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Rydberg dressing of a one-dimensional Bose-Einstein condensate
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We study the influence of Rydberg dressed interactions in a one-dimensional (1D) Bose-Einstein
Condensate (BEC). We show that 1D is advantageous over 3D for observing BEC Rydberg dressing.
The effects of dressing are studied by investigating collective BEC dynamics after a rapid switch-off
of the Rydberg dressing interaction. The results can be interpreted as an effective modification
of the s-wave scattering length. We include this modification in an analytical model for the 1D
BEC, and compare it to numerical calculations of Rydberg dressing under realistic experimental
conditions.
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Ultracold quantum gas experiments allow for an
extremely precise control of interatomic interactions.
Strong interactions at the atomic level enable in principle
the creation of strongly correlated many-body systems,
where the tunability gives them an important advantage
over their solid state equivalents. The short-range in-
teractions between ground-state atoms can be controlled
by Feshbach resonances [1–3], which resulted, e.g., in the
demonstration of the BCS-BEC type superfluid crossover
[4–9]. However, while the interactions can be made very
strong by going to the unitarity regime, it is still under
debate whether this quantum gas can be considered as a
strongly correlated system [10]. Strong correlations will
be evident when the interaction is both strong and long
range, i.e., the range of the interaction exceeds the av-
erage interparticle separation. Rydberg atoms [11] take
a central role in the broad spectrum of systems that can
be categorized from short range to long range, since Ryd-
berg atoms can be classified as intermediate range. Their
mutual interaction is generally of van der Waals nature,
which is neither long-range or short-range: the van der
Waals coefficient C6 ∼ n11 scales rapidly with the princi-
pal quantum number n, allowing for a range larger than
the interparticle separation.

Rydberg atoms in the context of ultracold atomic gases
[12–23] open up a whole new direction of strongly corre-
lated many body physics with a focus on quantum com-
putation and quantum simulations [24–31]. Most of the
applications have their origin in the ability to manipu-
late these Rydberg atoms coherently on timescales below
their radiative lifetime. When the atoms are cold enough,
they remain spatially frozen at those timescales. Off-
resonant coupling to Rydberg states, referred to as Ryd-
berg dressing [21–23], allows experimentalists to achieve
timescales longer than those required to stay in the frozen
gas limit. These timescales enable BEC dynamics with
long-range interactions, which is predicted to give rise
to novel exotic many-body physics such as supersolidity
[32–38].

Rydberg dressing of individual atoms trapped in op-
tical tweezers [39] and in optical lattices [40] has been

observed experimentally. Furthermore, modification of
electromagnetically induced transparency (EIT) via reso-
nant Rydberg dressing has also been observed [41]. How-
ever, observation of Rydberg dressing of a regular BEC
has proven elusive so far. Rydberg dressing of a BEC
in 3D has been theoretically studied [23, 42, 43] where
at relatively low density the influence of dressing could
be interpreted as a modification of the s-wave scattering
length. In Ref. [43], the authors conclude that experi-
mental observation of a dressed BEC in 3D is very diffi-
cult due to a strong reduction in the amount of Rydberg
atoms in the BEC caused by the Rydberg blockade mech-
anism at higher densities. Moreover, the interpretation
as an effective modification of the scattering length is not
obvious under these conditions.

In this paper, we show that a one-dimensional geom-
etry is preferential for the observation of BEC dressing.
We show that a sudden switch-off of the dressing interac-
tion (via switch-off of the dressing laser) results in collec-
tive BEC dynamics, which strongly suggests an interpre-
tation in terms of an effective change of the s-wave scat-
tering length. We show that the BEC breathing mode is
a tenable experimental signature to observe BEC Ryd-
berg dressing.

