a conference paper presented at LORI
VI 2017 [5].

2 Instantial neighborhood logic

2.1 Syntax and semantics

We start by reviewing the basic language for instantial neighborhood seman-
tics. The only difference with [6] is that we are interpreting the language over
labelled neighborhood structures, where the labels play the same role as “atomic
programs” in PDL.

The syntax of INL is given by the following grammar:

ϕ := p ∈ Prop | ϕ ∧ ϕ | ¬ϕ | 〈a〉(Ψ;ϕ)

where a ranges over a fixed set A of atomic labels, and Ψ ranges over finite
sets of formulas of INL. We have deviated a bit from the syntax of [6] here
in allowing Ψ to be a finite set rather than a tuple of formulas. We shall
sometimes write 〈a〉(ψ1, ..., ψn;ϕ) rather than 〈a〉({ψ1, ..., ψn};ϕ), in particular
we write 〈a〉(ψ;ϕ) rather than 〈a〉({ψ};ϕ), and 〈a〉ϕ rather than 〈a〉(∅;ϕ).

The modalities of INL a number of possible interpretations. In the present
setting, we interpret the formalism INL in terms of computation in open systems,

3



so that the formula 〈a〉(ψ1, ..., ψn;ϕ) is informally interpreted as saying: “in the
system a, the agent has an action to enforce the condition ϕ while simultaneously
allowing possible outcomes satisfying each of the conditions ψi”.

Example 1. Consider the following example: three separate servers are shared
by a number of agents and protected by passwords available to the users. Each
server can only be accessed by one user at a time. Taking the perspective of one
of the agents, let Ai stand for “the agent has access to server Si”, for i ∈ {1, 2, 3},
and let Oi stand for “server Si is occupied”. If we introduce a name σ for the
system so described, then the following is true for each given user, in each given
state of the system σ:

¬〈σ〉(¬O1;A1) ∧ ¬〈σ〉(¬O2;A2) ∧ ¬〈σ〉(¬O3;A3)

This expresses that the user cannot log in to a server without blocking the other
users from having access to that server. The following also holds:

¬O3 → 〈σ〉(¬O1,¬O2;A3)

If server S3 is available then the agent can access it while leaving servers S1

and S2 available to be occupied by other users. Note the distinction here: the
user cannot guarantee that the servers S1,S2 will be available, they might be
occupied by other users, but she can allow them to remain available. Finally,
the following holds:

¬〈σ〉(¬A1,¬A2; (O1 → A1) ∨ (O2 → A2))

This last example is perhaps less obvious: it says that the only way a user can
make sure that at least one of the servers S1 or S2 will not be occupied by some
other user is to log in to at least one of them herself.

For the formally precise semantics, formulas in INL will be interpreted over
neighborhood structures.

Definition 1. A neighborhood frame is a structure (W,R) where W is a set and
R associates with each a ∈ A a binary relation Ra ⊆W ×PW . A neighborhood
model (W,R, V ) is a neighborhood frame together with a valuation V : Prop→
PW .

Definition 2. We define the interpretations of all formulas in a neighborhood
model M = (W,R, V ) as follows:

- [[p]] = V (p).

- [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]].

- [[¬ϕ]] = W \ [[ϕ]].

4



- u ∈ [[〈a〉(ψ1, ..., ψk;ϕ)]] iff there is some Z ⊆W such that:

(u, Z) ∈ Ra and Z ⊆ [[ϕ]], Z ∩ [[ψi]] 6= ∅ for i ∈ {1, ..., k}

We write M, v  ϕ for v ∈ [[ϕ]], and we write  ϕ and say that ϕ is valid
if, for every neighborhood model M and v ∈ W , we have M, v  ϕ. We allow
the notation [[−]]M to make explicit reference to the model in the background.

Neighborhood models come with a natural notion of bisimulation, introduced
in a more general setting in [6]. For this definition, the so called Egli-Milner
lifting of a binary relation will play an important role:

Definition 1. The Egli-Milner lifting of a binary relation R ⊆ X ×Y , denoted
R, is a relation from PX to PY defined by: ZRZ ′ iff:

1. For all z ∈ Z there is some z′ ∈ Z ′ such that zRz′.

2. For all z′ ∈ Z ′ there is some z ∈ Z such that zRz′.

We write R;S for the composition of relations R and S. It is well known
that the Egli-Milner lifting preserves relation composition:

R;S = R;S

Definition 2. Let M = (W,R, V ) and M′ = (W ′, R′, V ′) be any neighborhood
models. The relation B ⊆ W × W ′ is said to be an instantial neighborhood
bisimulation if for all uBu′ and all atomic labels a we have:

Atomic For all p, u ∈ V (p) iff u′ ∈ V ′(p).

Forth For all Z such that uRaZ, there is some Z ′ such that u′R′aZ
′ and ZBZ ′.

Back For all Z ′ such that u′R′aZ
′ there is some Z such that uRaZ and ZBZ ′.

We say that pointed models M, w and N, v are bisimilar, written M, w - N, v,
if there is an instantial neighborhood bisimulation B between M and N such
that wBv.

It is easy to check that all formulas of INL are invariant for instantial neigh-
borhood bisimilarity:

Proposition 1. If M, w - N, v then M, w  ϕ iff N, v  ϕ, for each formula
ϕ of INL.

2.2 Axiomatization

We now turn to the task of axiomatizing the valid formulas of INL. Our system of
axioms is a gentle modification of the axiom system for instantial neighborhood
logic presented in [6].

5



INL axioms

Mon: 〈a〉(ψ1, ..., ψn;ϕ)→ 〈a〉(ψ1 ∨ α1, ..., ψn ∨ αn;ϕ ∨ β)

Weak: 〈a〉(Ψ;ϕ)→ 〈a〉(Ψ′;ϕ) for Ψ′ ⊆ Ψ

Un: 〈a〉(ψ1, ..., ψn;ϕ)→ 〈a〉(ψ1 ∧ ϕ, ..., ψn ∧ ϕ;ϕ)

Lem: 〈a〉(Ψ;ϕ)→ 〈a〉(Ψ ∪ {γ};ϕ) ∨ 〈a〉(Ψ;ϕ ∧ ¬γ)

Bot: ¬〈a〉(⊥;ϕ)

Rules

MP:
ϕ→ ψ ϕ

ψ

RE:
ϕ↔ ψ θ

θ[ϕ/ψ]

where θ[ϕ/ψ] is the result of substituting some occurrences of the formula
ψ by ϕ in θ.

We denote this system of axioms by Ax1 and write Ax1 ` ϕ to say that the
formula ϕ is provable in this axiom system. We also write ϕ `Ax1 ψ for Ax1 `
ϕ→ ψ, and say that ϕ provably entails ψ.

Theorem 1. The system Ax1 is sound and complete for validity on neighborhood
models.

The proof of this result is essentially the same as in [6], and will not be
repeated here. Since the proof in [6] constructs a finite model for each consistent
formula, we also get:

Theorem 2. The logic INL has the finite model property and is decidable.

Example 2. Continuing from Example 1, we recall the formula:

¬〈σ〉(¬Oi;Ai)

expressing that a user cannot both log in to a server and leave it available to
other users. This reduces, of course, to the fact that the formula Ai → Oi is
true in every state: a server cannot be both accessed by a user and at the same
time not occupied. So we can take this formula instead as an extra assumption.
By replacing equivalent formulas we then get the implication:

〈σ〉(¬Oi;Ai)→ 〈σ〉(¬Oi;Ai ∧Oi)

We can now apply the axiom (Un) to get the implication:

〈σ〉(¬Oi;Ai ∧Oi)→ 〈σ〉(¬Oi ∧Ai ∧Oi;Ai ∧Oi)

6



Replacing equivalents again we get:

〈σ〉(¬Oi;Ai ∧Oi)→ 〈σ〉(⊥;Ai ∧Oi)

But as an instance of (Bot) we have the implication:

〈σ〉(⊥;Ai ∧Oi)→ ⊥

So we get:
〈σ〉(¬Oi;Ai)→ ⊥

i.e. ¬〈σ〉(¬Oi;Ai) as required.

3 Basic program operations

3.1 Semantics and basic model theory

In what follows we shall extend the language INL with program operations,
corresponding to known operations from PDL. We also include the “dual choice”
constructor from dynamic game logic. Of course, there are design choices to
make here, and we need to set up some criteria for what counts as a correct
definition of each program operation. We shall follow these three criteria:

1. The constructions should be as simple as possible.

2. Each operation should be a natural adaptation of the corresponding op-
eration from PDL to the INL framework, with minimal modifications.

3. Most importantly: each operation should be bisimulation safe, i.e. the dy-
namic logic extending INL with all the program operations should remain
invariant for instantial neighborhood bisimulations.

We first extend the language INL with four basic PDL-style operations: test,
choice, parallel composition and sequential composition. The resulting language
will be called dynamic instantial neighborhood logic, or (DINL). The syntax of
DINL is defined by the following dual grammar.

