
The relation between Combinatory Logic and l-calculus
In combinatory logic one can define abstraction operations that satisfy the b-

scheme; such abstraction operations determine translations of the l-calculus
(lb or lbh) into combinatory logic. Conversely the combinators correspond
with l-terms, so that CL lies embedded in lb. Because the combinators of the
l-calculus reduce stepwise, for instance, Kx ––› ly.x whereas Kx is not a redex,
and, more importantly, because l-abstraction is an operation of the l-calculus,
these two translations do not produce a complete agreement between CL and
lb. Generally speaking, combinatory logic is weaker. Curry [CL] conceived
additional axioms that close the gap: a finite number (five, to be precise) of
ground equations. (Ground means variable-free.)

Barendregt sketches in [LC] another, more direct approach to the problem. It
has inspired the present account.

Let P be a term of CL (a combinatory term), and M a l-term. We denote by
V(P) the set of variables occurring in P, and by FV(M) the set of variables oc-
curring free in M. If V(P) = 0⁄ , we call P a ground term. We abbreviate SKK to
I, and note that Ix —–»w x.

We use ≈ for formal equality and, informally, for provable equality (in a the-
ory determined by the context); and for convertibility, where sometimes rules
will be indicated by subscripts.

The deductive systems
In all the theories considered here, there is some syntax defining terms, in-

cluding application, represented by juxtaposition; and terms s, t can be com-
bined in equations s ≈ t. All theories contain the schemes
t ≈ t (identity),
s ≈ t Þ t ≈ s (symmetry),
r ≈ s & s ≈ t Þ r ≈ t (transitivity),
r ≈ s & t ≈ u Þ rt ≈ su (application);
beyond this, in lb we have (lx.M)N ≈ [N/x]M (b-contraction) and the x-rule
M ≈ N Þ lx.M ≈ lx.N, and additionally in lbh: lx.Mx ≈ M, where x Ï
FV(M) (h-contraction). Change of bound variables in l-terms is considered
part of the syntax, and in every context (in particular that of b-contraction), the
bound variables are assumed to be distinct from the free. In CL we have the
combinator schemes KPQ ≈ P and SPQR ≈ PR(QR).

Curry presents a list of defining clauses for abstraction in combinatory logic.
Four are relevant to us:

(a) [x].P = KP if x Ï V(P)
(b) [x].x = I
(c) [x].Px = P if x Ï V(P)
(f) [x].PQ = S([x].P)([x].Q)

Depending on which clauses we use, and the order in which we apply them,
we get different definitions of abstraction. In particular, l*x results from (abf)
— so l*x.P is KP if x Ï V(P), I if P = x, and S(l*x.P)(l*x.Q) otherwise —,
l1x results from (bfa), and l2x from (abcf). Yet a fourth abstraction, l+x, is de-

COMBINATORY LOGIC AND LAMBDA-CALCULUS

	2	

scribed by Hindley and Seldin [LCCI]. Call a combinatory term P functional if
Px, Pxy or Pxyz is a redex. Consider the following clauses:
(c¢) [x].Px = P if x Ï V(P) and P is functional;

(f ¢) [x].PQ = S(l2x.P)(l2x.Q).

Then l+x results from (abc¢f ¢).
Let GC be the term groupoid of combinatory logic, and Gl the groupoid of l-

terms. We define homomorphisms l: GC ––› Gl en k: Gl ––› GC as follows:
vl = vk = v, for any variable v;
Kl = K, Sl = S;
(lx.M)k = [x].Mk.

Actually, the precise nature of k depends on the details of abstraction; we
might distinguish k*, k1, k2, and k+, corresponding with the choices l*x, l1x,
l2x, and l+x. Observe that P and Pl, and M and Mk, contain the same variables
free.

All these constructions fulfil the purpose for which they were designed:

Lemma 1 (Reduction Lemma). Suppose

Q Î {l*x.P, l1x.P, l2x.P, l+x.P}.

Then any combinatory term R satisfies QR —–»w [R/x]P.