For the purpose of this paper we limit ourselves to
isotropic Rydberg dressing, by coupling to a Rydberg S
state with principal quantum number n. The key pa-
rameters are now the detuning ∆, the Rabi frequency
Ω of the coupling laser, and in particular their ratio
β = Ω/2|∆| [21–23]. The Rydberg population fraction
is then given by β2. In the regime of large detuning
|∆| ≫ Ω the ground state |g〉 is weakly dressed by the
Rydberg state |r〉 [23]:

|ψ〉 = |g〉 + β|r〉. (1)

The van der Waals coeffient C6 > 0 [44] of the
Rydberg state gives rise to a repulsive interaction
and determines the Rydberg blockade radius RB =
(

C6/2~
√
∆2 +Ω2

)1/6 ≈ (C6/2~|∆|)1/6. Combined with
negative (red) detuning ∆ < 0, this results in an effective
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two-body interaction between Rydberg-dressed states at
distance r [21]

W (r) = β4 C6

R6
B + r6

. (2)

To show why one-dimensional systems can be more
suitable for observing BEC Rydberg dressing we follow
the treatment of [43], where the authors consider an ad-
ditional energy from Rydberg dressing on an ensemble
of N atoms by calculation of the energy difference Θ be-
tween N interacting atoms confined in a Rydberg block-
ade volume VB with radius RB. By expressing Θ in
terms of atomic density ρ one can obtain the additional
energy from Rydberg dressing of an N atom ensemble.
The additional energy saturates above the critical density
ρB = 1/β2VB , which is a density with one excited Ryd-
berg atom per Rydberg blockade volume VB . This leads
to an overall offset of the chemical potential of the BEC,
but only to a small modification to the shape compared
to no Rydberg dressing. For a given Rydberg dressing
coupling β, only for low relative density ρ < ρB there is
a significant alteration to the BEC shape due to dress-
ing. In 3D, as considered in [43], one has VB = 4

3πR
3
B and

for typical parameters (RB = 3 µm, ∆/2π = 170 kHz,
Ω/2π = 10 kHz, such that β = 0.03 — a value that in-
duces a noticeable modification to the BEC, as will be
shown later), this results in ρB,3D ≈ 1013 cm−3, which
is lower than typical 3D BEC densities, which are rather
in the 1014 cm−3 range. In 1D, the case we consider
here, one has a 1D blockade volume VB = 2RB, lead-
ing to a different scaling of ρB. For the same parame-
ters (RB , ∆ and Ω as above) the linear blockade density
ρB,1D ≈ 200 µm−1, which is higher than typical linear
densities of . 50 µm−1 achieved, for example, with 1D
BECs in atom chip experiments [45–47]. The argument
derived in [43] is for a cloud of ground-state atoms, con-
taining one Rydberg atom only. As we wish to consider
the case of multiple Rydberg excitations we derive a mean
field energy starting from the full quantum many-body
description.

We assume a cigar-shaped BEC, with a radial trap-
ping frequency ω⊥ much larger than the axial trapping
frequency ω0 and the chemical potential, such that it
satisfies the criteria of a 1D BEC. Assuming quantum
oscillator units E0 = ~ω0, l0 =

√

~/mω0, t0 = ω−1
0 as

units for energy, length and time, respectively, we start
from the 1D Hamiltonian for N atoms with long-range
interaction W :

Ĥ =

∫

ψ̂†(x)

[

−1

2
∂2x +

g0N

2
ψ̂†(x)ψ̂(x) +

1

2
x2

]

ψ̂(x)dx

+
N

2

∫ ∫

ψ̂†(x)ψ̂†(x′)W (|x− x′|)ψ̂(x′)ψ̂(x)dxdx′.

(3)

It might not be directly obvious that the long range in-
teraction in Eq. (2) can be directly incorporated in the
Gross-Pitaevskii (GP) equation, therefore, as a standard
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Figure 1. (a) Relative change of the mean-field coupling geff
and (b) relative change of the effective trapping frequency ωeff

as function of the Rydberg dressing parameter β, for Rydberg
states 35S (black line) and 50S (red line), in 87Rb.

procedure [48], we formally derive the generalized GP
equation by first expressing the order parameter as the

mean of the field operator ψ(x) = 〈ψ̂〉. From this, we
calculate the energy functional of a BEC as

E[ψ] =

∫
[

−1

2
|∂2xψ(x)|2 +

g0N

2
|ψ(x)|4 +

1

2
x2|ψ(x)|2

]

+N

∫
[

1

2
|ψ(x)|2

∫

W (|x− x′|)|ψ(x′)|2dx′
]

dx.

