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We theoretically investigate the role of confinement-induced resonances (CIRs) in low-dimensional ultracold

atomic mixtures in the formation of weakly bound dimers. To this end, we examine the scattering properties of a
binary atomic mixture confined by a quasi-one-dimensional (quasi-1D) potential. In this regime, the interspecies
two-body interaction is modeled as an effective 1D zero-range pseudopotential, with a coupling strength g;p
derived as a function of the three-dimensional scattering length a. This framework enables the study of CIRs

in harmonically confined systems, with particular attention paid to the case of mismatched transverse trapping
frequencies of the two atomic species. Finally, we consider the Bose-Fermi mixture of *Rb and ¥’Sr and identify
values of the experimentally accessible parameters for which CIRs can be exploited to create weakly bound

molecules.
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I. INTRODUCTION

Ultracold gases of polar molecules have emerged as a
rapidly advancing field of research [1]. Owing to their
long-range, anisotropic dipole-dipole interactions, these sys-
tems offer a highly versatile platform for a wide range
of applications, including quantum simulation [2], precision
measurement [3,4], and quantum chemistry [5]. However,
the creation of an ultracold gas of dipolar molecules poses
significant challenges. Experimentally, two methods for creat-
ing ultracold gases of ground-state molecules are commonly
employed. The first consists of starting with a thermal gas
of molecules and cooling it down via laser techniques [6—8].
Yet, the complicated internal, electronic, rotational, and vi-
brational structure of the molecules can limit their ability to
scatter enough photons, often making laser cooling ineffective
for many molecular species [9]. The second method involves
starting from an ultracold gas of unbound atoms and asso-
ciating them to weakly bound molecules through adiabatic
passage across a resonance. These weakly bound molecules
can then be directly associated to their rovibrational ground
state via stimulated Raman adiabatic passage [10-12]. Form-
ing the initial gas of weakly bound molecules usually requires
the system to have a readily accessible broad magnetic Fes-
hbach resonance [13] as seen in many bialkali systems, e.g.,
K-Rb [10]. Because such broad resonances may not be avail-
able in some ultracold mixtures, for example, due to a weak
magnetic response of the atoms or the resonance appearing at
very large magnetic fields [14], a different approach becomes
necessary.
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In this work, we theoretically investigate the use of a dif-
ferent kind of resonance as a pathway for creating weakly
bound molecules: the confinement-induced resonance (CIR)
[15-21]. CIRs arise in ultracold gases when atoms expe-
rience a strong confinement along one or more directions
that effectively reduces their dynamics to lower-dimensional
regimes. Here, we focus on quasi-one-dimensional (quasi-1D)
mixtures of alkali and alkaline-earth atoms. The correspond-
ing heteronuclear dimers constitute a particularly interesting
system thanks to their sizable electric and magnetic dipole
moments [22]. Unlike bialkali dimers, however, the formation
of these molecules via magnetoassociation poses consider-
able challenges. This is primarily due to the nonmagnetic
ground state of alkaline-earth atoms, which is responsible
for exceedingly narrow Feshbach resonances [23-25]. In this
context, the use of CIRs emerges as an appealing alternative.
Taking into consideration the relevant Bose-Fermi mixture
of 8’Rb and ¥’Sr confined by a quasi-1D harmonic potential
(see Fig. 1), we perform a numerical analysis to characterize
the emergence of CIRs. We emphasize that the formation of
molecules via two-body CIRs requires a coupling between the
center of mass and relative motion, as established in Ref. [19].
In the present case, such coupling is introduced by the mis-
match in trapping frequencies between the two atomic species,
giving rise to narrow inelastic resonances associated with ex-
cited center-of-mass bound states. In light of this mechanism,
our investigation ultimately aims to identify suitable values of
tunable parameters that could support ongoing experimental
efforts toward realizing ultracold 8’Rb - 87Sr dimers.

©2025 American Physical Society
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FIG. 1. (a) Scheme of the system: a mixture of two species with
masses m; and m, confined by quasi-one-dimensional potentials
with different trapping frequencies. The interspecies interaction is
represented by the regularized zero-range pseudopotential V (r), with
r being the interparticle distance, u being the reduced mass, and
a being the 3D scattering length. (b) Harmonic potentials along
direction & = x, y, z for the two species i = 1, 2. Direction z is the
direction of weak confinement.

