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Chapter 1 

Introduction 

In this monograph we treat identification and realization problems for count­
ing process systems. Counting processes are nowadays frequently used in 
mathematical models for phenomena that occur in fields like nuclear biology, 
survival analysis, optical physics, traffic flow analysis and software reliability. 
For instance in software reliability counts of observed failures of a computer 
program are registered. These counts can be used to estimate the total number 
of errors in the program [43,44). An example in traffic flow analysis is given in 
section 1.1. Many other examples can be found in the book by SNYDER [48]. 

The theory of oounting processes has seen a fast development over the past 
15 years, stimulated by the growth of the general theory of stochastic 
processes, martingale theory, stochastic integration and stochastic differential 
equations. This theory provides a most suitable framework for studying the 
dynamic behaviour of counting processes. Since then many problems concern­
ing the modelling and identification of counting processes that arise in the 
aforementioned fields can be solved in a satisfactory way. One reason for 
succesful attempts in this direction is the availability of many theoretical 
results for martingales like convergence theorems and central limit theorems 
that also play a crucial role in this monograph. Our aim is to derive results on 
recursive estimation and realization problems for counting process systems. 

The purpose of this chapter is to introduce counting processes and related 
identification and realization problems on an intuitive level. 

1.1 INFORMAL INTRODUCTION TO COUNTING PROCESSES 

We introduce the notion of a counting process by means of an example. In 
the analysis of freeway traffic flows information about such flows is obtained 
by counting vehicles that pass a certain location at a freeway (30). To that end 
a detection loop is built at that location where the time instants are registered 

. when vehicles pass over it. Clearly those time instants exhibit an irregular 
behaviour, which points in the direction of a random phenomenon. More pre­
cisely, the time intervals that elapse between two succesive registrations can be 
viewed as random variables. One way to build a mathematical model, albeit 
unrealistic, is to make the assumption that those time intervals are independent 
and identically distributed according to an exponential distribution with 
parameter A. So if, starting from an initial time 0, we denote by Tn the time 
when the n-th vehicle passes the detection loop, we have that all the Tn + 1 - Tn 

are independent with the same exponential distribution and E(Tn+l -Tn)= ~. 
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Thus we see that we can anticipate the intervals Tn + 1 - Tn to be short for high 
values of A, whereas the opposite will happen for low values of A. The 
interpretation in this example is that high values of A reflect a high intensity of 
the traffic flow. A counting process { N,} is now defined by 

(1.1) 
n 

So N, is the number of vehicles that have passed the detection loop up to time 
t. In agreement with its intuitive interpretation the parameter A is called the 
intensity of the counting process. The counting process that arises in this 
example is called the homogeneous Poisson process with parameter ;\. This 
name is due to the fact that for all t and h ;;;;.o, the random variable N, +h - N, 
is distributed as a Poisson random variable with parameter 'Ah. If we capture 
the history of the process { N,} up to time t into a a-algebra ~, we can show 
that for hio we have the conditional probabilities 

P(Nt+h-Nt = II~)= Ah + f;(_h) (l.2a) 

(1.2b) 

The equations (1.2) again justify why A is called the intensity of { N,}. Indeed 
a high value of A makes a new count in a small time interval (t,t+h) more 
likely. In a more fancy way (1.2) admits an alternative description. Define the 
process { m,} by N, =At+ m,. In a differential notation this can be written as 

dN, = Adt + dm,. (1.3) 

Then one can show that { m,} is a martingale. A martingale is the archetype 
of a stochastic process with an asystematic behaviour. [See definition 2.2. l ]. 
The important observation is that under fairly general assumptions one can 
always decompose a counting process {N,} (the assumption that the time 
intervals Tn + 1 - Tn are i.i.d. is not necessary any more) as 

dN, = A1dt + dm, (1.4) 

The process {m,} arising in (1.4) is then again a martingale and this decom­
position. is essentially unique. However A1 is in general not a fixed constant 
but a stochastic process. It is called the intensity process. The decomposition 
(1.4) is important because of two reasons. Often the assumption in the previ­
ous example that the Tn + 1 - Tn are independent and identically distributed is 
untenable. So (1.4) allows a greater variety of counting processes. The second 
reason is that, not only is the process {;\1} unique, it also uniquely determines 
the distribution of {N,}. So a way to model a counting process is to specify 
the intensity process. Stated otherwise one can say that modelling a counting 
process is equivalent to modelling the corresponding intensity process. 
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1.2 MODBLUNG THE INTENSITY PROCESS 

We have seen in section 1.1 that the intensity of a counting process is in gen­
eral a stochastic process. In a practical situation one can often think of the 
intensity A, as a function of another stochastic process { Xi} which has a physi­
cal meaning in the particular situation at hand, so that we can write 
A,= f(t,J<t). In such a case the modelling of the intensity process reduces to 
specifying the function f. In doing this one can often distinguish between two 
stages, the first of which may be called structural modelling. We illustrate this 
with an example. Suppose that J<teRd. If the structural form of the intensity 
is linear we have A,=a.(t)TX,, where a.(t)eRd. This is the multipli~ve inten­
sity model studied by AALEN [12,17). A special case is obtained if a.(t)=a for 
all t, so A,= a.T J<t. In another example the structural form of the intensity l,ro­
cess might be exponential, so we can write A,=exp(a.(tlJ<t) or A,=exp(a X,). 
If the structural form of the intensity process is given, one can say that one is 
left with a parameteric modelling problem. This can be an infinite dimen­
sional problem, as in the case where A,=a.(tlX,. The parameter is then the 
function a. which is in general an infinite dimensional object. In the special 
case where A,= aT Xi the parameter is an element of Rd which yields a finite 
dimensional problem. One can say that establishing the structural form of the 
intensity corresponds to the selection of a model class. The model class is then 
described by the finite or infinite dimensional parameter. 

An intensity process of the form A,= f(t,X,) naturally arises in the context of 
stochastic system theory. Roughly speaking a stochastic system is a pair of 
stochastic processes, the state and the output process. The state process is 
always a Markov process that drives the output process. If the output process 
is a counting process then its intensity process is of the form A,= f (t,J<t) if 
{ Xi} is the state process. A stochastic system with counting process output is 
called a counting process system. A shorthand notation for such a system is 
(X,N) where X stands for {Xi} and N for {N,}. An important example is the 
following. (See [20) for an application). Suppose that the state space of the 
Markov process {X,} is finite, {xlt···•xn} say. Then we can define the indica­
tor process {Y,} by Y,=[Y1t, ... ,Ynr]T and Yj,=l{x,=x,}· Assume that 
A,=f(X,). Let c1=/(x;) and C=[c1t···•cn1· Then we can write A,=CY,. LetA 
be the generator matrix of { X, }. It can be shown that we can represent this 
model by the following equations 

dY, = AY,dt + dM, (I.Sa) .. 
dN, = CY,dt + dm, (l.5b) 

The processes { M,} and { m,} in (1.5) are martingales. Observe the analogy of 
(1.5) with Gaussian systems, where one has similar equations (1.5) for an n­
dimensional Gaussian process { Y,} and a one dimensional process { N,} with 
{ M,} and { m,} an n-dimensional and a one dimensional Brownian motion. 
The equations (1.5) can be considered as the structural model of the counting 
process. The parametric modelling problem in this case is the specification of 
the matrices A and C. It is noticed that a structural model can often be set up 
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on the basis of information that one has about the particular phenomenon that 
one wants to model The values of the parameters are usually not known 
beforehand. The only way to obtain these is by analyzing the observed data. 
This leads to the problem of identification. 

