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CHAPTER 7 

CLONES AND DERIVED OPERATIONS 

Basic operations are only the beginning of what makes an algebra interest-
ing. A semigroup, for example, is not just a set with a binary operation; part of 
its nature is that certain different ways of composing this operation with itself 
lead to the same derived operation. Composite operations are one ingredient of 
this phenomenon; they are the subject of this chapter. 

Some of the applications will require that we treat constants as constant 
unary functions. For the time being, we deviate from standard usage by allow-
ing nullary operations in clones. 

§A Clones 

1 Definition. Let A be a set; ψ an n-ary operation on A; and φ0, …, φn–1 k-ary 
operations on A. Then the k-ary composite ψ(φ0,…, φn–1) is the k-ary opera-
tion χ on A defined by 

χ(x0,…, xk–1)  ψ(φ0(x0,…, xk–1),…, φn–1(x0,…, xk–1)). 

In particular, χ(x0,…, xk–1) exists if and only if 
〈x0,…, xk–1〉 ∈ 

i

<n

Dom(φ i) 

and 〈φ0(x0,…, xk–1),…, φn–1(x0,…, xk–1)〉 ∈ Dom(ψ). 
If n = 0, ψ(φ0, …, φn–1) is determined by ψ and the supposed arity of the 

otherwise nonexistent φ i; we may speak simply of the k-ary constant function 
ψ. 

2 Lemma (associativity). For any operations ψ, φ0,…, φn–1, χ0,…, χk–1: 
ψ(φ0,…, φn–1)(χ0,…, χk–1)  ψ(φ0(χ0,…, χk–1),…, φn–1(χ0,…, χk–1)). 

Proof. Exercise. 

3 Definition. Let A be a set, and 0 ≤ i < n . The i-th n-ary projection operation 
on A is the projection ei

n := π i: An ––› A, mapping 〈x0,…, xn–1〉 to xi . 

4 Definition. Let A be a nonvoid set. A clone on A is a set Φ of operations on 
A that contains the projection operations ei

n: An ––› A, for all n  ∈  and i < n, 
and is closed under composition: 
for any n, k ∈ , ψ: An ––› A and φ0,…, φn–1: Ak ––› A such that ψ, φ0,…, 
φn–1 ∈ F, ψ(φ0,…, φn–1) ∈ Φ. 

We denote the clone of all operations on A by ΩA; the subset of n-ary op-
erations by Ωn A.  

Let Clone be the nominator consisting of constant symbols ei
n, for all i and n 

such that 0 ≤ i < n , and (m + 1)-ary operation symbols γmk for all k, m ≥ 0. In-
terpret these symbols in ΩA: ei

n as the i-th n-ary projection operation on A, 
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and γmk as the composition operation that takes an m-ary operation φ0 and k-ary 
operations φ1,…, φm to the k-ary composite φ0(φ1,…, φm). The resulting alge-
bra we denote by ΩA. 

The clones on A are the subuniverses of ΩA. In particular, they form a 
closed set system. 

Examples. 
Ai Let O(A) be the collection of total operations of A. It is a clone. 
ii. The least clone on A is be the collection Proj A of all projection operations 
of A. 
iii. Suppose A is a singleton, say A = {a}. The operations on A are easily 
listed; we have 
1º for every n > 0, the n-ary projection operation 〈a…a〉 |—› a; 
2º the constant a; 
3º the void operation 0⁄ . 
The clones on {a} form a Boolean algebra: 
  Ω{a} 
 
 Proj{a} + 0⁄  Proj{a} + a 
 

Proj{a} 

5 Proposition. (i) If A is finite, the number of clones on A is at most 2ℵ0. 
(ii) If A is infinite, the number of clones on A is at most 22|A|. 

Proof. (i) There are countably many operations on A, and a clone is a set of 
operations. 
(ii) Let k = |A|. Then |An| = k, and if X ⊆ An, |AX| ≤ kk = 2k. That is to say, for 
any subset X of An, there are at most 2k operations with domain X. Since An has 
2k subsets, the number of n-ary operations on A is at most 2k · 2k = 2k. So the 
total number of operations is ℵ0 · 2k = 2k. The clones on A are subsets of the 
set of operations, so there are at most 22k of them.  

6 Definition. Let R be an m-ary relation on A, and φ an n-ary operation. Then 
φ preserves R, or R is invariant under φ, if, for every matrix 

(aij|1 ≤ i ≤ m, 1 ≤ j ≤ n) 
such that for every j, 〈a1j ,…, amj〉 ∈ R, and for every i, 〈ai1,…, ain〉 ∈ Dom φ, 
we have 〈φ(a11,…, a1n),…, φ(am1,…, amn)〉 ∈ R. 

In a picture: 
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 ⎛a11 … … a1n ⎞ ⎛ φ(a11,…, a1n) ⎞ 
 ⎢    ⎢ ⎢      ⎢ 
 ⎢a21 … … a2n ⎢ ⎢ φ(a21,…, a2n)  ⎢ 
 ⎢    ⎢ ⎢      ⎢ 
 ⎢  :    ⎢ ⎢      :     ⎢ 
 ⎢      ⎢ ⎢      ⎢ 
 ⎢  :    ⎢ ⎢      :     ⎢ 
 ⎢      ⎢ ⎢      ⎢ 
 ⎝am1 … … amn⎠ ⎝ φ(am1,…, amn)⎠ 
if the columns of the matrix belong to R, then so does the column vector on the 
right. 

Example. Assume R ⊆ Am. The collection of all operations on A that preserve 
R is a clone. 

The clone of total operations on a set A is a subclone of ΩA, on the one 
hand; on the other hand, there is a fairly natural injection of ΩA into the clone 
of total operations on a minimally enlarged set. Let Ωʹ′A be the reduct of ΩA 
obtained by forgetting the projection operations; and Oʹ′(A) the corresponding 
reduct of O(A). 

A7 Theorem. Let A be a nonvoid set, ⊥ ∉ A. Then Ωʹ′A is isomorphic to a 
subalgebra of Oʹ′(A ∪ {⊥}). 

Proof. If φ is an n-ary operation on A, define F(φ) on A ∪ {⊥} by 
 F(φ)(x1,…, xn) = φ(x1,…, xn) if 〈x1,…, xn〉 ∈ Dom φ; 
    ⊥ otherwise. 
Then F clearly is injective. We shall prove that F respects the composition op-
erations. Consider any composite element ψ(φ0,…, φn–1) of ΩA, with all φ i (i 
< n) k-ary; take any x0,…, xk–1 ∈ A ∪ {⊥}. 
1º If for some i < n, 

〈x0,…, xk–1〉 ∉ Dom φ i 
(in particular if ⊥ ∈ {x0,…, xk–1}), then on the one hand ⊥ is among 
F(φ0)(x0…xk–1), …, F(φn–1)(x0…xk–1), so 

F(ψ)(F(φ0)(x0…xk–1), …, F(φn–1)(x0…xk–1)) = ⊥; 
and on the other hand 〈x0,…, xk–1〉 ∉ Domψ(φ0,…, φn–1), so 

F(ψ(φ0,…, φn–1))(x0,…, xk–1) = ⊥. 
2º If φ i(x0,…, xk–1) = ai ∈ A (i < n), but ψ(a0,…, an–1)↑, then 

F(ψ)(F(φ0),…, F(φn–1))(x0,…, xk–1) = ⊥ , 
and since ψ(φ0,…, φn–1)(x0,…, xk–1)↑, F(ψ(φ0,…, φn–1))(x0,…, xk–1) = ⊥ as 
well. 
3º The remaining case, ψ(φ0,…, φn–1)(x0,…, xk–1)↓, is straightforward.  

The embedding F does not map projection operations on A to the corre-
sponding projection operations on A ∪ {⊥}. For example, F(e0

2)(a, ⊥) = ⊥; but 
e0

2(a, ⊥) = a. 

