The relation between Combinatory Logic and λ -calculus

In combinatory logic one can define abstraction operations that satisfy the β -scheme; such abstraction operations determine translations of the λ -calculus $(\lambda\beta \text{ or } \lambda\beta\eta)$ into combinatory logic. Conversely the combinators correspond with λ -terms, so that *CL* lies embedded in $\lambda\beta$. Because the combinators of the λ -calculus reduce stepwise, for instance, $Kx \rightarrow \lambda y.x$ whereas Kx is not a redex, and, more importantly, because λ -abstraction is *an operation* of the λ -calculus, these two translations do not produce a complete agreement between *CL* and $\lambda\beta$. Generally speaking, combinatory logic is weaker. Curry [CL] conceived additional axioms that close the gap: a finite number (five, to be precise) of ground equations. (*Ground* means variable-free.)

Barendregt sketches in [LC] another, more direct approach to the problem. It has inspired the present account.

Let *P* be a term of *CL* (a *combinatory term*), and *M* a λ -term. We denote by V(*P*) the set of variables occurring in *P*, and by FV(*M*) the set of variables occurring free in *M*. If V(*P*) = \emptyset , we call *P* a *ground term*. We abbreviate *SKK* to *I*, and note that $Ix \rightarrow w x$.

We use \approx for formal equality and, informally, for provable equality (in a theory determined by the context); and for convertibility, where sometimes rules will be indicated by subscripts.

The deductive systems

In all the theories considered here, there is some syntax defining *terms*, including *application*, represented by juxtaposition; and terms \mathbf{s} , \mathbf{t} can be combined in *equations* $\mathbf{s} \approx \mathbf{t}$. All theories contain the schemes

 $\mathbf{t} \approx \mathbf{t}$ (identity),

 $\mathbf{s} \approx \mathbf{t} \Rightarrow \mathbf{t} \approx \mathbf{s}$ (symmetry),

 $\mathbf{r} \approx \mathbf{s} \& \mathbf{s} \approx \mathbf{t} \Rightarrow \mathbf{r} \approx \mathbf{t}$ (transitivity),

 $\mathbf{r} \approx \mathbf{s} \& \mathbf{t} \approx \mathbf{u} \Rightarrow \mathbf{rt} \approx \mathbf{su}$ (application);

beyond this, in $\lambda \beta$ we have $(\lambda x.M)N \approx [N/x]M$ (β -contraction) and the ξ -rule $M \approx N \Rightarrow \lambda x.M \approx \lambda x.N$, and additionally in $\lambda \beta \eta$: $\lambda x.Mx \approx M$, where $x \notin$ FV(*M*) (η -contraction). Change of bound variables in λ -terms is considered part of the syntax, and in every context (in particular that of β -contraction), the bound variables are assumed to be distinct from the free. In *CL* we have the combinator schemes $KPQ \approx P$ and $SPQR \approx PR(QR)$.

Curry presents a list of defining clauses for abstraction in combinatory logic. Four are relevant to us:

- (a) $[x].P = \mathbf{K}P \text{ if } x \notin V(P)$
- (b) [x].x = I
- (c) $[x].Px = P \text{ if } x \notin V(P)$
- (f) [x].PQ = S([x].P)([x].Q)

Depending on which clauses we use, and the order in which we apply them, we get different definitions of abstraction. In particular, $\lambda^* x$ results from (abf) - so $\lambda^* x.P$ is **K**P if $x \notin V(P)$, **I** if P = x, and $S(\lambda^* x.P)(\lambda^* x.Q)$ otherwise -, $\lambda_1 x$ results from (bfa), and $\lambda_2 x$ from (abcf). Yet a fourth abstraction, $\lambda^+ x$, is de-

scribed by Hindley and Seldin [LCCI]. Call a combinatory term *P functional* if *Px*, *Pxy* or *Pxyz* is a redex. Consider the following clauses:

(c') [x].Px = P if $x \notin V(P)$ and P is functional;

(f')
$$[x].PQ = S(\lambda_2 x.P)(\lambda_2 x.Q).$$

Then $\lambda^+ x$ results from (abc'f').