(4)

From a variational argument, the generalized 1D GP
equation can be derived as

i∂tψ(x) =

[

−1

2
∂2x + g0N |ψ(x)|2 +

1

2
x2 + VMF

]

ψ(x),

(5)
where N is the particle number, and g0 is the one-
dimensional mean-field coupling parameter proportional
to the s-wave scattering length as. In physical units
g0 = 2as~ω⊥ [49], which corresponds to g0 = 2as

l0
ω⊥

ω0

in our dimensionless units. The long-range dressed in-
teraction appears in the equation as an energy dressing
VMF in the mean-field regime

VMF = N

∫

W (x− x′)|ψ(x′)|2dx′, (6)

which is treated in the same way as the long-range dipole-
dipole interaction in dipolar BECs [50–52].

Let us first assume a BEC in the ground state ψ0 of
Eq. (5) without the VMF term. The BEC has approx-
imately a Thomas-Fermi profile with radius RTF . We
show in the following that under weak Rydberg dress-
ing, indicated by β ≪ 1, the BEC ground state is only
slightly modified by the presence of VMF . Such a mod-
ification can be interpreted as an effective change of the
mean-field coupling strength g0. For the case of a large
particle number N (or low Rydberg principal quantum
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number n) we can assume that the Thomas-Fermi ra-
dius RTF of a 1D BEC is much larger than the Rydberg
blockade radius RB , which allows us to approximate the
VMF term as VMF ≈ N |ψ(x)|2

∫

W (x′)dx′. Contrary to
the dipole-dipole interaction or bare van der Waals in-
teraction, the combination of short-range saturation and
long-range 1/r6 tail of Eq. (2) assures that the above
integral is finite, and therefore gives a correction to the
mean-field coupling g0 (in physical units) of

geff = g0 +
2

3
π
C6

R5
B

β4 = g0 +
π

12

~Ω4

|∆|3RB. (7)

This results in a direct interpretation of Rydberg dressing
of a BEC as an effective tuning of the s-wave scattering
length. Note that when these conditions are applied to a
3D BEC, we similarly find

g3Deff = g3D0 +
2

3
π2 C6

R3
B

β4 = g3D0 +
π2

12

~Ω4

|∆|3R
3
B , (8)

which already had been derived in Refs. [23, 42, 43]. Also
note that an effective change of the scattering length is
not obvious from Ref. [43]: such an interpretation is pos-
sible only from an energy proportional to the density,
which is not the case in this treatment.

A complementary interpretation to the change of the
mean-field coupling constant would be an effective change
in the trapping frequency:

ωeff

ω0
=

√

g0
geff

=
1

√

1 + 2
3π

C6

R5

Bg0
β4

=
1

√

1 + π
12

~Ω4

|∆|3
RB

g0

.

(9)
Figure 1 shows both the relative change in the mean
field interaction and in the effective trapping frequency,
for two different Rydberg states, and for experimen-
tally realisable values of the dressing coupling parame-
ter. On the other hand, for small particle number N
where RTF . RB, the two-body interaction W (r) in
Eq. (2) is basically constant over the system size, and
therefore the dressing energy term VMF has a constant
value: VMF ≈ Nβ4C6/R

6
B, which gives only an overall

energy level shift of the system which we do not investi-
gate further since it does not impact the dynamics.