8 Two-valued logic 
Emil Post [1941] proved that the lattice of clones of total operations on a 

two-element set is countable. (For a modernized proof, see [Lau, 1991].) Since 
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the standard logic recognizes precisely two truth values, true and false, this 
lattice holds a special interest: it orders all possible systems of truth-functional 
connectives. 

If we allow connectives to be undefined for some possible inputs, we obtain 
partial two-valued logic. Its systems of connectives are harder to describe. In 
particular, their number is as great as Proposition 5 allows. 

To see this, denote the truth values by 0 and 1, and define for n > 1 the n-
ary operation  φn by 
 φn(x0,…, xn–1) = 0 if there is exactly one i < n such that xi = 0, 
  ↑ otherwise. 
For S ⊆ , let CS be the clone generated by {φn+2|n ∈ S}. It will suffice to 
show that φn+2 ∈ CS if and only if n ∈ S. One direction is trivial. For the other, 
suppose φn+2 ∈ CS. Then φn+2 = φk+2(τ0,…, τk+1), for certain (n + 2)-ary op-
erations τ0,…, τk+1 ∈ CS and k ∈ S. Since 

φk+2(τ0,…, τk+1)(0, 1,…, 1) = φn+2(0, 1,…, 1) = 0, 
and 1 ∉ Ran φm , the operations τ0,…, τk+1, except at most one, must be pro-
jection operations. Let τ i be a projection operation, say τ i = ej

n+2 . Since 
φk+2(τ0,…, τk+1)(1,…, 1, 0, 1,…, 1) = φn+2(1,…, 1, 0, 1,…, 1) = 0 

if the single 0 appears after j – 1 ones, all the other operations, τ0,…, τ i–1, 
τ i+1,…, τk+1, must be projection operations. Similar arguments establish that 
τ0,…, τk+1 must all be distinct, and that all n + 2 (n + 2)-ary projection opera-
tions must be among them. Hence k = n, so n ∈ S. 

History 
The number of clones of total operations on the three-element set was es-

tablished by Janov and Mucnik [1959] and by Hulanicki and Świerczkowski 
[1960]. Freivald [1966] found the number of clones on a two-element set. 

§B Term operations and polynomial operations 
Algebras have been introduced as pairs A = 〈A, I 〉 of a set A and a mapping 

I of symbols into ΩA that respects the arities of symbols. This is clearly the 
sort of definition required for the notion of homomorphism to work. There are, 
however, also contexts it which the names of operations are of small account. 
In particular, when we are speaking of clones, we may identify an algebra with 
its universe and its set of basic operations: A = 〈A, F〉, with A a set and F ⊆ 
ΩA. 

1 Definition. Let A be an algebra: CloA, the clone of term operations of A, is 
the subuniverse of ΩA generated by the basic operations of A. 

The elements of CloA are the term operations of A. The set of n-ary term 
operations of A will be denoted by Clon A. 

2 Proposition. If A is a total algebra, CloA ⊆ O(A). 
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Proof. Let A be a total algebra. Then the generating elements of CloA are to-
tal operations. So are the projections; and if f0 is an m-ary total operation and 
f1,…, fm are k-ary total operations, then γm

k( f0, f1,…, fm) is a total operation.  

Let ψ be a k-ary operation. Then m-ary composition by ψ is the operation 
Fm(ψ) that maps each k-tuple 〈φ0,…, φk–1〉 of m-ary operations to the m-ary 
composite ψ(φ0,…, φk–1). 

B3 Theorem. Let A be an algebra. Then Clon A is the least set of operations 
on A that contains the n-ary projection operations on A and is closed under n-
ary composition by basic operations of A. 

Proof. Let Γn be the least set of operations on A that 
(a) contains e0

n,…, en
n
–1; 

(b) contains γk
n(Q, τ0,…, τk–1) if it contains τ0,…, τk–1 and Q is a basic k-ary 

operation of A. 
Put 
 Γ :=  

0

≤n
Γn . 

It will suffice to prove that Γ = CloA. 
The inclusion Γ ⊆ CloA is easy. For the converse, define: 

Γʹ′ = {ψ ∈ ΩA|for all n, Γn is closed under Fn(ψ)}. 
We are going to show that Clo(A) ⊆ Γʹ′ ⊆ Γ. 
1º Γʹ′ is a clone. For: the projections are in Γʹ′, since ei

m(φ0,…, φm–1) = φ i . 
Since composition is associative (Lemma A2), if all the Γn are closed under n-
ary composition by ψ, φ0,…, and φk–1, they are closed under n-ary composi-
tion by ψ(φ0,…, φk–1). 
2º This implies that Clo(A) ⊆ Γʹ′, for by definition every Γn is closed under n-
ary composition by the basic operations of A. 
3º Let ψ be an m-ary element of Γʹ′. Then in particular Γm is closed under 
Fm(ψ), and so, since ψ = ψ(e0

m,…, em
m–1), ψ ∈ Γm.  

Examples 
i Let A be a nonvoid set, considered as a discrete algebra. Then CloA is the set 
Proj A of projection operations of A. 
ii Let A = 〈{0, 1}, +〉 be the two-element group. Let us denote e0

2 by x and e1
2 

by y, and the single element of {0}A×A by 0. Then from Theorem 3, we find the 
elements of Clo2A are 

x, y, x + y and 0, 
where 0 can be construed as x + x. 

Thus equations holding in A, such as x + y = y + x or x + x = y + y, may be 
taken as statements that various ways of combining operations of A lead to the 
same result. In the sequel we shall meet yet another, more formal, approach to 
equations. 
iii Let Q = 〈, +, ·, –, (.)–1, 0, 1〉 be the meadow of rational numbers. Among 
the n-ary term operations of Q are the rational functions 

p(x0,…, xn–1) –––––––––––– q(x0,…, xn–1) 
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where p and q are polynomials in x0,…, xn–1 with coefficients in . (Here the 
variable xi represents the projection ei

n.) 
iv The n-ary term operations of the meadow R = 〈, +, ·, –, (.)–1, 0, 1〉 of real 
numbers correspond one-to-one with the n-ary term operations of Q. 

B4 Definition. Let A be an algebra. Then Clon A is the algebra B with uni-
verse B = Clon A and the same nominator as A, the interpretation being de-
termined by 

QB(φ0,…, φk–1) = QA(φ0,…, φk–1), 
where on the left-hand side a k-ary operation is applied to φ0,…, φk–1, and on 
the right the defining operation is composed with them. 

5 Proposition. Let A be an algebra. Then 
(a) Clon A is a total algebra; 
(b) if A is total, Clon A consists of total operations. 

Proof. (a) Immediate by the definition. 
(b) Immediate by Proposition 2.  

6 Definition. Let A be an algebra, and B ⊆ A: B-PolA, the clone of B-
polynomial operations of A, is the subuniverse of ΩA generated by the basic 
operations of A and the nullary operations with values in B. 

The elements of B-PolA are the B-polynomial operations of A. The set of 
n-ary B-polynomial operations of A will be denoted by B-Poln A. If B = A, we 
omit the præfix: PolA = A-PolA, the clone of polynomial operations of A; 
Poln A =  B-Poln A, the n-ary polynomial operations of A. 

Example v. Let R be the meadow of real numbers. Among the n-ary poly-
nomial operations of R are the functions 

p(x0,…, xn–1) –––––––––––– q(x0,…, xn–1) 

where p and q are polynomials in x0,…, xn–1 with real coefficients. The -
polynomial operations of R are the same as the term operations. 

There is a close connection between term operations and polynomial opera-
tions. We formulate it in terms of expansions by special constants.  

7 Definition (special constants). Let A = 〈A, I〉 be an algebra, and B ⊆ A. Let 
C be a set of special constant symbols (in particular, C ∩ NomA = 0⁄ ), in one-
to-one correspondence with B; let cb be the constant symbol corresponding to 
b ∈ B. Then AB = 

〈A, I ∪ {〈b, cb〉|b ∈ B}〉. 