1.3 IDENTIFICATION 

Speaking in loose terms one can say that identification is concerned with 
obtaining a model from the observed data. In the situation where one deals 
with counting process observations this amounts to identification of the under­
lying intensity process. As in modelling problems it is in principle possible to 
distinguish between structural and parametric identification. However if one 
wants to perform an identification procedure based on a single realization of 
the counting process, it is in general difficult if not impossible, to obtain the 
structural form of the intensity process. In such a situation one has to assume 
that the structural form of the intensity process is given, in which case the 
identification problem becomes a parameter identification problem. But even 
then one cannot always expect to identify the "true" but unknown parameter. 
This is for instance the case if A., =a(t)TX, where the parameter a is a function. 
For the identification of the function a there exist non parametric techniques 
for which several realizations of the same counting process are needed [12,17]. 
Since we will treat some identification procedures that are based on a single 
realization of the counting process, we will assume that the unknown parame­
ter is finite dimensional which is for instance the case if A., = a.T X,, where 
aERd. H the structural form of the intensity, or a model class, is given, one 
can view identification as approximate modelling. Estimating a parameter 
then corresponds to the selection of a model that best explains the observation 
according to a certain criterion. There are basically two procedures for 
estimating a finite dimensional parameter called off-line and on-line. Off-line 
procedures are applied if it is possible to collect the data before actually com­
puting a parameter estimate. Off-line estimators can often be obtained by 
minimizing a suitable criterion. 

A well-known example is the maximum likelihood estimator. It is known 
that these estimators are consistent and enjoy certain optimality properties. 
For counting process observations results in this direction are obtained in 
[19,22,23,27,32], by means of a suitable analysis of the likelihood ratio. 

On-line or recursive procedures naturally arise if one is confronted with a 
control or a :filtering :e,roblem. In a control problem one usually looks for a 
feedback control law in order to meet some required behaviour of the output 
process. This control law depends on a parameter whose value might be 
unknown. Hence if one wants to apply this control law at all time instants t 
one also needs estimates of the unknown parameter values for all t. This calls 
for a device that computes new estimates from previous ones and from new 
observations. This d~ce usually consists of a set of stochastic differential 
equations. Denote by e, an estimator of (J at time t.~ In the context of count­
ing processes the stochastic differential equation for e, is then of the following 
form 
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d(J, = f(t, 8,')<Jt + g(t,9, _ ')dN, (1.6) 
A 

The interpretation of (1.6) is that e, evolves according to an ordinary 
differential equation be~een the occurrence times of the counting process 
(then dN, =O) whereas 8, jumps to a new value if a count is registered 
(dN, = 1). Similar considerations hold for filtering problems. A filtering or 
state estimation problem arises when one can only observe a counting process, 
but not the state process X, that influences the intensity process as for instance 
in (1.5). A filter is then a set of stochastic differential equations that deter­
mines the conditional expectation of X, given the past observations. Such a 
filter generally depends on the unknown parameter value. Hence to actually 
compute such a conditional expectation one again needs parameter estimates 
that are generated by an equation like (1.6). The combined set of stochastic 
differential equations that simultaneously estimate state and parameter is 
called an adaptive filter. One of the requirements that an adaptive filter 
should satisfy is that parameter estimates converge to the true parameter if the 
true model is in the model class. The same requirement is of course desired 
for any on-line estimation procedure whether or not it is part of an adaptive 
filter. Although we will not treat adaptive filtering problems, the above con­
siderations at least motivate why it is important to study the convergence pro­
perties of recursive estimators. 

One of the difficult problems for recursive estimators is the design of an 
equation like (1.6). A reason is that it is often not clear how to obtain a recur­
sive formula starting from known off-line estimators. Equations like (l.6) can 
be obtained via heuristic reasoning and by making suitable approximations. 
In chapter 4 we give some examples. A consequence is that, even if it is intui­
tively clear that a certain recursive estimator defined by (1.6) is close to a 
known off-line estimator, it is not easy to see whether certain known properties 
for the off-line estimator carry over to the corresponding on-line estimator. A 
technical analysis is hampered by the fact that it is often not known what cri­
terion a recursive estimator minimizes, or what estimation equation it satisfies. 
Hence for on-line estimators new techniques for investigation of e.g. asymp­
totic properties have to be developed. Since recursive estimators are defined 
via stochastic differential equations, stochastic Lyapunov functions can be 
expected to play a role. An analysis of this type is presented in chapter 4. 
Finally it,. is noticed that if one wants to prove consistency of a family of esti­
mators { 81 } one has to be sure that the "true" value 9 of the parameter is in 
principle identifiable. For instance if two different values H0 and fJ' 0 give rjse 
to the same observed process one cannot expect to get convergence of the { 9,} 
to H0 • A possible way out is to redefine the parameter space such that no two 
different values cif the parameter induce the same observed process and to be 
sure that all the H, belong to this new parameter space. 

1.4 REALIZATION 

Realization problems play a prominent role in stochastic system theory. In the 
context of counting process systems the basic question is the following. Given 
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a counting process {N1}, can we view it as the output of a stochastic system? 
In the light of the discussion in section 1.2 this amounts to reformulating this 
question as follows. Given a counting process { N1 } with intensity process 
{i\,}, does there exist a Markov process { Xi} with a small tractable state space 
such that A., is a function of t and Xi, so A.,= f(t,X,)? If the answer is 
affirmative then one says that the system (X,N) is a realization of {N1}. Sup­
pose now that we have a realization (X,N) where X is a finite state process 
such that (1.5) holds. A second question is then whether this realization is 
~al. Minima_!!ty here means _!h~t we cannot find another Markov E!ocess 
X and a function f such that A.1 = f(X1) and such that the state space of X con­
tains fewer elements than that of X. In order to answer this second question 
we need a characterization of minimality. It will be given in chapter 5 in 
terms of the matrices C and A appearing in (1.5). Minimality is an important 
concept that also plays a role in identification problems where one only has 
observations of the counting process whereas the state process cannot be 
observed. A rather trivial example clarifies this. Suppose that one wants to 
identify the matrix A from the observations of the counting process and sup­
pose that C =[A, ... ,A.] for some A.>0, so that A.1 =CY13. Then clearly any 
Markov process X that yields a minimal realization (X,N) is such that its space 
is a singleton. For Markov processes X with a larger state space such that 
CY13, the counting process contains no information whatsoever about X. 
Hence one is not able to identify A on the basis of the counting process obser­
vations alone. Although this example treats a degenerate case, it indicates that 
minimality is a prerequisite for identification of the underlying state process. 
Finally we notice that a characterization of minimality can be used to define 
the parameter space in such a way that all its elements are identifiable. 

1.5 ORGANIZATION OF THE MONOGRAPH 

In this section we briefly go through the contents of this monograph. In 
chapter 2 the relevant results from the general theory of stochastic processes 
are reviewed. All results except a convergence theorem of semi.martingales can 
be found in the literature [3,4,5,8]. For this reason most of the proofs are 
omitted. Chapter 3 starts with results from weak convergence theory, espe­
cially for sequences of (semi)martingales. As in chapter 2, only proofs of new 
results are given. The second part of this chapter is devoted to the study of 
likelihood ratios for counting process. The proofs that we present differ 
slightly from those in the references [16,24]. Also an altemayve characteriza­
tion of local asymptotic normality is derived. This LAN property turns out to 
be very helpful in designing recursive parameter estimation algorithms. This is 
explained in chapter 4 where we also study convergence properties of such 
algorithms. 

