
ar
X

iv
:1

01
0.

45
45

v1
  [

co
nd

-m
at

.q
ua

nt
-g

as
] 

 2
1 

O
ct

 2
01

0

Controlling spin motion and interactions in a one-dimensional Bose gas

P. Wicke, S. Whitlock, and N. J. van Druten*

Van der Waals-Zeeman Institute, University of Amsterdam,

Science Park 904, 1098 XH Amsterdam, The Netherlands

(Dated: submitted: October 19, 2010)

Experiments on ultracold gases offer unparalleled opportunities to explore quantum many-

body physics, with excellent control over key parameters including temperature, density,

interactions and even dimensionality. In some systems, atomic interactions can be adjusted

by means of magnetic Feshbach resonances, which have played a crucial role in realizing

new many-body phenomena. However, suitable Feshbach resonances are not always avail-

able, and they offer limited freedom since the magnetic field strength is the only control

parameter. Here we show a new way to tune interactions in one-dimensional quantum

gases using state-dependent dressed potentials, enabling control over non-equilibrium spin

motion in a two-component gas of 87Rb. The accessible range includes the point of spin-

independent interactions where exact quantum many-body solutions are available and the

point where spin motion is frozen. This versatility opens a new route to experiments on

spin waves, spin-“charge” separation and the relation between superfluidity and magnetism

in low-dimensional quantum gases.

Advances in optical and magnetic trapping of ultracold gases have played an essential role

in opening up novel avenues in quantum many-body physics by providing experimental access

to new physical regimes [1]. In particular, one-dimensional (1D) quantum gases, created using

optical lattices or atom chips, exhibit a surprisingly rich variety of regimes not present in 2D or

3D [2–9]. For example, a 1D Bose gas becomes more strongly interacting as the density decreases.

Furthermore, the many-body eigenstates and thermodynamic properties of these 1D systems can

often be described using exact Bethe Ansatz methods [10–14], and direct comparisons between

theory and experiment are possible [6, 8, 9, 15–17]. Adding the possibility to dynamically control

the strength of atomic interactions, for example via Feshbach resonances [16, 18–20], there is now a

strong impetus to extend these experimental and theoretical studies to non-equilibrium dynamics.

Spinor quantum gases offer the opportunity to study the interplay between internal (spin)

and external (motion) degrees of freedom [16, 17, 21–27]. In this context, strong candidates for

experiments are the two magnetically trappable clock states in 87Rb [23, 25], in part because

they experience equal trapping potentials and have nearly spin-independent interactions [28–30].

The drawback is that no convenient Feshbach resonances are available for these states, preventing

http://arxiv.org/abs/1010.4545v1
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precise control of the three relevant (inter and intra-state) interaction strengths.

In the two-component (“spin-1/2”) 1D Bose gas, the presence of spin-independent (symmetric)

interactions is of particular interest. For all interaction strengths (weak and strong) the dispersion

relation of spin waves is quadratic here [23, 31], and the low-energy spin velocity vanishes. As a

consequence the usual Luttinger-liquid description [8, 16, 32, 33] cannot be applied. However, it is

precisely the point where exact Bethe Ansatz methods can be used [14, 23]. Furthermore, it is the

point where buoyancy effects vanish and in the weakly interacting (mean-field) regime it also lies

on the border that separates miscible and immiscible regimes of binary superfluids [31].

We show that radio-frequency-dressed potentials on atom chips offer a new way to tune the

effective interactions in 1D and to control spin motion. We make use of the fact that, for elliptical

rf polarizations, different hyperfine states experience different dressed potentials, allowing for state-

dependent manipulation [34]. Here we exploit the dependence of the 1D coupling strength on the

transverse confinement frequency ω⊥ [2]. State-dependent optical lattice potentials have previously

found use for spin-dependent transport and entanglement of atoms [35, 36]. More recently, state-

dependent microwave dressing was used to generate spin squeezing in 3D Bose-Einstein condensates