Let \mathbf{G}_C be the term groupoid of combinatory logic, and \mathbf{G}_{λ} the groupoid of λ -terms. We define homomorphisms $\lambda: \mathbf{G}_C \to \mathbf{G}_{\lambda}$ en $\kappa: \mathbf{G}_{\lambda} \to \mathbf{G}_C$ as follows:

 $v_{\lambda} = v_{\kappa} = v$, for any variable *v*;

$$\begin{split} \boldsymbol{K}_{\lambda} &= \mathsf{K}, \, \boldsymbol{S}_{\lambda} = \mathsf{S}; \\ (\lambda \boldsymbol{x}.\boldsymbol{M})_{\mathsf{K}} &= [\boldsymbol{x}].\boldsymbol{M}_{\mathsf{K}}. \end{split}$$

Actually, the precise nature of κ depends on the details of abstraction; we might distinguish κ^* , κ_1 , κ_2 , and κ^+ , corresponding with the choices $\lambda^* x$, $\lambda_1 x$, $\lambda_2 x$, and $\lambda^+ x$. Observe that *P* and *P*_{λ}, and *M* and *M*_{κ}, contain the same variables free.

All these constructions fulfil the purpose for which they were designed:

Lemma 1 (Reduction Lemma). Suppose

$$Q \in \{\lambda^* x.P, \lambda_1 x.P, \lambda_2 x.P, \lambda^+ x.P\}.$$

Then any combinatory term R satisfies $QR \rightarrow _{w} [R/x]P$.

The abstraction λ_2 will not lead to a system that is equivalent to $\lambda \beta$; if $y \neq x$, $\lambda_2 x.yx = y$, but the equality $\lambda x.yx \approx y$ is not valid in the $\lambda\beta$ -calculus. It is *almost* valid, though:

Proposition 1. For each λ -term M, $\lambda x.(\lambda x.M)x \longrightarrow_{\beta} \lambda x.M$.

This corresponds with the fact (to be established) that the abstraction λ^{+} fits $\lambda\beta$.

Proposition 2. Let *P* be a combinatory term. If *P* is functional, then $P_{\lambda} \beta$ -reduces to an abstraction.

Proof. Consider cases: P is of one of the forms K, KA, S, SA or SAB.

Corollary. For any combinatory term P, $(\lambda^+ x. P)_{\lambda} \beta$ -reduces to an abstraction.

Proof. By definition, $\lambda^+ x.P$ is functional.

For any set A of ground equations, let CL + A be the equational system that results from adding the axioms A to CL.

X

We fix (apart from I = SKK) the following abbreviations: F := KI, so $Fx \rightarrow I$; X := S(KK), so that $Xxy \rightarrow K(xy)$; Y := S(KS), hence $Yxy \rightarrow S(xy)$; U := Y(S(KY)(S(KX)S)), hence $Ux \rightarrow S(Y(X(Sx)))$ and $Uxyz \rightarrow S(K(Sxz))(yz)$;

and $\boldsymbol{B} := \boldsymbol{Y}\boldsymbol{K}$, so that $\boldsymbol{B}\boldsymbol{x}\boldsymbol{y}\boldsymbol{z} \twoheadrightarrow \boldsymbol{x}(\boldsymbol{y}\boldsymbol{z})$.

X

 A_{β} is the following set of axioms:

(A.1)
$$\boldsymbol{K} \approx \boldsymbol{S}(\boldsymbol{Y}(\boldsymbol{X}\boldsymbol{K}))\boldsymbol{F}$$

- (A.2) $S \approx SU(KF)$
- (A.3) $S(Y(XB))(KK) \approx X$
- (A.4) $YX \approx X(SBF)$
- (A.5) $S(KY)(YY) \approx S(Y(X(Y(S(KY)S))))(KS)$

Lemma 2. $CL + (A.2) \vdash S(Y(Xx))F \approx S(K(S(Y(Xx))F))I$.