ϕ := p ∈ Prop | ϕ ∧ ϕ | ¬ϕ | 〈π〉(Ψ;ϕ)

π := a ∈ A | ϕ? | π ∪ π | π ∩ π | π ◦ π

The operation ∪ is interpreted as non-deterministic choice between two pro-
grams for the agent: π1 ∪π2 means “either do π1 or do π2”. The operation ∩ is
intepreted as a choice between two programs for the environment: π1∩π2 means
“do π1 and π2 in parallell”. Formally, the operation ∩ is similar to the parallell
composition in concurrent PDL (see [16]). Finally, the operator ◦ is interpreted
as sequential composition: π1 ◦ π2 means “first do π1 then do π2”. We define
the formal interpretation [[o]] of each operation o ∈ {∪,∩, ◦} in a neighborhood
model M as a binary map from pairs of neighborhood relations to neighborhood
relations, as follows:

7



− R1[[∪]]R2 = R1 ∪R2

− R1[[∩]]R2 = {(w,Z1 ∪ Z2) | (w,Z1) ∈ R1 & (w,Z2) ∈ R2}

− (w,Z) ∈ R1[[◦]]R2 iff there is some set Y and some family of sets F such
that (w, Y ) ∈ R1, (Y, F ) ∈ R2 and Z =

⋃
F .

The interpretation [[?]] of the test operator will be a map [[?]] assigning a neigh-
borhood relation to each subset Z of W , defined by:

[[?]]Z := {(u, {u}) | u ∈ Z}

We defer a more detailed discussion of the informal interpretation of the program
operations to Section 3.2. Note that [[?]] is monotone in the sense that Z ⊆ Z ′

implies [[?]]Z ⊆ [[?]]Z ′. Each operator o ∈ {∪,∩, ◦} is also monotone, in the sense
that R1[[o]]R2 ⊆ R′1[[o]]R′2 whenever R1 ⊆ R′1 and R2 ⊆ R′2. For the sequential
composition operator, this uses the well known fact that the Egli-Milner lifting
is monotone, i.e. R ⊆ R′ whenever R ⊆ R′.

Definition 3. We define the semantic interpretations of all formulas, and the
neighborhood relations corresponding to all complex labels π, by the following
mutual recursion:

- [[p]] = V (p).

- [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]].

- [[¬ϕ]] = W \ [[ϕ]].

- u ∈ [[〈π〉(ψ1, ..., ψk;ϕ)]] iff there is some Z ⊆W such that:

(u, Z) ∈ Rπ and Z ⊆ [[ϕ]], Z ∩ [[ψi]] 6= ∅ for i ∈ {1, ..., k}.

- Rπ1oπ2
= Rπ1

[[o]]Rπ2
for o ∈ {∪,∩, ◦}.

- Rϕ? = [[?]][[ϕ]]

The definitions of the dynamic operations are tailored towards obtaining the
following result:

Proposition 2. All formulas of DINL are invariant for instantial neighborhood
bisimulations.

Proof. We first prove the following claim, expressing bisimulation safety of the
operations that we have introduced:

8



Claim 1. Let B be an instantial neighborhood bisimulation between models
M = (W,R, V ) and M′ = (W ′, R′, V ′). Then for any complex label π, such that
every term of the form ϕ appearing in π the formula ϕ is invariant for instantial
neighborhood bisimulations, and any u ∈ W and u′ ∈ W ′ such that uBu′, we
have:

Forth For all Z such that uRπZ, there is some Z ′ such that u′R′πZ
′ and ZBZ ′.

Back For all Z ′ such that u′R′πZ
′ there is some Z such that uRπZ and ZBZ ′.

We prove the Claim by induction on the complexity of labels. For atomic
labels the result holds by definition. For the inductive steps, we only prove the
“Forth” clause since the “Back” clause can be proved by a symmetric argument.
For the test operator, the result follows immediately from the assumption that
every formula appearing in a sub-term of π is bisimulation invariant.

For choice, suppose (u, Z) ∈ Rπ1∪π2
. Then (u, Z) ∈ Rπ1

or (u, Z) ∈ Rπ2
,

say that the first case holds. Then by the Forth clause for π1 there is some Z ′

with (u′, Z ′) ∈ R′π1
such that ZBZ ′. Since (u′, Z ′) ∈ R′π1∪π2

also, we are done.
For dual choice, suppose (u, Z) ∈ Rπ1∩π2

. Then Z = Z1∪Z2 where (u, Z1) ∈
Rπ1 and (u, Z2) ∈ Rπ2 . By the Forth condition for π1 and π2 we find sets Z ′1
and Z ′2 such that (u′, Z ′1) ∈ R′π1

, (u′, Z ′2) ∈ R′π2
and Z1BZ

′
1, Z2BZ

′
2. We leave

it to the reader to check that:

(Z1 ∪ Z2, Z
′
1 ∪ Z ′2) ∈ B.

Since (u′, Z ′1 ∪ Z ′2) ∈ R′π1∩π2
, we are done.

Finally, for sequential composition, suppose there is a set X such that
(u,X) ∈ Rπ1◦π2

, witnessed by a set Y such that (u, Y ) ∈ Rπ1
and a family

F ⊆ P(W ) such that (Y, F ) ∈ Rπ2
and X =

⋃
F . By the Forth condition for

π1 there is a set Y ′ such that (u′, Y ′) ∈ R′π1
and Y BY ′. We define a family

F ′ ⊆ P(W ′) as follows: set Z ′ ∈ F ′ iff there is some v′ ∈ Y ′, some v ∈ Y and
some Z ∈ F such that: (v′, Z ′) ∈ R′π2

, (v, Z) ∈ Rπ2 and ZBZ ′.

First, we claim that (Y ′, F ′) ∈ R′π2
: first, if Z ′ ∈ F ′ then it is immediate

from the definition that (v′, Z ′) ∈ R′π2
for some v′ ∈ Y ′. Conversely, given v′ ∈

Y ′, since Y BY ′ there must be some v ∈ Y with vBv′, and since (Y, F ) ∈ Rπ2

there is some Z ∈ F with (v, Z) ∈ Rπ2
. But then, by the Forth condition for

π2 there must be some Z ′ with (v′, Z ′) ∈ R′π2
and ZBZ ′. We immediately get

Z ′ ∈ F ′, as required.
We now show that:

(
⋃
F,

⋃
F ′) ∈ B.

To see this, suppose first that w ∈
⋃
F . Then w ∈ Z for some Z ∈ F . Since

(Y, F ) ∈ Rπ2 there is some v ∈ Y with (v, Z) ∈ Rπ2 . Since Y BY ′ there is some
v′ ∈ Y ′ such that vBv′. By the Forth condition for π2 there is some Z ′ with
ZBZ ′ and (v′, Z ′) ∈ R′π2

. We get Z ′ ∈ F ′, and there must be some w′ ∈ Z ′
with wBw′. But then w′ ∈

⋃
F ′, as required.

9



Conversely, suppose w′ ∈
⋃
F ′. Then w′ ∈ Z ′ for some Z ′ ∈ F ′. By

definition of F ′ there must be some Z ∈ F with ZBZ ′, and so there must be
some w ∈ Z with wBw′. But then w ∈

⋃
F as required, and the claim is proved.

The proposition now follows from the claim by a routine argument.

3.2 Informal interpretation

The neighborhood relation Rπ associated with a program term π in a neighbor-
hood model M should be understood as follows: at each point w in a model,
there is a certain family of available actions of type π that the agent can per-
form. Each such action α corresponds to a neighborhood Z ∈ Rπ[w], and Z
represents the possible outcomes of the action α, as determined by the response
of the environment. The interpretations of choice ∪ and dual choice ∩ should
thus be clear: an action of type π1 ∪ π2 is simply an action of either type π1 or
of type π2, and so the definition of [[∪]] as union of neighborhood relations is the
natural one. For dual choice, an action α of type π1∩π2 consists of an action β1

of type π1 and an action β2 of type π2, where the action actually performed is
determined by the environment. So a possible outcome of the action α is either
one of the possible outcomes of β1 or an outcome of β2. This directly leads to
the formal interpretation [[∩]] of ∩ as it has been defined. The interpretation of
the test operator is a straightforward adaption of the usual PDL-definition, and
motivated in the same manner.

The less straightforward case is the sequential composition operation. Intu-
itively it appears to be clear what an action of type π1 ◦π2 is at a given state w:
it is simply an action β1 of type π1 followed by an action βv2 of type π2 performed
at each possible outcome state v of the action β1 at w. A possible outcome of
such an action α at w should then be an outcome of one of the actions βv2 ,
where v is a possible outcome of the first action β1. With this interpretation,
one would expect the following definition, setting (w,Z) ∈ R1[[◦]]R2 iff there is
some set Y and a function S : Y → PW such that:

1. (w, Y ) ∈ R1,

2. (v, Sv) ∈ R2 for each v ∈ Y , and

3. Z =
⋃
v∈Y Sv.

The conditions used in our actual definition of [[◦]] are weaker than this, essen-
tially allowing the assigment S to be a relation rather than a function. The
reason for using the less strict version of the composition operation is due to
the fact that the “functional” version of the sequential composition operation
violates bisimulation safety ! The example shown in Figure 1, displaying two
bisimilar rooted models, explains this.

10



a b a b

Figure 1: Failure of bisimulation safety

In the diagram, points are represented by bullets, neighborhoods are repre-
sented by ellipses, the dashed lines represent the neighborhood relation R1 and
the dotted lines represent R2. In the model to the right, the root has a neigh-
borhood {a, b} according to the functional composition of R1 and R2, but not in
the left model. Note that according to our “relational” definition of sequential
composition, {a, b} is a neighborhood in both models.

A possible response this would be to modify our notion of instantial neigh-
borhood bisimulations in order to recover bisimulation safety. However, this
route does not seem particularly attractive to us, as instantial neighborhood
bisimulations do provide the natural bisimulation concept for INL, which forms
the basis upon which our dynamic logic is built.