This paper is organized as follows: In Sec. II we de-
scribe the two-body problem consisting of one particle of
each species interacting via a contact potential. In Sec. III we
show how scattering properties are extracted, and we provide
explicit expressions for the specific case of harmonic confine-
ment. These two sections closely follow the description in
Ref. [17] and are reported here for the sake of completeness.
In Sec. IV, we describe how the spectrum is computed in
the 1D limit. In Sec. V, we present a numerical analysis
based on the previous sections. Some comments on how our
results are relevant for ongoing experiments are provided in
Sec. VI. Finally, the conclusions and outlook are summarized
in Sec. VII.

II. TWO-BODY PROBLEM

A. Hamiltonian and Schréodinger equation

We consider two different atomic species with masses 1,
and my. Each of them is confined by a two-dimensional ex-
ternal potential Vi(x, ;), where X, ; = (x;, y;) indicates the
coordinates of species i along the transversal direction of
confinement. The longitudinal coordinate is labeled z;, and
the corresponding confinement is assumed to be negligible.
Moreover, we assume that we are in the ultracold regime,
where only s-wave scattering is relevant to describe the atom-
atom interaction. The latter can therefore be modeled by the

zero-range regularized pseudopotential
2ra a
Vir)=—380)—r (1
w ar

where r is the separation between the two atoms, u is the
reduced mass, and a is the three-dimensional (3D) intra- or
interspecies scattering length. Here and throughout the paper,
we set 7 = 1. The Hamiltonian of a system consisting of one
particle of each species is

2
H= 222 |:2p—’;11 + Vi(XJ_,i)i| + V(Ix1 — X21). 2)
i=1,

It is convenient to transform Eq. (2) in the center-of-mass and
relative coordinates defined by

myX) + mpXp

R=—— r=x —xp, 3
i X| — X 3)
with the corresponding momenta
mopy + mip2
P=pitp. p=———" 4)

where M = m; + my. We note that the longitudinal center-
of-mass coordinate is decoupled from the other degrees of
freedom because the confinement is purely transversal. Hence,
the system is entirely characterized by the set of coordinates
(R, r) or, alternatively, by (x, 1, X1 2,z). Here, R, is the
center-of-mass transversal coordinate, while z is the longitu-
dinal relative coordinate. Analogous notation will be adopted
for the momenta. The Hamiltonian can be written as

H=H+H"+H® +Vv(), (5)
with H = pg/(ZM) and
L

g —
L 2m,-

+ Vi(x1,i). (6)

With the aim of computing the scattering properties of such a
system, we start from the two-particle Schrédinger equation,

(Ho — E)¥(R.,r) = =V(r)¥U(R,, 1)
Ry
2u
where we defined the noninteracting Hamiltonian Hy = H —
V and, in the last equality, we explicitly took into account the

pseudopotential in Eq. (1) by imposing Bethe-Pierls boundary
conditions,

8(r), (7

R
WR,.r— 0)~ %(1 _ 2) (8)

The general solution to Eq. (7) can be formally written as
VR, 1) =W¥(Ry,T)

JR))
2u
where the first term on the right-hand side is the solution to the
homogeneous equation (Hy — E)W¥y = 0, while the second is
the particular solution written in terms of the Green’s function
Gg = (Hy — E)~'. Therefore, all the information on the scat-
tering between the two particles is contained in f(R ). Later

in the paper, we shall see how to extract it.

+/ dR| Ge(R.,r;R/,0) )
R2
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Before proceeding, we remark that the energy E indicates
the total energy of the system,

k2
— (1 (2)

E = ﬂ +E, +E, (10)
where k is the longitudinal relative momentum and #; is the
transverse quantum number of particle i. States with fixed n,
and n, are referred to as channels, which are said to be open
when E > EV + E») and closed otherwise.