Proof: $S(Y(Xx))F \approx SU(KF)(Y(Xx))F$ by (A.2); now normalize.

Lemma 3. Suppose *P* is functional. Then

$$CL + (A.1, 2) \vdash P \approx S(KP)I.$$

Proof: There are five cases: *P* is of one of the five forms *K*, *KA*, *S*, *SA* or *SAB*. (i) $K \approx S(Y(XK))F$ by (A.1)

 $\approx S(K(S(Y(XK))F))I$ by Lemma 2, with x = K $\approx S(KK)I = XI$ by (A.1). (ii) Suppose P = KA. Then $P \approx S(Y(XK))FA$ by (A.1) $\approx Y(XK)A(FA) \approx S(XKA)I \approx S(KP)I.$ (use (A.2) to substitute for the initial S in (A.2)) (iii) $S \approx SU(KF)U(KF)$ $\approx UU(KFU)(KF) \approx UUF(KF) \approx S(K(SU(KF)))(F(KF))$ $\approx S(KS)I = YI$ by (A.2). (iv) Suppose P = SA. Then $P \approx SU(KF)A$ by (A.2) $\approx UA(KFA) \approx S(Y(X(SA)))F \approx S(Y(XP))F$ $\approx S(K(S(Y(XP))F))I$ by Lemma 2 $\approx S(KP)I$ since $P \approx S(Y(XP))F$. (v) Suppose P = SAB. Then $P \approx S(Y(X(SA)))FB$ by the proof of (iv) $\approx Y(X(SA))B(FB) \approx S(X(SA)B)I \approx S(KP)I.$ X

Nested abstractions behave as in the λ -calculus:

Lemma 4. Let *P*, *Q* be combinatory terms, and *x*, *y* distinct variables; assume $y \notin V(P)$. Then

(i) $[P/x](\lambda_2 y.Q) = \lambda_2 y.[P/x]Q;$ (ii) $CL + (A.1, 2) \vdash [P/x](\lambda^+ y.Q) \approx \lambda^+ y.[P/x]Q.$

Proof. (i) By induction on Q, following the various cases in the definition of λ_2 -abstraction.

(ii) The cases Q = y and $y \notin V(Q)$ are like (i). In the third case it may be that Q = Ry with $y \notin V(R)$ but R is not functional, whereas [P/x]R is functional. Then we must show that $[P/x]S(KR)I \approx [P/x]R$; we use Lemma 3. In the final case, use (i).

Lemma 5. Let P be a combinatory term that does not contain x. Then

$$CL + (A.3) \vdash \lambda_1 x.P \approx \mathbf{K}P.$$

Proof. Induction on the complexity of *P*. In particular, suppose that *P* is composite, $P = P_1P_2$. Take $y \notin V(Px)$. Then

$$\lambda_1 x.P = S(\lambda_1 x.P_1)(\lambda_1 x.P_2) \approx S(KP_1)(KP_2) \quad \text{(ind. hyp.)} \\ \approx (\lambda_2 xy.S(Kx)(Ky))P_1P_2 \quad \text{(Lemmas 1 and 4(i))} \\ = S(Y(XB))(KK)P_1P_2 \approx XP_1P_2 \quad \text{(A.3)} \\ = (\lambda_2 xy.K(xy))P_1P_2 \approx KP \quad \text{(Lemmas 1 and 4(i) again).} \quad \boxtimes$$

Lemma 6. Let P be a functional term that does not contain x. Then

$$CL$$
 + (A.1-3) $\vdash \lambda_1 x. Px \approx P$.

Proof. $\lambda_1 x.Px = S(\lambda_1 x.P)I \approx S(KP)I$ by the previous lemma; by Lemma 3, $S(KP)I \approx P$.

A major difference between *CL* and $\lambda\beta$ is the ξ -rule. We want to show that it holds for λ_1 in *CL* + A_β .