One easily sees that B-PolA = CloAB and B-Poln A = Clon AB. 

8 Corollary. Let A be an algebra. 
(a) If A is total, PolA ⊆ O(A). 
(b) B-Poln A is the least set of operations on A that contains the n-ary projec-
tion operations and the constant functions from An into B, and that is closed 
under composition by basic operations of A. 
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Proof. (a) PolA = CloAA ⊆ O(A) by Proposition 2. 
(b) B-Poln A = Clon AB; now apply Theorem 3, taking into account that the 
nullary functions into B are basic operations of AB. (The constant n-ary opera-
tion {b} × An is the n-ary composite of the nullary b and the void sequence of 
n-ary operations.)  

B9 Definition. Let A be an algebra. Then B-Poln A is the algebra P with uni-
verse P = B-Poln A and the same nominator as A, the interpretation being de-
termined by 

QP(φ0,…, φk–1) = QA(φ0,…, φk–1). 

10 Corollary. Let A be an algebra. Then 
(a) B-Poln A is a total algebra; 
(b) if A is total, B-Poln A consists of total operations. 

11 Theorem. Let A be an algebra, and B ⊆ A. If t ∈ Clom+n A and b0,…, bm–1 
∈ B, and p is the operation on A defined by 

(*) p(u0,…, un–1)  t(a0,…, am–1, u0,…, un–1), 
then p ∈ B-Poln A. Conversely, if p ∈ B-Poln A, then there exist m ∈  and t ∈ 
Clom+n A, b0,…, bm–1 ∈ B, such that (*) holds. 

Proof. We use Theorem 3. 
Suppose t = ei

m+n. If i < m, let p be the n-ary constant operation with value 
ai. If i ≥ m, take p = ei

n
–m. If t is an (m + n)-ary constant operation, let p be the 

corresponding n-ary constant operation. 
Suppose t = Q(t0,…, tk–1), k ≥ 1, and for all j < k, we have pj ∈ Poln A such 

that 
pj(u0,…, un–1)  tj(a0,…, am–1, u0,…, un–1). 

Then take p = Q(p0,…, pk–1). 
In the other direction, if p = ein, we can take m = 0 and t = p. If p is the n-ary 

constant function with value a, take m = 1 and t = e0
n+1. If p = Q(p0,…, pk–1), k 

≥ 1, and for all j < k we have mj ∈ , tj ∈ Clomj +n A and amj – 1 ,…, amj –1 ∈ A 
(where m–1 = 0) such that 

pj(u0,…, un–1)  tj(amj – 1 ,…, amj –1, u0,…, un–1), 

put m := mk–1 and sj := tj(em
m

j
+
–1

n,…, em
m

j
+
–

n
1, em

m+n,…, em
m

+
+
n
n
–1). Then 

sj(a0,…, am–1, u0,…, un–1)  pj(u0,…, un–1); 
so we may put t = Q(s0,…, sk–1).  

31.12 Definition. Let f be an n-ary operation on a set A, i < n. Then f is i-de-
pendent, or depends on the index i, if there exist a0,…, ai–1, a, b, ai+1,…, an–1 
such that 

f(a0,…, ai–1, a, ai+1,…, an–1) ~–⁄  f(a0,…, ai–1, b, ai+1,…, an–1). 
We call f i-independent if it is not i-dependent. 

Now suppose i0,…, im–1 are the distinct indices on which f depends. If m = 
k, we say f is essentially k-ary. If m ≤ k, then f is at most k-ary. 
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31.13 Theorem. Suppose 0 ≤ k < n, and f is an n-ary operation on some set A. 
Then f is essentially at most k-ary if and only if there exist a k-ary operation g 
on A and n-ary projection operations g0,…, gk–1 such that 

f = γk
n(g, g0,…, gk–1). 

Moreover, if f is essentially at most k-ary and k ≥ 1, we can take 
g = f( f0,…, fn–1) 

for certain k-ary projection operations f0,…, fn–1. 

Proof. (⇐) Suppose f = γk
n(g, g0,…, gk–1). There are at most k indices i < n for 

which the projection operation πi
n is among g0,…, gk–1. If j is not among 

them, then f is j-independent; which leaves f essentially at most k-ary. 
(⇒) Assume f is essentially at most k-ary. If k = 0, f is constant, hence f = 
γ0

n(g) for some (possibly undefined) nullary operation g. Otherwise let i0 < … 
< ik–1 be a list containing all the indices on which f depends. Define 
 fi0 = π0

k, …,  fik–1 = πk
k
–1, 

  and fi = π0
k if i ∉ {i0,…, ik–1}. 

Now put g = f( f0,…, fn–1). Then fi(ai0,…, aik–1) = ai if i ∈ {i0,…, ik–1}. Since 
f does not depend on the other indices, 

 f(a0,…, an–1) ~– f( f0(ai0,…, aik–1),…, fn–1(ai0,…, aik–1)). 
Now define for j < k, 

gj = π i
n
j .  

Then gj(a0,…, an–1) = aij. Hence with g = f( f0,…, fn–1), f = g(g0,…, gk–1). 
 

b14 Theorem. Let A be an algebra. 
(i) A subset of A is a subuniverse of A if and only if it is closed under the term 
operations of A. 
(ii) Suppose X ⊆ A. Then SgAX = {t(x)|x ∈ X* and t ∈ CloA}. 
(iii) If X = {x0,…, xn–1}, n > 0, then SgAX = {t(x0,…, xn–1)|t ∈ ClonA}. 

Proof. (i) (⇐) Trivial. 
(⇒) Suppose S is a subuniverse of A; let F be the set of operations on A that S 
is closed under. We must prove that CloA ⊆ F. Clearly F contains the 
projection operations and the basic operations of A. It remains to show that F 
is closed under composition. Suppose S is closed under f, g0,…, gk–1; we may 
assume k > 0. If f(g0,…, gk–1) exists and 〈s0,…, sn–1〉 is in its domain, then, 
since gj(s0,…, sn–1) ∈ S, for j < k, and f ∈ F, we have 

f(g0(s0,…, sn–1),…, gk–1(s0,…, sn–1)) ∈ S. 
So indeed f(g0,…, gk–1) ∈ F. 
(ii) (⊇) Immediate by (i), since SgAX ∈ SubA. 
(⊆) Abbreviate: {t(x)|x ∈ X* and t ∈ CloA} =: U. Since 

X = {π0
1(x)|x ∈ X}, 

X ⊆ U. Let Q be an n-ary basic operation of A, and u1,…, un ∈ U. Then there 
are x1,…, xn ∈ X* and t1,…, tn ∈ CloA such that ui = ti(xi), for 1 ≤ i ≤ n. Let x 
be the concatenation x1…xn. Then for each i, there are projection operations 
f1i,…, fkii such that ti( f1i,…, fkii)(x) = ti(xi). Then 
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Q(u1,…, un) = Q(t1( f11,…, fk11), …, tn( f1n,…, fknn))(x) ∈ U. 
(iii) (⊇) Trivial. 
(⊆) Suppose y ∈ SgAX. By (ii), there are a term operation s and i0,…, ik–1 < n 
such that y = s(xi0,…, xik–1). Take t = γk

n(s, πn
i0,…, πn

ik–1) ∈ ClonA. Then y = 
t(x0,…, xn–1).  

31.15 Theorem. Let A be an algebra. Then there exists a semigroup S such 
that S ⊇ A and the basic operations of A are limitations to A of polynomial op-
erations of S. 

Proof. Assume that the elements of A and those of NomA are primitive, and 
that A and NomA are disjoint. Put S = (A ∪ NomA)+, identifying each se-
quence of length 1 with its single element.  For s, t ∈ S, let s·t be the concate-
nation (written st) of s and t, except when st = Qa0…an–1 with Q ∈ NomA 
and 〈a0,…, an–1〉 ∈ DomQA, in which case s·t = QA(a0,…, an–1).  

