The relation between Combinatory Logic and A-calculus

In combinatory logic one can define abstraction operations that satisfy the 3-
scheme; such abstraction operations determine translations of the A-calculus
(AB or ABn) into combinatory logic. Conversely the combinators correspond
with A-terms, so that CL lies embedded in A8. Because the combinators of the
A-calculus reduce stepwise, for instance, Kx — Ay.x whereas Kx is not a redex,
and, more importantly, because A-abstraction is an operation of the A-calculus,
these two translations do not produce a complete agreement between CL and
AB. Generally speaking, combinatory logic is weaker. Curry [CL] conceived
additional axioms that close the gap: a finite number (five, to be precise) of
ground equations. (Ground means variable-free.)

Barendregt sketches in [LC] another, more direct approach to the problem. It
has inspired the present account.

Let P be a term of CL (a combinatory term), and M a A-term. We denote by
V(P) the set of variables occurring in P, and by FV(M) the set of variables oc-
curring free in M. If V(P) =0, we call P a ground term. We abbreviate SKK to
I, and note that Ix —», x.

We use = for formal equality and, informally, for provable equality (in a the-
ory determined by the context); and for convertibility, where sometimes rules
will be indicated by subscripts.

The deductive systems

In all the theories considered here, there is some syntax defining terms, in-
cluding application, represented by juxtaposition; and terms s, t can be com-
bined in equations s = t. All theories contain the schemes
t=t (identity),
s=t=t=s (symmetry),
r=s&s=t=r=t (transitivity),
rzs&tzu=rt=su (application);
beyond this, in A8 we have (Ax.M)N = [N/x]M (B-contraction) and the &-rule
M = N = Ax.M = Ax.N, and additionally in ABn: Ax.Mx = M, where x ¢
FV(M) (n-contraction). Change of bound variables in A-terms is considered
part of the syntax, and in every context (in particular that of 3-contraction), the
bound variables are assumed to be distinct from the free. In CL we have the
combinator schemes KPQ = P and SPOR = PR(QR).

Curry presents a list of defining clauses for abstraction in combinatory logic.
Four are relevant to us:

(a) [x].P =KP ifx¢ V(P)
(b) xl.x =1

(©) [x].Px =P ifxeV(P)
) [x].PQ = S([x].P)([x].Q)

Depending on which clauses we use, and the order in which we apply them,
we get different definitions of abstraction. In particular, X*x results from (abf)
— so Xx.Pis KP if x ¢ V(P), I if P = x, and S(Xx.P)(X*x.Q) otherwise —,
Aqx results from (bfa), and Aox from (abcf). Yet a fourth abstraction, Xx, is de-

COMBINATORY LOGIC AND LAMBDA-CALCULUS

scribed by Hindley and Seldin [LCCI]. Call a combinatory term P functional if
Px, Pxy or Pxyz is a redex. Consider the following clauses:

(c) [x].Px=P if x ¢ V(P) and P is functional;
(f" [x].PO = S(Aox.P)(Ax.0Q).

Then X x results from (abc'f’).
Let G¢ be the term groupoid of combinatory logic, and G the groupoid of A-
terms. We define homomorphisms A: Gc — G en x: G, — G¢ as follows:

V) = V¢ = v, for any variable v;

K, =K,S,=5;

Ax.M), = [x].M,.
Actually, the precise nature of k depends on the details of abstraction; we
might distinguish «™, k1, k2, and k¥, corresponding with the choices X'x, A x,
Aox, and Xx. Observe that P and P, and M and M, contain the same variables
free.

All these constructions fulfil the purpose for which they were designed:

Lemma 1 (Reduction Lemma). Suppose
0 € {¥x.P,\ix.P, hox.P, X'x.P}.
Then any combinatory term R satisfies QR —»y, [R/x]P.

The abstraction A, will not lead to a system that is equivalent to Af; if y # x,
Axx.yx =y, but the equality Ax.yx = y is not valid in the AfS-calculus. It is
almost valid, though:

Proposition 1. For each A-term M, Ax.(Ax.M)x —pgAx.M.

This corresponds with the fact (to be established) that the abstraction X' fits

AB.

Proposition 2. Let P be a combinatory term. If P is functional, then P; [-re-
duces to an abstraction.

Proof. Consider cases: P is of one of the forms K, KA, S, SA or SAB.

Corollary. For any combinatory term P, (Xx.P); B-reduces to an abstraction.

Proof. By definition, Xx.P is functional.

For any set A of ground equations, let CL + A be the equational system that
results from adding the axioms A to CL.