The technique we use to prove almost sure convergence involves stochastic 
Lyapunov functions and a convergence result for nonnegative semimartingales. 
In chapter 5 we discuss counting process systems. In detail we treat minimal­
ity for conditionally Poisson systems and a realization problem for selfexciting 
systems. 



Chapter 2 

Background in Stochastic Processes 

In this chapter we briefly summarize the theory of stochastic processes . as far 
as we need it. Basic references for this chapter are the books by DELLACHERIE 
and MEYER [4,5), JACOD [8], or specialized to point processes the one by 
BR"EMAUD [3] and [14,41). We do not give definitions and results of most basic 
notions in probability theory. 

A probability space is a triple (n, 'F,P), where (0, §) is a measurable space 
and P a probability measure on it. If (E,&) is another measurable space, then 
an E-valued random variable X is a measurable mapping X:(O, §)~(E,t9). In 
the sequel E will usually be a subset of some Rn, and t9 its Borel a-algebra. 
Stochastic processes to be defined below will have [O, co) as continuous "time 
set". However occassionally it will be replaced by N, as a discrete "time set". 

2.1 BASIC CONCEPTS 

DEFINITION 2.1.1: A stochastic process is a mapping X:SJX[O,oo)~E such that 
for all 1;;;;i.o the mapping X(-,t):O~E is a random variable. The map 
X(w,.):[O,oo)~E is said to be a trajectory or path of X. For X(-,t) we will 
often write X1• 

Given a stochastic process one can form its associated family of finite dimen­
sional distributions by computing P(x1,eA" ... ,x1.EAn) for t;e[O,oo) and 
A;Et9(i=1, ... ,n). Denote these quantities by <P(t1>···•tn;A 1,. • .,An). Then obvi­
ously one has CI>(tw(l),.··•'w(n);Aw(I),. .. ,Aw<n» for every permutation w of {1, .. .,n} 
and 

CI>(t1 , ... ,tn ;A, , ... ,An -1,E)=<P(t1 , .. .,tn -1 ;A !>···•An -t). 

A natural question to ask is then whether these two properties plus probably 
some extra completely characterize in some sense a stochastic process. This 
question is answered by the following theorem, essentially due to Kolmogorov. 

THEOREM 2.1.2: Let the family Cl>= {Cl>(ti. ... ,tn;A 1,. •• ,An)ln EN,t; e[O, oo),A; et9} 
satisfy the above permutation ana consistency property. Then there exist a proba­
bility space ('2,'F,P) and a stochastic process X:OX[O,oo)~E such that the set of 
finite dimensional distributions of X coincides with !: 

The space 0 in this theorem has to be rich enough in order to carry the desired 
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property. In Kolmogorov's proof of the theorem O=E[O,co>, and §'is the smal­
lest a-algebra that makes all cylinder sets in 0 measurable. For most purposes 
however this space is not suitable to answer questions like: What is the proba­
bility of the set { w:X(w,-):[O, oo )~E is continuous}? Also it is not clear how 
one should define double integrals like EfbX(s,w)dsP(dw). These problems 
can historically be accounted for by noticing that the definition of stochastic 
process has first been given for a countable time set like N or Z. Then all the 
relevant measurability properties are a simple consequence of the given 
definition of a stochastic process. For problems like the above ones more 
sophisticated measurability concepts are needed. 
The assertion of the theorem admits more than one choice of a probability 
space. In fact one should always include (0, <?f,P) in the definition of a stochas­
tic process. The fact that one can choose more than one probability space 
motivates the following definition: 

DEFINITION 2.1.3: Let (0, 'F,P,X) and ('2', §1,P',X') be two stochastic processes, 
both with values in (E,&). They are said to be equivalent if their families of 
finite dimensional distributions coincide. 

Even if one has a fixed suitable probability space (~, <?f,P), the stochastic pro­
cess X is not completely determined by its family of finite dimensional distri­
butions. We need more precise notions that tell us in what sense two stochas­
tic process are the same. These are given in the next two definitions. 

DEFINITION 2.1.4: Let X and X' be two stochastic processes on (~, <?f,P) 
l) X' is said to be a modification of Xif X1 =X', a.s. for every 1;;:.o. 
2) X' is said to be indistinguishable from X if 

P(c.>:X,(c.>)=X'1(w) for all 1;:;;i.O)= 1. 

One clearly has that two indistinguishable processes X and X' are 
modifications of each other and assuming only the latter, they are also 
equivalent. In the sequel statements that two processes X and Y are equal 
(X = Y) will always mean that X and Y are indistinguishable. Similarly if a 
process X satisfying some property is unique, it will mean that it is indistin­
guishable from any other process that satisfies the same property. The next 
two examples of a process play an important role in the theory of stochastic 
processes. These are the Brownian Motion and the Poisson process. 

DEFINITION 2.1.5: W:OX[O,oo)~R is a Brownian motion if 
(i) W0 =O a.s. 
(ii) W has independent increments if for t>s>u W,-Wa is independent of 

Wu. 
(iii) W, - Wa has a normal distribution with mean 0 and variance It - s I· 
DEFINITION 2.1.6: N:SlX[O,oo)~N0 is a Poisson process with intensity func­
tion i\:R+~R+ which is locally integrable, if 
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i) N 0 =0 a.s. 
ii) N bas independent increments 

t 

iii) N1 - N8 has a Poisson distribution with parameter p .. ( u ")<Ju 
s 

If X(t)=A, Vt, then N is called a homogeneous Poisson process with intensity 
parameter A. Later on we will define a generalization of a Poisson process. 
Although there are striking similarities between the Wiener process and the 
Poisson process, the differences are at least as important. 

PROPOSmON 2.1. 7: 
1) There exists a modification of the Brownian motion such that its paths are 

continuous and of unbounded variation. It is called the Wiener process. 
2) There exists a modification of the Poisson process such that its paths are 

increasing, constant between the jumps, that are all of magnitude + 1 and on 
each finite time interval there are only finitely many jumps. 

The current framework of the theory of stochastic processes has essentially 
been introduced by Doob. The important concept is that of a filtration, with 
the interpretation of a growing information pattern. 

DEFINITION 2.1.8.: Let (0, ~ be a measurable space. A filtration f = { §; },;;;.0 
on 0 is a family of sub a-algebras of 'ff" such that §; :::> ~ if t ~s. A filtered 
measurable space is then a triple (0, <?f, f), where f is a filtration on (0, ~-

DEFINITION 2.1.9: A stochastic process X on (O,~ is said to be IF-adapted if x, 
is §;-measurable for all t ~O. 
Given a stochastic process X there always exist a filtration to which it is 
adapted. Take §; = V a(X8 ). 

s<;t 

DEFINITION 2.1.10: Let Xbe a stochastic process on (O,~ and let f be a filtra­
tion on (0, ~- X is said to be progressively measurable (relative to f) if for all 
t~O the mapping (w,s)~X(w,s) is a measurable mapping from 
(OX[O,t),§;Xlf.S[O,t)) in (E,&). 