Rather, we suggest that our notion of sequential composition can be ex-
plained as follows: the behaviour of an agent interacting with a system may
depend not only on the state of the system itself, but also on the internal state
of the agent. For example, looking back to Example 1, the state of the system
itself specifies which of the three servers are occupied by which agent. The in-
ternal state of each agent – which in this particular example is a human user
– may for example involve the agent’s current state of knowledge, preferences,
intentions etc. So when the agent executes an action of some type π, the system
and the agent both start in a given initial state which may change through the
course of the computation, and as the internal state of the agent changes this
may affect its later actions. In a computation corresponding to a composite
program term of the form π1 ◦π2 executed at some state w, it then makes sense
that the action of the agent in the computation π2 at a later state v resulting
as the outcome of the computation π1 might not be determined uniquely by
the state v of the system, since it may also depend on the internal state of the
agent, which may change during the execution of π1. This interpretation is thus
consistent with our formal semantics of the sequential composition operator, as
well as the other program operations.

11



3.3 Axiomatization

Our axiom system for DINL will take the sound and complete axioms for INL as
its foundation, and extend it with reduction axioms for the test, choice, parallel
composition and sequential composition operators. The axioms and rules are
listed below; note that the INL axioms and the axioms for frame constraints are
now stated for arbitrary complex labels π rather than just atoms a.

INL axioms:

(Mon), (Weak), (Un), (Lem) and (Bot)

Reduction axioms:

Test: 〈γ?〉(Ψ;ϕ)↔ γ ∧
∧

Ψ ∧ ϕ

Ch: 〈π1 ∪ π2〉(Ψ;ϕ)↔ 〈π1〉(Ψ;ϕ) ∨ 〈π2〉(Ψ;ϕ)

Pa: 〈π1 ∩ π2〉(Ψ;ϕ)↔
∨
{〈π1〉(Θ1;ϕ) ∧ 〈π2〉(Θ2;ϕ) | Ψ = Θ1 ∪Θ2}

Cmp: 〈π1 ◦ π2〉(ψ1, ..., ψn;ϕ)↔ 〈π1〉(〈π2〉(ψ1;ϕ), ..., 〈π2〉(ψn;ϕ); 〈π2〉ϕ)

Rules:

(MP) and (RE)

We denote this system of axioms by Ax2 and write Ax2 ` ϕ to say that the
formula ϕ is provable in this axiom system. We also write ϕ `Ax2 ψ for Ax2 `
ϕ→ ψ. We shall sometimes drop the reference to Ax2 to keep notation cleaner.

Proposition 3 (Soundness). If Ax2 ` ϕ, then ϕ is valid on all neighborhood
models.

Proof. We consider only soundness of the new reduction axioms. Soundness of
(Ch) is almost immediate from the definition of [[∪]], so we focus on (Test), (Pa)
and (Cmp).

For (Test), suppose that M, u  〈γ?〉(Ψ;ϕ). Then (u, {u}) ∈ Rγ?, which
means that M, u  γ, and {u} ⊆ [[ϕ]] and {u} ∩ [[ψ]] 6= ∅ for each ψ ∈ Ψ, which
means that M, u 

∧
Ψ ∧ ϕ. So M, u  γ ∧

∧
Ψ ∧ ϕ. The converse is similar.

For (Pa), suppose that M, w  〈π1 ∩ π2〉(Ψ;ϕ). Then there is some set Z
such that (w,Z) ∈ Rπ1∩π2 , Z ⊆ [[ϕ]] and Z ∩ [[ψ]] 6= ∅ for all ψ ∈ Ψ. Hence Z is
of the form Z1 ∪Z2 where (w,Z1) ∈ Rπ1

and (w,Z2) ∈ Rπ2
. Let Θ1 = {ψ ∈ Ψ |

Z1 ∩ [[ψ]] 6= ∅}, and let Θ2 = {ψ ∈ Ψ | Z2 ∩ [[ψ]] 6= ∅}. Then, since Z = Z1 ∪ Z1,
we have Ψ = Θ1 ∪Θ2. Furthermore, we get

M, w  〈π1〉(Θ1;ϕ) ∧ 〈π2〉(Θ2;ϕ)

as required. The converse direction of (Pa) is proved in a similar manner.

12



Next, we consider the case of sequential composition. For one direction of
the equivalence, suppose that M, w  〈π1 ◦ π2〉(ψ1, ..., ψn;ϕ). Then there is
some set Z with (w,Z) ∈ R〈π1◦π2〉, Z ⊆ [[ϕ]] and Z ∩ [[ψi]] 6= ∅ for each ψi. By
definition of the composition operator, we find a set Y with (w, Y ) ∈ Rπ1

and
a family of sets F such that (Y, F ) ∈ Rπ2

and Z =
⋃
F . So for each v ∈ Y

there is some Z ∈ F with (v, Z) ∈ Rπ2
, and we get Z ⊆ [[ϕ]] so M, v  〈π2〉ϕ.

Also, for each ψi there is some Z ∈ F with Z ∩ [[ψi]] 6= ∅, and there must
be some v ∈ Y with (v, Z) ∈ Rπ2 , hence M, v  〈π2〉(ψi;ϕ). It follows that
M, w  〈π1〉(〈π2〉(ψ1;ϕ), ..., 〈π2〉(ψn;ϕ); 〈π2〉ϕ) as required.

Conversely, suppose that M, w  〈π1〉(〈π2〉(ψ1;ϕ), ..., 〈π2〉(ψn;ϕ); 〈π2〉ϕ).
Then there is some set Y such that (w, Y ) ∈ Rπ1

, Y ⊆ [[〈π2〉ϕ]] and Y ∩
[[〈π2〉(ψi;ϕ)]] 6= ∅ for each i ∈ {1, ..., n}. Let:

F := {Z ⊆W | Z ⊆ [[ϕ]] & (v, Z) ∈ Rπ2
for some v ∈ Y }

Since Y ⊆ [[〈π2〉ϕ]] it follows that (Y, F ) ∈ Rπ2
, so (w,

⋃
F ) ∈ Rπ1◦π2

. Fur-
thermore, since Y ∩ [[〈π2〉(ψi;ϕ)]] 6= ∅ for each i ∈ {1, ..., n} it follows that⋃
F ∩ [[ψi]] 6= ∅ for each i ∈ {1, ..., n}. We get M, w  〈π1 ◦ π2〉(ψ1, ..., ψn;ϕ) as

required.

By applying soundness of the reduction axioms, we can use a standard ar-
gument to obtain for every consistent formula ϕ of DINL a provably (and hence
semantically) equivalent formula ϕt in INL, which is then satisfiable by Theorem
1. For example, the formula 〈γ?〉(ψ1, ..., ψn;ϕ)t is defined to be γt∧ψt1∧...∧tn∧ϕ.

We get:

Theorem 3 (Completeness). A formula ϕ of DINL is valid on all neighborhood
models iff Ax2 ` ϕ.

Furthermore, the finite model property and decidability clearly carry over
from INL:

Theorem 4. The logic DINL has the finite model property and is decidable.

4 Program iteration and the language IPDL

We now introduce the final operation that we consider here, a Kleene star for
finite iteration. This operation will be set up to generalize the game iteration
operation from game logic. The corresponding language will be denoted by
IPDL, read “instantial PDL”, and is given by the following dual grammar:

ϕ := p ∈ Prop | ϕ ∧ ϕ | ¬ϕ | 〈π〉(Ψ;ϕ)

π := a ∈ A | ϕ? | π ∪ π | π ∩ π | π ◦ π | π∗

The operation (−)∗ is interpreted as finite iteration: π∗ means “repeat π a
finite number of times”. More specifically, we think consider action of type π∗

13



to be a long term strategy of the agent, such that each possible execution of
this strategy consists of finitely many actions of type π.

For the formal semantic interpretation of the Kleene star, it will be useful
to first define the relation skip by:

skip := {(w, {w}) | w ∈W}

Definition 4. We define a relation R[ξ] for each ordinal ξ by induction as
follows.

− R[0] = ∅

− R[ξ+1] = skip[[∪]](R[[◦]]R[ξ])

− Rκ =
⋃
ξ<κR

[ξ] if κ is a limit ordinal.

We define [[∗]]R to be equal to R[ξ], where ξ is the smallest ordinal satisfying
R[ξ] = R[ξ+1].

It is easy to see that this is a standard least fixpoint construction, in partic-
ular we have:

Proposition 4. Let W be a finite set and R ⊆W × P(W ). Then:

[[∗]]R =
⋃
n∈ω

R[n]

Proposition 4 does not hold for arbitrary models, unlike the case for PDL
the closure ordinal of the least fixpoint corresponding to the Kleene star may
appear above ω. Note that this does not contradict the reading of the Kleene
star as finite iteration. The situation is analogous to the case of the µ-calculus
formula:

µx.�x

which can be thought of as expressing that “all computations are finite”. It
is well known that the closure ordinal of the least fixpoint of this formula can
be higher than ω, which just means the formula may be true although the
statement “all computations have length ≤ k” is false for all k. Similarly, the
formula 〈π∗〉ϕ expresses that the condition ϕ can be forced by an action that
only ever produces finitely many computations of type π, while there may be
no finite upper bound on the number of iterations of π required.

Definition 5. Semantics of IPDL-formulas in a neighborhood model M =
(W,R, V ) are given as follows:

- [[p]] = V (p).

- [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]].

- [[¬ϕ]] = W \ [[ϕ]].