by varying the wavefunction overlap for two hyperfine states to control collisions [37, 38], and state-

dependent potentials created by combining an optical trap with a magnetic field gradient were used

to obtain record low spin temperatures via spin gradient demagnetization cooling of a quantum

gas [39]. By tuning the transverse confinement for the two states independently through the rf

polarization and amplitude, we show that it is possible to control the interactions in a state- and

time-dependent manner. Suddenly changing interactions, combined with the state dependence of

the axial trapping then results in dynamical evolution in the spin degree of freedom. In particular,

we are able to tune to (i) the point where the spin motion is frozen, and (ii) the point where the

1D interactions become spin-independent.

We first discuss our results on the one-dimensional non-equilibrium dynamics for state-

independent potentials, highlighting the importance of small differences in interaction param-

eters. The starting point of our experiments is a nearly-pure 1D quasi-condensate in the

|1〉 = |F = 1,mf = −1〉 state of 87Rb in a highly elongated magnetic trap created by an atom

chip (see Methods). From this initial state, we induce a sudden transition to a coherent super-

position of the |1〉 and |2〉 = |F = 2,mf = 1〉 hyperfine states via a two-photon pulse, effectively

creating a spin-1/2 system [28, 40]. The resulting non-equilibrium situation is allowed to evolve for

a variable hold time. Subsequently, we directly image the longitudinal distributions, and obtain

the linear densities n1 and n2 of the two states along the length of the trap.
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FIG. 1: [Color] One-dimensional spin dynamics and total density after a sudden transfer of internal-state

population, for the case of state-independent trapping potentials. Shown are spin polarization (n1 − n2,

left) and total linear density (n1 + n2, right), as a function of axial position and time after the transfer.

Top: experiments, bottom: corresponding simulations resulting from integration of two coupled 1D Gross-

Pitaevskii equations (GPE). The spin polarization data clearly shows how n2 is focused towards the center

(blue), while n1 moves towards the sides (red); the total density shows little dynamics. Differences between

experiment and simulation can be explained by the limited optical resolution of our imaging system and a

small tilt of the trap, leading to a slight spatial asymmetry in the experiments.

In figure 1 we present measurements of the evolution of spin polarization (n1 − n2) and the

total linear density (n1 + n2) as a function of hold time. The spin pattern shows clear dynamical

evolution [fig. 1(a)] whereas the total density remains approximately constant with no significant

dynamics [fig. 1(b)]. The spin dynamics can be interpreted as a “focusing” of state |2〉 in the

presence of state |1〉, resulting in a negative spin polarization (n2 > n1) toward the center of the

trap.

We find good agreement with the experimental data using the coupled 1D Gross-Pitaevskii equa-

tions (1D-GPE) with solutions also shown in fig. 1(c,d). The 1D-GPE is obtained by integrating

the full 3D-GPE over the transverse ground-state wavefunctions [41], with interaction parameters
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derived from the intra- and interstate scattering lengths taken from ref. [29]: a11 = 100.4 · a0,
a22 = 95.00 · a0 and a12 = 97.66 · a0, where a0 is the Bohr radius. Generalizing for state-dependent

harmonic confinement (as will be relevant below) we obtain for the 1D interaction parameters uij:

u11 = 2~ω⊥,1a11,

u22 = 2~ω⊥,2a22,

u12 = 4~
ω⊥,1ω⊥,2

(ω⊥,1 + ω⊥,2)
a12, (1)

with ω⊥,j the transverse trap frequency for state |j〉. Similarly we use values for the scaled rate

constants for inelastic two-body and three-body losses derived from the 3D values in ref. [29]. The

1D-GPE simulations reproduce the features of the experiment, i.e. absence of dynamics in the

total density and the overall structure of the spin dynamics including the time of maximum state

separation around t ≈ 75 ms. The decay in atom number on a & 100 ms timescale is dominated

by two-body losses in intrastate interactions and between |2〉 atoms (γ12 and γ22) [29].