§. Integral subalgebras/ outward extensions 
A subalgebra of B, B – A gesloten onder B-polynomen. De 

eenpuntscompletering. 

§32. Terms and polynomials 
The comparison of different algebras hinges on the circumstance that basic 

operations are denoted by operation symbols. We want to extend this com-
parability to derived operations. To this purpose we define terms and 
polynomials, as a kind of derived operation symbols. They are organized in 
term algebras, that embody the linguistics of our subject. 

32.1 Definition. Let N  be a nominator, and X any set disjoint with N . Then 
TN (X), the set of X-ary terms of type N , is the least set T ⊆ (N  ∪ X)+ such that 
(i) X ⊆ T, and 

(ii) if Q ∈ N  is n-ary, and t0,…, tn–1 ∈ T, then Qt0…tn–1 ∈ T. 

N.B. In clause (i), we identify sequences of length 1 with their elements. None-
theless we insist that the length of any term is uniquely determined. In other 
words, if for some odd reason some a ∈ N  ∪ X is a sequence a1a2a3 of three 
other elements of N  ∪ X, we assume we know that by a we mean 〈〈a1, a2, a3〉〉 
and not 〈a1, a2, a3〉. 

In the context of TN (X), the elements of X are called variables. Terms in 
which no variables occur are ground terms. 

We use bold lower case letters, in particular s, t, to refer to terms, with sub- 
and superscripts as needed. We sometimes insert brackets and commas into 
terms for readibility, as in Q(t0,…, tn–1). 

The definition of TN (X) as the least set containing the variables that satisfies 
a certain closure condition implies that any class that contains the variables 
and is suitably closed is a superclass of TN (X). This justifies an induction 
principle, induction on terms: if a certain property P belongs to all the vari-
ables, and whenever Q ∈ N  is n-ary, and t0,…, tn–1 have property P, Qt0…tn–
1 has property P as well, then all X-ary terms over N  have property P. 
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Term induction may even be used without the limitations imposed by a 
fixed nominator. If a class C 
(1) contains the variables, and 
(2) for any n-ary operation symbol Q, 

t0, …, tn–1 ∈ C implies Qt0…tn–1 ∈ C, 
then all terms belong to C. A justification of this more general principle may 
be taken from complete induction: if all terms of length less than m belong to 
C, then the terms of length m belong to C, so the terms of any length belong to 
C. Indeed, there are no terms of length 0; if m = 1, terms of length m must be 
variables, which are in C by (1), or constant symbols, which are in C by (2) 
with n = 0; if m > 1, terms of lengt m have the form Qt0…tn–1 for some n ≥ 1, 
and then since the sum of the lengths of t0, …, tn–1 is m – 1, t0, …, tn–1 must 
be in C, hence by (2), Qt0…tn–1 ∈ C. 

32.2 Definition. Let N  be a nominator, and X any set disjoint with N. Then 
TN (X), the term algebra of type N  over X is the total algebra with universe 
TN (X) and operations 

〈t0,…, tn–1〉 l→ Qt0…tn–1, 

for all n ∈  and n-ary Q ∈ N. 

32.3 Examples. 
(a) 〈, 0, S〉, the algebra of the natural numbers with zero and the successor 
operation, is isomorphic to the term algebra of type {0, S} over the empty set 
— the algebra of ground terms over {0, S}. 
(b) 〈, S〉, the algebra of the natural numbers with the successor operation, is 
isomorphic to the term algebra of type {S} over {0}. 

32.4 Unique Readability Theorem. Let T = TN (X), the term algebra of type 
N  over X. 
(i) Suppose Q ∈ N, t0,…, tn–1 ∈ T. Then QT(t0,…, tn–1) ∉ X. 
(ii) Suppose P, Q ∈ N, s0,…, sm–1, t0,…, tn–1 ∈ T. If 

PT(s0,…, sm–1) = QT(t0,…, tn–1), 
then P = Q, m = n, and si = ti for all i < n. 

Proof. Put A := N  ∪ X. 
(i) By definition, QT(t0,…, tn–1) is a word over A of a certain positive length k. 
If k = 1, then QT(t0,…, tn–1) = Q ∈ N, and by assumption N  ∩ X = 0⁄ . If k > 1, 
then QT(t0,…, tn–1) ∉ A since, as explained under Definition 1, elements of A 
have length 1. 
(ii) Assign weights to the elements of A: 
 — g(Q) = 1 – n if Q ∈ N  is n-ary; 
 — g(x) = 1 for all x ∈ X. 
Now extend g over A+ by 

   k 
 g(a1…ak) = ∑g(ai). 
  i=1 

We claim that w ∈ A+ is a term (that is, belongs to T) if and only if: 
(1) g(w) = 1 and for every proper initial segment v of w, g(v) ≤ 0. 
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The proof from left to right is a straightforward structural induction. The other 
direction is by induction on the length |w| of w. Assume (1). 
— |w| = 1. Then w must be a variable or a nullary operation symbol, so w is a 
term. 
— |w| > 1. Then the weight of the first letter of w cannot be positive, so w be-
gins with an operation symbol Q of arity n > 0. Let w = Qw0, and for k ≥ 0 
define vk to be the least initial segment of wk that has positive weight; let wk+1 
be the remainder, so 

wk = vkwk+1. 
Say that the process stops after m steps, with vm undefined: the reason must be 
that g(wm) ≤ 0. Now g(w0) = g(w) – g(Q) = 1 – (1 – n) = n; and since the 
weight of a single letter is at most 1, vk, if it exists, has weight 1; so g(wk) = n – 
k. Hence m = n. Observe that 

g(Qv0…vn–1) = (1 – n) + n = 1; 
so Qv0…vn–1 is not a proper initial segment of w, that is, wm is the empty word 
ε. By induction hypothesis, v0,…, vn–1 are terms; so w = Qv0…vn–1 is a term. 

Now suppose PT(s0,…, sm–1) = QT(t0,…, tn–1), for terms s0,…, sm–1, t0, 
…, tn–1. Then the words Ps0…sm–1 and Qt0…tn–1 must be the same, so P = 
Q, and since arities are fixed, m = n. Moreover s0 is an initial segment of 
t0…tn–1, so either s0 is an initial segment of t0 or t0 is an initial segment of s0. 
In the first case s0 cannot be a proper initial segment, since t0 is a term and 
g(s0) = 1; so s0 = t0. The same conclusion follows in the other case. We can 
repeat the argument for s1 and t1…tn–1, and so on, finding si = ti for all i < n.
  

OP dit punt kan de interpretatie van termen worden gedefinieerd. Daar-
voor gebruik je de recursiestelling of een daarvan afgeleide vorm van recursie 
op termen. R is ‘onmiddellijke subterm’ (argument). De operatie q: 
q(x, ψ) = ax; q(Qt0…tn–1, ψ)  QA(ψ(t0),…, ψ(tn–1)). (q is een operatie we-
gens unieke leesbaarheid.) De interpretatie is per definitie een gegrond 
quomorfisme (growmorphism). 

32.5 Lemma. Let T = TN (X) be a term algebra. Then 
(a) T is X-generated; 
(b) if S ⊆ T is X-generated, then 

 QT(t0,…, tn–1) ∈ S implies t0,…, tn–1 ∈ S. 
Proof. (a) If T ≠ SgTX, then T – SgTX contains a term t of minimal length: t ∉ 
SgTX, but any term s that, viewed as a word over N  ∪ X, is shorter than t, 
belongs to SgTX. Since X ⊆ SgTX, t must be of the form Qt0…tn–1, with Q ∈ 
N  and t0,…, tn–1 terms shorter than t. So t0,…, tn–1 ∈ SgTX; hence 

t = Qt0…tn–1 = QT(t0,…, tn–1) ∈ SgTX, 
a contradiction. 
(b) Assume 
(2) t := QT(t0,…, tn–1) ∈ S. 
Then there must be P ∈ N  and terms s0,…, sm–1 ∈ S such that 
(3) t = PS(s0,…, sm–1), 
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for otherwise, since by Unique Readability t ∉ X, S – {t} would be a proper 
subuniverse of S containing X. However, (3) implies 
(4) t = PT(s0,…, sm–1). 
By (2) and (4) and Unique Readability, P = Q, m = n, and si = ti for all i < n. 
So t0,…, tn–1 ∈ S.  