The usefulness of this definition is motivated by the following. Let X be a 
progressively measurable process on (0, <?f,P). Assume that X is 
(Lebesgue)integrable on 0 X [O,t] w.r.t. the product of P and the Lebesgue 
measure on [O,t]. Then from Fubini's theorem 

t 

J X(w,s)ds 
0 

is §;-measurable. Hence Y defined by Y(w,t)= JbX(w,s)dY is again an adapted 
process. 

A filtration f on a (necessarily complete) probability space (0, <?f,P) is said to 
be complete if ~ contains all P-null sets. f is called right continuous if 
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'ifi+ = ns>t~ equals 'if,. If f is both complete and right continuous than it is 
said to satisfy the usual conditions. 
We need two other concepts of measurability. 

DEFINITION 2.1.11: A stochastic process X is said to be cadlag if all its trajec­
tories are right continuous and have left limits at all points. 

Note: cadlag is a french abbreviation and stands for continue a droite et pour­
vue de limites A gauche finies. 

DEFINITION 2.1.12: The optional a-algebra e on DX [O, oo) is defined as the o­
algebra generated by all f-adapted processes that are cadlag. A stochastic 
process X is said to be optional if it is measurable w.r.t. e as a function of both 
t and w. 

The predictable a-algebra <5' on D X [O, oo) is defined as the a-algebra generated 
by all f-adapted processes that have left continuous trajectories. A stochastic 
process X is predictable if it is measurable as a function on (0, oo) X 0 w.r.t. <5'. 

The following sequence of implications holds: X is predictable ~x is 
optional. If X is moreover right continuous or left continuous, then it is also 
progressively measurable. 

ExAMPLE: Let X be an adapted cadlag process. Define the process X _ by 
(X _ )1 = X, - = lim.t11Xs. Then X _ is a predictable process. 

Any cadlag process X is optional and by llX we mean the process with 
tlX, = X, - X, _ . Hence also llX is optional. 

REMARK: All measurability concepts introduced above, from predictability to 
adaptedness hold with respect to the given filtration f. Mostly it will be clear 
with what filtration we work. However if confusion may arise we will speak: of 
f-predictable process etc. 

PROPOSITION 2.1.13: Let X be a stochastic process such that almost all its paths 
admit left and right hand limits. Then almost all paths have only countable many 
points of discontinuity. 

The next concept that will be introduced is that of a stopping time. We will 
need it only occasionally. 

DEFINITION 2.1.14: A stopping time is a random variable T:D~[O,oo] such that 
{T~t}E'!f, for all t. 

PROPOSITION 2.1.15: 
I) If Tisa stopping time, then {T<t}e'!f,. 
2) If Tisa random variable such that {T<t}E'!f, and if the filtration is right 

continuous, then T is a stopping time. 
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DEFINmON 2.1.16: The pre-Ta-algebra 'Wr is defined as 
'Wr= {A E'Wco :An {TE;;t}E'?f,, Vt} 

PROPOSITION 2.1.17: If S and T are two stopping times such that SE;; T, then 
'WsC'Wr. 

We close this section with 

DEFINITION 2.1.18: A stochastic process X is uniformly integrable if 

lirn suo EIX,llnx.1-.k} =O 
k-+oo 1;;..tl 

ExAMPLE: 
1) If X is bounded in Ll+a (a>O), that is sup1-.oEl.Xill+a<oo. then X is 

uniformly integrable. 
2) Let l be a random variable, Elll<oo. Define X1 =E[ll<J,J, where {'?frh-.o is 

a filtration on (ll, 'J,P). Then { X, h-.o is uniformly integrable. 

2.2 MARTINGALE THEORY 
In this section we summarize results on some important classes of stochastic 
processes, namely the martingales, supermartingales and submartingales. 
Throughout this section we assume that a complete probability space is given, 
together with a filtration f on it. All processes are adapted to this filtration 
and defined on the given probability space. 

DEFINmON 2.2.1: 
1) A stochastic process X (adapted to F) is a supermartingale if 

i) EIX,l<oo,v1;;;;.o 
ii) E[X,l~JE;;X9 a.s. Vt;;;;.s. 

2) X is a submartingale if - X is a supermartingale 
3) X is martingale if X is both a supermartingale and a submartingale. 

ExAMPLE: 
1) Let B:llX[O,oo]~R be a Brownian Motion. Let for all t ~ =a{B8 ,sE;;t}. 

Then B is a martingale. Indeed since B1 - Bs is independent of ~ we have 
E[B1 - Bsl~]=E[B1 -BsJ=O 

2) Let N :ll X [O, oo )~1\10 be a homogeneous Poisson process, with intensity X. 
Let 1t,' =a{N3 ,sE;;t}. Then X defined by X1=N1 -Xt is a martingale. 
Indeed since N1-N8 is independent of ~ we have E[N1 -Nsl~J= 
E[N1 -Ns]= X(t-s). 

3) More generally let X be a process with independent increments such that 
EIX,l<oo. Then as in the two previous examples the process M defined 
by M, = X, - EX, is a martingale relative to the filtration generated by X. 

4) Let X:(ll,'J,P)~R be a random variable, EIXl<oo. Let f be a filtration 
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on (n,<?;,P) Then M defined by M,=E[Xl§;J is a martingale. Observe that 
M is uniformly integrable. 

It turns out that the trajectories of supermartingales enjoy desirable properties. 
Specifically one may almost always assume that they have cadlag paths. This 
statement will be made precise in the next sequence of theorems. 

THEOREM 2.2.2: Let (n,<?;,f,P) be afilteredprobability space. Let D be a count­
able dense subset of[O,oo). Let X be a supermartingale on (0,<?f,f,P) 
1) Then for almost all w limXs(w) exists and is finite for all t. This limit will sw 

seD 
be denoted by X, + ( w ). 

2) For almost all w limXs(w) exists and is finite for all t~O. This limit is 
stft 
seD 

denoted by x,_(w). 
3) The process X + = { X, + },;;;.0 is a supermartingale with respect to the filtra­

tion f+ ={§;+ },;;;.o· 
4) The process X_ = { X, _ },>0, is a supermartingale with respect to the filtra­

tion f- ={§;-h>o· Here§;_= V~. 
s<t 

THEOREM 2.2.3: Let X be a supermartingale on (D,'!f,f,P). Assume that almost 
all its paths are right continuous. Then X is also a supermartingale with respect 
to the smallest filtration G that contains IF and that satisfies the usual conditions. 

THEOREM 2.2.4: Assume that the filtration f satisfies the usual conditions and let 
X be a supermartingale on (0, <?;,IF ,P) such that ti-+EX, is a right continuous func­
tion. Then X admits a modification such that all its paths are cadlag. Hence 
every path has only countably many discontinuities. 

Although this is usually not stated, one can also prove that there exists a 
modification which has left continuous paths on (0, oo ). In fact one then takes 
x-. 

In view of these results we will from now on, unless stated otherwise, assume 
that the filtrations satisfy the usual conditions and that supermartingales have 
cadlag paths. Martingales and supermartingales are especially interesting 
processes because under suitable conditions they converge almost surely as 
t~oo. 

THEOREM 2.2.5: Let X be a right continuous supermartingale. Suppose that 
sup{EIX,I, t;;.::i:O}<oo (or equivalently that lim1_,. 00 EX,l{x,<o}>-oo). Then 
l=lim, ..... 00 X, exists and is an integrable random variable. If X is uniformly 
integrable, then X is right closed by its limit l which means that X,;;;.:a.E[ll§;J. 