The abstraction l2 will not lead to a system that is equivalent to lb; if y ≠ x,
l2x.yx = y, but the equality lx.yx ≈ y is not valid in the lb-calculus. It is
almost valid, though:

Proposition 1. For each l-term M, lx.(lx.M)x —–»b lx.M.

This corresponds with the fact (to be established) that the abstraction l+ fits
lb.

Proposition 2. Let P be a combinatory term. If P is functional, then Pl b-re-
duces to an abstraction.

Proof. Consider cases: P is of one of the forms K, KA, S, SA or SAB. T

Corollary. For any combinatory term P, (l+x.P)l b-reduces to an abstraction.

Proof. By definition, l+x.P is functional. T

For any set A of ground equations, let CL + A be the equational system that
results from adding the axioms A to CL.

We fix (apart from I = SKK) the following abbreviations:
F := KI, so Fx ––› I;
X := S(KK), so that Xxy —–» K(xy);
Y := S(KS), hence Yxy —–» S(xy);
U := Y(S(KY)(S(KX)S)), hence Ux —–» S(Y(X(Sx)))
 and Uxyz —–» S(K(Sxz))(yz);
and B := YK, so that Bxyz —–» x(yz).

17 december 2014

	 3	

Ab is the following set of axioms:

(A.1) K ≈ S(Y(XK))F

(A.2) S ≈ SU(KF)

(A.3) S(Y(XB))(KK) ≈ X

(A.4) YX ≈ X(SBF)

(A.5) S(KY)(YY) ≈ S(Y(X(Y(S(KY)S))))(KS)

Lemma 2. CL + (A.2) |– S(Y(Xx))F ≈ S(K(S(Y(Xx))F))I.

Proof: S(Y(Xx))F ≈ SU(KF)(Y(Xx))F by (A.2); now normalize. T

Lemma 3. Suppose P is functional. Then

CL + (A.1, 2) |– P ≈ S(KP)I.

Proof: There are five cases: P is of one of the five forms K, KA, S, SA or SAB.
(i) K ≈ S(Y(XK))F by (A.1)
 ≈ S(K(S(Y(XK))F))I by Lemma 2, with x = K
 ≈ S(KK)I = XI by (A.1).
(ii) Suppose P = KA. Then P ≈ S(Y(XK))FA by (A.1)
 ≈ Y(XK)A(FA) ≈ S(XKA)I ≈ S(KP)I.
(iii) S ≈ SU(KF)U(KF) (use (A.2) to substitute for the initial S in (A.2))
 ≈ UU(KFU)(KF) ≈ UUF(KF) ≈ S(K(SU(KF)))(F(KF))
 ≈ S(KS)I = YI by (A.2).
(iv) Suppose P = SA. Then P ≈ SU(KF)A by (A.2)
 ≈ UA(KFA) ≈ S(Y(X(SA)))F ≈ S(Y(XP))F
 ≈ S(K(S(Y(XP))F))I by Lemma 2
 ≈ S(KP)I since P ≈ S(Y(XP))F.
(v) Suppose P = SAB. Then P ≈ S(Y(X(SA)))FB by the proof of (iv)
 ≈ Y(X(SA))B(FB) ≈ S(X(SA)B)I ≈ S(KP)I. T

Nested abstractions behave as in the l-calculus:

Lemma 4. Let P, Q be combinatory terms, and x, y distinct variables; assume
y Ï V(P). Then
(i) [P/x](l2y.Q) = l2y.[P/x]Q;
(ii) CL + (A.1, 2) |– [P/x](l+y.Q) ≈ l+y.[P/x]Q.

Proof. (i) By induction on Q, following the various cases in the definition of
l2-abstraction.
(ii) The cases Q = y and y Ï V(Q) are like (i). In the third case it may be that Q
= Ry with y Ï V(R) but R is not functional, whereas [P/x]R is functional. Then
we must show that [P/x]S(KR)I ≈ [P/x]R; we use Lemma 3. In the final case,
use (i). T

Lemma 5. Let P be a combinatory term that does not contain x. Then

CL + (A.3) |– l1x.P ≈ KP.