14



- u ∈ [[〈π〉(ψ1, ..., ψk;ϕ)]] iff there is some Z ⊆W such that:

(u, Z) ∈ Rπ and Z ⊆ [[ϕ]], Z ∩ [[ψi]] 6= ∅ for i ∈ {1, ..., k}.

- Rπ1oπ2
= Rπ1

[[o]]Rπ2
for o ∈ {∪,∩, ◦}.

- Rϕ? = [[?]][[ϕ]].

- Rπ∗ = [[∗]]Rπ.

Proposition 5. All formulas of IPDL are invariant for instantial neighborhood
bisimulations.

The proof of this rests on a bisimulation safety argument, and the step for
the Kleene star involves using the bisimulation safety of union and sequential
composition to prove the appropriate back-and-forth conditions for each approx-

imant R
[ξ]
π of the least fixpoint Rπ∗ = [[∗]]Rπ. We omit the details.

4.1 Axiomatization

Our axiomatization for IPDL is given below.

INL axioms:

(Mon), (Weak), (Un), (Lem) and (Bot).

Reduction axioms from DINL:

(Test), (Ch), (Pa) and (Cmp).

Basic rules:

(MP) and (RE).

Kleene star

Finally we add axioms and rules for iteration. The Kleene star is a least fixpoint
construction, and a standard approach to axiomatizing least fixpoints is to use
one fixpoint axiom and one induction rule (see [17]). The fixpoint axiom Fix is
stated as follows:

〈π∗〉(Ψ;ϕ)↔ (
∧

Ψ ∧ ϕ) ∨ 〈π ◦ π∗〉(Ψ;ϕ)

We will actually need two induction rules:

15



Ind1:
ϕ→ γ 〈π〉γ → γ

〈π∗〉ϕ→ γ

Ind2:
(ψ ∧ ϕ)→ γ 〈π〉(γ; 〈π∗〉ϕ)→ γ

〈π∗〉(ψ;ϕ)→ γ

Remark 1. The reason that we require two distinct induction rules can be seen
as follows: the reduction axioms for IPDL should be interpreted as encoding a
recursive translation of the language IPDL into the modal µ-calculus (interpeted
on instantial neighborhood models). When we pass by formulas involving the
Kleene-star in this translation, the translation will not surprisingly involve least
fixpoint operators, and the induction rules then correspond to the Kozen-Park
induction rules for least fixpoint operators. This step of the translation is trickier
than the step for the Kleene star in a translation of PDL into the µ-calculus (see
[10]), and requires use of nested least fixpoint variables.

Note also that the second induction axiom only involves a single instan-
tial formula ψ. This is because we can “pre-process” an arbitrary formula
〈π∗〉(ψ1, ..., ψn;ϕ) by applying the axiom Fix, and then applying the composi-
tion axiom (Cmp) to the formula 〈π ◦ π∗〉(ψ1, ..., ψn;ϕ) to obtain the formula:

〈π〉(〈π∗〉(ψ1;ϕ), ...., 〈π∗〉(ψn;ϕ); 〈π∗〉ϕ)

Here, each occurrence of the operator 〈π∗〉 is followed by at most one instantial
formula.

We denote this axiom system as Ax3 and write ϕ `Ax3 ψ to say that Ax3 ` ϕ→
ψ. We will also sometimes drop the explicit reference to the system Ax3, simply
writing ` ϕ or ϕ ` ψ.

Theorem 5. The axiom system Ax3 is sound and complete for validity over
neighborhood models.

We begin by checking soundness:

Proposition 6 (Soundness). If ϕ is provable in Ax3 then it is valid over all
neighborhood models.

Proof. We focus on proving soundness of the two induction rules. For the first
induction rule, suppose that the formulas ϕ → γ and 〈π〉γ → γ are valid.
Suppose that M, u  〈π∗〉ϕ. Then there is some Z such that (u, Z) ∈ Rπ∗ and
Z ⊆ [[ϕ]]. By definition of Rπ∗ it suffices to prove, by induction on an ordinal

ξ, that for all u, Z: if (u, Z) ∈ R
[ξ]
π and Z ⊆ [[ϕ]] then u ∈ [[γ]]. For ξ = 0

this is trivial, since R0
π = ∅. For a successor ordinal ξ + 1, if (u, Z) ∈ R[ξ+1]

π

then either Z = {u} or there is a set Y and a family of sets F such that

16



(Y, F ) ∈ R[ξ]
π , (u, Y ) ∈ Rπ and

⋃
F ⊆ [[ϕ]]. In the first case we get M, u  ϕ,

hence M, u  γ. In the second case it follows that there is, for each v ∈ Y , some

Zv such that (v, Zv) ∈ R[ξ]
π and Zv ⊆

⋃
F ⊆ [[ϕ]]. By the induction hypothesis

we get Y ⊆ [[γ]]. But then M, u  〈π〉γ, hence M, u  γ as required. Finally,
the induction step for limit ordinals is almost immediate, by the definition of

R
[ξ]
π as the union of all R

[ρ]
π for ρ < ξ.

For the second induction rule, suppose that the formulas (ψ ∧ ϕ) → γ and
〈π〉(γ;ϕ) → γ are valid. Suppose that M, u  〈π∗〉(ψ;ϕ). Then there is some
Z such that (u, Z) ∈ Rπ∗ and Z ⊆ [[ϕ]], Z ∩ [[ψ]] 6= ∅. By definition of Rπ∗ it

suffices to prove, by induction on an ordinal ξ, that for all u, Z: if (u, Z) ∈ R[ξ]
π

and Z ⊆ [[ϕ]], Z ∩ [[ψ]] 6= ∅ then u ∈ [[γ]]. For ξ = 0 this is trivial, since R0
π = ∅.

For a successor ordinal ξ + 1, if (u, Z) ∈ R[ξ+1]
π then either Z = {u} or there

is a set Y and a family of sets F such that (Y, F ) ∈ R
[ξ]
π , (u, Y ) ∈ Rπ and⋃

F ⊆ [[ϕ]]. In the first case we get M, u  ψ ∧ ϕ, hence M, u  γ. In the
second case it follows that there is, for each v ∈ Y , some Zv ∈ F such that

(v, Zv) ∈ R
[ξ]
π and Zv ⊆

⋃
F ⊆ [[ϕ]]. Furthermore, there is some set Z ′ ∈ F

such that Z ′ ∩ [[ψ]] 6= ∅, and Z ′ ⊆
⋃
F ⊆ [[ϕ]]. Since (Y, F ) ∈ R[ξ]

π there must be

some w ∈ Y with (w,Z ′) ∈ R[ξ]
π , and by the induction hypothesis we get w  γ.

But then Y ⊆ [[〈π∗〉ϕ]] (since R
[ξ]
π ⊆ Rπ∗) and Y ∩ [[γ]] 6= ∅, so M, u  〈π〉(γ;ϕ.

Hence M, u  γ as required. Finally, the induction step for limit ordinals is

again immediate, by the definition of R
[ξ]
π as the union of all R

[ρ]
π for ρ < ξ.

For the completeness proof, we shall rely heavily on the following lemma,
which was proved (in a slightly different formulation) in [6]: fix a finite and
subformula closed set of formulas Σ. An atom over Σ is a maximal consistent
subset of Σ, and we denote the set of atoms over Σ by At(Σ). Given any atom

w ∈ At(Σ), let ŵ be its conjunction, and let Ẑ = {ŵ | w ∈ Z} for a set of atoms
Z.

Lemma 1. Let 〈π〉(Ψ;ϕ) be any formula such that each formula in Ψ ∪ {ϕ} is
a boolean combination of formulas in Σ. Then 〈π〉(Ψ;ϕ) is provably equivalent

to a disjunction of formulas of the form 〈π〉(Ẑ;
∨
Ẑ) for Z ⊆ At(Σ) being some

set of atoms with w ` ϕ for each w ∈ Z and for all ψ ∈ Ψ there is some v ∈ Z
with v ` ψ.

Proof. Very similar to [6].

We shall also need an adapted concept of Fischer-Ladner closure:

Definition 3. A set Σ of formulas is said to be Fischer-Ladner closed if the
following clauses hold:

− If ϕ ∈ Σ, and the main connective of ϕ is not ¬, then the formula ¬ϕ is
in Σ.

− Any subformula of a formula in Σ is in Σ.

17



− If 〈γ?〉(Ψ;ϕ) is in Σ then so is γ ∧
∧

Ψ ∧ ϕ.

− If 〈π1 ◦π2〉(ψ1, ..., ψn;ϕ) ∈ Σ, then 〈π1〉(〈π2〉(ψ1;ϕ), ..., 〈π1〉(ψn;ϕ); 〈π2〉ϕ)
is in Σ too.

− If 〈π1 ∪ π2〉(Ψ;ϕ) ∈ Σ then 〈π1〉(Ψ;ϕ) ∨ 〈π2〉(Ψ;ϕ) ∈ Σ too.

− If 〈π1 ∩ π2〉(Ψ;ϕ) ∈ Σ then the formula:∨
{〈π1〉(Θ1;ϕ) ∧ 〈π2〉(Θ2;ϕ) | Ψ = Θ1 ∪Θ2}

is in Σ too.

− If 〈π∗〉(Ψ;ϕ) ∈ Σ then (
∧

Ψ ∧ ϕ) ∨ 〈π ◦ π∗〉(Ψ;ϕ) is in Σ too.

Lemma 2. Every formula ϕ is a member of some finite Fischer-Ladner closed
set of formulas.