B. Imaginary-time propagator

Let us write the Green’s function of the system as
[o.¢]
Ge(R, ;R ,0) = / dt "' G,(R., r;R,0),  (11)
0

with the imaginary-time propagator [26]
G/(R.,1;R|,0) = (Ri,rle ™R}, 0).  (12)

According to Eq. (5), we can factorize the longitudinal and
transversal contributions. The former is the imaginary-time
propagator of a free particle,

1/2 ,
Gl ) = () e (13)

while the latter reads

—_HD _E® i (i
(x, e X ) =" YD )P (), (14)

n

with () being the eigenstates of H\” with eigenvalue E®.
Hence, we can write Eq. (12) as follows:

G/(R, ;R ,0)

" 2 _E® i T (i
_ /ﬂe 21/(21) H Ze En,.rwlgj)(xl,i)l/f,gj)(x;i).
T =12 n
(15)

We observe from the definition in Eq. (12) that the integrand
in Eq. (11) decays with exp[—Ept] at large times, where
Ep = Ey — E is the binding energy and Ey = E(()]) + Eéz) is
the ground-state energy of Hy. However, the term with n; =
ny = 0 gives a contribution to the Green’s function propor-
tional to 1/+/Eg [27], which is divergent when Ep approaches
zero. Therefore, as soon as the lowest channel opens at E =
Ey, it is useful to separate its diverging contribution from
that of the closed channels. We do that by substituting the
transversal Hamiltonian H, ; in Eq. (14) with its projection
onto the Hilbert subspace orthogonal to the open channel. In
the next section, we indicate with a tilde the operators that
require such a precaution. Finally, we note that this approach
can be generalized to the case where excited states become
energetically open.

III. SCATTERING SOLUTIONS

The aim of this section is to derive solutions to the two-
body problem defined above.

A. General results

The incoming state in the two-particle problem is conve-
niently written as

Wo(X 11, X1 0, 2) = Xy (xL DY (X102)
=™ YRy, 1)), (16)

with 1//5“ being the single-particle transversal ground state and
k = /2u(E — Ep) being the longitudinal relative momentum.
We can write the Green’s function as

’ 7 / i,bL i
Ge(R1, 1R, 0) =Yo(Ry, r)Yo(RL, 0)=€™

o0
+/ dt ' G,(R., R, 0), (17)
0

where we used Eq. (11) and we explicitly separated the contri-
bution from the open channel. Note that G, is simply obtained
by subtracting from the sum in Eq. (15) the open-channel
contributions, i.e., the term with n; = n, = 0 in our case.
In the limit r — 0, we can once again impose the boundary
conditions in Eq. (8) and obtain the following integral equa-
tion for f(R):

R ~
——fi L _ f dR) Tz (R, R))f(R)) + Yo(RL, 0)
wa R2

+ W / dR' Jo(R', 0)f(R)), (18)
R2

where we defined the integral kernel
(R, R))

1 r~ u
= lim > [ Ge (R0, 1R}, 0) = SRy~ R))>E- ] (19
r%02/¢L E( 1 1 ) ( 1 L)an ( )
with G being the closed-channel contribution to the Green’s
function, i.e., the second line of Eq. (17). Note that we can
absorb the term proportional to the Dirac delta in the definition
of ¢ inside the time integral. We do that by writing

o 32
LZ/ dt (L> e, (20)
0

2nr 2wt

which gives
P / * dt Et 7~ /
é‘E(RJ_yRJ_)Z ﬂ e G[(RJ_,O;RJ_,O)
0

Y sR, - R 21
~(55;) s®.- n] @
We refer to Sec. III B for the explicit derivation of CN;, in the
case of harmonic confinement and to_the Appendix for the
computation of the matrix elements of {g.

In order to understand how ¢z is related to the scattering
properties, we now expand Eq. (18) in the basis | j) defined by

=D 56l fi= fR AR GIR)SRL),  (22)
J

with the ground state defined by (R |0) = c¥o(R_,0),
where ¢ is a normalization constant. We can then write
Eq. (18) in a compact form:

N 10 ]

1o =t 0N+ TN @)
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whose formal solution is given by

_ Ve gz 1y
|f>—1_l./(kam)(f:£+4m) 10, (24)
with
2
ap = — 2 (25)

