
The relation between Combinatory Logic and l-calculus 
In combinatory logic one can define abstraction operations that satisfy the b-

scheme; such abstraction operations determine translations of the l-calculus 
(lb or lbh) into combinatory logic. Conversely the combinators correspond 
with l-terms, so that CL lies embedded in lb. Because the combinators of the 
l-calculus reduce stepwise, for instance, Kx ––› ly.x whereas Kx is not a redex, 
and, more importantly, because l-abstraction is an operation of the l-calculus, 
these two translations do not produce a complete agreement between CL and 
lb. Generally speaking, combinatory logic is weaker. Curry [CL] conceived 
additional axioms that close the gap: a finite number (five, to be precise) of 
ground equations. (Ground means variable-free.) 

Barendregt sketches in [LC] another, more direct approach to the problem. It 
has inspired the present account. 

Let P be a term of CL (a combinatory term), and M a l-term. We denote by 
V(P) the set of variables occurring in P, and by FV(M) the set of variables oc-
curring free in M. If V(P) = 0⁄ , we call P a ground term. We abbreviate SKK to 
I, and note that Ix —–»w x. 

We use ≈ for formal equality and, informally, for provable equality (in a the-
ory determined by the context); and for convertibility, where sometimes rules 
will be indicated by subscripts. 

The deductive systems 
In all the theories considered here, there is some syntax defining terms, in-

cluding application, represented by juxtaposition; and terms s, t can be com-
bined in equations s ≈ t. All theories contain the schemes 
t ≈ t (identity), 
s ≈ t Þ t ≈ s (symmetry),  
r ≈ s & s ≈ t Þ r ≈ t  (transitivity),  
r ≈ s & t ≈ u Þ rt ≈ su  (application); 
beyond this, in lb we have (lx.M)N ≈ [N/x]M (b-contraction) and the x-rule 
M ≈ N Þ lx.M ≈ lx.N, and additionally in lbh: lx.Mx ≈ M, where x Ï 
FV(M) (h-contraction). Change of bound variables in l-terms is considered 
part of the syntax, and in every context (in particular that of b-contraction), the 
bound variables are assumed to be distinct from the free. In CL we have the 
combinator schemes KPQ ≈ P and SPQR ≈ PR(QR). 

Curry presents a list of defining clauses for abstraction in combinatory logic. 
Four are relevant to us: 

(a) [x].P  = KP if x Ï V(P) 
(b) [x].x  = I  
(c) [x].Px = P if x Ï V(P) 
(f) [x].PQ = S([x].P)([x].Q) 

Depending on which clauses we use, and the order in which we apply them, 
we get different definitions of abstraction. In particular, l*x results from (abf) 
— so l*x.P is KP if x Ï V(P), I if P = x, and S(l*x.P)(l*x.Q) otherwise —, 
l1x results from (bfa), and l2x from (abcf). Yet a fourth abstraction, l+x, is de-
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scribed by Hindley and Seldin [LCCI]. Call a combinatory term P functional if 
Px, Pxy or Pxyz is a  redex. Consider the following clauses: 
(c¢)  [x].Px = P if x Ï V(P) and P is functional; 

(f ¢)   [x].PQ = S(l2x.P)(l2x.Q). 

Then l+x results from (abc¢f ¢). 
Let GC be the term groupoid of combinatory logic, and Gl the groupoid of l-

terms. We define homomorphisms l: GC ––› Gl en k: Gl ––› GC as follows: 
vl = vk = v, for any variable v; 
Kl = K, Sl = S;  
(lx.M)k = [x].Mk. 

Actually, the precise nature of k depends on the details of abstraction; we 
might distinguish k*, k1, k2, and k+, corresponding with the choices l*x, l1x, 
l2x, and l+x. Observe that P and Pl, and M and Mk, contain the same variables 
free. 

All these constructions fulfil the purpose for which they were designed: 

Lemma 1 (Reduction Lemma). Suppose 

Q Î {l*x.P, l1x.P, l2x.P, l+x.P}. 

Then any combinatory term R satisfies QR —–»w [R/x]P. 