REMARK: The same statement holds for left continuous supermartingales. 
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REMARK: As we have seen before X defined by X,=E[Yl'F,J is a uniformly 
integrable martingale if EIYl<oo. The theorem tells us that the converse also 
holds. If X is a uniformly integrable martingale, then necessarily X is of the 
form X, = E[/l1fr]. 

DEFINITION 2.2.6: A martingale x is called square integrable if SUP EXf < oo. 
t>1:l 

One can also say that such a martingale is bounded in L 2 • So in particular 
square integrable martingales are uniformly integrable and their limit for t~oo 
exists. 

In a number of cases the requirement that a process is a uniformly integrable 
martingale is too restictive. Therefore we introduce a wider class of processes, 
that of local martingales. 

DEFINITION 2.2.7: A right continuous stochastic process X on (0,1;,f,P) is said 
to be a local martingale if there exists an increasing sequence of stopping times 
{Tn} with lim,. .... co Tn = 00 a.s. such that the process { xt/\T. l{T.>0} },;;.o is a uni­
formly integrable martingale for each n. { Tn} is called a fundamental sequence 
for X. 

In order to see that local martingales are extension of martingales we mention 
the following result. 

THEOREM 2.2.8: Let X be a (super)martingale, ri~ht continuous. Let T be a stop­
ping time. Then the stopped process X ( = { Xtt\T },;;.0) is again a 
(super)martingale. 

REMARK: 
1) Let X be a right continuous martingale. Let Tn=n. Then 

x'{· =Xr/\n =E[Xnl1fr] for all t. Hence XT. is a uniformly integrable mar­
tingale and X is a local martingale. 

2) X is a local martingale iff for the fundamental sequence { Tn} for X we 
have that 
i) Xol{T.>O} is integrable 
ii) { X, /\ T. - X 0 } is a uniformly integrable martingale. 

3) In fact the additional requirement that the stopped processes in this 
definition are uniformly integrable is superfluous. Indeed if we merely 
demand that { X, AT. - X 0 },;;.0 is a martingale for each n, 
{Xr/\T./\n-X0 },;;.o is a uniformly integrable martingale for each n. Hence 
taking { n /\ Tn} as a fundamental sequence, then we see that indeed X is a 
local martingale. 

DEFINITION 2.2.9: X is called a locally square integrable martingale if there 
exists an increasing sequence of stopping times {Tn}, Tnfoo such that 
{ X, /\T. - X 0 },;;.0 is a square integrable martingale. 
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ExAMPLE: Every continuous martingale X is locally square integrable. Take 
for Tn=inf{t>O:l.Xil;;;;.n}. 

PROPOSITION 2.2.10: Let X be a nonnegative local martingale and assume that 
EXo < oo. Then X is a supermartingale, as follows from Fatou's lemma. 

DEFINITION 2.2.11: A stochastic process A on (0, q;, IF ,P) is called increasing if 
its trajectories are right continuous, finite, increasing functions on [O, oo ). It is 
called integrable if li.Ini-+co EA1 < oo. The difference of two increasing processes 
is called a process of finite variation. If a process is the difference of two 
integrable increasing processes, then it is called a process of integrable varia­
tion. 

PROPOSITION 2.2.12: Let A be an increasing process. Then there exists a unique 
increasing process Ac, a sequence of stopping times { Tn} and a sequence op posi­
tive constants {i\n} such that 

A1 =Af + ~i\n l{r.,.;;1} 
n 

Ac is called the continuous parts of A, Ad =A -Ac is the jump part of A. For 
processes of finite variation, being the difference of two increasing processes, a 
similar result holds. 

DEFINITION 2.2.13: An increasing process is called locally integrable if there 
exists a sequence of stopping times {T,,} such that E[Ar. -A 0]<oo for each n 
and if A 0 is finite a.s. 

Observe that for a locally integrable increasing process A and a nonnegative 
measurable process X, one can define E f 0 XsdAs as a Lebesgue integral, which 
also yields f bXsdAs adaptive. 

PROPOSITION 2.2.14: Let A be an increasing process, locally integrable. Then 
there exists a unique predictable increasing process B such that A-B is a local 
martingale. B is called the dual predictable projection of A, or the compensator of 
A. 

PROPOSITION 2.2.15: Let A be an increasing locally integrable process. Then a 
predictable process B is its compensator if and only if E f o XsdAs = E f o X9 dB9 

for all nonnegative predictable processes X 

ExAMPLE: Let N be a standard Poisson process. N is certainly locally integr­
able, which is immediately seen by taking Tk=inf {t>O:N,;;;;.k}. Since we 
have already seen that N1 - t is a martingale, the process B with B,=t is the 
compensator of N. 
The dual predictable projection plays an important role in proving the decom­
position theorem for supermartingales. 
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DECOMPOSITION OF SUPERMARTINGALES 
Let A be an increasing process and let EA,< co, for all t. Let M be a mar­
tingale. Then X defined by X, = M, - A1 is a supermartingale. Conversely, 
given a supermartingale X can one always decompose it in the form 
X, = M1 - A1 above, and if this is the case, for a predictable process A this 
decomposition is unique. Oearly the latter is not the case if one considers the 
supermartingale X1 = -n1, where n is a Poisson process with En1 =N. Now 
one can take A1=-n1 and M1 =0, but also one can take Af =-N and 
Ml =N-n1, if the underlying filtration is given by '?fi=a{n8 ,so;;;;t}. The 
difference between the two decompositions is that A 1 is a predictable process, 
whereas A is not. The surprising result is that one can always uniquely decom­
pose a supermartingale as a difference of a martingale and a predictable 
increasing process. In the discrete time case this is almost trivial. Take A 
defined by 

An-An-I =Xn-I -E(Xnl~-i), Ao =O, and define Mn=Xn +An 

This is called the Doob-decomposition of a supermartingale. In continuous 
time it requires much more sophisticated techniques to prove a similar result, 
which is due to Meyer and is known as the Doob-Meyer decomposition of 
supermartingales. 

THEOREM 2.2.16: Let X be a supermartingale. Then X admits a unique decompo­
sition X = M - A, where M is a local martingale and A a predictable increasing 
process, Ao =O. Moreover A is an integrable process iflim,~00EX1>- co . 

It should be noted that the process Mand A depend on the given filtration. 
For instance in the Poisson process case A1 = - At if we take '?ft =a { ns ,s.,;;;;; t}. 
But A1 = - n1 if we would take the (deterministic) filtration 'Fi= '?f for all t. 
Now we are in the position to define a class of stochastic processes, which is 
closed under many operations. 

DEFINITION 2.2.17: A stochastic process X on (~,<?f,f,P) is called a semimar­
tingale if there exists a decomposition X,=X0 +A1 +M1, where Mis a local 
martingale, M 0 = 0, A is a process of finite variation, A 0 = 0. A semimartingale 
is called special if there exists a decomposition such that A is predictable. 

REMARK: The decom~sition of a special semimartingale is unique. Indeed if 
x,-Xo =A,+ M, =A,+ ML then M,-M: is predictable local martingale of 
finite variation and zero for t = 0. Hence M1 =Ml=<>. 

An example of a special semi martingale is a supermartingale, according to 
the Doob-Meyer decomposition (theorem 2.2.16). 