(OIge + 1/(4ma)]~1|0)
To check that this can, indeed, be identified with the 1D scat-
tering length, we consider the solution for a large separation in
the longitudinal direction z. In this limit, the contribution from
the open channel dominates in Eq. (17), and Eq. (9) gives the
scattering solution

YR ) = YoRo, 1)l + fo(k)e™ ], (26)
with the even scattering amplitude
i _
Je(k) = —/ dR' Yo(R', 0)f(R). 27
2k Jr2

Using Eq. (24) and the definition of the basis in Eq. (22),
we get f.(k) = —1/(1 + ika;p), showing that the term a;p
assumes the role of the 1D scattering length. We can there-
fore describe the effective atom-atom interaction with a 1D
potential

Vip = gipd(z — 2, (28)
with interaction strength gip = —1/(uaip). Indicating by A,
the eigenvalues of ¢r and by |e,,) its eigenvectors, we can write
1 (0len)|?
= . 29
8D =5 e Z o+ 1/(d7a) ( )‘
O ML e~ Lt e oLt
(X le™™ X, ) = == T P | 2w Li T

Now, the transverse propagator for the two particles is
obtained as the product of the two single-particle propagators.
This can be written in a convenient form when z — 0. In this
limit, the two particles are on top of each other, and x; ; =
R, where R, is the transverse center-of-mass coordinate.
Using the definitions ¢, ; = 1/, /mo1;,

1 &,
u = , =
Jmioy |+ moy 4

f(t) = Beoth(wy 1) + (1 — B)coth(w 1),

g(¢)=ﬁm+(1—ﬂ)m, (33)

the propagator in the transversal direction can be written in
the following compact form:

_H®
[]xde ™ %, ,)

i=1,2
e~ @Lit e~ @12l
= l — 972wl_1t 1 — 672wi_21
B —B) R +R/’ R, -R/
X e —f({t)————— t .
o oR| SO =

(34)

From this definition, we observe that one resonance appears
for each eigenvalue ,, provided that the overlap between the
corresponding eigenvector and the ground state of the basis
does not vanish.

B. Harmonic confinement

Let us consider the case of harmonic confinement. We
indicate with w, ; the transverse frequency corresponding to
particle i, and we consider the general case where w; | #
) ». The single-particle transverse propagator in Eq. (14) can
be written as the product of two sums along x; and y;, with
wave functions v and energies E,, given by the eigenstates
and eigenenergies of the 1D harmonic oscillator in the corre-
sponding direction. Dropping all the indices for brevity, we
have E, = w;(n+ 1/2) and

1 maow 4l moy 2
n = - A H, s 30
i = ——=(=) e [marxl,  (0)
where H, are Hermite polynomials. The contribution

from each direction is computed by using the following
identity [28]:

C 1 AV
; 2n_n!Hn(x)Hn(x )%_

1 2xx'E — (2% 4+ x?)E?

e R
where £ = exp(—w, t) in our case. The product of the two
directions gives

], €1y

e—ZwJ_'[t

1

/
X1i-X1,;— miwj_,i<_

2+

Jot+x2] e

l — e*zwLit

(

As we mentioned in Sec. III A, when the lowest channel is
open, we need to separate its contribution from Eq. (34). This
is done by subtracting the term corresponding to n, = n, =
0 for the two particles. Combining the previous results and
considering the longitudinal propagator in Eq. (13) in the limit
7,7 — 0, we obtain the imaginary-time propagator projected
onto the Hilbert space of closed channels:

G,(R.,0;R',0)

RI+R/’ R, R’
_ [ pa—p el - FOgs +aOREH]
2t nzﬁill (1 — e~20011)(] — g=2w1at)

R + R/’

35
T (35)

— eXp|: — i| }e(wi,l‘i‘wl,z)t.

The previous equation is used in Eq. (21) to obtain EE The
latter is then diagonalized to obtain the 1D interaction strength
g1ip, as discussed in the previous section, with the normal-
ization constant given by ¢ = /m€1€y/¢y in the case of
harmonic confinement. The calculation of the matrix elements
of ¢g is detailed in the Appendix.
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IV. SPECTRUM IN THE 1D LIMIT

Here, we consider the system described in Sec. II in the
limit where the transversal trapping is infinitely tight and
the particles are forced to move in the longitudinal direction.
The longitudinal confinement of the two species, which was
previously neglected, is now taken into account and is repre-
sented by a harmonic potential with frequencies w; and w;.
In this scenario, the atom-atom interaction is modeled by a
one-dimensional contact potential.