The rate of spin focusing/defocusing is critically dependent on the precise differences in 1D

interaction strengths for the respective internal states, a fact that is readily confirmed by changing

these differences in the simulations. The observed general behavior can be understood as follows:

in the initial state (an interacting trapped quantum gas in a single internal state in equilibrium)

the repulsive interactions balance the external confining potential. Suddenly transferring a fraction

of the population to a second internal state with weaker intra- and interstate interactions results

in a net contracting force (a confining effective curvature, c2 > 0 in equations (3) below) on the

population in this second state that dominates the dynamics in the spin polarization. Because the

spin-dependent part of the interactions is relatively small, the dynamics in the total density are

dominated by the (relatively large) average scattering length which remains nearly constant. Hence

the total density shows only weak dynamics; the focusing in n2 is accommodated by “pushing” n1

to the sides (red in fig. 1).

We now describe the state-dependent radio-frequency-dressed potentials that we use to control

the spin motion. We consider near-resonant coupling (~ωrf . gFµB|B|) of the rf field with tuneable

polarization determined by the relative phase of two independently controlled rf-fields. A cross

section of the wire geometry used is shown in fig. 2(a). The fields originate from direct digital

synthesis (DDS) supplied currents in two wires neighboring the Z-shaped trapping wire [42]. With

these two fields we can readily control the ellipticity of the total rf field at the trap position by

controlling the relative phase φ of the rf currents in the two wires. This includes linear (horizontal

and vertical) and circular (σ±) polarizations.
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FIG. 2: [Color] State-dependent potentials. (a) wire geometry used for state-dependent radio-frequency-

dressed traps. The static quadrupole magnetic field and the two rf fields are indicated by green, orange

and purple arrows respectively. The direction of the bias Ioffe field which defines the quantization axis is

into the plane of the figure. (b) Trap bottom determined via dressed state rf spectroscopy as a function of

φ. Data points correspond to the measured trap bottom for state |1〉 (red) and state |2〉 (blue). Solid and

dashed curves are fits to the data. The dash-dotted green line indicates the fitted trap Larmor frequency

ωL/2π = 2.25 MHz.

The corresponding dressed-state potential for state |j〉 (with j = 1, 2) has the form Vj(x, y, z) =

((V0(x, y, z) − ~ωrf )
2 + ~

2Ω2
j)

1/2 where V0(x, y, z) is the bare magnetic (harmonic) potential. The

state-dependent part of the potential enters through the coupling Rabi frequency Ωj [43, 44], which

acts to weaken the overall confinement near the trap bottom by an amount given by the dressing

parameter δj . Taking the second derivative of the potential Vj around the origin yields new trap

frequencies,

ω̃2

⊥,‖ = δjω
2
⊥,‖,where δj = ∆/

√

Ω2
j +∆2, (2)

with detuning ∆ = ωL − ωrf and Larmor frequency ωL.

The state-dependent rf potential is characterized using dressed-state rf spectroscopy with a

weak additional rf probe [45, 46]. Figure 2(b) shows the measured trap bottom as a function of the

dressing phase φ, for ωrf = 2π×2.20 MHz. For φ = 0.31π and φ = 1.68π the potential is maximally

state-dependent, corresponding to the pure circular polarizations σ− and σ+ respectively (dressing

only state |1〉 and only state |2〉, respectively). The potentials are state-independent for linear

polarization at φ = 0, π (equal dressing of state |1〉 and |2〉). The deviation from a simple sin2(φ)

behavior is due to the wire geometry, as the two rf fields are not quite orthogonal at the trap

position. A fit to the data (solid and dashed curves) taking into account the wire geometry is used

to precisely calibrate all parameters of the rf field coupling (see Methods).
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To control the spin motion we turn on the state-dependent dressing, by ramping up the rf

currents in 2 ms with ωrf = 2π × 2.20 MHz, directly after preparing the equal superposition of

|1〉 and |2〉. The ramp time is slow compared to the inverse Larmor frequency and the inverse

radial trap frequency, but sudden with respect to any axial motion. We use the two circular rf

polarizations and various rf amplitudes, corresponding to 0.8 < δ1 < 1, δ2 = 1 and 0.8 < δ2 <