We fix (apart from I = SKK) the following abbreviations:
F =KI,so Fx— I,
X = S(KK), so that Xxy — K(xy);
Y :=S(KS), hence Yxy — S(xy);
U :=Y(SKY)(S(KX)S)), hence Ux — S(Y(X(Sx)))
and Uxyz — S(K(Sx2))(yz2);
and B := YK, so that Bxyz — x(yz).

17 december 2014

Ag is the following set of axioms:
(A.1) K=SYXK))F
(A2) S=SUKF)
(A3) SY(XB))(KK)=X
(A4) YX=X(SBF)
(A5) SKKY)XY)=SYXXY(S(KKY)S)))(KS)

Lemma 2. CL + (A.2) F S(Y(Xx))F = S(K(S(Y(Xx))F))I.
Proof: S(Y(Xx))F = SU(KF)(Y(Xx))F by (A.2); now normalize.

Lemma 3. Suppose P is functional. Then
CL+(A1,2)FP=S(KP)I.

Proof: There are five cases: P is of one of the five forms K, KA, S, SA or SAB.
(1) K =SY(XK))F by (A.l)
~S(K(S(Y(XK))F))I by Lemma 2, with x =K
~S(KK)I = XI by (A.1).
(ii) Suppose P = KA. Then P = S(Y(XK))FA by (A.1)
=~ Y(XK)A(FA) = S(XKA)I = S(KP)I.
(iii) S = SUKF)U(KF) (use (A.2) to substitute for the initial S in (A.2))
~ UUKFU)(KF) =~ UUF(KF) =~ S(K(SUKF)))(F(KF))
~S(KSI =YI by (A.2).
(iv) Suppose P = SA. Then P = SU(KF)A by (A.2)
~ UA(KFA) = S(Y(X(SA)))F = S(Y(XP))F
=~ S(K(S(Y(XP))F)I by Lemma 2
~S(KP)I since P = S(Y(XP))F.
(v) Suppose P = SAB. Then P = S(Y(X(SA)))FB by the proof of (iv)
=~ Y(X(SA))B(FB) = S(X(SA)B)I =~ S(KP)I.

Nested abstractions behave as in the A-calculus:

Lemma 4. Let P, Q be combinatory terms, and x, y distinct variables; assume
y ¢ V(P). Then

(1) [P/x](A2y.0) = hoy.[P/x]Q;

(i) CL + (A.1,2) F [P/x](X%y.Q) = Xy.[P/x]0.

Proof. (i) By induction on Q, following the various cases in the definition of
Ao -abstraction.

(ii) The cases Q =y and y ¢ V(Q) are like (i). In the third case it may be that Q
= Ry with y ¢ V(R) but R is not functional, whereas [P/x]R is functional. Then
we must show that [P/x]S(KR)I = [P/x]R; we use Lemma 3. In the final case,
use (i).

Lemma 5. Let P be a combinatory term that does not contain x. Then
CL+(A3)FMx.P=KP.

COMBINATORY LOGIC AND LAMBDA-CALCULUS

Proof. Induction on the complexity of P. In particular, suppose that P is com-
posite, P = PiP,. Take y ¢ V(Px). Then
hx.P =S x.P)(Mx.Py) = S(KP)(KP») (ind. hyp.)
= (Arxy.S(Kx)(Ky))PLP, (Lemmas 1 and 4(i))
=S(Y(XB))(KK)P,P, = XP/P, (A3)
= (Axy.K(xy))PP, = KP (Lemmas 1 and 4(i) again).

Lemma 6. Let P be a functional term that does not contain x. Then
CL+ (A1-3) - Ax.Px=P.

Proof. A ix.Px = S(Ax.P)I = S(KP)I by the previous lemma; by Lemma 3,
S(KP)I = P.

A major difference between CL and Af is the &-rule. We want to show that it
holds for A in CL + Ap.

Lemma 7. (i) CL + (A 4) - Xyz.S(Xy)z = Xyzx.yx;
(ii) CL + (A.5) F Xyzw.S(S(Yy)z)w = Kyzw.S(Syw)(Szw).

Proof. By applying the definition of X -abstraction, we get the axiom on dis-
play.

Observe that in (ii) and on the lefthand side of (i), X may be replaced by A,.

Theorem 1. If CL + A - (A.3-5), then
CL+A+P=Q=CL+AFNx.P=Xx.0.