The energy spectrum as a function of the 1D scattering
length can be computed similarly to that in Ref. [29]. The 1D
Hamiltonian is written in terms of the center-of-mass (Z, P,)
and relative coordinates (z, p;) as

Hip = Heom + Hye) + Kk 2Z. (36)

The first and second terms on the right-hand side correspond
to the Hamiltonian of the center-of-mass and relative har-
monic oscillator:

Heom = F + me: z?
com — 2M 2 £
P po?
Hrel = —+ _Zz + VID(Z)a (37)
21 2

where Vip(z) is defined in Eq. (28). The frequencies are

given by
1+ A 242
Q=w,/ + , ®=w L, (38)
140 o(l+0)

with o = my/m; and A = myw3/(m?). The last term in
Eq. (36) is the coupling between the center of mass and
relative motion with the coupling coefficient

o—A

1+
Note that w; = w, implies k = 0, meaning that the center of
mass and relative motion separate in that case. It is convenient

to write the matrix elements of H)p in the basis given by the
product states:

K =mw (39)

Unn(Z,2) = On(Z)en(2), (40)

with @y (Z) and ¢,(z) being the eigenstates of H.on and Hi,
respectively. For every N, ®5(Z) is simply given by Eq. (30)
with the appropriate frequency and mass. On the other hand,
©n(z) is given by the same expression only when »n is odd,
in which case it vanishes at z = 0 and the contact interaction
has no effect. When 7 is even, the relative wave functions are
perturbed by the interaction potential and are given by

_ _ue 2 Vv 1 >
on(x) =Ape 27U — —, pwz” |, 41

272
where A,, is a normalization factor and U (a, b, z) is the Tri-
comi confluent hypergeometric function. The corresponding
eigenvalue is given by &, = w(v, + 1/2) (see Fig. 2), where
v, is the noninteger solution to the equation [30]

D(—e,/2+1/4)

(—e,/2+3/4) P (42)

en/ (hw)

aip/rel

FIG. 2. Energy spectrum of H, as a function of the 1D scattering
length. Thick black lines: energies for even n approaching the non-
interacting values (gray dashed lines) at large negative or positive
values of a;p. Thin green lines: energies for odd n. Units are rescaled
with respect to the energy fiw and length £, = </Ti/(uw) of the
relative harmonic oscillator.

with I'(z) being Euler’s gamma function and a|p being the
1D scattering length. Note that the definition of v, can be
extended by establishing that v, = n when n is odd. In do-
ing that, the definition in Eq. (41) can be used as a general
definition for the relative wavefunction since it retrieves the
wave function of the unperturbed harmonic oscillator when
v, is a positive integer [31]. The matrix elements of Hip are
therefore given by

[Hiplij = QN + 3)8i.; + o(vs, + )81
+ K (@, (2)|2]@n, (D) PN, (2)1Z| Py, (Z)),  (43)

and the energy spectrum is obtained via numerical diagonal-
ization.

V. NUMERICAL ANALYSIS

The following numerical analysis is devoted to the case of
harmonic confinement. Moreover, we focus on the ultracold
regime where E — Ej and only the ground state is energet-
ically open. Results are therefore based on the derivations in
Secs. I B and IV.

Without loss of generality, we always consider the masses
of the two species to be those of 8’Rb and ¥’Sr, where mg;, ~
86.9092m, and mg, ~ 86.9089m, (m, ~ 1.6605 x 10727 kg).
Note that, from this point forward, we will use a subscript 1 to
denote quantities related to the strontium atom and a subscript
2 for those related to the rubidium atom.