1, δ1 = 1. For each time step we extract the widths of the axial distributions in both states.
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FIG. 3: [Color] Overview of the possibilities of the state-dependent potentials, as a function of the dressing

parameters (left: varying δ2, with δ1 = 1; right: varying δ1 with δ2 = 1). (a): 1D interaction strengths, uij

normalised by the bare transverse trap frequency ω⊥,0. (b) Widths of the distribution at t = 44 ms and

(c) scaled effective curvature cj/c0 at t = 0. Red indicates state |1〉 (and u11) and blue state |2〉 (and u22)

and in (a) u12 is indicated in green. The widths in (b) are obtained by a fit to the experimentally measured

density profiles (dots) and to GPE simulation (shaded regions). The shaded areas in (b) represent the effect

of shot-to-shot atom number fluctuations in the experiment.

Results for the full range of dressing parameters are depicted in figure 3. Figure 3(a) shows

the calculated interaction strengths taken from equation (1) as a function of δ1 and δ2. We have
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compared the measured widths of the distributions as a function of time with solutions of the

coupled 1D-GPE. These widths and the corresponding simulations for one fixed hold time of 44 ms

are shown in figure 3(b). The measured widths follow the 1D-GPE simulations closely (taking

into account the finite optical resolution), with the biggest uncertainties originating from atom

number fluctuations which cause the peak linear density to vary between 70µm−1 and 100 µm−1

throughout the entire data set (systematic uncertainty shown by shaded regions). The solid vertical

line at δ1 = 0.895 indicates the point where the difference in interaction strengths is minimized

[fig. 3(a)] with u11, u22 and u12 differing by less than 0.05% (100 times reduction in differences

when compared to the unmodified interactions). These conditions are of interest for comparing to

Bethe Ansatz solutions which require spin-independent interactions [14, 23].

To explain the data we have to consider both the effect of rf-dressing on the collisional interaction

strengths as well as the state-dependent modification to the axial potential. A simple analytical

description can be obtained using a Thomas-Fermi description near the cloud center where the

cloud shape is an inverted parabola. The combination of the state-dependence of the axial trapping

frequency and of the interactions can then be expressed as a net harmonic potential characterised

by an effective state-dependent curvature cj. We solve for the effective curvatures (Fig. 3c) for

t & 0 in our experiments in terms of δj , and find

c1
c0

= δ1 − (1− β)
√

δ1 −
a12
a11

2β
√
δ1δ2√

δ1 +
√
δ2

c2
c0

= δ2 − β
a22
a11

√

δ2 −
a12
a11

2(1 − β)
√
δ1δ2√

δ1 +
√
δ2

(3)

Here the first term on the right-hand side reflects the modification to the external axial potential

and the second and third terms deal with the modified interactions uij . The axial curvature of the

bare potential is c0 = mω2

‖/2 and β corresponds to the fraction of the population transferred to

state |2〉 (β ≈ 1/2 for our experiments).

The dashed line at δ2 = 0.96 in fig. 3 indicates the point where the difference in interactions is

compensated by the state-dependent longitudinal potential and c1 = c2. This point is characterized

by small equal curvatures of the effective potentials (including interaction energy) for both states

[fig. 3(c)], which result in frozen spin dynamics. These conditions are important for applications

with on-chip atomic clocks, to minimize inhomogeneous broadening due to mean field shifts. For

δ2 < 0.96 the difference in interaction strengths is further enhanced and the time evolution of the

spin dynamics becomes inverted, with focusing of state |1〉 while state |2〉 is pushed outward, as is

visible in fig. 3(b).