COMBINATORY LOGIC AND LAMBDA-CALCULUS

	4	

Proof. Induction on the complexity of P. In particular, suppose that P is com-
posite, P = P1P2. Take y Ï V(Px). Then
 l1x.P = S(l1x.P1)(l1x.P2) ≈ S(KP1)(KP2) (ind. hyp.)
 ≈ (l2xy.S(Kx)(Ky))P1P2 (Lemmas 1 and 4(i))
 = S(Y(XB))(KK)P1P2 ≈ XP1P2 (A.3)
 = (l2xy.K(xy))P1P2 ≈ KP (Lemmas 1 and 4(i) again). T

Lemma 6. Let P be a functional term that does not contain x. Then

CL + (A.1-3) |– l1x.Px ≈ P.

Proof. l1x.Px = S(l1x.P)I ≈ S(KP)I by the previous lemma; by Lemma 3,
S(KP)I ≈ P. T

A major difference between CL and lb is the x-rule. We want to show that it
holds for l1 in CL + Ab.

Lemma 7. (i) CL + (A.4) |– l+yz.S(Xy)z ≈ l+yzx.yx;
(ii) CL + (A.5) |– l+yzw.S(S(Yy)z)w ≈ l+yzw.S(Syw)(Szw).

Proof. By applying the definition of l+-abstraction, we get the axiom on dis-
play. T

Observe that in (ii) and on the lefthand side of (i), l+ may be replaced by l2.

Theorem 1. If CL + A |– (A.3-5), then

CL + A |– P ≈ Q Þ CL + A |– l1x.P ≈ l1x.Q.

Proof. For ground terms P, Q: from K ≈ K and P ≈ Q, by lemma 5. For the
schema KPQ ≈ P, let z Ï V(P). Then
l1x.KPQ = S(l1x.KP)(l1x.Q) = S(X(l1x.P))(l1x.Q) by definition
 ≈ (l+yz.S(Xy)z)(l1x.P)(l1x.Q) by Lemmas 1 and 4
 ≈ (l+yzx.yx)(l1x.P)(l1x.Q) by Lemma 7(i)
 ≈ l+x.(l1x.P)x by Lemmas 1 and 4(ii)
 = l1x.P by definition.
For the schema SPQR ≈ PR(QR), let z, w Ï Var(P) and w Ï Var(Q), then
l1x.SPQR = S(l1x.SPQ)(l1x.R) = S(S(l1x.SP)(l1x.Q))(l1x.R)
 = S(S(Y(l1x.P))(l1x.Q))(l1x.R) by definition
 ≈ (l+yzw.S(S(Yy)z)w)(l1x.P)(l1x.Q)(l1x.R) by Lemmas 1, 4
 ≈ l+yzw.S(Syw)(Szw)(l1x.P)(l1x.Q)(l1x.R) by Lemma 7(ii)
 ≈ S(S(l1x.P)(l1x.R))(S(l1x.Q)(l1x.R)) by Lemmas 1, 4
 = l1x.PR(QR) by definition.

If P = P1P2 and Q = Q1Q2 and the last step in the deduction of P ≈ Q was

P1 ≈ Q1 P2 ≈ Q2 –––––––––––––––––––
P ≈ Q

then by induction hypothesis l1x.Pi ≈ l1x.Qi is provable (i = 1, 2); so

S(l1x.P1)(l1x.P2) ≈ S(l1x.Q1)(l1x.Q2),

17 december 2014

	 5	

i.e. l1x.P ≈ l1x.Q. T

Corollary I. Let l be l+ or l*, P a combinatory term. Then

CL + Ab |– lx.P ≈ l1x.P.

Proof. By the Reduction Lemma, (lx.P)x ≈ P. So by the theorem,

l1x.(lx.P)x ≈ l1x.P .

Since lx.P is functional, by Lemma 6 we have l1x.(lx.P)x ≈ lx.P . T

Corollary II. Let l be l+ or l*. Then

CL + Ab |– P ≈ Q Þ CL + Ab |– lx.P ≈ lx.Q.

Lemma 8. For any combinatory term P,
(i) (l2x.P)lx —–»b Pl;
(ii) (l+x.P)lx —–»b Pl.