A. Resonance position

Let us start by studying the position of confinement-
induced resonances for different values of the ratio w, »/w, 1
in the quasi-1D regime. We recall that in this regime the
confinement is purely transversal. In Fig. 3(a), the interaction
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FIG. 3. Confinement-induced resonances for different frequency
ratios. (a) Interaction strength gip as a function of scattering length.
(b) Values as of scattering length a for which the main (black
circles) and second resonance (gray diamonds) appear. Dashed lines
indicate the analytical value obtained for w, » = w, ;. The positions
of the resonances shown in (a) are highlighted with the corresponding
color. Dotted lines are only a guide to the eye.

strength gip as defined in Eq. (29) is plotted as a function
of the 3D scattering length a for different values of the trap
frequency ratio w, »/w, 1. We observe that in the case where
w, » = w1 (black dashed line), only one resonance appears.
This can be interpreted as a zero-energy Feshbach resonance
due to the binding energy of the first excited relative-motion
state matching the continuum threshold of the open channel
[16,17]. The position of this resonance is computed analyti-
cally in Ref. [15].

As the frequency ratio deviates from unity, an additional
narrow resonance appears for lower values of a. Figure 3(b)
shows the values a,s of a at which the main and second
resonances in gp are located for different ratios. We observe
that the position of the second resonance (gray diamonds)
decreases as w, »/w, | increases. Like in the case with equal
traps, this resonance has a Feshbach-like interpretation. In
this case, however, it is related to the first excited center-of-
mass bound state. Note that, in principle, a distinct resonance
is associated with each of the higher excited center-of-mass
states. However, their width is vanishing in the range of values

that we consider for the trap ratio. The position of the main
resonance (black circles), on the other hand, presents a
minimum around @, » =2w,, and does not have a simi-
lar interpretation. We can therefore speculate that the state
responsible for its presence is a nontrivial combination of
center-of-mass and relative bound states.

B. Spectrum of the ¥ Rb - ¥’Sr mixture

We now consider the specific case where 8’Rb and ¥’Sr
are confined by the same optical dipole potential. Due to
their different polarizabilities, the two species experience
distinct trapping frequencies. Specifically, at the commonly
used optical trap wavelength of 1064 nm, the resulting trap
frequency ratio is w(1)» > 1.82w(1),1 for both the transverse
and longitudinal directions. Combining the results derived in
Secs. III and IV, we compute the 1D spectrum as a func-
tion of the 3D scattering length a. This is done by mapping
a to a;p using Eq. (29) and diagonalizing the Hamiltonian
in Eq. (43).

In Figs. 4(a) and 4(b), we present the spectrum and the
corresponding values of the 1D scattering length, respectively.
They are plotted as a function of the ratio between a and the
oscillator length associated with the perpendicular confine-
ment of strontium atoms ¢, |, as shown in the lower axis of
Fig. 4(b). The upper axis of Fig. 4(a) indicates the correspond-
ing dependence on the frequency w, ;, which is accessible
experimentally and is computed from the ratio a/€, ; by
considering the scattering length arp_s, = 1420ay between
8Rb and ¥'Sr in units of the Bohr radius ay. We observe
that the avoided crossings between trapped states and excited
bound states are found in a narrow range of values around
w1 = 12.418kHz (dotted vertical line), where a;p has a
pole and the spectrum crosses the asymptotic noninteracting
states (dashed horizontal lines). To better understand these
features, we recall that the scattering length in the 1D limit
is inversely proportional to the interaction strength. Hence,
large variations of a;p are obtained with small variations of
gip around zero. From Figs. 4(c) and 4(d), it is evident that
this can be achieved only in the region between the two poles
in gip, where the latter crosses the horizontal axes and a;p
presents a narrow resonance. Figure 2 shows that for large
positive values of ajp, the relative Hamiltonian supports a
shallow molecular bound state. We propose that such a bound
state may be populated by adiabatically ramping the system
toward smaller values of w, j, thus transferring atoms into
the molecular bound state. A possible pathway is indicated by
the red arrow in Fig. 4(a). The transfer efficiency is expected
to be high when the ramping timescales are long compared to
1/w, such that the system is allowed to adiabatically follow
the ground state in Fig. 4(a). It is worth noting that addi-
tional crossings between bound states and trapped states occur
in the range where a/¢, 1 < 5, i.e.,, w1 < 700kHz, which
is much more challenging to access in current experiments.
Furthermore, it is important to recognize that the reported
resonance position is found by assuming arp_s; = 1420 ay.
Experimental realizations should account for the uncertainty
in agrp_s, and its impact on this estimate.