Lemma 7. (i) $CL + (A.4) \vdash \lambda^{+}yz.S(Xy)z \approx \lambda^{+}yzx.yx;$ (ii) $CL + (A.5) \vdash \lambda^{+}yzw.S(S(Yy)z)w \approx \lambda^{+}yzw.S(Syw)(Szw).$

Proof. By applying the definition of λ^+ -abstraction, we get the axiom on display.

Observe that in (ii) and on the lefthand side of (i), λ^{+} may be replaced by λ_{2} .

Theorem 1. If $CL + A \vdash (A.3-5)$, then

$$CL + A \vdash P \approx Q \Longrightarrow CL + A \vdash \lambda_1 x. P \approx \lambda_1 x. Q.$$

Proof. For ground terms *P*, *Q*: from $K \approx K$ and $P \approx Q$, by lemma 5. For the schema $KPQ \approx P$, let $z \notin V(P)$. Then

 $\lambda_1 x. KPQ = S(\lambda_1 x. KP)(\lambda_1 x. Q) = S(X(\lambda_1 x. P))(\lambda_1 x. Q)$ by definition

 $\approx (\lambda^{+} yz. S(Xy)z)(\lambda_{1}x. P)(\lambda_{1}x. Q)$ by Lemmas 1 and 4

 $\approx (\lambda^+ yzx.yx)(\lambda_1 x.P)(\lambda_1 x.Q)$ by Lemma 7(i)

 $\approx \lambda^{+} x.(\lambda_{1} x. P) x$ by Lemmas 1 and 4(ii)

 $= \lambda_1 x. P$ by definition.

For the schema $SPQR \approx PR(QR)$, let $z, w \notin Var(P)$ and $w \notin Var(Q)$, then $\lambda_1 x. SPQR = S(\lambda_1 x. SPQ)(\lambda_1 x. R) = S(S(\lambda_1 x. SP)(\lambda_1 x. Q))(\lambda_1 x. R)$ $= S(S(Y(\lambda_1 x. P))(\lambda_1 x. Q))(\lambda_1 x. R)$ by definition $\approx (\lambda^+ yzw. S(S(Yy)z)w)(\lambda_1 x. P)(\lambda_1 x. Q)(\lambda_1 x. R)$ by Lemmas 1, 4 $\approx \lambda^+ yzw. S(Syw)(Szw)(\lambda_1 x. P)(\lambda_1 x. Q)(\lambda_1 x. R)$ by Lemma 7(ii) $\approx S(S(\lambda_1 x. P)(\lambda_1 x. R))(S(\lambda_1 x. Q)(\lambda_1 x. R))$ by Lemmas 1, 4 $= \lambda_1 x. PR(QR)$ by definition.

If $P = P_1P_2$ and $Q = Q_1Q_2$ and the last step in the deduction of $P \approx Q$ was

$$\frac{P_1 \approx Q_1 \qquad P_2 \approx Q_2}{P \approx Q}$$

then by induction hypothesis $\lambda_1 x. P_i \approx \lambda_1 x. Q_i$ is provable (i = 1, 2); so

 $\boldsymbol{S}(\lambda_1 \boldsymbol{x}.\boldsymbol{P}_1)(\lambda_1 \boldsymbol{x}.\boldsymbol{P}_2) \approx \boldsymbol{S}(\lambda_1 \boldsymbol{x}.\boldsymbol{Q}_1)(\lambda_1 \boldsymbol{x}.\boldsymbol{Q}_2),$

i.e. $\lambda_1 x. P \approx \lambda_1 x. Q$.

Corollary I. Let λ be λ^+ or λ^* , *P* a combinatory term. Then

$$CL + A_{\beta} \vdash \lambda x.P \approx \lambda_1 x.P$$

Proof. By the Reduction Lemma, $(\lambda x. P)x \approx P$. So by the theorem,

$$\lambda_1 x.(\lambda x.P)x \approx \lambda_1 x.P.$$

Since $\lambda x.P$ is functional, by Lemma 6 we have $\lambda_1 x.(\lambda x.P)x \approx \lambda x.P$.