The abstraction l2 will not lead to a system that is equivalent to lb; if y ≠ x, 
l2x.yx = y, but the equality lx.yx ≈ y is not valid in the lb-calculus. It is 
almost valid, though: 

Proposition 1. For each l-term M, lx.(lx.M)x —–»b lx.M. 

This corresponds with the fact (to be established) that the abstraction l+ fits 
lb. 

Proposition 2. Let P be a combinatory term. If P is functional, then Pl b-re-
duces to an abstraction. 

Proof. Consider cases: P is of one of the forms K, KA, S, SA or SAB. T 

Corollary. For any combinatory term P, (l+x.P)l b-reduces to an abstraction. 

Proof. By definition, l+x.P is functional. T 

For any set A of ground equations, let CL + A be the equational system that 
results from adding the axioms A to CL. 

We fix (apart from I = SKK) the following abbreviations: 
F := KI, so Fx ––› I; 
X := S(KK), so that Xxy —–» K(xy); 
Y := S(KS), hence Yxy —–» S(xy); 
U := Y(S(KY)(S(KX)S)), hence Ux —–» S(Y(X(Sx))) 
 and Uxyz —–» S(K(Sxz))(yz); 
and B := YK, so that Bxyz —–» x(yz).  
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Ab is the following set of axioms: 

(A.1) K ≈ S(Y(XK))F 

(A.2) S ≈ SU(KF) 

(A.3) S(Y(XB))(KK) ≈ X 

(A.4) YX ≈ X(SBF) 

(A.5) S(KY)(YY) ≈ S(Y(X(Y(S(KY)S))))(KS) 

Lemma 2. CL + (A.2) |– S(Y(Xx))F ≈ S(K(S(Y(Xx))F))I. 

Proof: S(Y(Xx))F ≈ SU(KF)(Y(Xx))F by (A.2); now normalize. T 

Lemma 3. Suppose P is functional. Then 

CL + (A.1, 2) |– P ≈ S(KP)I. 

Proof: There are five cases: P is of one of the five forms K, KA, S, SA or SAB. 
(i) K ≈ S(Y(XK))F by (A.1) 
 ≈ S(K(S(Y(XK))F))I by Lemma 2, with x = K 
 ≈ S(KK)I = XI by (A.1). 
(ii) Suppose P = KA. Then P ≈ S(Y(XK))FA by (A.1) 
 ≈ Y(XK)A(FA) ≈ S(XKA)I ≈ S(KP)I. 
(iii) S ≈ SU(KF)U(KF) (use (A.2) to substitute for the initial S in (A.2)) 
 ≈ UU(KFU)(KF) ≈ UUF(KF) ≈ S(K(SU(KF)))(F(KF)) 
 ≈ S(KS)I = YI by (A.2).   
(iv) Suppose P = SA. Then P ≈ SU(KF)A by (A.2) 
 ≈ UA(KFA) ≈ S(Y(X(SA)))F ≈ S(Y(XP))F 
 ≈ S(K(S(Y(XP))F))I by Lemma 2 
 ≈ S(KP)I since P ≈ S(Y(XP))F. 
(v) Suppose P = SAB. Then P ≈ S(Y(X(SA)))FB by the proof of (iv) 
 ≈ Y(X(SA))B(FB) ≈ S(X(SA)B)I ≈ S(KP)I. T 

Nested abstractions behave as in the l-calculus: 

Lemma 4. Let P, Q be combinatory terms, and x, y distinct variables; assume 
y Ï V(P). Then 
(i) [P/x](l2y.Q) = l2y.[P/x]Q; 
(ii) CL + (A.1, 2) |– [P/x](l+y.Q) ≈ l+y.[P/x]Q. 