We finally remark that these results are relevant for on-
going experiments involving the creation of weakly bound
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FIG. 4. Results for the ’Rb-¥’Sr mixture. (a) Spectrum in the
1D limit. The upper axis indicates the transverse strontium frequency
w, 1 considering the fixed interspecies scattering length ag,_r, =
1420ay (ay is the Bohr radius). Horizontal dashed lines correspond to
the asymptotic noninteracting states for different values of (n;, n,),
as indicated on the right side of the plot, with n; and n, being the
principal quantum numbers of the longitudinal harmonic oscillators
of strontium and rubidium, respectively. Purple lines are for n, = 0,
blue lines are for n, = 1, and green lines are for n, = 2. The vertical
dotted line indicates the position of the resonance of a,p appearing at
w; 1 =12.418kHz ora = 0.77647¢, ; (£, ; is the length associated
with w, ;). The red arrow indicates a possible pathway for dimer
formation: The system is prepared on the right side of the resonance
and adiabatically ramped across it to populate a bound state. (b) 1D
scattering length a;p = —1/(ugp) in units of £, ;. The bottom axis
indicates the 3D scattering length in units of £, ;. (c) 1D scattering
length on a broader range. (d) 1D interaction strength g;p. The values
used in previous plots are highlighted in black.

87Rb-%Sr dimers. In particular, the spectrum in Fig. 4(a)
reveals the coupling between excited bound states and lower-
lying trapped states. CIRs can therefore be exploited to
adiabatically ramp the system from a regime where the two
species are in their corresponding unbound trapped state to
the one where bound states are occupied. We refer to the next
section for a comment on this matter.

VI. RELATION TO EXPERIMENTS

In this section, we examine the experimental conditions
necessary for observing confinement-induced resonances in
87Rb - ¥7Sr mixtures and explore their potential as a pathway
for the formation of weakly bound dimers.

First, we remark that the observation of CIRs requires a
near-threshold molecular bound state with a binding energy
comparable to the harmonic trapping frequency. The selection
of the ’Rb - ¥Sr isotopologue is motivated by the existence
of such a bound state, with a binding energy of approximately
20kHz, well matched to typical trap frequencies achievable
in state-of-the-art optical dipole traps and optical lattices [32].
Tuning the harmonic trapping frequency across a CIR is
particularly important in ultracold mixtures with narrow Fes-
hbach resonances, as it enables controlled coupling between
the near-threshold bound state and the trapped atomic states.

This requirement narrows the range of suitable experi-
mental platforms for studying CIRs in quasi-one-dimensional
regimes. Two main approaches are particularly relevant: The
first employs a two-dimensional optical lattice to create tightly
confining, tubelike dipole potentials, effectively restricting
motion to one dimension. The second consists of using op-
tical tweezers for precise control of individual atoms or small
ensembles in highly anisotropic traps. Both methods offer
excellent tunability of dimensionality and interaction parame-
ters, providing ideal conditions for observing CIRs.

However, in the %’Rb-%'Sr system, the near-threshold
bound state results in a large three-dimensional scattering
length of approximately 1420ay, leading to strong interspecies
interactions and rapid three-body recombination losses. Sym-
pathetic cooling in overlapping traps is therefore inefficient.
To address this limitation, the atomic species undergo in-
dependent evaporative cooling in spatially separated optical
dipole traps before being adiabatically merged into a common
quasi-one-dimensional confinement potential. This sequential
cooling strategy minimizes interspecies collisions during crit-
ical evaporative stages while preserving phase-space density.

The detection of CIRs can be achieved by monitoring
atomic loss rates due to enhanced three-body recombination
near resonance, although this method becomes less sensitive
in quasi-1D systems due to the suppression of three-body
recombination in one dimension [33]. More precise detection
involves measuring interspecies thermalization rates, which
increase near a CIR as the effective one-dimensional scat-
tering length diverges [34]. Alternatively, photoassociation
spectroscopy can be employed, where resonantly enhanced
atom-molecule coupling leads to increased photoassociation
rates near resonance.