Corollary II. Let λ be λ^+ or λ^* . Then

$$CL + A_{\beta} \vdash P \approx Q \implies CL + A_{\beta} \vdash \lambda x.P \approx \lambda x.Q.$$

Lemma 8. For any combinatory term *P*,

(i) $(\lambda_2 x. P)_{\lambda} x \longrightarrow_{\beta} P_{\lambda};$

(ii) $(\lambda^+ x.P)_{\lambda} x \longrightarrow_{\beta} P_{\lambda}$.

Proof. By induction on *P*, and using (i) for (ii).

Lemma 9. For any combinatory term P, $(\lambda^+ x.P)_{\lambda} \approx_{\beta} \lambda x.P_{\lambda}$.

Proof. By the previous lemma, $(\lambda^+ x. P)_{\lambda} x \approx_{\beta} P_{\lambda}$. So by Rule (ξ) ,

$$\lambda x.(\lambda^+ x.P)_{\lambda} x \approx_{\beta} \lambda x.P_{\lambda}$$

Now apply Proposition 1 and the corollary to Proposition 2.

The next lemma and theorem are easiest if we take κ to mean κ^+ .

Lemma 10. Let $\kappa = \kappa^+$. For all λ -terms *M*, *N* and for all variables *x*,

 $CL + (A.1, 2) \vdash [N_{\kappa}/x]M_{\kappa} \approx ([N/x]M)_{\kappa}.$

Proof. By induction on *M*. The least trivial case is abstraction. If $M = \lambda y P$ (where by convention $y \neq x$ and $y \notin FV(N)$), then

$$[N_{\kappa}/x]M_{\kappa} = [N_{\kappa}/x](\lambda^{+}y.P_{\kappa}) \approx \lambda^{+}y.[N_{\kappa}/x]P_{\kappa}$$

by Lemma 4(ii), for $y \notin V(N_{\kappa})$; so by induction hypothesis

$$[N_{\kappa}/x]M_{\kappa} \approx \lambda^{+}y.([N/x]P)_{\kappa} = ([N/x]M)_{\kappa}.$$

Theorem 2. $\lambda\beta$ and $CL + A_\beta$ are equivalent, in the following sense: for all λ -terms M, N and combinatory terms P, Q, and with $\kappa = \kappa^+$,

(i)
$$\lambda \beta \vdash M_{\kappa\lambda} \approx M$$
;
(ii) $P_{\lambda\kappa} = P$;
(iii) $\lambda \beta \vdash M \approx N \Leftrightarrow CL + A_{\beta} \vdash M_{\kappa} \approx N_{\kappa}$;
(iv) $CL + A_{\beta} \vdash P \approx Q \Leftrightarrow \lambda \beta \vdash P_{\lambda} \approx Q_{\lambda}$.

Proof. (i) By induction on *M*; use Lemma 9.

(ii) By induction on *P*; observe that $K_{\kappa} = \mathbf{K}$ and $S_{\kappa} = \mathbf{S}$.

(iii) (\Rightarrow) By induction on the length of the proof of $M \approx N$. Identity axioms translate to identity axioms, and instances of the application rule to instances of the application rule. For β -axioms $(\lambda x.M_1)M_2 \approx [M_2/x]M_1$ we get

$$((\lambda x.M_1)M_2)_{\kappa} = (\lambda^+ x.M_{1\kappa})M_{2\kappa} \approx [M_{2\kappa}/x]M_{1\kappa} = ([M_2/x]M_1)_{\kappa}$$

Х

X

Х

by Lemma 10. If $M \approx N$ is the conclusion of an instance of the ξ -rule, say $M = \lambda x.M_0$ and $N = \lambda x.N_0$, then by induction hypothesis

$$CL + A_{\beta} \vdash M_{0\kappa} \approx N_{0\kappa};$$

so by Corollary II of Theorem 1 we have

 $CL + A_{\beta} \vdash \lambda^{+} x. M_{0\kappa} \approx \lambda^{+} x. N_{0\kappa},$

which is to say that $M_{\kappa} \approx N_{\kappa}$ is deducible.