DEFINITION 2.2.18: A semimartingale X is said to be locally square integrable if 
the process Y defined by Yi =sup{IXs-Xol2 ,so;;;;t} is locally integrable. 
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LEMMA 2.2.19: 
i) A locally square integrable semimartingale is special. 
ii) A semimartingale is locally square integrable iff M is a locally square integr­

able martingale, where M is the local martingale of the canonical decomposi­
tion X,=X0 +A,+M,. 

Next we state and prove a convergence theorem for semimartingales, which is 
new and that will be used in subsequent chapters. 

THEOREM 2.2.20: Let X be a stochastic process such that X,=X0 +A,-B,+M1• 

Here A and Bare increasing processes with A 0 =B0 =0 and lim1-+00A,<oo a.s. 
and Mis a local martingale with M 0 =0. Assume that inf{X1:t;;;a.O}>-oo a.s. 
Then both lim, ..... 00 X1 and limt->00 B1 exist and are finite. 

PROOF: Assume without loss of generality that X 0 =O. Observe that lim1 .... 00 X1 

exists and is finite if and only if the same holds for limi-+oo X, _ . We will prove 
the latter. Let {Tn} be a fundamental sequence for M. Define also another 
sequence of stopping times Rk=inf{t>O:X/ +A,>k}. Observe that {Rk} is 
an increasing sequence with lim Rk = oo. Observe also that { Rk = oo }tD. Now 
for each n { Mtl\T,, }1;;.o is a uniformly integrable martingale. But then also 
{M1Ar.- h>o is a (uniformly integrable) martingale with respect to {<Jf,- h>o• 
and the same is true for {Mil\R,l\T.- h>o for each k,n. Observe also that 

M11\R,l\r.- ;;;;:.x,l\R./\r,- -A,"R."r.­

;;;a.-(XiAR,/\r,- + A1/\R.l\T,,-)· 

Hence MIAR,/\T,,- ~k. So for fixed t and k {MtAR,/\T,- }n;;r.o is uniformly 
integrable. Then 

E[Mi/\R,-1~-} = E[ limM,/\R,,/\r,-1~-] 
n-->oo 

~liminf E(M1/\R,/\T.-I~-] 
n-->oo 

= liminf Ms /\R,/\T, - =Ms /\R,-
n-+oo 

The last inequality follows from Fatou's lemma for uniformly integrable fami­
lies of random variables. So {Mi/\R,- },;;r.0 is a supermartingale and moreover 
{MIAR.- },..,0 is uniformly integrable since also MtA.R,- ~k. Hence from the 
convergence theorem for supermartingales lim,_.00 M,/\R,- exists and is finite. 
But then also lim(X,AR.- + Bi/\R,-) = lim(A1/\R,- + Mi/\R,-) exists and 

t->oo 1-->oo 
is finite. 

Hence lim,_.00 X,/\R,,- and timi_.00 B,/\R,- exist and are finite because the latter 
limit always exists and cannot be infinity because of inf1;;.0X1>-oo. 
Consequently lim, ..... 00 X, /\R, _ also exists and is finite a.s. on { Rk = oo} and on 
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this set it equals 1.im,....,.00 x, _ . But as noticed before { Rk = oo} increases to 0, 
which finishes the proof. D 

REMARK: This theorem generalizes a result in [39], in the sense that we do not 
require X to be nonnegative, nor do we require that the jumps of A ae 
bounded. A similar result in discrete time can be found in [35]. We will apply 
this theorem in chapter 4 ( cf. lemma 4.1.1. l ), in order to prove almost sure 
convergence of a family of parameter estimators. However, there X, will be 
nonnegative for all t. 

DEFINITION 2.2.21: Let M be a square integrable martingale. Then X=M2 is 
a submartingale in view of Jensen's inequality. Applying the Doob-Meyer 
decomposition theorem, we see that there exists a unique predictable increasing 
process, which we denote by <M,M>, such that M 2 -<M,M> is again a 
martingale. <M,M> is called the predictable variation process of M. This 
definition easily extends to locally square integrable martingales M. 

Ex.AMPLE: Let N be a Poisson process with parameter /\. Then one easily cal­
culates that <M,M>, =Al. 

DEFINITION 2.2.22: For two locally square integrable martingales X and Y one 
defines the predictable covariation process <X, Y> via the polarization for­
mula: 

l 
<X, Y> = 2[ <X + Y,X + Y> - <X,X> - < Y, Y> ]. 

Then XY - <X, Y> is a martingale. 

REMARK: <X,Y>=O iff XYis martingale. <X,Y> is a process of bounded 
variation. 

Clearly if one drops in the last two definitions the requirement that X and Y 
are locally square integrable, then there is no reason why <X,X> or 
<X, Y > should exist. However one can define another "variation" -process in 
this case. 

DEFINITION 2.2.23: Let X be a local martingale. Then there exist a unique 
optional increasing process, denoted by [X,X], such that 
i) X2 -[X,X] is a local martingale 
ii) A{X,X]=(.6.Xf. 

For two local martingales X and Y, [X, Y] is defined as [X, Y]= 
~{[X + Y,X + Y]-[X,X]-[Y, Y]}. Hence a[x, Y]=a[Y,X]=il·aY and 
XY -[X, Y] is a local martingale. 

The processes [X, Y],[X,X] are called the optional covariation and optional 
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variation processes. It is obvious (because of the possible jumps) that they are 
in general not predictable. 

DEFINITION 2.2.24: Let x be a local martingale. 
1) If [X,X] is a purely discontinuous increasing process, we say that X is a 

purely discontinuous local martingale 
2) If X has continuous paths, then we say that X is a continuous local mar­

tingale. 

One can prove the following theorem. 

THEOREM 2.2.25: Let X be a local martingale. Then there exists a unique decom­
position x = xc + xd, where xc is a continuous local martingale and xd is a 
purely discontinuous local martingale. 

REMARK: Different from the case where we considered increasing processes, 
the paths of Xd are not necessarily piecewise constant. With the aid of this 
theorem one can prove the following relation for any local martingale X: 

[X,X], = <Xc,xc>, + ~(AXsY· 
s.,;;;.1 

Notice that <Xc ,xc > is well defined since any continuous local martingale is 
locally square integrable. Notice also that [X,~ = <XC,Xc>. 

Furthermore if X is locally square integrable martingale then both [X,X] and 
<X,X> exist and [X,X]-<X,X>=([X,X]-X2 )+(X2 -<X,X>) is a local 
martingale. Stated otherwise, in this case <X,X> is the dual predictable pro­
jection of [X,X). 

ExAMPLE: Let N be a Poisson process with EN, =At and M, =N1 -At. Then 
L\[M,MJ, =(L\M,f =L\N1• Hence [M,M]=N. 

The next thing that we want to do is to define the process [X,X] for a semi­
martingale X. 

DEFINITION 2.2.26: Let Xbe a semimartingale and let X,=Xo+A,+M, be a 
decomposition. In this case the process [X,X] is defined as 

[X,X], = <Mc,Mc>, + ~(AXsY 
s.,;;;.1 

REMARK: Although the decomposition of X in definition 2.2.26 is not unique, 
the continuous part Mc of M is. This can be shown in the same way as prov­
ing the uniqueness of the decomposition of a special semimartingale. 