A sudden switch-off of the dressing laser, which
should take place on a timescale much faster than other
timescales in the system, results in a sudden change of
the harmonic trapping frequency from ωeff to ω0. This
non-adiabatic change results in the excitation of a BEC
breathing mode [53–57]. The dynamics of a BEC can be
described by the collective motion of atoms with time-
dependent density ρ(x, t) ∝ 1

λ(t)ρ0 (x/λ(t)), where ρ0(x)

is the initial BEC density at time t = 0, and the scaling
parameter λ(t) obeys

d2λ

dt2
=
ω2
eff

λ2
− ω2

0λ. (10)

A solution of this equation is periodic, with an amplitude
dependening on ωeff , and a frequency ωb ≃

√
3ω0 [58].

Figure 2. a) Ground state |g〉 dressed with the Rydberg level
|r〉 via intermediate state |e〉 with the corresponding Rabi
frequencies and detunings. b) Two level system with effective
Rabi frequency and detuning.

In the regime of weak dressing, β ≪ 1, an approximate
analytical expression for λ has the form

λ(t) =
1

1 +A
(cos(

√
3ω0t) +A), (11)

where A = (1 + λmin)/(1 − λmin) and λmin is an ex-
perimental observable that corresponds to the minimal
radius of the BEC, which can be directly compared to
the solution of Eq. (10).

We also consider another scenario, namely a simultane-
ous switch-off of the Rydberg dressing and the axial har-
monic trap (while maintaining the radial confinement).
This corresponds to an axial expansion of the BEC with
scaling parameter λ described by

d2λ

dt2
=
ω2
eff

λ2
. (12)

After a sufficiently long time, when the interactions have
become negligible, the BEC expands ballistically with
velocity veff =

√
2ωeff and scaling parameter λ(t) ≃ vefft.

We now compare the predictions above with the exact
numerical solutions of Eq. (5), and include realistic ex-
perimental parameters. In practice the atomic system is
a three-level system (Fig. 2a) with atomic ground state
|g〉 coupled to Rydberg S-state |r〉 via the intermediate
state |e〉. The Rabi frequency and detuning for the tran-
sition from |g〉 to |e〉 are Ω1 and ∆1, while for the similar
transition from the intermediate state |e〉 to the Rydberg
state |r〉 they are denoted as Ω2 and ∆2. The intermedi-
ate level |e〉 is far detuned, |∆1|, |∆2| ≫ Ω1, Ω2 and can
be adiabatically eliminated which effectively reduces the
three-level system to a two-level system (Fig. 2b) with
two-photon Rabi frequency Ω = Ω1Ω2/2∆1 and total de-
tuning ∆ = ∆1 +∆2, with |∆| ≪ |∆1|, |∆2|. We assume
N = 2000 87Rb atoms with an s-wave scattering length
as = 99a0 (where a0 is the Bohr radius) [59] confined
in an asymmetric harmonic trap with radial frequency
ω⊥ = 2π × 3000 Hz and axial frequency ω0 = 2π × 30
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Figure 3. Time evolution of the BEC scaling parameter λ in
an external harmonic trap, after a sudden switch-off of the
Rydberg dressing. The initial state corresponds to a BEC
ground state coupled to (a) the 35S and (b) 50S Rydberg
states for different coupling β = (0.01, 0.03, 0.05), giving rise
to increasing amplitude in the figures. Black lines correspond
to numerical results while red dashed lines correspond to an-
alytical predictions.

Hz. These parameters correspond to a mean-field cou-
pling strength g0 = 2.08× 10−34 Jm = 0.53~ω0l0, a BEC
radius of the undressed BEC RTF = 22.3 µm = 11.4l0,
with length unit l0 = 1.96 µm and time unit t0 = 53 ms.
The C6 coefficient for the 35S state is 1.2531×10−61 Jm6,
and for the 50S state it is 1.0262 × 10−59 Jm6 [44].