Proof. (i) By induction on Q, following the various cases in the definition of 
l2-abstraction. 
(ii) The cases Q = y and y Ï V(Q) are like (i). In the third case it may be that Q 
= Ry with y Ï V(R) but R is not functional, whereas [P/x]R is functional. Then 
we must show that [P/x]S(KR)I ≈ [P/x]R; we use Lemma 3. In the final case, 
use (i). T 

Lemma 5. Let P be a combinatory term that does not contain x. Then 

CL + (A.3) |– l1x.P ≈ KP. 
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Proof. Induction on the complexity of P. In particular, suppose that P is com-
posite, P = P1P2. Take y Ï V(Px). Then 
 l1x.P = S(l1x.P1)(l1x.P2) ≈ S(KP1)(KP2) (ind. hyp.) 
  ≈ (l2xy.S(Kx)(Ky))P1P2 (Lemmas 1 and 4(i)) 
  = S(Y(XB))(KK)P1P2 ≈ XP1P2 (A.3) 
  = (l2xy.K(xy))P1P2 ≈ KP (Lemmas 1 and 4(i) again). T 

Lemma 6. Let P be a functional term that does not contain x. Then 

CL + (A.1-3) |– l1x.Px ≈ P. 

Proof. l1x.Px = S(l1x.P)I ≈ S(KP)I by the previous lemma; by Lemma 3, 
S(KP)I ≈ P. T 

A major difference between CL and lb is the x-rule. We want to show that it 
holds for l1 in CL + Ab. 

Lemma 7. (i) CL + (A.4) |– l+yz.S(Xy)z ≈ l+yzx.yx; 
(ii) CL + (A.5) |– l+yzw.S(S(Yy)z)w ≈ l+yzw.S(Syw)(Szw). 

Proof. By applying the definition of l+-abstraction, we get the axiom on dis-
play. T 

Observe that in (ii) and on the lefthand side of (i), l+ may be replaced by l2. 

Theorem 1. If CL + A |– (A.3-5), then 

CL + A |– P ≈ Q Þ CL + A |– l1x.P ≈ l1x.Q. 

Proof. For ground terms P, Q: from K ≈ K and P ≈ Q, by lemma 5. For the 
schema KPQ ≈ P, let z Ï V(P). Then 
l1x.KPQ = S(l1x.KP)(l1x.Q) = S(X(l1x.P))(l1x.Q) by definition 
 ≈ (l+yz.S(Xy)z)(l1x.P)(l1x.Q) by Lemmas 1 and 4 
 ≈ (l+yzx.yx)(l1x.P)(l1x.Q) by Lemma  7(i) 
 ≈ l+x.(l1x.P)x by Lemmas 1 and 4(ii) 
 = l1x.P by definition. 
For the schema SPQR ≈ PR(QR), let z, w Ï Var(P) and w Ï Var(Q), then 
l1x.SPQR = S(l1x.SPQ)(l1x.R) = S(S(l1x.SP)(l1x.Q))(l1x.R) 
 = S(S(Y(l1x.P))(l1x.Q))(l1x.R)  by definition 
 ≈ (l+yzw.S(S(Yy)z)w)(l1x.P)(l1x.Q)(l1x.R) by Lemmas 1, 4 
 ≈ l+yzw.S(Syw)(Szw)(l1x.P)(l1x.Q)(l1x.R) by Lemma  7(ii) 
 ≈ S(S(l1x.P)(l1x.R))(S(l1x.Q)(l1x.R))  by Lemmas 1, 4 
 = l1x.PR(QR) by definition. 

If P = P1P2 and Q = Q1Q2 and the last step in the deduction of P ≈ Q was 

P1 ≈ Q1 P2 ≈ Q2  ––––––––––––––––––– 
P ≈ Q 

then by induction hypothesis l1x.Pi ≈ l1x.Qi is provable (i = 1, 2); so 

S(l1x.P1)(l1x.P2) ≈ S(l1x.Q1)(l1x.Q2), 



17 december 2014 

	 5	

i.e. l1x.P ≈ l1x.Q. T 

Corollary I. Let l be l+ or l*, P a combinatory term. Then 

CL + Ab |– lx.P ≈ l1x.P. 

Proof. By the Reduction Lemma, (lx.P)x ≈ P. So by the theorem, 

l1x.(lx.P)x ≈ l1x.P .  