Based on these considerations, confinement-induced reso-
nances are expected to provide a promising route toward the
formation of weakly bound 8’Rb - 8 Sr dimers.

VII. CONCLUSIONS

We studied the emergence of confinement-induced reso-
nances in ultracold mixtures of two atomic species trapped
by harmonic quasi-1D potentials with mismatched trapping
frequencies. We systematically analyzed the behavior of CIRs
and their dependence on the ratio between the transverse
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trapping frequencies w, »/w, 1 of the two species (Fig. 3).
In the case of equal frequencies, it is a well-known result (see
Ref. [15]) that a single resonance appears. Our results show
that an additional narrow resonance attached to the first ex-
cited center-of-mass bound state emerges at smaller values of
the scattering length when the frequencies are different. Res-
onances attached to higher center-of-mass excited states are
vanishingly narrow for the considered values of the frequency
ratio. Furthermore, we focused on the case where 8’Rb and
87Sr are confined in the same trap, resulting in w(1)2/@w1),1 =
1.82 along all directions. The energy spectrum as a function
of the transverse frequency of strontium atoms suggests that
87Rb-¥'Sr dimers can be created by properly ramping the
system through a resonance that appears in the 1D scattering
length at w, ; = 12.418 kHz (Fig. 4).

This work provides a theoretical framework for the effi-
cient formation of ultracold gases of 8Rb-®"Sr dimers. In
doing so, it paves the way for extending the approach to other
alkali—alkaline-earth atomic mixtures. Additionally, possible
future extensions involve developing an analogous analysis
for quasi-two-dimensional geometries.
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APPENDIX: MATRIX ELEMENTS OF Zb
FOR HARMONIC CONFINEMENT

Here, we calculate the matrix elements of the operator EE
as defined in Eq. (21). To do that, we consider the basis

l R(X) R(y)
Ryl ny) = —u | == )vu(-=). (AD
Ly Ly Ly

where 1, indicates the 1D harmonic oscillator wave function
in Eq. (30), Rﬂ’_‘) is the first component of the center-of-mass
coordinate, and ¢, is defined in Eq. (33).

We start from the matrix elements of 5,:
[G(®)lnm = (ne, ny| Gy (R 1, 0; R’ 1, 0)|my, my)
— L we_(a&.l‘m&z)l
2t w3,

{ LF (6 )y [F (1) 1y,
X

(1 — e72001t)(] — e=2012t)

- nsn,O(Sm,O } ,
(A2)

where we defined

(F)lum = / ax / X' (X W (X)

X exp|: — %(X2 +X?%) + g(t)XX/i|
*© * o Hy(X)H,(X")
= dx dX ————
\/—oo —00 v w2t m!
X exp|: — #(X2 +X?) + g(t)XX’i|

(A3)

and the rescaled coordinate X = Rﬂ’_f) /€. Definitions along y
are analogous. Note that in the second equality, we explicitly
used the 1D harmonic oscillator eigenstates. The integral over
X is computed by means of the identity [28]

e’} , . OlZ/
dze™ " Hy(az) = V(1 - oﬂ)an[—f}’
w/;oo 1 — a2
(A4)
with @) ={2/[1+ fOI?, z=X/a@), and 7z =
g®)a(t)X’'/2. Completing the square in the exponential
in Eq. (A3), we are left with

a(l —a?): [

[F)ln = === | dX'Hu(X")
V2" plm! J 0o
2 2
g of 1 g
H, ———X X% =-==)]
* <zm )e"p[ (oﬂ 1 )}
(AS)
which can be computed using the following identity [35]:
*° 1
/ dye™ H,(py)H,(qy) = 22" F<M + E)V”é’"
—00
x oF| —n, —m;—M + l; Y8 rq ; (A6)
27 296

with 2M = m +n, y> = p* — 1, 8> = ¢* — 1, and »F, being
the hypergeometric function. To use this identity in Eq. (A5),
we define y = X'(1/a® — g?a?/4)"/?, and we perform the
change of variable X" — y. Finally, we can write the expres-
sion for the matrix element of {g:

s e () AT
[CE]n,m— ZM./O dt {e [Gt]n,m (27Tl> 8n,m}- (A7)
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