Proof. For ground terms P, Q: from K = K and P = Q, by lemma 5. For the
schema KPQ = P, let z ¢ V(P). Then

Mx.KPQ =S\ x.KP)(M1x.0) = S(X(A1x.P))(A1x.Q) by definition
=~ (Xyz.8(Xy)z)(Mx.P)(A1x.Q) by Lemmas 1 and 4
= (Kyzx.yx)(Ax.P)(A1x.Q) by Lemma 7(i)
=~ Xx.(hx.P)x by Lemmas 1 and 4(ii)
=Ax.P by definition.
For the schema SPOR = PR(QOR), let z, w ¢ Var(P) and w ¢ Var(Q), then
AMx.SPOR =S(Ax.SPQ)(Aix.R) = S(S(A1x.SP)(A1x.0Q))(A1x.R)
=SSY(Ax.P))(A1x.Q))(Ax.R) by definition
= (Kyzw.S(S(Yy)2)w)(hix.P)(A1x.Q)(A1x.R) by Lemmas 1, 4
= Xyzw . S(Syw)(Szw)(Mx.P)(Ax.Q)(Mx.R) by Lemma 7(ii)
=SS x.P)(Mx.R)(S(Mx.Q)(A1x.R)) by Lemmas 1,4
= Mx.PR(QR) by definition.
If P= PP, and Q = Q10 and the last step in the deduction of P = Q was

P =0 =0,
P=Q
then by induction hypothesis Ax.P, = A1x.Q; is provable (i = 1, 2); so
Sx.P)(Aix.P) = S(hix.Q1)(hx. 02),

17 december 2014
ie. Mx.P=XAx.0.

Corollary I. Let A be & or X, P a combinatory term. Then
CL+ApgkAx.P=\x.P.
Proof. By the Reduction Lemma, (Ax.P)x = P. So by the theorem,
Ax.(Ax.P)x = \x.P.
Since Ax.P is functional, by Lemma 6 we have Ajx.(Ax.P)x = Ax.P.

Corollary II. Let A be X or X*. Then
CL+AgFP~Q = CL+AghAx.P=Ax.0.

Lemma 8. For any combinatory term P,
(i) (Aox.P)x —»p Py
(ii) (N'x.P)kx —B P;b.

Proof. By induction on P, and using (i) for (ii).

Lemma 9. For any combinatory term P, (Xx.P); =g Ax.P;..

Proof. By the previous lemma, (Xx.P);x =g P,.. So by Rule (¢),
Ax.(Xx.Pyx =g Ax.Py.
Now apply Proposition 1 and the corollary to Proposition 2.

The next lemma and theorem are easiest if we take k to mean k™.

Lemma 10. Let « = ™. For all A-terms M, N and for all variables x,
CL+ (A.1,2) - [N/xIM = (IN/x]M).

Proof. By induction on M. The least trivial case is abstraction. If M = Ay.P
(where by convention y # x and y ¢ FV()), then

[N/xIMy = [N/x(Ry.B) = Ry [No/x]R:
by Lemma 4(ii), for y ¢ V(Ny); so by induction hypothesis

[Ni/x]Myc = Ky .(IN/X]P)y = (IN/X]IM).

Theorem 2. A and CL + Ap are equivalent, in the following sense: for all A-
terms M, N and combinatory terms P, Q, and with k = k%,

) ABE M. =M,

(i) Py = P;

(ii)) ABFM=N < CL+Apgk M = Ny;

(iV) CL+Aﬁ|—PzQ<:>lﬁ|—P;Lz Q}L.

Proof. (i) By induction on M; use Lemma 9.

(i1) By induction on P; observe that K, = K and S,. = S.

(iii) (=) By induction on the length of the proof of M = N. Identity axioms

translate to identity axioms, and instances of the application rule to instances
of the application rule. For B-axioms (Ax.M;)M, = [M,/x]M; we get

((Ax.M)M>),c = (Kx. My)Moy = [Ma/xIM,y = ([Mo/x1M),

COMBINATORY LOGIC AND LAMBDA-CALCULUS

by Lemma 10. If M = N is the conclusion of an instance of the &-rule, say M =
Ax.My and N = Ax.Ny, then by induction hypothesis

so by Corollary II of Theorem 1 we have

which is to say that M. = N is deducible.

(iv) (=) By induction on the length of the proof of P = Q. Identity axioms
translate into identity axioms, and instances of the application rule into in-
stances of the application rule. The combinator schemes of CL correspond to
the B-reductions KMN —»g M and SMNL —»g ML(NL). The translations of the
Ag-axioms are seen to be valid by straightforward calculation.

(iii) (<) If CL + Ag = My = Ny, then by the half of (iv) we just proved,
ABF M, = Ny
soby (i), AB-M = N.

(iv) (&) If ABE Py, = Oy, then by (iii), CL + Ag F Pjx = Q). So by (ii),
CL+A/3|—Pz 0.