(iv) (\Rightarrow) By induction on the length of the proof of $P \approx Q$. Identity axioms translate into identity axioms, and instances of the application rule into instances of the application rule. The combinator schemes of *CL* correspond to the β -reductions KMN $\longrightarrow_{\beta} M$ and SMNL $\longrightarrow_{\beta} ML(NL)$. The translations of the A_{β} -axioms are seen to be valid by straightforward calculation.

(iii) (\Leftarrow) If $CL + A_{\beta} \vdash M_{\kappa} \approx N_{\kappa}$, then by the half of (iv) we just proved,

$$\boldsymbol{\lambda\beta} \vdash M_{\kappa\lambda} \approx N_{\kappa\lambda};$$

so by (i), $\lambda \beta \vdash M \approx N$. (iv) (\Leftarrow) If $\lambda \beta \vdash P_{\lambda} \approx Q_{\lambda}$, then by (iii), $CL + A_{\beta} \vdash P_{\lambda \kappa} \approx Q_{\lambda \kappa}$. So by (ii), $CL + A_{\beta} \vdash P \approx Q$.

Remark. By Theorem 1, Corollary I, the theorem holds for $\kappa \in {\kappa^*, \kappa_1}$ as well, if we replace (ii) by

(ii') $CL + A_{\beta} \vdash P_{\lambda\kappa} \approx P.$

The extensional case

 A_{η} is the following quartet of axioms:

- (A.3) $S(Y(XB))(KK) \approx X$
- (A.4) $YX \approx X(SBF)$
- (A.5) $S(KY)(YY) \approx S(Y(X(Y(S(KY)S))))(KS)$
- (A.6) $SBF \approx I$

Lemma 11. CL + (A.6) $\vdash x \approx S(Kx)I$.

Proof. By (A.6),
$$x \approx Ix \approx SBFx \approx Bx(Fx) \approx S(Kx)I$$
.

So (A.6) makes all terms functional, up to provable identity. Then Lemma 6 implies:

Lemma 12. Let P be a combinatory term that does not contain x. Then

$$CL + (A.6) \vdash \lambda_1 x. Px \approx P$$

Lemma 13. For any combinatory term P, $CL + A_{\eta} \vdash \lambda_2 x . P \approx \lambda_1 x . P$.

Proof. By Theorem 1, the ξ -rule holds for λ_1 in $CL + A_{\eta}$. So from

$$(\lambda_2 x. P) x \approx P$$
 (Reduction Lemma)

X

we get $\lambda_1 x.(\lambda_2 x.P)x \approx \lambda_1 x.P$; and by Lemma 12, $\lambda_1 x.(\lambda_2 x.P)x \approx \lambda_2 x.P$.

Combining Theorem 1 with Lemma 13, we obtain:

Lemma 14. $CL + A_{\eta} \vdash P \approx Q \Rightarrow CL + A_{\eta} \vdash \lambda_2 x. P \approx \lambda_2 x. Q.$ 6

X

X

Lemma 15. For any combinatory term P, $(\lambda_2 x. P)_{\lambda} \approx_{\beta \eta} \lambda x. P_{\lambda}$.

Proof. By Lemma 8(i), $(\lambda_2 x. P)_{\lambda} x \longrightarrow_{\beta} P_{\lambda}$. Then by the ξ -rule,

By the
$$(\eta)$$
-scheme, $\lambda x.(\lambda_2 x.P)_{\lambda}x \approx (\lambda_2 x.P)_{\lambda}$.

Lemma 16. Let $\kappa = \kappa_2$. For all λ -terms *M*, *N* and any variable *x*,

$$[N_{\kappa}/x]M_{\kappa} = ([N/x]M)_{\kappa}.$$

 $\lambda x.(\lambda_2 x.P)_{\lambda}x \approx_{\beta} \lambda x.P_{\lambda}.$

Proof. As Lemma 10; use (i) of Lemma 4 instead of (ii).