ExAMPLE: Let N be a Poisson process, then [N,NJ=N. 
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We close this section by giving some rules that enable us to compute [X, Y] for 
arbitrary semimartingales X and Y. If X is a local martingale and Y is a 
predictable process of finite variation, then [X, Y1 =~9,..,£\XsaY9 • In particu­
lar if Y is continuous, then [X, Y]=O. The same is true if X is a continuous 
local martingale. If both X and Y are semimartingales of finite variation, then 
again [X, Y1 =~s<tilsaYs. 

2.3 STOCHASTIC INTEGRATION 
Stochastic integration theory originated by considering integrals of the form 
Jbfsd"Ws, where W is a Brownian motion. Then clearly a path by . path 
definition as a Stieltjes integral is not possible, since the paths of Brownian 
motion are not of bounded variation. It6 has resolved this problem by 
defining a stochastic integral as an isometry between two Hilbert spaces, which 
is, although rather hidden in the definition that we will give in the sequel, still 
the core of stochastic integration theory. 

Our goal will be to construct stochastic integrals of the form JbH9 dX9 , where 
H is a predictable process and X a semimartingale. Let t9 be the set of simple 
predictable processes, that is He& if and only if there exists an increasing 
sequence of stopping times {Tn},Tnfoo such that H,=~nHnl{T.<t<T.+,}• where 
Hn is ~T. -measurable. Let X be a semimartingale. Define the stochastic 
integral of H with respect to X to be the stochastic process H·X with 

(H·X), = ~Hn-1 (Xr./\t- Xr._,At). 
n 

Then the following theorem holds: 

THEOREM 2.3.1: Let X be a semimartingale. the map H 1-+H· X on t9 admits a 
unique extension as a linear map on the space of all predictable locally bounded 
processes H. This extended map is also called the stochastic integral of H with 
respect to X H· X is a stochastic process with cadlag paths and we will write 
JbHsdXs for (H· X),. 

THEOREM 2.3.2: The stochastic integral is a stochastic processes satisfying the fol­
lowing properties 
a) H·X is a semimartingale 
b) For all locally bounded predictable processes H and K we have 

K·(H·X)=(KH}X 
c) The jumps of H·X are given by a(H·X)=Hil 
d) If X is a local martingale, then H· X is one too. 
e) If X is of finite variation, then H·X is also of finite variation. 
f) If H is left continuous and of finite variation and X is of finite variation then 

H· X is indistinguishable form an ordinary Stieltjes integral that can be cal­
culated path by path. 

REMARK: The last property (j) is of interest in the following chapters, where 
all relevant processes are of finite variation. Observe however that this 
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property is not evident from the definition of the stochastic integral as a linear map. This definition a priori gives no recipe for calculating (H·X),(w) for each we D. 

The next results will be often used. 

THEOREM 2.3.3: Let X and Y be two semimartingales, Hand K locally bounded processes. Then [H·X,K·Y]=HK·[X,Yi 
If moreover the relevant predictable processes exist then also 

<H·X,K· Y> =HK·<X, Y>. 

THEOREM 2.3.4: Let X and Y be two semimartingales. Then the stochastic integrals X _ · Y and Y _ · X are well defined and 
t t 

X1Y1 = XoYo + fXs-dYs + fYs-dXs + [X,Y],. 
0 0 

This formula will often be used in differential form: 
d(X,Y,) = X,_dY, + Y,_dX, + d[X, Y], 

and is known as the product formula of stochastic calculus. In theorem 2.3.5 we will encounter a more general chain rule for "differentiation" of stochastic processes. This theorem is the most important rule of stochastic calculus. 

THEOREM 2.3.5: (stochastic differentiation rule): Let X=(X1 , ••• ,Xn) where X 1 , ••• ,xn are real valued semi martingales. Let FeC2(Rn,R). Denote by D; differentiation with respect to the i-th component. Then F(X) is a semimartingale and 

t n I t 
F(X,) = F(Xo) + j~D;F(Xa->dX! +1f~;DiF(Xs-)d[X1,Xi]~ 

oi=l OiJ 

+ ~[F(Xs)-F(Xs-) - ~1F(Xs-)4X!] 
s<t 

ExAMPLE: Hone defines F(x,y)=xy, then theorem 2.3.5 yields the statements of theorem 2.3.4. 

As an application of the stochastic calculus rule we have the following proposi­tion, originally due to Uvy. 

PROPOSITION 2.3.6: Let X be a martingale with values in R. X is assumed to have continuous paths X 0 =O and [X,X], =t. Then X is a Wiener process. 

PROOF: Let u eR. Consider eluX,. From theorem 2.2.4, applied to complex 
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valued processes: 
t t 

eiuX, = l+ JeiuX,iudXs- ;u2 JeiuX,ds 
0 0 

Hence for v >0: 
t +Y t +Y 

elu(X, •• -X) = l+ J /u(X,-X,)iudXs- ;u2 J eiu(X,-X,)ds. 
t t 

Take conditional expectations, conditional on '!ft. Then 
t+Y 

E[eiu(X, •• -X,)l'lfi] = 1 + E[- ; u2 J eiu(X,-X,) dsl'lfit 
t 

Let 

W(s,t) = E[eiu(X,-X,)l'lfi] for s~t, W(t,t)= 1. 

Then the above equation yields 

I t +Y 
W(t +v,t)= l-2u2 J W(s,t)ds 

t 

or W(t +v,t)=exp(-;u211), not depending on '!ft. This shows that X1+y-X, is 

independent of '!ft and that it has a normal distribution with zero mean and 
variance 11. 0 

2.4 POINT PROCESSES 

DEFINITION 2.4. l: A point process is a sequence of random variables 
Tn :O~R + such that Tn + 1 > Tn on { Tn < oo}. The point process is called non 
explosive if T 00 = lim,,_.00 Tn = oo. With a point process one can associate a 
counting process N:OX[O,oo)~No by N,=l:neNl{r • ..;;i}· The point process is 
then non explosive iff N, < oo a.s. for all t. It is called integrable if 
EN,<oo,'f/t. The Tn are the jump times of N. We always assume that N is 
non explosive. 

In order to fit this general definition into the framework that we have used 
before we assume to be given a complete filtered probability space (0, §; f ,P) 
and we assume that N is adapted to f, or equivalently that all Tn are stopping 
times. Since evidently N is an increasing locally integrable process its compen­
sator .A exists, hence m =N -.A is a local martingale. Observe that this result 
also follows from the Doob-Meyer decomposition theorem if N is integrable. 
From now on we will assume that the compensator .A of N is absolutely con­
tinuous with respect to Lebesgue-measure. That is: there exists a nonnegative 
progressively measurable process A such that .A,= f bAsds. This process is 
called the intensity process. Of course from the definition of a compensator we 
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have that a progessively measurable process "A:OX[O,oo)~R+ is an intensity 
of N if and only if Efr XsdNs=Efr Xs"Asds, for all nonnegative predictable 
processes X. Observe that we wrote an intensity "A in the preceding sentence. 
Oearly if one changes A.(w) on a set of Lebesgue measure zero, the integral 
E fr Xs"Asds is left unchanged. However we have uniqueness of the intensity in 
the sense of the next proposition. 

PRoPosmoN 2.4.2: Let N be a counting process, and assume that it admits an 
intensity process. Then there also exists a prediqable intensity process A. More­
over this "A is unique _in the following sense. If A is another predictable intensity 
process, then "A and "A coincide both P(dw)dN1(w) a.e. and "A1(w)dt a.e. Further­
more "Ar. >0 a.s. on {Tn<oo}. 