Since lx.P is functional, by Lemma 6 we have l1x.(lx.P)x ≈ lx.P .  T 

Corollary II. Let l be l+ or l*. Then 

CL + Ab |– P ≈ Q  Þ  CL + Ab |– lx.P ≈ lx.Q. 

Lemma 8. For any combinatory term P, 
(i) (l2x.P)lx —–»b Pl; 
(ii) (l+x.P)lx —–»b Pl. 

Proof. By induction on P, and using (i) for (ii). T 

Lemma 9. For any combinatory term P, (l+x.P)l ≈b lx.Pl. 

Proof. By the previous lemma, (l+x.P)lx ≈b Pl. So by Rule (x), 

lx.(l+x.P)lx ≈b lx.Pl. 

Now apply Proposition 1 and the corollary to Proposition 2. T 

The next lemma and theorem are easiest if we take k to mean k+. 

Lemma 10. Let k = k+. For all l-terms M, N and for all variables x, 

CL + (A.1, 2) |– [Nk/x]Mk ≈ ([N/x]M)k. 

Proof. By induction on M. The least trivial case is abstraction. If M = ly.P 
(where by convention y ≠ x and y Ï FV(N)), then 

[Nk/x]Mk = [Nk/x](l+y.Pk) ≈ l+y.[Nk/x]Pk 

by Lemma 4(ii), for y Ï V(Nk); so by induction hypothesis 

 [Nk/x]Mk ≈ l+y.([N/x]P)k = ([N/x]M)k. T 

Theorem 2. lb and CL + Ab are equivalent, in the following sense: for all l-
terms M, N and combinatory terms P, Q, and with k = k+, 
(i) lb |– Mkl ≈ M; 
(ii) Plk = P; 
(iii) lb |– M ≈ N Û CL + Ab |– Mk ≈ Nk; 
(iv) CL + Ab |– P ≈ Q Û lb |– Pl ≈ Ql. 

Proof. (i) By induction on M; use Lemma 9. 
(ii) By induction on P; observe that Kk = K and Sk = S. 
(iii) (Þ) By induction on the length of the proof of M ≈ N. Identity axioms 
translate to identity axioms, and instances of the application rule to instances 
of the application rule. For b-axioms (lx.M1)M2 ≈ [M2/x]M1 we get 

((lx.M1)M2)k = (l+x.M1k)M2k ≈ [M2k/x]M1k = ([M2/x]M1)k 
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by Lemma 10. If M ≈ N is the conclusion of an instance of the x-rule, say M = 
lx.M0 and N = lx.N0, then by induction hypothesis 

CL + Ab |– M0k ≈ N0k; 

so by Corollary II of Theorem 1 we have 

CL + Ab |– l+x.M0k ≈ l+x.N0k, 

which is to say that Mk ≈ Nk is deducible. 
(iv) (Þ) By induction on the length of the proof of P ≈ Q. Identity axioms 
translate into identity axioms, and instances of the application rule into in-
stances of the application rule. The combinator schemes of CL correspond to 
the b-reductions KMN —–»b M and SMNL —–»b ML(NL). The translations of the 
Ab-axioms are seen to be valid by straightforward calculation. 
(iii) (Ü) If CL + Ab |– Mk ≈ Nk, then by the half of (iv) we just proved, 

lb |– Mkl ≈ Nkl; 

so by (i), lb |– M ≈ N. 
(iv) (Ü) If lb |– Pl ≈ Ql, then by (iii), CL + Ab |– Plk ≈ Qlk. So by (ii), 
CL + Ab |– P ≈ Q. T 

Remark. By Theorem 1, Corollary I, the theorem holds for k Î {k*, k1} as 
well, if we replace (ii) by 
(ii¢) CL + Ab |– Plk ≈ P. 

The extensional case 
Ah is the following quartet of axioms: 

(A.3) S(Y(XB))(KK) ≈ X 

(A.4) YX ≈ X(SBF) 

(A.5) S(KY)(YY) ≈ S(Y(X(Y(S(KY)S))))(KS) 

(A.6) SBF  ≈ I 

Lemma 11. CL + (A.6) |– x ≈ S(Kx)I. 