Proof. Standard, see for example [9].

Fix a finite and Fischer-Ladner closed set of formulas Σ. An atom over Σ is a
maximal consistent subset of Σ, and we denote the set of atoms over Σ by At(Σ).

Given any atom w ∈ At(Σ), let ŵ be its conjunction, and let Ẑ = {ŵ | w ∈ Z}
for a set of atoms Z.

Definition 4. Given any label π, we define the relation SΣ
π ⊆ At(Σ)×P(At(Σ))

by setting (w,Z) ∈ SΣ
π iff ŵ∧〈π〉(Ẑ;

∨
Ẑ) is consistent with respect to the system

Ax3.
The canonical neighborhood model over Σ denoted CΣ is defined as the triple

(WΣ, RΣ, V Σ) where WΣ is the set of atoms over Σ, RΣ
a = SΣ

a for each atomic
label a, and V Σ(p) = {w ∈WΣ | p ∈ w}.

The key lemma in the completeness proof, which is proved using the induc-
tion rules for the Kleene star, is the following:

Lemma 3. For each label π, we have SΣ
π∗ ⊆ [[∗]](SΣ

π ).

Proof. Since the set of atoms is finite, we can make use of the characterization
of the Kleene star operation on finite models given by Proposition 4.

Suppose that (w,Z) ∈ SΣ
π∗ , meaning that 0 ¬(ŵ ∧ 〈π∗〉(Ẑ;

∨
Ẑ). Let γ[Z]

be the disjunction of all formulas v̂ for (v, Z) ∈ [[∗]](SΣ
π ). We want to show that

〈π∗〉(Ẑ;
∨
Ẑ) ` γ[Z]. It will then follow that ŵ ∧ γ[Z] is consistent, and clearly

since w is an atom this can only happen if ŵ is already a disjunct of γ[Z] which
means that (w,Z) ∈ [[∗]](SΣ

π ) as desired.
More generally, for Z ′ ⊆ Z let γ[Z ′, Z] be the disjunction of all formulas v̂

where v is an atom such that (v, Z ′′) ∈ [[∗]](SΣ
π ) and Z ′ ⊆ Z ′′ ⊆ Z for some

set Z ′′. We will show that 〈π∗〉(Ẑ ′;
∨
Ẑ) ` γ[Z ′, Z]. The special case for the

formula γ[Z,Z] = γ[Z] then yields the desired result.

18



We first prove the claim for the case of Z ′ = ∅. We have

〈π∗〉(∅̂;
∨
Ẑ) = 〈π∗〉(∅;

∨
Ẑ) = 〈π∗〉

∨
Ẑ

So we want to show that 〈π∗〉
∨
Ẑ ` γ[∅, Z], and by the first induction rule it

suffices to prove that
∨
Ẑ ` γ[∅, Z] and 〈π〉γ[∅, Z] ` γ[∅, Z]. Since γ[∅, Z] is a

disjunction of conjunctions of atoms, it is routine to show that for any formula
θ we have θ ` γ[∅, Z] if and only if every atom that is consistent with θ is also
consistent with γ[∅, Z].

So suppose first that w is consistent with
∨
Ẑ. Then w must be in Z, and

since (w, {w}) ∈ skip ⊆ [[∗]](SΣ
π ) we get that w is consistent with γ[∅, Z] as

required.
Next, suppose that w is consistent with 〈π〉γ[∅, Z]. By Lemma 1 there must

be some set Z ′ such that w is consistent with 〈π〉(Ẑ ′;
∨
Ẑ ′) and u ` γ[∅, Z] for

each u ∈ Z ′. We get that (w,Z ′) ∈ SΣ
π , and furthermore for each u ∈ Z ′ there

must be some Zu ⊆ Z with (u, Zu) ∈ [[∗]](SΣ
π ). We get:

(Z ′, {Zu | u ∈ Z ′}) ∈ [[∗]](SΣ
π )

and hence we obtain:

(w,
⋃
u∈Z′

Zu) ∈ SΣ
π [[◦]]([[∗]](SΣ

π )) ⊆ [[∗]](SΣ
π )

and so since ∅ ⊆
⋃
u∈Z′ Zu ⊆ Z we see that w is consistent with γ[∅, Z] as

required.
Next, we consider the case where Z ′ ⊆ Z is a singleton {s}. We write γ[s, Z]

rather than γ[{s}, Z]. We want to show that 〈π∗〉(ŝ;
∨
Ẑ) ` γ[s, Z]. By the

second inducton rule, it suffices to prove that

ŝ ∧
∨
Ẑ ` γ[s, Z]

and
〈π∗〉(γ[s, Z]; 〈π∗〉

∨
Ẑ) ` γ[s, Z]

The first statement is similar to the proof that
∨
Ẑ ` γ[∅, Z] so we leave it out.

For the second part, suppose that the atom w is consistent with the formula
〈π〉(γ[s, Z]; 〈π∗〉

∨
Ẑ). By the previous argument we get

〈π∗〉
∨
Ẑ) ` γ[∅, Z]

so by (Mon) we find that w is consistent with 〈π〉(γ[s, Z]; γ[∅, Z]). By Lemma 1

there must be some set Y such that w is consistent with 〈π〉(Ŷ ;
∨
Ŷ ), u ` γ[∅, Z]

for each u ∈ Y , and v ` γ[s, Z] for some v ∈ Y . We get that (w, Y ) ∈ SΣ
π .

Furthermore there is some set Zv such that s ∈ Zv ⊆ Z and (v, Zv) ∈ [[∗]](SΣ
π ),

and for each u 6= v in Y there is some Zu ⊆ Z such that (u, Zu) ∈ [[∗]](SΣ
π ). If

we set:
F = {Zv} ∪ {Zu | u ∈ Y \ {v}}

19



then we get {s} ⊆
⋃
F ⊆ Z. Furthermore, we get

(Y, F ) ∈ [[∗]](SΣ
π )

and hence we obtain:

(w,
⋃
F ) ∈ SΣ

π [[◦]]([[∗]](SΣ
π )) ⊆ [[∗]](SΣ

π )

as required.
Finally, let Z ′ ⊆ Z be an arbitrary non-empty set, and suppose w is consis-

tent with 〈π∗〉(Ẑ ′;
∨
Ẑ), where Z ′ = {s1, ..., sn}. Then by the axiom (Fix), w is

consistent with the formula

(
∧
Ẑ ′ ∧

∨
Ẑ) ∨ 〈π ◦ π∗〉(Ẑ ′;

∨
Ẑ)

So it now suffices to prove that:

(
∧
Ẑ ′ ∧

∨
Ẑ) ` γ[Z ′, Z]

and
〈π ◦ π∗〉(Ẑ ′;

∨
Ẑ) ` γ[Z ′, Z]

Once again, the first claim follows by a familiar argument using skip ⊆ [[∗]](SΣ
π ),

so we omit it. For the second claim, it suffices by the axiom (Cmp) to prove
that:

〈π〉(〈π∗〉(ŝ1;
∨
Ẑ), ..., 〈π∗〉(ŝn;

∨
Ẑ); 〈π∗〉

∨
Ẑ) ` γ[Z ′, Z]

But, using the previous arguments together with the axiom (Mon), we find that
it suffices to prove:

〈π〉(γ[s1;Z], ..., γ[sn;Z]; γ[∅, Z]) ` γ[Z ′, Z]

We show that every atom consistent with the formula on the left-hand side
is also consistent with the formula on the right-hand side. Suppose that w is
consistent with the formula 〈π〉(γ[s1;Z], ..., γ[sn;Z]; γ[∅, Z]). By Lemma 1 there

must be some set Y such that w is consistent with 〈π〉(Ŷ ;
∨
Ŷ ), u ` γ[∅, Z] for

each u ∈ Y , and for each i ∈ {1, ..., n} we have vi ` γ[si, Z] for some vi ∈ Y .
We get that (w, Y ) ∈ SΣ

π . Furthermore for each i ∈ {1, ..., n} there is some set
Si such that si ∈ Si ⊆ Z and (vi, Si) ∈ [[∗]](SΣ

π ), and for each u /∈ {v1, ..., vn},
u ∈ Y , there is some Zu ⊆ Z such that (u, Zu) ∈ [[∗]](SΣ

π ). If we set:

F = {S1, ..., Sn} ∪ {Zu | u ∈ Y \ {v1, ..., vn}}

then we get {s1, ..., sn} ⊆
⋃
F ⊆ Z. Furthermore, we get

(Y, F ) ∈ [[∗]](SΣ
π )

and hence we obtain:

(w,
⋃
F ) ∈ SΣ

π [[◦]]([[∗]](SΣ
π )) ⊆ [[∗]](SΣ

π )

as required.

20



Lemma 3 is needed to prove Lemma 4 below, by induction on the complexity
of program terms. Say that a label π is safe if, for every formula γ such that
the term γ? appears in π, we have γ ∈ Σ and furthermore, γ ∈ w iff CΣ, w  γ
for each w ∈ At(Σ).

Lemma 4. For every safe label π, we have SΣ
π ⊆ RΣ

π .