Figure 4 shows the full time evolution of the spin polarization for two selected rf-dressing
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parameters. The selected cases are: dressing of state |1〉 alone (φ = 0.31π, δ1=0.895) [fig. 4(a)] and

dressing state |2〉 alone (φ = 1.68π, δ2=0.96) [fig. 4(b)], corresponding to the intersection points

in figure 3(a) and (c), respectively. Qualitatively state |2〉 focuses faster with rf dressing applied

to state |1〉, when compared to the case of state independent potentials [fig. 1(a)]. Generally, the

simulated density profiles reveal a rich and dynamic nonlinear evolution of the spin polarization,

reminiscent of filament propagation in optical systems with competing nonlinearities [47]. This

is clearly visible in figure 4(c) for example. This detailed structure depends sensitively on the

precise values of the dressing. The development and propagation of this fine structure in the spin

polarization is partially observed in the experimental data, but is not fully resolved due to the

finite imaging resolution. Convolving the simulated profiles with the point-spread function of our

imaging system yields excellent agreement with all of the data. With weak dressing of state |2〉
(δ2=0.96) it is possible to freeze spin dynamics altogether such that the two states maintain their

overlap and the widths remain constant (apart from a small in-phase quadrupole oscillation and

decay from state |2〉), see Figure 4(b,d). A more quantitative representation of the data, showing

excellent agreement between experiment and simulation, is given in figure 5, where the widths of

the two states are shown for different evolution times. Clearly, the focus point can be identified in

figure 5(a) around t = 75 ms and in figure 5(b) around t = 30 ms, whereas no focussing is present

in figure 5(c).

We have shown that by introducing a small state-dependence to the radial trapping potential

using rf dressing we can precisely tune the 1D interaction parameters in a two-component quantum

gas by more than 10%, over an experimentally significant range. In our experiments this modi-

fication competes with the state dependence of the axial trapping and provides a new “knob” to

control spin motion, leading to tuneable nonlinear behavior.

Our method can be naturally extended in several ways. For instance, control over the interac-

tions without the accompanying state-dependence of the axial trapping can be obtained by using

one-dimensional box-shaped potentials [42]. By introducing an additional displacement of the

transverse potential in a state-dependent way it is possible to further reduce u12, allowing all three

interaction parameters to be tuned independently, something that is not generally possible with a

magnetically controlled Feshbach resonance.

The observed spin dynamics depend critically on the precise differences in interaction strengths.

For 87Rb, the three relevant scattering lengths are nearly equal and therefore weak dressing is

sufficient to tune the system parameters to the point of symmetric interactions or to where the spin

dynamics become frozen. Since the rf parameters can be precisely known, such experiments could
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FIG. 4: [Color] Spatiotemporal behavior of the spin polarization (n1 − n2) following the sudden transfer

to the state-dependent potentials. States |1〉 and |2〉 are indicated red and blue, respectively. (a) shows

the evolution with rf parameters corresponding to equal inter-atomic interactions (δ1 = 0.895, δ2 = 1) and

(b) equal effective potentials (δ1 = 1, δ2 = 0.96). (c) and (d) show the results of 1D-GPE simulations

corresponding to (a) and (b), respectively.

also allow precision determination of the scattering length differences. More generally, tuning the

system parameters around the point of spin-independent interactions strongly affects the dispersion

relation of the spin excitations [31]. In particular this allows the spin velocity to be tuned around

zero, providing a new handle for the study of spin waves in one-dimensional atomic gases.

Tunable interactions in two-component quantum gases have important applications in the areas

of spin-squeezing and quantum metrology [38, 48], and the ability to control spin motion opens

new avenues for future studies of quantum coherence in interacting quantum systems [16, 29,

30, 40, 49]. Our current experiments are performed in the weakly interacting 1D regime and

at low temperature, and we find that a description based on two coupled 1D Gross-Pitaevskii

equations is sufficient to describe our data. The methods presented here to tune interactions are

not limited to this regime, however. In particular, we plan to apply these methods to systems with

stronger interactions (e.g., by lowering the 1D density) and with higher temperatures. This will
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FIG. 5: [Color] Widths of the atomic distributions as function of hold time, for the parameters indicated by

the three vertical lines in figure 3. Dots are fits to experimental data, lines are results of 1D GPE solutions.