Proof. By (A.6), x ≈ Ix ≈ SBFx ≈ Bx(Fx) ≈ S(Kx)I. T 

So (A.6) makes all terms functional, up to provable identity. Then Lemma 6 
implies: 

Lemma 12. Let P be a combinatory term that does not contain x. Then 

CL + (A.6) |– l1x.Px ≈ P. 

Lemma 13. For any combinatory term P, CL + Ah |– l2x.P ≈ l1x.P. 

Proof. By Theorem 1, the x-rule holds for l1 in CL + Ah. So from 

(l2x.P)x ≈ P (Reduction Lemma) 

we get l1x.(l2x.P)x ≈ l1x.P; and by Lemma 12,  l1x.(l2x.P)x ≈ l2x.P. T 

Combining Theorem 1 with Lemma 13, we obtain: 

Lemma 14. CL + Ah |– P ≈ Q Þ CL + Ah |– l2x.P ≈ l2x.Q. 
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Lemma 15. For any combinatory term P, (l2x.P)l ≈bh lx.Pl. 

Proof. By Lemma 8(i), (l2x.P)lx —–»b Pl. Then by the x-rule, 

lx.(l2x.P)lx ≈b lx.Pl. 

By the (h)-scheme, lx.(l2x.P)lx ≈ (l2x.P)l. T 

Lemma 16. Let k = k2. For all l-terms M, N and any variable x, 

[Nk/x]Mk = ([N/x]M)k. 

Proof. As Lemma 10; use (i) of Lemma 4 instead of (ii). T 

Theorem 3. lbh and CL + Ah are equivalent, in the following sense: for all l-
terms M, N and combinatory terms P, Q, and with k = k2, 
(i) lbh |– Mkl ≈ M; 
(ii) Plk = P; 
(iii) lbh |– M ≈ N Û CL + Ah |– Mk ≈ Nk; 
(iv) CL + Ah |– P ≈ Q Û lbh |– Pl ≈ Ql. 

Proof. Similar to the proof of Theorem 2; use Lemmas 5 and 17-19. T 

Remark. The argument of Lemma 13 applies to l+ or l* as well. Hence the 
theorem holds for k Î {k*, k1, k+} as well; only for k* and k1 we must re-
place (ii) by 
(ii¢) CL + Ah |– Plk ≈ P. 

Curry’s axioms 
Curry does not use the axioms (A.1, 2); instead he has 

(C.1) K ≈ B(SBF)K, 

(C.2) S ≈ B(B(SBF))S. 

These do the same job as (A.1, 2). Abbreviate SBF to Ih. 

Lemma 17. CL + (C.2) |– Bxy ≈ B(Bxy)I. 

Proof: Bxy ≈ S(Kx)y ≈ B(BIh)S(Kx)y by (C.2) 
 ≈ BIh(S(Kx))y ≈ Ih(S(Kx)y) ≈ B(S(Kx)y)(F(S(Kx)y)) 
 ≈ B(Bxy)I.  T 

Lemma 18. Suppose P is functional. Then 

CL + (C.1, 2) |– P ≈ S(KP)I. 

Proof: We have five cases as in Lemma 3. Observe that S(KP)I ≈ BPI. 
(i) K ≈ BIhK by (C.1) 
 ≈ B(BIhK)I by Lemma 17, with x = Ih and y = K 
 ≈ BKI. 
(ii) Suppose P = KA. Then P ≈ BIhKA by (C.1) 
 ≈ IhP ≈ BPI. 
(iii) S ≈ B(BIh)S by (C.2) 
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 ≈ B(B(BIh)S)I by Lemma 17 
 ≈ BSI.  
(iv) Suppose P = SA. Then P ≈ B(BIh)SA by (C.2) 
 ≈ BIhP ≈ B(BIhP)I by lemma 17 
 ≈ BPI. 
(v) Suppose P = SAB. Then P ≈ B(BIh)SAB by (C.2) 
 ≈ BIh(SA)B ≈ IhP ≈ BPI. T 
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