32.6 Lemma. Let T = TN (X) be a term algebra, and 〈Sj| j ∈ J〉 a nonempty 
family of X-generated relative subalgebras of T. Then jSj  is an X-generated 
relative subalgebra of T. 

Proof. Put S := jSj . To prove that S ⊆ T, we must show that if t0,…, tn–1 ∈ 
S, and (again) 
(2) t := QT(t0,…, tn–1) ∈ S, 
then t = QS(t0,…, tn–1). Now there must be some j such that t ∈ Sj. Then by 
Lemma 5, t0,…, tn–1 ∈ Sj. But Sj ⊆ T, so 

t = QSj(t0,…, tn–1) = QS(t0,…, tn–1). 
It remains to be shown that S is X-generated. Let U be a subuniverse of S 

that contains X. By the definition of T, an element s of S is a word, and as such 
it has a length |s|. We prove s ∈ U by induction on |s|. 

If |s| = 1, then either s ∈ X ⊆ U, or s is a constant symbol, in which case it 
belongs to U since U ∈ Sub(S). If |s| > 1, then for some P ∈ N  and s0,…, sm–1 
∈ T, 

s = Ps0…sm–1 = PT(s0,…, sm–1). 
By lemma 5, s0,…, sm–1 ∈ S, so by induction hypothesis, s0,…, sm–1 ∈ U; and 
s = PS(s0,…, sm–1), hence belongs to U since U is a subuniverse.  

32.7 Theorem. Let N  be a nominator, X a set, A an arbitrary algebra, and 
α : X ––› A 

a mapping. Then the class of homomorphisms from X-generated relative sub-
algebras of TN (X) into A that extend α contains a largest element (under inclu-
sion). 

Proof. Put T = TN (X). Let B be the said class, 
B = {β: Sβ ––› A|Sβ ⊆ T is X-generated and β ⊇ α}. 

Then B ≠ 0⁄ , since 〈X, 0⁄ 〉 ⊆ T by Unique Readability, and α: X ––› A. By Lem-
ma 6, 
 S :=   Sβ 

 β∈B 

is an X-generated relative subalgebra of T. So if we define a homomorphism 
by 

α* = B, 
we shall be done. 
1º To prove that α* is single-valued, we show, by induction on terms t, that 
β(t) is the same for all β ∈ B for which it is defined. Suppose 

t ∈ Sβ ∩ Sγ. 
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Then either t ∈ X, and β(t) = α(t) = γ(t); or there are Q ∈ N  and terms t0, …, 
tn–1 such that t = QT(t0,…, tn–1). By Lemma 5, t0,…, tn–1 ∈ Sβ ∩ Sγ . So 
 β(t) = β(QSβ(t0,…, tn–1)) = QA(β(t0),…, β(tn–1)) since β is a 
   homomorphism, 
  = QA(γ(t0),…, γ(tn–1)) by induction hypothesis, 
  = γ(QSγ(t0,…, tn–1)) = γ(t) since γ is a homomorphism. 
2º α* is a homomorphism: suppose that t = QS(t0,…, tn–1). Then for some β ∈ 
B, t ∈ Sβ, and by Lemma 5, t0,…, tn–1 ∈ Sβ as well. Since α*|̀ Sβ = β, 
 α*(t) = β(QSβ(t0,…, tn–1)) = QA(β(t0),…, β(tn–1)) since β is a 
   homomorphism, 
  = QA(α*(t0),…, α*(tn–1)).   

32.8 Corollary. Let N, X, A and α be as in the statement of the theorem, and 
α* the largest homomorphism from an X-generated relative subalgebra of 
TN (X) into A. Then α* is N-closed, and it is the only N-closed homomor-
phism from an X-generated relative subalgebra of TN (X) into A that extends α. 

Proof. Take B as in the proof of the theorem. It will suffice to show that 
β ∈ B is not N-closed if and only if B contains a proper extension of β. Ab-
breviate TN (X) to T. 
(⇒) Say β: U ––› A, Q ∈ N, s0, …, sn–1 ∈ U, QA(β(s0),…, β(sn–1)) = a ∈ A, 
but QU(s0,…, sn–1)↑. Since U ⊆ T, we must have 

t := QT(s0,…, sn–1) ∉ U. 
Let Uʹ′ = U ∪ {t}, and Uʹ′ = Uʹ′T. Define γ := β ∪ {〈a, t〉}. By definition Uʹ′ ⊆ T; 
and Uʹ′ is obviously X-generated. Moreover, γ is a homomorphism. In particu-
lar, if 

t = PUʹ′(t0,…, tm–1), 
then t = PT(t0,…, tm–1), so by Unique Readability P = Q, m = n, and si = ti for 
all i < n. Hence 

γ(QUʹ′(s0,…, sn–1)) = γ(t) = a = QA(γ(s0),…, γ(sn–1)) 
is all there is to it. 
(⇐) Suppose β, γ ∈ B, β ⊂ γ. Let U := (Dom(β))T. Take t ∈ Dom(γ) – U of 
minimal word-length. Then t = QT(s0,…, sn–1) for some Q ∈ N, with s0,…, 
sn–1 ∈ U. Then 

 γ(t) = QA(γ(s0),…, γ(sn–1)) = QA(β(s0),…, β(sn–1)), 
but QU(s0,…, sn–1)↑.  

32.9 Corollary. Let X be a set, A a total algebra of type N, and 
α : X ––› A 

a mapping. Then there exists exactly one homorphism of TN (X) into A that ex-
tends α. 

Proof. Let T = TN (X). By Example [between total], Lemma 5(a) and the pre-
vious corollary, it is enough to show that Dom(α*) = T. We prove this, or 
rather T ⊆ Dom(α*), by structural induction (22.1). 
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By definition, X ⊆ Dom(α*). Now suppose t0,…, tn–1 ∈ Dom(α*), and Q 
∈ N  is an n-ary operation symbol. Since QA(α*(t0),…, α*(tn–1))↓, by the 
previous corollary QT(t0,…, tn–1) belongs to Dom(α*).  

32.10 Examples 
(a) In propositional logic, we deal with atomic statements and abstractions 
from them, denoted by proposition letters; and connectives, logical conjunc-
tions that combine statements in various ways. Formulas are the expressions 
denoting statements. Let Ω be a set of connectives, say Ω = {∧, ∨, →, ¬, ⊥}, 
and P a set of proposition letters. Then TΩ(P) is the set of formulas. 

The format specified by our definition of terms, as words over Ω ∪ P, is 
called Polish notation in logic. This notation may be considered difficult to 
read, even though, according to the Unique Readability Theorem, it is per-
fectly unambiguous. Fortunately they is no reason why we should insist on 
trying to denote words by themselves; we are free to use, say, ¬(p → ¬q) as a 
name of ¬→p¬q.  

The truth tables for the connectives (Cayley tables for ∨, ∧ and ¬ are on 
p.23, ⊥ stands for 0, and the Cayley table for → has been drawn below) deter-
mine a total algebra 2 of type Ω on the universe {0, 1}. Then by Corollary 8, a 
valuation V: P ––› {0, 1} has a unique extension V*: TΩ(P) ––› 2 that assigns a 
truth value to every formula. 

→ 1 0 
1 1 0 
0 1 1 

Cayley table of → (if…then). 