States |1〉 and |2〉 are indicated red and blue, respectively. In (a) no rf dressing is applied δ1,2 = 1, as

in figure 1. (b) and (c) correspond to the data in figure 4. (b) shows the evolution with rf parameters

corresponding to equal inter-atomic interactions (δ1 = 0.895, δ2 = 1), and (c) equal effective potentials

(δ1 = 1, δ2 = 0.96).

provide experimental tests of (and challenges to) more sophisticated theoretical methods, for both

equilibrium and non-equilibrium phenomena. For instance, it will be possible to experimentally

explore predictions of the thermodynamic Bethe Ansatz for the two-component Bose gas [14] and
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to explore quantum quenches in strongly interacting 1D systems by dynamical control over the

spin-dependent interactions. Finally, we expect that the experimental control over spin motion

and interactions, as demonstrated here, will benefit the realization of spin-“charge” separation in

a Bose gas [23, 25].
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Methods

Initial-state preparation and coherent spin mixing

87Rb atoms in state |1〉= |F =1,mf =−1〉 are evaporatively cooled to quantum degeneracy in a

highly elongated Ioffe-Pritchard microtrap with trap frequencies of ω⊥/2π = 1.9 kHz and ω‖/2π =

26 Hz. The peak linear atomic density is n1 . 100 µm−1. In this system, both the temperature

and chemical potential are small compared to the radial excitation energy (µ, kBT < ~ω⊥) and the

dynamics are restricted to the axial dimension (1D regime). A coherent superposition of the |1〉
and |2〉= |F =2,mf =1〉 hyperfine states is prepared using a resonant two-photon rf and microwave

(mw) coupling [28, 40]. The microwave frequency is introduced via an external antenna while the

rf-field is applied directly to the atom chip wires. The measured two-photon Rabi frequency is

Ωc/2π = 1.14 kHz, corresponding to a π/2-pulse duration of 0.22 ms. This is fast compared to the

timescale for axial dynamics, but sufficiently slow to prevent radial excitations. Coherence times

in excess of 1 second have been measured in this setup via Ramsey spectroscopy of dilute thermal

clouds.

State-dependent imaging

The time evolution of the spin distribution is measured by varying the hold time after the π/2-

pulse and performing sequential state-dependent absorption imaging. The atom cloud is released

from the trap for 1.0 ms time-of-flight to improve the detection efficiency while preserving the

longitudinal distribution. Atoms in state |2〉 are imaged directly using absorption on the F =
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2, F ′ = 3 transition with an exposure time of 30 µs and an optical resolution of 4.2 µm. State |1〉
is measured by first removing |2〉 atoms with a resonant light pulse followed by a 1 ms repumping

pulse from F = 1 to F = 2. The remaining atoms are then imaged in the same way as for state

|2〉. Due to the extra repumping step we find a 20% lower detection efficiency for state |1〉 and a

poorer resolution of ∼ 8 µm due to photon recoil, visible in fig. 5. The resulting absorption images

are integrated along the radial direction to obtain the linear densities n1 and n2 of the two states.

Characterizing state-dependent potentials

The potential energy at the trap bottom is characterized by the onset of loss as a function of

probe frequency which we fit to extract Vj(0, 0, 0). The measured trap bottom varies with rf phase

between 2250 kHz and 2700 kHz corresponding to a maximum Rabi frequency of Ωj/2π = 450 kHz.

A fit to the data (solid lines in figure 2(b)) taking into account the wire geometry results in

an accurate calibration of the key experimental parameters, in particular the Larmor frequency

ωL = 2.25 MHz, rf field amplitudes b1 = b2 = 0.53 G from the two rf wires and the trap-surface

distance of 80 µm.
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