Proof. By induction on the complexity of safe labels. For γ?, the result follows
from the safety assumption and the observation that

SΣ
γ? = [[?]]{w | At(Σ) | γ ∈ w}

This observation can be proved as follows: since γ is safe we have γ ∈ Σ, so
ŵ∧〈γ?〉(Ẑ,

∨
Ẑ) is consistent ŵ∧

∧
Ẑ∧

∨
Ẑ is consistent, iff γ ∈ w and Ẑ = {w}

since w is an atom and Ẑ a set of atoms. Hence SΣ
γ? = {(w, {w}) | γ ∈ w} and

the result follows from the definition of [[?]].
For the Kleene star, by Lemma 3 we have SΣ

π∗ ⊆ [[∗]](SΣ
π ) for each label π.

Similarly we may prove: SΣ
π1∪π2

⊆ SΣ
π1

[[∪]]SΣ
π2

and SΣ
π1◦π2

⊆ SΣ
π1

[[◦]]SΣ
π2

. We omit

the easy argument for ∪. For ∩, suppose that ŵ∧〈π1∩π2〉(Ẑ;
∨
Ẑ) is consistent.

Then there are sets Z1, Z2 such that Z = Z1 ∪ Z2 such that:

ŵ ∧ 〈π1〉(Ẑ1;
∨
Ẑ) ∧ 〈π2〉(Ẑ2;

∨
Ẑ)

is consistent. Hence both ŵ∧〈π1〉(Ẑ1;
∨
Ẑ) and ŵ∧〈π2〉(Ẑ2;

∨
Ẑ) are consistent,

and using Lemma 1 we find sets Y1, Y2 ⊆ At(Σ) (corresponding to disjuncts of
the normal form) such that Z1 ⊆ Y1 ⊆ Z and Z2 ⊆ Y2 ⊆ Z and such that both

ŵ ∧ 〈π1〉(Ŷ1;
∨
Ŷ1) and ŵ ∧ 〈π2〉(Ŷ2;

∨
Ŷ2) are consistent. Hence (w, Y1) ∈ SΣ

π1

and (w, Y2) ∈ SΣ
π2

, hence (w, Y1∪Y2) ∈ SΣ
π1

[[∩]]SΣ
π2

. The result now follows since
clearly Y1 ∪ Y2 = Z.

For composition, suppose that w is consistent with the formula 〈π1◦π2〉(Ẑ;
∨
Ẑ),

where Z = {v1, ..., vn}. Then w is consistent with the formula

〈π1〉(〈π2〉(v̂1;
∨
Ẑ), ..., 〈π2〉(v̂n;

∨
Ẑ); 〈π2〉

∨
Ẑ)

by the axiom (Cmp). For each i ∈ {1, ...,m} let δi be the disjunction of the set
of all formulas û such that u is an atom with (u, U) ∈ SΣ

π2
for some set of atoms

U with vi ∈ U and U ⊆ Z, and let θ be the disjunction of all formulas û such
that u is an atom with (u, U) ∈ SΣ

π2
for some U ⊆ Z. We first claim that:

〈π1〉(〈π2〉(v̂1;
∨
Ẑ), ..., 〈π2〉(v̂n;

∨
Ẑ); 〈π2〉

∨
Ẑ) ` 〈π1〉(δ1, ..., δn; θ)

To see this, let the maximum modal depth of formulas in Σ be k, and let
F 2+k

Σ be the set of all formulas of modal depth at most 2 + k, such that
only labels appearing appearing in formulas in Σ may appear in formulas in
F 2+k

Σ . Let an extended atom be a maximal consistent subset of F 2+k
Σ . Since

there are only finitely many formulas in F 2+k
Σ up to provable equivalence, there

are at most finitely many extended atom, and for each extended atom e we

21



can form the conjunction ê of all formulas in e “up to logical equivalence”,
picking one conjunct from each logical equivalence class. Since both formu-
las 〈π1〉(〈π2〉(v̂1;

∨
Ẑ), ..., 〈π2〉(v̂n;

∨
Ẑ); 〈π2〉

∨
Ẑ) and 〈π1〉(δ1, ..., δn; θ) are of

modal depth ≤ 2 +k, it suffices to prove that every extended atom e containing
the formula:

〈π1〉(〈π2〉(v̂1;
∨
Ẑ), ..., 〈π2〉(v̂n;

∨
Ẑ); 〈π2〉

∨
Ẑ)

also contains:
〈π1〉(δ1, ..., δn; θ).

So let e be an extended atom containing the first of these two formulas. Once
again, by a proof similar to that of Lemma 1, we can prove that the formula

〈π1〉(〈π2〉(v̂1;
∨
Ẑ), ..., 〈π2〉(v̂n;

∨
Ẑ); 〈π2〉

∨
Ẑ)

is equivalent to a disjunction of formulas of the form 〈π1〉(Ê,
∨
Ê) where E is

a set of extended atoms such that 〈π2〉
∨
Ẑ ∈

⋂
E and 〈π2〉(v̂i;

∨
Ẑ) ∈

⋃
E

for each i ∈ {1, ..., n}. So one of these disjuncts 〈π1〉(Ê,
∨
Ê) belongs to e

Furthermore, it is not hard to show that ` ê′ → θ for each e′ ∈ E, and similarly
one can show that ` ê′ → δi for each e′ ∈ E such that 〈π2〉(v̂1;

∨
Ẑ) ∈ e′ (since

e′ ∩ Σ is an atom consistent with 〈π2〉(v̂1;
∨
Ẑ)). So we get:

〈π1〉(Ê,
∨
Ê) ` 〈π1〉(δ1, ..., δn; θ)

by (Mon), hence 〈π1〉(δ1, ..., δn; θ) belongs to e as well.
So w is consistent with the formula 〈π1〉(δ1, ..., δn; θ), and by Lemma 1 there

is a set Q of atoms such that w is consistent with 〈π1〉(Q̂;
∨
Q̂), s ` θ for each

s ∈ Q and for each i ∈ {1, ..., n} there is ti ∈ Q such that ti ` δi. It follows from
this that for each s ∈ Q there is some Us ⊆ Z such that (s, Us) ∈ SΣ

π2
, and for

each i ∈ {1, ..., n} there is some Pi ⊆ Z such that vi ∈ Pi and (ti, Pi) ∈ SΣ
π2

. If
we set

F = {Us | s ∈ Q} ∪ {Pi | i ∈ {1, ..., n}}

then we get (Q,F ) ∈ SΣ
π2

, and so (w,
⋃
F ) ∈ SΣ

π1
[[◦]]SΣ

π2
. But

⋃
F = Z, so we

get (w,Z) ∈ SΣ
π1

[[◦]]SΣ
π2

as required.
Finally, a straightforward induction now shows that SΣ

π ⊆ RΣ
π for each safe

label π, using monotonicity of each of the operations [[∪]], [[∩]], [[◦]], [[∗]]. For
atomic labels the claim holds by definition of RΣ

a = SΣ
a . For the case of it-

eration, as an example, we have:

SΣ
π∗ ⊆ [[∗]](SΣ

π )

⊆ [[∗]](RΣ
π )

= RΣ
π∗

The other cases are similar.

22



Using Lemma 4 we can prove a truth lemma for the canonical model:

Lemma 5. For every atom w and any ψ ∈ Σ, we have (CΣ, w)  ψ if and only
if ψ ∈ w.

Proof. By induction on the complexity of ψ. Note that the induction hypothesis
for subformulas of ψ guarantees that every label appearing in ψ is safe. The
only interesting cases are formulas of the form 〈π〉(Ψ;ϕ).

For right to left, suppose 〈π〉(Ψ;ϕ) ∈ w. By Lemma 1 we find a set Z

of atoms such that 〈π〉(Ẑ,
∨
Ẑ) is consistent with w, hence (w,Z) ∈ SΣ

π , and
such that Ψ ⊆

⋃
Z and ϕ ∈

⋂
Z. By Lemma 4 we get (w,Z) ∈ RΣ

π , and
the induction hypothesis applied to the formulas in Ψ ∪ {ϕ} now readily yields
CΣ, w  〈π〉(Ψ;ϕ) as required.

For left to right, it suffices to show that for all formulas 〈π〉(Ψ;ϕ) ∈ Σ, all sets
of atoms Z and all atoms w such that (w,Z) ∈ RΣ

π , ϕ ∈
⋂
Z and Ψ ⊆

⋃
Z, we

have 〈π〉(Ψ;ϕ) ∈ w. The required result then follows by applying the induction
hypothesis to Ψ, ϕ. We prove the claim by induction on the complexity of the
label π, under the assumption that π is a safe label

If π is an atomic label a then we have RΣ
a = SΣ

a . So if (w,Z) ∈ RΣ
a then

(w,Z) ∈ SΣ
a , so w is consistent with 〈a〉(Ẑ;

∨
Ẑ). From this we can easily derive

that w is consistent with 〈a〉(Ψ;ϕ) by an argument combining axioms (Mon)
and (Weak), given that ϕ ∈

⋂
Z and Ψ ⊆

⋃
Z. Since 〈a〉(Ψ;ϕ) ∈ Σ and w is

an atom it follows that 〈a〉(Ψ;ϕ) ∈ w as required.
The induction steps for test, choice, parallel composition and sequential

composition are easy, making use of Fischer-Ladner closure of Σ at each step.
We now focus on the case of the Kleene star. Suppose that there is some Z

such that (w,Z) ∈ RΣ
π∗ , ϕ ∈

⋂
Z and Ψ ⊆

⋃
Z. By Proposition 4 there is some

natural number n with (w,Z) ∈ (RΣ
π )[n], so we reason by induction on n. That

is, we show that for all w,Z,Ψ, ϕ and all n ∈ ω, if (w,Z) ∈ (RΣ
π )[n], ϕ ∈

⋂
Z

and Ψ ⊆
⋃
Z, then 〈π∗〉(Ψ;ϕ) ∈ w.