Proof. By induction on P, and using (i) for (ii). T

Lemma 9. For any combinatory term P, (l+x.P)l ≈b lx.Pl.

Proof. By the previous lemma, (l+x.P)lx ≈b Pl. So by Rule (x),

lx.(l+x.P)lx ≈b lx.Pl.

Now apply Proposition 1 and the corollary to Proposition 2. T

The next lemma and theorem are easiest if we take k to mean k+.

Lemma 10. Let k = k+. For all l-terms M, N and for all variables x,

CL + (A.1, 2) |– [Nk/x]Mk ≈ ([N/x]M)k.

Proof. By induction on M. The least trivial case is abstraction. If M = ly.P
(where by convention y ≠ x and y Ï FV(N)), then

[Nk/x]Mk = [Nk/x](l+y.Pk) ≈ l+y.[Nk/x]Pk

by Lemma 4(ii), for y Ï V(Nk); so by induction hypothesis

 [Nk/x]Mk ≈ l+y.([N/x]P)k = ([N/x]M)k. T

Theorem 2. lb and CL + Ab are equivalent, in the following sense: for all l-
terms M, N and combinatory terms P, Q, and with k = k+,
(i) lb |– Mkl ≈ M;
(ii) Plk = P;
(iii) lb |– M ≈ N Û CL + Ab |– Mk ≈ Nk;
(iv) CL + Ab |– P ≈ Q Û lb |– Pl ≈ Ql.

Proof. (i) By induction on M; use Lemma 9.
(ii) By induction on P; observe that Kk = K and Sk = S.
(iii) (Þ) By induction on the length of the proof of M ≈ N. Identity axioms
translate to identity axioms, and instances of the application rule to instances
of the application rule. For b-axioms (lx.M1)M2 ≈ [M2/x]M1 we get

((lx.M1)M2)k = (l+x.M1k)M2k ≈ [M2k/x]M1k = ([M2/x]M1)k

COMBINATORY LOGIC AND LAMBDA-CALCULUS

	6	

by Lemma 10. If M ≈ N is the conclusion of an instance of the x-rule, say M =
lx.M0 and N = lx.N0, then by induction hypothesis

CL + Ab |– M0k ≈ N0k;

so by Corollary II of Theorem 1 we have

CL + Ab |– l+x.M0k ≈ l+x.N0k,

which is to say that Mk ≈ Nk is deducible.
(iv) (Þ) By induction on the length of the proof of P ≈ Q. Identity axioms
translate into identity axioms, and instances of the application rule into in-
stances of the application rule. The combinator schemes of CL correspond to
the b-reductions KMN —–»b M and SMNL —–»b ML(NL). The translations of the
Ab-axioms are seen to be valid by straightforward calculation.
(iii) (Ü) If CL + Ab |– Mk ≈ Nk, then by the half of (iv) we just proved,

lb |– Mkl ≈ Nkl;

so by (i), lb |– M ≈ N.
(iv) (Ü) If lb |– Pl ≈ Ql, then by (iii), CL + Ab |– Plk ≈ Qlk. So by (ii),
CL + Ab |– P ≈ Q. T

Remark. By Theorem 1, Corollary I, the theorem holds for k Î {k*, k1} as
well, if we replace (ii) by
(ii¢) CL + Ab |– Plk ≈ P.

The extensional case
Ah is the following quartet of axioms:

(A.3) S(Y(XB))(KK) ≈ X

(A.4) YX ≈ X(SBF)

(A.5) S(KY)(YY) ≈ S(Y(X(Y(S(KY)S))))(KS)

(A.6) SBF ≈ I

Lemma 11. CL + (A.6) |– x ≈ S(Kx)I.

Proof. By (A.6), x ≈ Ix ≈ SBFx ≈ Bx(Fx) ≈ S(Kx)I. T

So (A.6) makes all terms functional, up to provable identity. Then Lemma 6
implies:

Lemma 12. Let P be a combinatory term that does not contain x. Then

CL + (A.6) |– l1x.Px ≈ P.

Lemma 13. For any combinatory term P, CL + Ah |– l2x.P ≈ l1x.P.