(b) First order logic is considerably more complex, and its algebraization is ac-
cordingly harder. An atomic statement is built from a predicate letter and a 
fixed number of terms, or the equality symbol and two terms (so it is not really 
atomic, just like the atom of modern physics). Terms are built from function 
letters and individual variables, as in Definition 1, except that the roles of 
variables and constants has been reversed (as will be seen below). From 
atomic statements, composite statements are constructed as in propositional 
logic; moreover, a new statement may be constructed from an individual 
variable and a statement by applying a quantifier. Let Ω consist of: 

an (n + 1)-ary operation symbol Rn for every n ∈ ; 
an (n + 1)-ary operation symbol Qn for every n ∈ ; 
a binary operation symbol ≈; 
constant symbols v0, v1, v2, v3, … , vn, …: the individual variables; 
connectives, say ∧, ∨, →, ¬, ⊥, with arities as in (a); 
and binary operation symbols ∀ and ∃, the quantifiers. 

Let P be a set. The formulas of the first order languages over P are included in 
TΩ(P). 

Let A be any nonvoid set. We shall turn A into an algebra of type Ω. The 
universe is the union of two sets RA and QA constructed from A. The first of 
these is the set of continuations of finitary relations on A: 
RA = {R ⊆ Aω|∃n ∀a, b ∈ Aω (∀x < n. a(x) = b(x) ⇒ (a ∈ R ⇔ b ∈ R))}. 
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The second is the set of continuations of finitary operations on A, 
QA = {Q: Aω ––› A|∃n ∀a, b ∈ Aω(∀x < n. a(x) = b(x) ⇒ Q(a) = Q(b))}. 

In words, the universe B = RA ∪ QA consists of the sets of and operations on 
infinite sequences of elements of A that depend only on initial segments of 
uniform length. 

For a ∈ Aω and any sequence f0,…, fn–1 of maps from Aω into A, we define 
a[ f0,…, fn–1] to be the sequence b ∈ Aω such that 

    ⎧ fi(a) if i < n, 
   b(i) =  ⎨ 
    ⎩ a(i) otherwise. 

The interpretation J on Ω is as follows. 
1º Dom(J(Rn)) = RA × (QA)n, and 

J(Rn)(R, Q0,…, Qn–1) ~– {a ∈ Aω|a[Q0,…, Qn–1] ∈ R}. 
2º Dom(J(Qn)) = (QA)n+1; if F, G0,…, Gn–1 ∈ QA, then 

J(Qn)(F, G0,…, Gn–1) = λa ∈ Aω. F(a[G0,…, Gn–1]). 
3º J(≈) maps (QA)2 into RA; J(≈)(F, G) = {a ∈ Aω|F(a) = G(a)}. 
4º J(vn) ∈ AAω; it maps a ∈ Aω to a(n). 
5º J(∧) = λR, S ∈ RA. R ∩ S; J(∨) = λR, S ∈ RA. R ∪ S; 
J(→) = λR, S ∈ RA. (Aω – R) ∪ S; J(¬) = λR ∈ RA. Aω – R; J(⊥) = 0⁄ . 

J(Rn)(R, Q0,…, Qn–1) = {a ∈ Aω|a[Q0,…, Qn–1] ∈ R}. 
6º J(∀) and J(∃) are binary operations. They are defined only if their first argu-
ment is the interpretation of an individual variable, and the second argument 
belongs to RA. Denote by a;[d/n] the function that maps n to d and any nʹ′ ∈ ω 
– {n} to a(nʹ′). Then if f = J(vn), R ∈ RA, 
 J(∀)( f, R) =  {a ∈ Aω|a;[d/n] ∈ R}; 
 d∈A    

 J(∃)( f, R) =   {a ∈ Aω|a;[d/n] ∈ R}. 
  d∈A     

Now consider a term algebra TΩ(P). A map α : P ––› B assigns to a variable 
p either an essentially finitary operation (in QA) or an essentially finitary 
relation (in RA). So α  forces a partition of P into predicate letters and func-
tion letters. The formulas, under this partition, are the composite elements of 
Dom(α*) that are mapped to RA. In general, a P-ary term ϕ of type Ω is a 
formula if there exists a map α : P ––› B such that α*(ϕ) ∈ RA. 

*This description of first order logic is not entirely standard. Normally, we 
would insist that a symbol be combined with exactly the number of terms 
specified by its arity. In the present description, no arities are given. Every 
letter is assigned a maximal number of arguments that can make a difference, 
and this would be a natural choice of arity, but these arities are not enforced. If 
p is assigned a relation of arity n in this sense, then still Rkpt1…tk will be 
meaningful, as long as t1,…, tk are meaningful as terms, whatever k is. If k is 
too small, Rkpt1…tk is treated as pt1…tkvk+1…vn in the standard notation; if k 
is too large, as pt1…tn. 

*Stepping over these anomalies, if a P-ary term ϕ is a formula relative to α, 
then we have 

〈A, α〉 |= ϕ(a) ⇔ a ∈ α*(ϕ). 
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(c) Let R consist of + and · (binary), – (unary), and the constant symbols 0 and 
1. Then TR({x1,…, xn}), or, as we shall prefer, TR(x1,…, xn), is related to the 
ring of polynomials with integer coefficients. It is only related, for it is 
definitely not a ring; for example, x1 + x2 ≠ x2 + x1, if, as convention requires, 
x1 ≠ x2. There will be more on this later. 

32.11 Notation and terminology. Let TN (X) be a term algebra, and 
a: X ––› A 

a map into the universe of an algebra A. Such a map is called an assignment, 
of values to the variables. We shall usually write ax instead of a(x), and ai 
instead of a(xi). Let a* be the greatest homomorphism extending a — it exists 
by Theorem 7. For t ∈ TN (X) we usually write tA(a) instead of a*(t). By this 
notation we stress that terms have the character of composite operation 
symbols. The interpretation of t acts on an X-indexed family a, just as the 
interpretation of an k-ary operation symbol Q acts on a k-indexed family 
〈a0,…, ak–1〉. Indeed, denoting i < k by xi, we have 

(Qx0…xk–1)A = QA. 
This may be generalized: 

32.12 Theorem. Let A be an algebra, N = NomA, and k ∈ . Then 
φ: t l→ tA 

is a homomorphism of TN (k) onto Clok A. 

Proof. Take any a0,…, ak–1 ∈ A, and let α = 〈a0,…, ak–1〉, that is, α maps the 
variable i (which we denote by xi) to ai. Suppose t = Qt0…tn–1. Then 
(5) φ(t)(a0,…, ak–1) = tA(α) = α*(t) = QA(α*(t0),…, α*(tn–1)) 
since α* is a homomorphism; hence 
(6) φ(t)(a0,…, ak–1) = QA(t0

A(α),…, tn
A

–1(α)) = QA(t0
A,…, tn

A
–1)(a0,…, ak–1), 

where in the last step, the notation QA(…) changes meaning from ‘application 
of QA’ to ‘k-ary composition with QA’. So (6) may be rendered as 
(7) φ(t)(a0,…, ak–1) = QClokA(t0

A,…, tn
A

–1)(a0,…, ak–1). 
Since (7) holds for any a0,…, ak–1 ∈ A, we conclude 
(8) φ(Qt0…tn–1) = QClokA(φ(t0),…, φ(tn–1)), 
showing φ is a homomorphism from TN (k) into Clok A. 

To prove surjectivity, it will suffice, by Theorem 31.3, to show that Ranφ 
(1º) contains the k-ary projection operations and (2º) is closed under k-ary 
composition by basic operations. 
1º With a0,…, ak–1 and α as above, for all i < k, 

φ(xi)(a0,…, ak–1) = α(xi) = ai = πi
k(a0,…, ak–1), 

so πi
k ∈ Ranφ. 

2º Let Q ∈ N  be n-ary. Suppose f0,…, fn–1 ∈ Ranφ; say 
f0 = φ(t0), …,   fn–1 = φ(tn–1). 