First, we consider the breathing mode of the BEC. We
integrate the time-dependent GP equation (5) with the
initial condition being the Rydberg-dressed BEC ground
state. At time t = 0 we suddenly switch off the Rydberg
dressing and allow this equation to evolve without the
VMF term. The BEC is therefore no longer in its ground
state and the time-evolution reveals collective dynamics.
We numerically calculate λ defined as λ(t) = R(t)/R0,
where R(t) is the radius of a BEC at time t while R0 is
the initial BEC radius. In Fig. 3 we present a comparison
between the (numerical) solution of the GP equation and
the (analytical) prediction of Eq. (10) for the evolution
of the scaling parameter λ. The agreement between both
models is excellent. The periodic behavior of λ indicates
a BEC breathing mode with the expected breathing fre-
quency ωb =

√
3ω0 [58] and an amplitude dependent on

ωeff , which depends on β. In Fig. 4 we present a compari-
son between numerical results and analytical predictions
for the free axial expansion of a BEC. Similar to the
previous case, the agreement between the analytical and
numerical models is excellent.

The lifetime of the Rydberg-dressed state should be
much longer than the timescale of the trap dynamics,
which is 5 ms for the parameters considered here. We
calculate this lifetime by considering a weak admixture
to the intermediate state |e〉 = |5P3/2〉 with a decay rate
Γ5P3/2

, and an admixture of the Rydberg state |r〉 =

|nS〉 with a decay rate Γ|nS〉, which results in an effective

2

4

6

8

 λ
 

0 1 2 3 4 5 6 7
time [t

0
]

2

4

6

8

 λ
 

a)

b)

Figure 4. Time evolution of the BEC scaling parameter λ

after a simultaneous switch-off of the Rydberg dressing and
the external harmonic trap. The initial state corresponds to
a BEC ground state coupled to (a) the 35S and (b) 50S Ryd-
berg states for different coupling β = (0.01, 0.03, 0.05) (from
top to bottom). Black lines correspond to numerical results
while red dashed lines correspond to analytical predictions.
The blue dashed line corresponds to free evolution without
initial dressing, i.e. β = 0.

decay rate [23]

Γeff =

(

Ω

2∆

)2

Γ|nS〉 +

(

Ω1

2∆1

)2

Γ5P3/2
. (13)

The decay rates and lifetimes for Rb Rydberg states
can be expressed as Γ|nS〉 = Γs/n

ǫ and τ|nS〉 = τsn
ǫ,

where ǫ = 3.0008, τS = 1.368 ns and Γs/2π = 116 MHz
[60]. The intermediate state decay rate is Γ5P3/2

/2π =
6.1 MHz. For the considered dressing-coupling param-
eters β equal to 0.01, 0.03 and 0.05, with Ω1/2∆1 =
4 × 10−4, the corresponding lifetimes are found to be
140 ms, 47 ms, and 21 ms for 35S, while these are 150 ms,
88 ms and 48 ms for 50S. These lifetimes are sufficiently
long to allow the BEC to equilibrate to the new ground
state when Rydberg dressing is switched on.

The Rydberg-mediated control over the interactions
we have discussed here offers an important alternative to
previously considered schemes. For instance, Feshbach
resonances allow for time-dependent non-linear dynam-
ics as they can be utilized for a periodic modification of
the mean field coupling. This was proposed by Saito and
Ueda [61], who considered a sinusoidal time-dependent
modulation of the coupling constant, and by Kevrekidis
[62], who considered a block-type of periodic modula-
tion of the mean-field coupling constant. This type of
Feshbach-mediated manipulation is rather slow, not al-
lowing for rapid switch-on and switch-off of the coupling
constant. With the help of Rydberg dressed interactions,
now delta-function type mean-field kicks of the conden-
sate are possible. This opens up the experimental study
of a new type of kicked-quantum rotor, where in contrast
to the regular kicked BEC the mean field interaction is
kicked and not the external trapping potential.
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In conclusion, we have demonstrated that one-
dimensional systems are preferable to three-dimensional
systems for utilizing BEC Rydberg dressing, based on a
simple dimensional scaling of the Rydberg blockade vol-
ume. We have shown how Rydberg dressing effectively
changes the s-wave scattering length in the BEC coupling
parameter, and how dressing can be observed experimen-

tally from the collective dynamics of the condensate. The
presented results correspond to realistic experimental pa-
rameters and lifetimes.
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