Proof. By Theorem 1, the x-rule holds for l1 in CL + Ah. So from

(l2x.P)x ≈ P (Reduction Lemma)

we get l1x.(l2x.P)x ≈ l1x.P; and by Lemma 12, l1x.(l2x.P)x ≈ l2x.P. T

Combining Theorem 1 with Lemma 13, we obtain:

Lemma 14. CL + Ah |– P ≈ Q Þ CL + Ah |– l2x.P ≈ l2x.Q.

17 december 2014

	 7	

Lemma 15. For any combinatory term P, (l2x.P)l ≈bh lx.Pl.

Proof. By Lemma 8(i), (l2x.P)lx —–»b Pl. Then by the x-rule,

lx.(l2x.P)lx ≈b lx.Pl.

By the (h)-scheme, lx.(l2x.P)lx ≈ (l2x.P)l. T

Lemma 16. Let k = k2. For all l-terms M, N and any variable x,

[Nk/x]Mk = ([N/x]M)k.

Proof. As Lemma 10; use (i) of Lemma 4 instead of (ii). T

Theorem 3. lbh and CL + Ah are equivalent, in the following sense: for all l-
terms M, N and combinatory terms P, Q, and with k = k2,
(i) lbh |– Mkl ≈ M;
(ii) Plk = P;
(iii) lbh |– M ≈ N Û CL + Ah |– Mk ≈ Nk;
(iv) CL + Ah |– P ≈ Q Û lbh |– Pl ≈ Ql.

Proof. Similar to the proof of Theorem 2; use Lemmas 5 and 17-19. T

Remark. The argument of Lemma 13 applies to l+ or l* as well. Hence the
theorem holds for k Î {k*, k1, k+} as well; only for k* and k1 we must re-
place (ii) by
(ii¢) CL + Ah |– Plk ≈ P.

Curry’s axioms
Curry does not use the axioms (A.1, 2); instead he has

(C.1) K ≈ B(SBF)K,

(C.2) S ≈ B(B(SBF))S.

These do the same job as (A.1, 2). Abbreviate SBF to Ih.

Lemma 17. CL + (C.2) |– Bxy ≈ B(Bxy)I.

Proof: Bxy ≈ S(Kx)y ≈ B(BIh)S(Kx)y by (C.2)
 ≈ BIh(S(Kx))y ≈ Ih(S(Kx)y) ≈ B(S(Kx)y)(F(S(Kx)y))
 ≈ B(Bxy)I. T

Lemma 18. Suppose P is functional. Then

CL + (C.1, 2) |– P ≈ S(KP)I.

Proof: We have five cases as in Lemma 3. Observe that S(KP)I ≈ BPI.
(i) K ≈ BIhK by (C.1)
 ≈ B(BIhK)I by Lemma 17, with x = Ih and y = K
 ≈ BKI.
(ii) Suppose P = KA. Then P ≈ BIhKA by (C.1)
 ≈ IhP ≈ BPI.
(iii) S ≈ B(BIh)S by (C.2)

COMBINATORY LOGIC AND LAMBDA-CALCULUS

	8	

 ≈ B(B(BIh)S)I by Lemma 17
 ≈ BSI.
(iv) Suppose P = SA. Then P ≈ B(BIh)SA by (C.2)
 ≈ BIhP ≈ B(BIhP)I by lemma 17
 ≈ BPI.
(v) Suppose P = SAB. Then P ≈ B(BIh)SAB by (C.2)
 ≈ BIh(SA)B ≈ IhP ≈ BPI. T

References
[CL] Haskell B. Curry, Robert Feys & William Craig: Combinatory Logic.

Amsterdam, 1958.
[LC] Henk Barendregt: The l-calculus. 2nd edition, Amsterdam 1984.
[LCCI] J. Roger Hindley & Jonathan P. Seldin: Lambda-calculus and combi-

nators, an introduction. Cambridge University Press, 2008.

Further References
D.A. Turner: Another algorithm for bracket abstraction. Afdruk van JSL

XLIV, 267-70. A4(2r) L.
Gebruikt combinator S¢ gedefinieerd door S¢xyzw ≈ x(yw)(zw).