Then by (8), 
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φ(Qt0…tn–1) = QClokA(φ(t0),…, φ(tn–1)) = QA( f0,…, fn–1), 
so Ranφ is closed under k-ary composition by QA as required.  

We defined terms (Definition 1) with reference to a nominator N and a set X 
of variables. By itself, however, a term is just a word; and there are many N 
and X over which (for example) the three-letter word Qxy is a term. The 
nominator N could be {Q}, {P, Q}, {Q, R} and so on; {x, y} could be the set 
of variables, or {x, y, z}, etcetera. In principle it is even thinkable that x and/or 
y belongs to the nominator; but this last freedom we shall rule out: a term is 
not just a word, but also the knowledge which of its letters are operation 
symbols — including their arities — and which are variables. 

32.13 Definition. Let t be a term; then Nom(t) is the set of all operation sym-
bols that occur in t, and Var(t) the set of variables that occur in t. 

 If Nom(t) ⊆ N and Var(t) ⊆ X, then t ∈ TN (X). Now let TM(Y) be a term 
algebra with M ⊇ N and Y ⊇ X. Then t ∈ TM(Y) as well; indeed, it is easily 
seen that TN (X) ≤ TM(Y)|̀N. Let A be an algebra, and β: Y ––› A an assign-
ment. Then by Corollary 8, we have a unique M-closed extension β*: TM(Y) –
–› A. Since β |̀ X is an assignment for X, by the same token we have a unique 
N-closed extension (β |̀ X)*: TN (X) ––› A. Now following Definition 11 we 
may write tA(β) ~– β*(t) and tA(β |̀ X) ~– (β |̀ X)*(t), suggesting the existence of 
an object tA working on assignments from different sets. A felicitous 
suggestion, or confusing? Does it matter whether we think of t as an element 
of TM(Y) or an element of TN (X)? The following theorem implies that it does 
not. 

32.14 Proposition. Let f: TN (X) ––› TM(Y) be a homomorphism, t ∈ TN (X), A 
an algebra, and β: Y ––› A an assignment with M-closed extension β*. Then 
f(t)A(β) ~– tA(β* f |̀ X). 

Proof. Let (β* f |̀ X)* be the N-closed extension of β* f |̀ X. Note that the 
existence of f and t implies that M ⊇ N. 

 TN (X)  f TM(Y) 
 
 β* 
 (β* f |̀ X)* 
 A 

Since TN (X) is total, f is N-closed; and β* is M-closed, hence N-closed; so 
β*f is N-closed. Moreover β*f is an extension of β*f |̀ X; therefore, (β*f |̀ X)* 
being the unique N-closed extension of β*f |̀ X, β*f = (β*f |̀ X)*. So f(t)A(β) ~– 
β*( f(t)) ~– (β*f |̀ X)*(t) ~– tA(β*f |̀ X).  

32.15 Corollary. Let TM(Y) and TN (X) be term algebras, with M ⊇ N and Y ⊇ 
X, t ∈ TN (X), A an algebra, and β: Y ––› A an assignment. Then 

tA(β) ~– tA(β |̀ X). 

Proof. Let β* be the M-closed extension of β, and ι be the identical embed-
ding of TN (X) into TM(Y). Applying the Proposition, we have 
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 tA(β) ~– ι(t)A(β) ~– tA(β* ι |̀ X) ~– tA(β |̀ X).  

32.16 Corollary. Let t be a term, A an algebra, and α and β assignments in A 
such that α |̀ Var(t) = β |̀ Var(t). Then tA(α) ~– tA(β). 

Proof. By the previous corollary, 
 tA(α) ~– tA(α |̀ Var(t)) ~– tA(β |̀ Var(t)) ~– tA(β).  

Let t ∈ TN (X) be a term, A an algebra. We may consider tA as a function of 
X-indexed families, just as n-ary operations are functions of n-indexed 
families. Definition 31.12 generalizes to this case as follows. 

32.17 Definition. Let f be a function of X-indexed families in a set A, i ∈ X. 
Then f is i-dependent, or depends on the index i, if there exist α, β: X ––› A 
such that for all j ∈ X – {i}, α( j) = β( j), and f(α) ~–⁄  f(β). We call f i-independ-
ent if it is not i-dependent. 

 Now Corollary 16 implies, for t ∈ TN (X), i ∈ X, and an algebra A, that tA de-
pends on i only if i ∈ Var(t). 

Another interesting special case of Proposition 14 arises when A = TM(Y) 
and β is the identical embedding of Y. It is customary to identify, more or less, 
terms with the term operations they induce in term algebras. So when t is a k-
ary term, t = t(x0,…, xk–1) (instead of tT…(x0,…, xk–1)), and so on. Even when 
t is a infinitary term, we may write t = t(x0,…, xk–1) if all the variables that 
actually occur in t are among x0,…, xk–1, thus presenting t as an interpretation 
of a k-ary term. We have: 

32.18 Corollary. Let f: TN (X) ––› TM(Y) be a homomorphism, t ∈ TN (X). 
Then f(t) = t( f |̀ X). 

In other words, the action of a homomorphism of term algebras consists in 
uniformly replacing variables by terms: such homomorphisms are substitu-
tions. 

32.19 Corollary. Let X and Y be equipollent sets, disjoint with the nominator 
N. Then TN (X) ≅ TN (Y). 

The subuniverse generated by a set X ⊆ A in an algebra A is the closure of 
X under the basic operations of A (§22). By Theorem 31.14, SgA(X) is also the 
closure under the term operations of A; and more, every element of SgA(X) 
may be reached from X by just one application of a term operation. There are 
several ways of phrasing this with terms. 

32.20 Corollary. Let A be an algebra, N = NomA, and X ⊆ A. Then 
SgAX = {tA[X*]|t ∈   TN (k)} (a) 

  k∈ 
 = {tA[Xω]|t ∈ TN (ω)} (b) 
 = {tA(1A

X)|t ∈ TN (X)}. (c) 
Proof. (a) By 31.14 and Theorem 12. 
(b) For any t ∈ TN (ω) and x0,…, xn,… (n ∈ ω), there exists k such that 
tA(x0,…, xn,…) ~– tA(x0,…, xk–1); and conversely TN (k) ≤ TN (ω). 
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(c) By 14.3.6 and 31.14(iii), 
SgAX =  SgAX0 = {s(x0…, xn–1)|n ∈ , x0,…, xn–1 ∈ X and s ∈ ClonA}. 

  X0∈p (X) 

By Theorem 12, the term operations s ∈ ClonA are the term operations sA for 
s ∈ TN (n). Now consider t = s(x0,…, xn–1) ∈ TN (X0), where 

X0 = {x0,…, xn–1}. 
Let α be the mapping xi |—› i. By Proposition 14, 

 sA(x0,…, xn–1)  tA(〈x0,…, xn–1〉   α) ~– tA(1A
X0). 

And finally, if X0 is the set of variables actually occurring in t ∈ TN (X), then 
by Corollary 15, tA(1A

X)  tA(1A
X0).  

Example. There is no general upper bound on the arity of terms required to 
obtain the generated subuniverse. To see this, take for each m ∈  an m-ary 
operation symbol Qm; let I be the interpretation of these symbols in the uni-
verse  defined by 
 I(Qm)(n0,…, nm–1) = 2m + 1 if n0,…, nm–1 are distinct even numbers, 
  n0 otherwise. 
Put N = 〈, I〉, and let 2 be the set of even numbers. It is easy to see, by in-
duction on terms, that if t is a k-ary term and n0,…, nk–1 are even, 

tA(n0,…, nk–1) ∈ {n0,…, nk–1} ∪ {1,…, 2k + 1}. 
So {tA[(2)k]|t ∈ TNom(N)(k)} ≠ SgN2. 

Homomorphisms preserve term operations: 

32.21 Theorem. Let f: A ––› B be a homomorphism, α: X ––› A an assign-
ment; let t ∈ TN (X) have interpretation tA(α) in A. Then 

f(tA(α)) = tB( f  α). 