Remark. By Theorem 1, Corollary I, the theorem holds for ¥ € {x*, K} as
well, if we replace (ii) by

(ii’) CL+Aﬁ|—P}thP.

The extensional case
Ay, is the following quartet of axioms:

(A3) S(Y(XB))(KK) =X

(A4) YX=X(SBF)

(A.5) S(KY)(YY)=S(Y(X(Y(S(KY)$))))(KS)
(A6) SBF =I

Lemma 11. CL + (A.6) - x = S(Kx)I.
Proof. By (A.6), x = Ix = SBFx = Bx(Fx) = S(Kx)I.

So (A.6) makes all terms functional, up to provable identity. Then Lemma 6
implies:

Lemma 12. Let P be a combinatory term that does not contain x. Then
CL+(A6)FAx.Px=P.

Lemma 13. For any combinatory term P, CL + Ay = Aox.P = A x.P.

Proof. By Theorem 1, the &-rule holds for A; in CL + A,,. So from
(Mox.P)x=P (Reduction Lemma)
we get Ajx.(Apx.P)x = Ax.P; and by Lemma 12, Ajx.(Axx.P)x = Axx.P.

Combining Theorem 1 with Lemma 13, we obtain:

Lemma 14. CL+ A, FP=Q = CL+ A, hox.P = x.Q.
6

17 december 2014
Lemma 15. For any combinatory term P, (Aox.P);, =gy Ax.P).

Proof. By Lemma 8(i), (A2x.P))x —»p P).. Then by the &-rule,
Ax.(Aox.P)x =g Ax.P;..
By the (1)-scheme, Ax.(Axx.P))x = (Aox.P),.

Lemma 16. Let « = k. For all A-terms M, N and any variable x,
[Ni/x]IMc = ([N/x]M).

Proof. As Lemma 10; use (i) of Lemma 4 instead of (ii).

Theorem 3. ABn and CL + A, are equivalent, in the following sense: for all A-
terms M, N and combinatory terms P, Q, and with ¥ = K5,

(i) ABn =My = M;

(i) P = P;

(iii) 4B+ M =N < CL + A, - My = Ny
(iv) CL+ A, - P~ Q < AP+ Py~ 0.

Proof. Similar to the proof of Theorem 2; use Lemmas 5 and 17-19.
Remark. The argument of Lemma 13 applies to X or X as well. Hence the

theorem holds for k¥ € {x*, k1, k*} as well; only for k™ and x; we must re-
place (ii) by

Curry’s axioms
Curry does not use the axioms (A.1, 2); instead he has

(C.1) K=B(SBF)K,
(C.2) S=B(B(SBF))S.
These do the same job as (A.1, 2). Abbreviate SBF to I;,.

Lemma 17. CL + (C.2) - Bxy = B(Bxy)I.

Proof: Bxy = S(Kx)y = BBI,)S(Kx)y by (C2)
= BI,,(S(Kx))y = I,(S(Kx)y) = B(S(Kx)y)(F (S(Kx)y))
=~ B(Bxy)l.

Lemma 18. Suppose P is functional. Then
CL+ (C.1,2) P =S(KP)I.

Proof: We have five cases as in Lemma 3. Observe that S(KP)I = BPI.
(i) K =BI,K by (C.1)
~B(BI,K)I by Lemma 17, withx=1I,and y=K

~ BKI.
(ii) Suppose P = KA. Then P = BI, KA by (C.1)
=~I,P=BPI.
(iii) § = B(BI,))S by (C.2)

COMBINATORY LOGIC AND LAMBDA-CALCULUS

= B(B(BI,)S)I by Lemma 17
(iv) Suppose P = SA. Then P = B(BI;)SA by (C.2)
= BI,,P =~ B(BI,,P)I by lemma 17
~ BPI.
(v) Suppose P = SAB. Then P = B(BI,)SAB by (C.2)
= BI,,(SA)B=I,P =~ BPI.
References

[CL] Haskell B. Curry, Robert Feys & William Craig: Combinatory Logic.
Amsterdam, 1958.
[LC] Henk Barendregt: The A-calculus. 2nd edition, Amsterdam 1984.

[LCCI]J. Roger Hindley & Jonathan P. Seldin: Lambda-calculus and combi-
nators, an introduction. Cambridge University Press, 2008.

Further References
D.A. Turner: Another algorithm for bracket abstraction. Afdruk van JSL
XLIV,267-70. A4(2r) A.

Gebruikt combinator S" gedefinieerd door S'xyzw = x(yw)(zw).