For n = 0 the result holds trivially since (RΣ
π )[n] = ∅. Supposing that the

induction hypothesis holds for n, if (w,Z) ∈ (RΣ
π )[n+1] then either (w,Z) ∈ skip,

or:
(w,Z) ∈ RΣ

π [[◦]](RΣ
π )[n]

In the first case, we have Z = {w} so it immediately follows (using Fischer-
Ladner closure of Σ and 〈π∗〉(Ψ;ϕ) ∈ Σ ) that

∧
Ψ∧ϕ ∈ w. By the axiom (Fix)

we must have 〈π∗〉(Ψ;ϕ) ∈ w as required.
Otherwise, if (w,Z) ∈ RΣ

π [[◦]](RΣ
π )[n] then there is some set Y and a family

of sets F such that (w, Y ) ∈ RΣ
π , (Y, F ) ∈ (RΣ

π )[n], ϕ ∈
⋂
X for each X ∈ F and

for each ψ ∈ Ψ there exists some Xψ ∈ F with ψ ∈
⋃
Xψ. By Fischer-Ladner

closure we get 〈π ◦ π∗〉(Ψ;ϕ) ∈ Σ and hence:

〈π〉(〈π∗〉(ψ1;ϕ), ..., 〈π∗〉(ψn;ϕ); 〈π∗〉ϕ) ∈ Σ

where Ψ = {ψ1, ..., ψn}. By applying the induction hypothesis to the label π
and the “inner” induction hypothesis to n, we now find that:

〈π〉(〈π∗〉(ψ1;ϕ), ..., 〈π∗〉(ψn;ϕ); 〈π∗〉ϕ) ∈ w

23



By applying the axiom (Cmp) we get 〈π ◦ π∗〉(Ψ;ϕ) ∈ w, hence by the axiom
(Fix) we get 〈π∗〉(Ψ;ϕ) ∈ w as required.

Proof of Theorem 5. suppose the formula ϕ is not provable, so that ¬ϕ is con-
sistent. By Lemma 2, ¬ϕ belongs to some finite Fischer-Ladner closed set Σ
and since ¬ϕ is consistent it belongs to some atom w. Hence ϕ /∈ w and by
Lemma 5 we have CΣ, w 1 ϕ. So ϕ is not valid.

We note that as a corollary to the completeness proof, which produces a
finite model of effectively bounded size for a consistent formula, we get:

Theorem 6. IPDL has the finite model property and is decidable.

5 Comparison with game logic

We now show that IPDL can, in a precise sense, be viewed as a language exten-
sion of dual-free game logic. We shall denote this language simply by GL, for
“game logic”, although the full dynamic game logic also includes a dual con-
structor. Formally, formulas of GL and game terms are defined by the following
dual grammar:

ϕ := p ∈ Prop | ϕ ∧ ϕ | ¬ϕ | 〈π〉ϕ

π := a ∈ A | ϕ? | π ◦ π | π ∪ π | π ∩ π | π∗

where Prop is a fixed set of propositional variables and A is a set of atomic
games, both assumed to be countably infinite. Note that GL is a syntactic
fragment of IPDL. Here, ∪ is interpreted as “angelic choice” (choice for Player
I), ∩ is interpreted as “demonic choice” (choice for Player II), ◦ is sequential
game composition and ∗ is finite game iteration (controlled by Player I).

Semantics of game logic formulas are given by neighborhood frames, with
the extra constraint that neighborhoods associated with a world are upwards
closed under subsethood:

Definition 5. A neighborhood frame (W,R) is said to be a monotonic power
frame if the following condition holds for each a ∈ A:

(Monotonicity) For all u ∈W , if (u, Z) ∈ Ra and Z ⊆ Z ′ then (u, Z ′) ∈ Ra.

A monotonic power model is a neighborhood model whose underlying frame
is a monotonic power frame.

In order to provide the semantic interpretations of formulas in a model, we
need to provide semantic interpretations of the game constructors. We shall use
double vertical lines ‖−‖ to refer to semantic interpretations of formulas in GL
and game constructors in monotonic neighborhood models, in order to distin-
guish it from the semantics given for PDL, where we use square brackets [[−]].
We follow the definitions in [3]. Formally, we define operations on the lattice
NW = P(W × P(W )) of neighborhood relations over W as follows:

24



- R‖∪‖R′ = R ∪R′

- R‖∩‖R′ = R ∩R′

- (u, Z ′) ∈ R‖◦‖R′ iff there is some Z ⊆W with (u, Z) ∈ R and (v, Z ′) ∈ R′ for
all v ∈ Z.

- ‖?‖(Z) = {(w,Z ′) ∈W × P(W ) | w ∈ Z ∩ Z ′}

Finally, we define ‖∗‖R to be the least fixpoint in the lattice NW of the mono-
tone map F defined by:

FS = skip↑‖∪‖(R‖◦‖S)

where skip↑ = {(w,Z) ∈W ×P(W ) | w ∈ Z}. We can now set up the semantics
of GL. Fixing a monotonic power model M, we define the interpretation of every
formula ϕ and the neighborhood relations Rπ corresponding to each game term
π in the obvious way, so that in particular we have -Rπ1∪π2 = Rπ1‖∪‖Rπ2 ,
Rπ1∩π2 = Rπ1‖∩‖Rπ2 etc., and u ∈ ‖〈π〉ϕ‖ iff (u, ‖ϕ‖) ∈ Ra. For a monotonic
power model M = (W,R, V ) and u ∈ W we shall also write M, u � ϕ for
u ∈ ‖ϕ‖. Since semantic interpretations are always defined relative to a model,
if necessary we shall use the notation ‖−‖M rather than ‖−‖ to make it clear
which model M is being referred to. We write � ϕ if M, u � ϕ for every pointed
monotone power model (M, u). We get the following result, showing in what
sense IPDL indeed generalizes the semantics of GL:

Proposition 7. For any GL-formula ϕ, and any monotonic power model M,
we have ‖ϕ‖M = [[ϕ]]M.

Proof. The proof is an induction on the complexity of formulas, with the inter-
esting step being formulas of the form 〈π〉ϕ. We leave out the test operator in
this proof, leaving this as an easy exercise. We first prove the following claim,
and the rest of the proof is then easy:

Claim 2. Let R,S ∈ NW be neighborhood relations that are both closed
upwards under subsethood, in the sense that (w,Z) ∈ R and Z ⊆ Z ′ implies
(w,Z ′) ∈ R. Then:

1. R[[∪]]S = R‖∪‖S

2. R[[∩]]S = R‖∩‖S

3. R[[◦]]S = R‖◦‖S

4. [[∗]]R = ‖∗‖R

The rest of the proof is devoted to establishing this claim. Item (1) is
immediate from the definitions. For item (2), suppose first that (w,Z) ∈ R[[∩]]S.

25



Then there are Z ′, Z ′′ such that Z = Z ′ ∪ Z ′′ and (w,Z ′) ∈ R, (w,Z ′′) ∈ S.
By closure under subsethood we have (w,Z) ∈ R and (w,Z) ∈ S, so (w,Z) ∈
R∩S = R‖∩‖S. Conversely, if (w,Z) ∈ R‖∩‖S then (w,Z) ∈ R and (w,Z) ∈ S.
So (w,Z ∪ Z) = (w,Z) ∈ R[[∩]]S. Item (3) is proved in a fairly similar manner,
so we leave it as an exercise.

For item (4), we note that [[∗]]R is the least fixpoint of the map:

λZ.skip[[∪]](R[[◦]]Z)

which is equal to the least fixpoint of λZ.skip‖∪‖(R‖◦‖Z) by items (1) and (3)
(and noting that all the relations appearing in the approximating sequence for
the fixpoint are upwards closed under subsethood). But the latter fixpoint is
by definition equal to ‖∗‖R.

From this proposition, we get the following result:

Theorem 7. IPDL is a conservative extension of GL. That is, for every GL-
formula ϕ, we have

� ϕ iff  ϕ

Proof. For every neighborhood model M, we define a monotonic power model
M↑ as follows: let M = (W,R, V ). We define the monotonic power model
M↑ = (W,R, V ) as follows: set (u, Z) ∈ Ra iff there is some Z ′ ⊆ Z with
(u, Z ′) ∈ Ra.

We have the following result:

Claim 3. For any GL-formula ϕ and any neighborhood model M, we have
‖ϕ‖M↑ = [[ϕ]]M.

Proof of Claim 3. The result follows easily once we have established the follow-
ing claim:

Claim 4. Given a neighborhood model M and a term π, let Rπ denote the
neighborhood relation corresponding to π in M computed by applying the op-
erations [[?]], [[∪]], [[∩]], [[◦]], [[∗]], and let Sπ denote the neighborhood relation corre-
sponding to π in M↑ computed by applying the operations ‖?‖, ‖∪‖, ‖∩‖, ‖◦‖, ‖∗‖.
Then for all w,Z, we have (w,Z) ∈ Sπ iff there is some Z ′ ⊆ Z with (w,Z ′) ∈
Rπ.

We devote the rest of the proof to establishing this claim. The claim is
immediate for atomic games, and the step for the test operator follows trivially
from the definitions. The direction from right to left is easy in each case, so we
focus on the converse implication.