Proof. Let α* be the unique N-closed homomorphism from an X-generated 
relative subalgebra of TN (X) into A that extends α, and ( f  α)* the unique N-
closed homomorphism from an X-generated relative subalgebra of TN (X) into 
B that extends f  α. Then f  α* is a homomorphism from an X-generated 
relative subalgebra of TN (X) into B that extends f  α; and since by Theorem 
7.4 ( f  α)* is the largest such homomorphism, we have 

f  α* ⊆ ( f  α)*. 
So f(tA(α)) = f(α*(t)) = ( f  α*)(t) = ( f  α)*(t) = tB( f  α).  

32.22 Corollary. Let f: A ––› B be a closed homomorphism, α: X ––› A an as-
signment, and t ∈ TN (X). Then f(tA(α)) ~– tB( f  α). 

Proof. Following the proof of the theorem, we now get that f  α* is an  N-
closed extension of f  α; since by Corollary 8 ( f  α)* is the only such exten-
sion, we have f  α* = ( f  α)*. So 
 f(tA(α)) ~– f(α*(t)) ~– ( f  α*)(t) ~– ( f  α)*(t) ~– tB( f  α).  

32.23 Corollary. Let B be an algebra and t a term. If A ≤ B, then tA = (tB)Α. 
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Proof. Let f in the previous corollary be the identical embedding. The domain 
of tA is included in AX, and for α ∈ AX, tA(α) ~– tB(α).  

Example. Theorem 4 does not hold for relative subalgebras. Let A = {0,1,2}, 
A = 〈A, S〉 with S0 = 1, S1 = 2, S2 = 2, and B the relative subalgebra with 
universe {0, 2}. Take t = SSv0; then tA(0) = 2, but tB(0)↑, since 1 ∉ B. 

In a natural way, the terms over a nominator N  form an algebra T = 
T(Var)N  of type N : its universe is the set T(Var)N , and the operations are de-
fined by 

QT(t0,…, tn–1) = Qt0…tn–1. 
Terms may be interpreted in T as in any algebra. Usually, instead of tT(s0,…, 
sk–1) we write t(s0,…, sk–1); we call this term an instance of t, obtained by 
substitution of s0 for v0,…, sk–1 for vk–1. If the substituted terms s0, …, sk–1 
are variables, we call t(s0,…, sk–1) a variant of t. 

29.6 Theorem. Let f: A ––› B be a homomorphism, t a k-ary term, and a0, …, 
ak–1 ∈ A. 
(i) If f is reflective, then 

tB( f(a0),…, f(ak–1)) ∈ Ran f implies tA(a0,…, ak–1)↓. 
(ii) If f is closed, then tB( f(a0),…, f(ak–1))↓ implies tA(a0,…, ak–1)↓. 

Proof. By induction on terms. If t = vi, the succedent is true unconditionally. 
Now assume t = Qt0…tn–1. By induction hypothesis for each j < n tj

A(a0,…, 
ak–1)↓. Let cj = tj

A(a0,…, ak–1). 
(i) For some cn, f(cn) = tB( f(a0),…, f(ak–1)) = QB( f(c0),…, f(cn–1)). Since f 
is reflective, cn = QA(c0,…, cn–1). Hence tA(a0,…, ak–1)↓. 
(ii) Since tB( f(a0),…, f(ak–1)) = QB( f(c0),…, f(cn–1)), 〈 f(c0),…, f(cn–1)〉 ∈ 
Dom QB. Since f is closed, it follows that 〈c0,…, cn–1〉 ∈ Dom QA. So 
tA(a0,…, ak–1)↓.  

Example. Theorem 6 does not hold for weakly reflective or closed homomor-
phisms. The diagram below suggests a counterexample. 

 

 

 

 

 

AA, en algemener, voor B ⊆ A, AB. Polynomen als termen over NomAA, en 
algemener, voor B ⊆ A, B-Polynomen als termen over NomAB. 
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§ Nominal Clones 

Exercises 

§A 
1. Prove Lemma 2. 
2. Let A be a finite nonvoid set. Prove that Op(A) is generated by a single operation. 
3. Let A be a nonvoid set. For all k > 0 and every nullary operation a on A, let γk(a) be 
the constant k-ary operation with the same value as a if a is defined, and the void 
operation otherwise. For m > 0, let γm be the operation that takes an m-ary operation 
f0 and m operations f1,…, fm of the same arity to the composite f0( f1,…, fm). Let O(A) 
be the algebra with universe Op(A), the projection operators for constants, unary 
partial operations γk for all k > 0, and (m +1)-ary operations γm for all m > 0. Prove 
that O(A) has the same subuniverses as Op(A). 
3. Let k be an infinite cardinal. Prove that the number of clones on a set of cardinality 
k is precisely 22k. 
4. Let A and B be nonvoid sets, and f a mapping from A to B. 
(a) Show that there exists a homomorphism φ = Op( f ): Op(A) —› Op(B) that maps, 
for every a ∈ A, the nullary operation with value a to the nullary operation with value 
f(a), if and only if |B| = 1 or f is injective. 
(b) Show that if such a homomorphism φ exists, there exists one that maps total 
operations to total operations. 
5. Suppose 0⁄  ≠ A ⊆ B; define φ : Op(B) —› Op(A) by φ(g) = gA. Show that φ is a 
homomorphism if and only if A = B. 
6. The Mal’cev operations are defined as follows. For an n-ary operation f, n ≥ 2, 
(ξ f )(x1,…, xn) ~– f(x2,…, xn, x1); 
(τ f )(x1,…, xn) ~– f(x2, x1, x3,…, xn); 
(Δ f )(x1,…, xn–1) ~– f(x1, x1, x2,…, xn–1); 
for unary or nullary f, ξ f = τ f = Δ f = f. For any m and n, n-ary operation f, and m-ary 
operation g, (∇f )(x1,…, xn+1) ~– f(x2,…, xn+1); 
( f * g)(x1,…, xm+n–1) ~– f(g(x1,…, xm), xm+1,…, xm+n–1). 
Let M(A) = 〈Op(A), ξ, τ, Δ, ∇, *, 1A〉 be the algebra of the Mal’cev operations on 
Op(A). Prove that the subuniverses of M(A) are precisely the clones on A. 

§31 
1. Let A be an algebra. Show that A is minimal if and only if A ≅ Clo0A. 
2. Let R be a commutative ring with identity element. 
(a) Verify that the term operations of R are the operations determined by polynomials 
(in the sense of classical algebra) with integer coefficients. 
(b) The same for polynomial operations and polynomials with coefficients from R. 

§32 
1. Let Ω be a type, and X a set of variables; A := Ω ∪ X. Define the weight function g 
on A+ as in the proof of the Unique Readability Theorem. Suppose w = a1…ak ∈ A+ 
has weight g(w) = 1. Prove that there is a unique cyclic variant wʹ′ = ai…aka1…ai–1 
of w that is a term. 
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2. Let A be a nonvoid algebra, and X a nonvoid set. Show that there exists a homo-
morphism of TΩ(X) onto A (that is, with surjective underlying map) only if A|̀Ω is a 
total algebra. 
3. Show: if Y ⊆ X and Ω ⊆ Ωʹ′, then TΩ(Y) ≤ TΩʹ′(X)|̀Ω. 
4. Prove Corollary 18. 
1. (a) Let A be an algebra. Show that if the arity of operation symbols in Nom(A) is at 
most 1, then for any X ⊆ A, SgAX = {tA[X]| t ∈ T(Var)Nom(A)}. 
(b) Construct an example to show that it is not true that, if the arity of operation sym-
bols in Nom(A) is at most 2, then for any X ⊆ A, SgAX = {tA[X2]| t ∈ 
T(Var)Nom(A)}. 
n. standaard algebraïseringen van de predikaatlogica: cylindrische algebra’s, 
polyadische algebra’s. 
 