Theorem 3. $\lambda\beta\eta$ and $CL + A_{\eta}$ are equivalent, in the following sense: for all λ -terms M, N and combinatory terms P, Q, and with $\kappa = \kappa_2$,

(i) $\lambda \beta \eta \vdash M_{\kappa\lambda} \approx M$; (ii) $P_{\lambda\kappa} = P$; (iii) $\lambda \beta \eta \vdash M \approx N \Leftrightarrow CL + A_{\eta} \vdash M_{\kappa} \approx N_{\kappa}$; (iv) $CL + A_{\eta} \vdash P \approx Q \Leftrightarrow \lambda \beta \eta \vdash P_{\lambda} \approx Q_{\lambda}$.

Proof. Similar to the proof of Theorem 2; use Lemmas 5 and 17-19.

Remark. The argument of Lemma 13 applies to λ^+ or λ^* as well. Hence the theorem holds for $\kappa \in {\kappa^*, \kappa_1, \kappa^+}$ as well; only for κ^* and κ_1 we must replace (ii) by

(ii') $CL + A_{\eta} \vdash P_{\lambda \kappa} \approx P.$

Curry's axioms

Curry does not use the axioms (A.1, 2); instead he has

(C.1) $\boldsymbol{K} \approx \boldsymbol{B}(\boldsymbol{SBF})\boldsymbol{K},$

(C.2) $S \approx B(B(SBF))S$.

These do the same job as (A.1, 2). Abbreviate **SBF** to I_{η} .

Lemma 17. $CL + (C.2) \vdash Bxy \approx B(Bxy)I$.

Proof:
$$Bxy \approx S(Kx)y \approx B(BI_{\eta})S(Kx)y$$
 by (C.2)
 $\approx BI_{\eta}(S(Kx))y \approx I_{\eta}(S(Kx)y) \approx B(S(Kx)y)(F(S(Kx)y))$
 $\approx B(Bxy)I.$

Lemma 18. Suppose *P* is functional. Then

$$CL + (C.1, 2) \vdash P \approx S(KP)I.$$

Proof: We have five cases as in Lemma 3. Observe that $S(KP)I \approx BPI$. (i) $K \approx BI_{\eta}K$ by (C.1) $\approx B(BI_{\eta}K)I$ by Lemma 17, with $x = I_{\eta}$ and y = K $\approx BKI$. (ii) Suppose P = KA. Then $P \approx BI_{\eta}KA$ by (C.1) $\approx I_{\eta}P \approx BPI$. (iii) $S \approx B(BI_{\eta})S$ by (C.2) \times

$$\approx B(B(BI_{\eta})S)I \qquad \text{by Lemma 17}$$

$$\approx BSI.$$
(iv) Suppose $P = SA$. Then $P \approx B(BI_{\eta})SA \qquad \text{by (C.2)}$

$$\approx BI_{\eta}P \approx B(BI_{\eta}P)I \qquad \text{by lemma 17}$$

$$\approx BPI.$$
(v) Suppose $P = SAB$. Then $P \approx B(BI_{\eta})SAB \qquad \text{by (C.2)}$

$$\approx BI_{\eta}(SA)B \approx I_{\eta}P \approx BPI.$$

References

- [CL] Haskell B. Curry, Robert Feys & William Craig: Combinatory Logic. Amsterdam, 1958.
- [LC] Henk Barendregt: The λ -calculus. 2nd edition, Amsterdam 1984.
- [LCCI] J. Roger Hindley & Jonathan P. Seldin: Lambda-calculus and combinators, an introduction. Cambridge University Press, 2008.

Further References

D.A. Turner: Another algorithm for bracket abstraction. Afdruk van JSL XLIV, 267-70. A4(2r) $\Lambda.$

Gebruikt combinator S' gedefinieerd door S'xyzw $\approx x(yw)(zw)$.