The induction step for ∪ is entirely straightforward. For ∩, if (w,Z) ∈ Sπ1∩π2

then (w,Z) ∈ Sπ1
and (w,Z) ∈ Sπ2

. By the induction hypothesis, there are sets
Y, Y ′ ⊆ Z such that (w, Y ) ∈ Rπ1

and (w, Y ′) ∈ Rπ2
. So (w, Y ∪ Y ′) ∈ Rπ1∩π2

.
Since Y ∪ Y ′ ⊆ Z, we are done.

26



For the sequential composition operator, suppose (w,Z) ∈ Sπ1◦π2 . Then
there exists a set Y such that (w, Y ) ∈ Sπ1 and (v, Z) ∈ Sπ2 for each v ∈ Y . By
the induction hypothesis, there are sets {Z ′v}v∈Y with (v, Z ′v) ∈ Rπ2

and Z ′v ⊆ Z,
and there is Y ′ ⊆ Y with (w, Y ′) ∈ Rπ1

. We get (w,
⋃
{Z ′v | v ∈ Y ′}) ∈ Rπ1◦π2

,
and since

⋃
{Z ′v | v ∈ Y ′} ⊆

⋃
{Z ′v | v ∈ Y } ⊆ Z, we are done.

Finally, we consider the case of game iteration. First, we recall that skip
denotes the neighborhood relation {(w, {w}) | w ∈ W}, and skip↑ denotes the
relation {(w,Z) | w ∈ Z}.

Suppose the induction hypothesis holds for Rπ. Let:

F := λZ.skip↑‖∪‖(Sπ‖◦‖Z)

so that Sπ∗ is equal to the least fixpoint for F . Alternatively, we can describe
Sπ∗ as the least fixpoint of the map F restricted to the complete sub-lattice of
NW given by {R ∈ NW | skip↑ ⊆ R}. The bottom element of this sub-lattice
is skip↑, so we can write the approximating sequence for the least fixpoint as:

skip↑ ⊆ F skip↑ ⊆ F 2skip↑ ⊆ F 3skip↑ ... Fωskip↑ ⊆ Fω+1skip↑...

We denote the first two entries in the series as F 0skip↑ and F 1skip↑. We show,
by transfinite induction, that (w,Z) ∈ F ξskip↑ iff there is some Z ′ ⊆ Z such
that (w,Z ′) ∈ (Rπ)[ξ]. The result then follows by considering ξ such that
Rπ∗ = (Rπ)[ξ] and γ such that Sπ∗ = F γ∅. Then, pick some ρ greater than

both γ and ξ. The result then follows since Rπ∗ = R
[ρ]
π and Sπ∗ = F ρ∅.

To establish the claim, the case for ξ = 0 is trivial since by definition

F 0skip↑ = skip↑ and R
[0]
π = skip. Successor ordinals ξ+1 are handled by unfold-

ing and comparing the definitions of R
[ξ+1]
π and F ξ+1skip↑, applying the “inner”

induction hypothesis to F ξskip↑, applying the “outer” induction hypothesis to
Sπ, and then repeating and combining the previous arguments for ∪ and ◦.
Finally, limit ordinals κ are handled by simply noting that R

[κ]
π =

⋃
ξ<κ(Rπ)[ξ]

and Fκskip↑ =
⋃
ξ<κ F

ξskip↑.

We can now prove Theorem 7 as follows. Suppose ϕ is a formula of GL
and  ϕ. Then since every monotonic power frame is a neighborhood frame,
it follows by Proposition 7 that � ϕ as well. Conversely, suppose � ϕ, so that
ϕ is valid on every monotonic power frame. Then for any neighborhood model
M and every state w in W , we have M↑, w � ϕ, so M, w  ϕ by Proposition 3.
Hence  ϕ as required.

In other words: the formulas of IPDL that are valid on arbitrary neighbor-
hood frames form a conservative extension of the GL-formulas that are valid
over monotonic power frames.

6 Concluding remarks

In this paper, we have introduced a new propositional dynamic logic IPDL de-
fined over instantial neighborhood logic, as a tool for exploring a new open

27



systems perspective on computation. We found program operations that re-
spect a natural notion of bisimulation in this setting, and we axiomatized the
complete logic, which presented some non-trivial and interesting deviations from
the usual proof format for PDL. Finally, we positioned our logic with respect
to related views of computation by completely clarifying its relation to current
game logics.

Our system fits in a broader technical context. Various extensions of our base
language would make sense, notably, the addition of least and greatest fixpoint
operators. Just as standard PDL can be translated into the modal µ-calculus,
our logic IPDL can be translated into the extension of INL with fixpoints, a
translation that is implicit in our axiom system for IPDL. The fixpoint extension
of INL is very well behaved from a co-algebraic perspective. As shown in [6],
INL is a coalgebraic modal logic corresponding to a weak pullback preserving
functor - the double covariant powerset functor - that additionally preserves
finite sets. This means that the µ-calculus extension of INL inherits a number
of properties that hold in much wider generality. In particular, it has the finite
model property and it is decidable [21], and a sound and complete system of
axioms is available [12]. However, as usual, such general results need not transfer
to natural fragments that zoom in more closely on computation. Examples are
Reynold’s highly non-trivial completeness proof for CTL∗ [20], or Parikh’s game
logic, which still lacks a complete system of axioms. A closer comparison for our
system would be coalgebraic PDL, [15], but there, unlike in INL, the coalgebraic
type functor is a monad. Still, there is more work to be done here. For instance,
our sequential program composition resembles the standard Kleisli composition
for the powerset function – but we leave these issues to future investigation.

These are not the only connections to be clarified. In follow-up work, we
intend to show that IPDL can also thow new light on other logical systems for
computation, such as concurrent PDL ([19, 7, 16]), and that it can contribute
to a more fine-structured analysis of game equivalence and powers of players,
linking up with game theory (see [4], for which an extended follow-up manuscript
is currently in preparation).

References

[1] L. Aceto, A. Ingólfsdóttir, K. G. Larsen, and J. Srba. Reactive systems:
modelling, specification and verification. Cambridge University Press, 2007.

[2] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal
logic. Journal of the ACM (JACM), 49(5):672–713, 2002.

[3] J. van Benthem. Logic in games. MIT Press, Cambridge, MA, 2014.

[4] J. van Benthem, N. Bezhanishvili, and S. Enqvist. A new game equivalence
and its modal logic. In Proceedings Sixteenth Conference on Theoretical
Aspects of Rationality and Knowledge, TARK 2017, Liverpool, UK, 24-26
July 2017., pages 57–74, 2017.

28



[5] J. van Benthem, N. Bezhanishvili, and S. Enqvist. A propositional dy-
namic logic for instantial neighborhood models. In A. Baltag, J. Seligman,
and T. Yamada, editors, Logic, Rationality, and Interaction, LORI 2017,
Proceedings, volume 10455 of Lecture Notes in Computer Science, pages
137–150. Springer, 2017.

[6] J. van Benthem, N. Bezhanishvili, S. Enqvist, and J. Yu. Instantial neigh-
borhood logic. The Review of Symbolic Logic, 10(1):116–144, 2017.

[7] J. van Benthem, S. Ghosh, and F. Liu. Modelling simultaneous games in
dynamic logic. Synthese, 165(2):247–268, 2008.

[8] D. Berwanger. Game logic is strong enough for parity games. Studia Logica,
75(2):205–219, 2003.

[9] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Number 53 in
Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 2001.

[10] F. Carreiro and Y. Venema. PDL inside the µ-calculus: A syntactic and an
automata-theoretic characterization. Advances in Modal Logic, 10:74–93,
2014.

[11] C. Ĉırstea, C. Kupke, and D. Pattinson. EXPTIME tableaux for the coal-
gebraic µ-calculus. In E. Grädel and R. Kahle, editors, Computer Science
Logic (CSL 2009), volume 5771 of Lecture Notes in Computer Science,
pages 179–193. Springer, 2009.

[12] S. Enqvist, F. Seifan, and Y. Venema. Completeness for coalgebraic fixpoint
logic. In Proceedings of the 25th EACSL Annual Conference on Computer
Science Logic (CSL 2016), volume 62 of LIPIcs, pages 7:1–7:19, 2016.

[13] S. Enqvist, F. Seifan, and Y. Venema. Completeness for µ-calculi: a coal-
gebraic approach. Technical Report PP-2017-04, Institute for Logic, Lan-
guage and Computation, Universiteit van Amsterdam, 2017.

[14] G. Fontaine, R. Leal, and Y. Venema. Automata for coalgebras: An ap-
proach using predicate liftings. In Automata, Languages and Programming:
37th International Colloquium ICALP’10, volume 6199 of LNCS, pages
381–392. Springer, 2010.

[15] H. H. Hansen and C. Kupke. Weak completeness of coalgebraic dynamic
logics. arXiv preprint arXiv:1509.03017, 2015.

[16] D. Harel, D. Kozen, and J. Tiuryn. Dynamic logic. MIT press, 2000.

[17] D. Kozen. Results on the propositional µ-calculus. Theoretical Computer
Science, 27:333–354, 1983.

[18] R. Parikh. The logic of games and its applications. Annals of Discrete
Mathematics, 24:111–139, 1985.

29



[19] D. Peleg. Concurrent dynamic logic. Journal of the ACM (JACM),
34(2):450–479, 1987.

[20] M. Reynolds. An axiomatization of full computation tree logic. Journal of
Symbolic Logic, pages 1011–1057, 2001.

[21] Y. Venema. Automata and fixed point logic: a coalgebraic perspective.
Information and Computation, 204:637–678, 2006.

30