ExAMPLE: Let { Sk} be an i.i.d. sequence of positive random variables with 
P(Sk;;:i.t)=e-'At for some "A>O. Define Tn=~1Sk. Then {Tn} is a point pro­
cess and its associated counting process is the Poisson process with parameter 
"A. As we have seen before N, -"At is a martingale. Therefore "A is the intensity 
of N as just defined. This example more or less indicates that there is a con­
nection between the distributions of the Tn (or the Sk) and the intensity of the 
counting process. We have the following precise statement that relates the 
compensator of N to the conditional distributions of the Tn. 

PROPOSmON 2.4.3: Let N be a counting process with jump times {Tn} and com­
pensator A. Then on { Tn ~t < Tn + 1} 

t-r. Fn(dx) 
A, = Ar. + f F. [ ) 

0 n x, 00 

where Fn is the conditional distribution function of Tn + 1 - Tn given <Fr. and 
Fn[x,oo)= 1-Fn(x). 

But now it is immediately clear when a counting process admits an intensity. 
This is the case if and only if the conditional distributions Fn are absolutely 
continuous with respect to the Lebesgue measure. And in that case we have 
for the predictable intensity "A of N. 

fn(t-Tn) "A 1 - 1 t. {r.<t<;T,.+1} - Fn[t-Tn,oo) {T.<t.;;;T,.+,}· 

where Fn(a,b]= f~(x)dx. Although it is in general difficult to characterize 
pre-T a-algebras <Fr, it is relatively easy in the counting process case for 
T=Tn. One can prove that <Fr. =a{TJ.···•Tn}· 

Similarly to Levy's characterization of Brownian motion we have 
Watanabe's characterization of the (inhomogenous) Poisson process. 

PROPOSITION 2.4.4: Let N be a counting process and "A:[O, oo )~R + a nonnega­
tive locally integrable function such that N, - f&"A(s)ds =m, is a martingale. Then 
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n is a Poisson process. 

PROOF: We also prove this using theorem 2.3.4. Application of this theorem 
gives 

I 

eiuN, = 1 + iu J /uN,_ dNs + ~ [eiuN, -eiuN,_ - iueiuN,_] 
0 s<t 

I 

= l+ j/uN•-(ei"-1)dN9 

0 
I I 

= 1 + J eiuN,(eiu - l}>i..(s)ds + J /uN•-(eiu - l)dms 
0 0 

Hence for v ;;;;;i.o: 

t+v 
E[eiu(N,+,-N,)l1F,J = 1 + (e;"- l)E[ J eiu(N,-N,)A(s)dsl1f;i 

I 

As in the proof of proposition 2.3.6 we deduce 

t+v 
E[eiu(N,+,-N,)11f;J = exp((e;"-1) J A(s)ds), 

I 

which is the characteristic function of a Poisson random variable with parame­
ter f~+v;>..(s)ds and which also shows that N is a process of independent incre­
ments. D 

2.5 RANDOM MEAsURES 

The results of this section have been taken from JACOD & SHIRYAYEV [9]. Let 
E be an auxiliary space, with separable a-algebra f9. In fact E will always be a 
subset of some Rd and f9 its Borel a-algebra. 

DEFINITION 2.5.1: A random measure on [O,oo)XE is an indexed family 
µ={µ(w,dtXdx):wEO} of positive measures on ([O,oo)XE, Bor[O,oo)X0) 
satisfying µ(c.>, {0} XE)=O for all wEO. 

- - -Introduce O=OX[O,oo)XE and e=ex&, ~=-~Xf9, which are_ called the 
optional respectively predictable a-algebra czn 0. Function~ on 0 are called 
optional, respectively predictal>le if they are e-, respectively ~-. measurable. If 
W is an optional function on 0 such that for all t and all "' 

J IW(w,s,x)lµ(w,l'.UXdx) 
[O,t)XE 

is finite, then we can define the proces W*µ by 

W*Jlt = J W(w,s,x)µ(w,m Xdx). 
[0,t)XE 
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If W•µ. is an optional process for all optional W, thenµ. is called optional. 

- -A r8;!ldom measure µ. is called '31-a-finite if there is a partition {An} of 0, 
An e'3> for all n such that E(IA, *p.)00 < oo. We have the following result 
(extending proposition 2.2.4). 

THEOREM 2.5.2: Let µ. be an optional '81- a-finite random measure. There exists a 
random measure 11, called the dual predictable projection ofµ., which is unique up 
to a P-nujl set with the following property: 
For all '81-measurable functions W with IWl*p.eAt we have IWl•11eAt and 
W•11 is the dual predictable projection of W*p., so W•µ.-W•11 is a local mar­
tingale. 

ExAMPLE: A rather trivial case is the following. Let A be an increasing pro­
cess. Let E={l}. Define µ.(w,dtXdx)=dA1(w')£c1)(dx)=dA,(w). (Here C(z) is 
the Dirac J!leasure at point z). In _this case 11 is given by the dual predictable 
projection A of A: P("',dt Xdx)=dA,(w). 

DEFINITION 2.5.3: A random measureµ. is called integer valued if 
i) µ.("',{t} XE)~l. V"'eO 
ii) µ.(·,A)el\!0 , for all_A eBor[O,oo)XS 
iii) µ. is optional and '31- a-finite. 

PR.oPosmoN 2.5.4: Let µ. be an integer valued random measure. Then there 
exists a sequence of stopping times { Tn} and an E-valued optional process /3 such 
that lTn]l\(TmJ = 0, where (Tn] is the graph of Tn, for m=:f=n and with 
D = UnlTnJ 

µ.("',dt Xdx) = ~ 1n("',s')£cs,/l,("'))(ds-,dx) 
s;;>O 

Consequently, if W is a nonnegative optional function, then 

W*µ., = ~ W(s,{33 )1n(s) = ~W(Tn,/3r)l{T,.o;;1}> 
s;;oO n 

where we have suppressed the dependence on "'· 

The important example of an integer valued random measure is the junip 
measure associated with a cadlag adapted process X:[O,oo)XO~Rd. Here 
E=Rd, S=Bor(Rd) and µ.=µ.x is defined as 

µ.X("',dt Xdx) = ~ l{il."#J}f(s,ax,)(dt Xdx). 
s>O 

In the terminology of proposition 2.5.4 above D = {(t,"'):Lix,("')=:/=O} and 
{3=!::.X. We are mainly concerned with quasi-left continuous processes X, that 
is a process such that ilr=O, for all predictable stopping times T. In that 
case we have 
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PRoPosmoN 2.5.5: Let X be an adapted cadlag process, µ.x its jump measure. 
Then X is quasi-left continuous if and only if there is a version .,, of the dual 
predictable projection of µ.x such that 11( w, { t} X E) = 0, V w, t. 

ExAMPLE: Let N be a counting process with compensator A. Then we may 
take E={l}, and 

,J'(w,dtXdx) = ~l{AN,=l}f(s,AN,)(dtXdx) = 
s 

n s 

where { Tn} is the sequence of j~p times of N. So ,II ( w, [O, t) X { l}) = N,. The 
dual predictable projection.,, ofµ!' is given by P(w,dtX{l})=dA1(w). It obvi­
ously follows that N is quasi left continuous iff A is continuous. 

2.6 LoCAL CHARACTERISTICS OF SEMI MARTINGALES 

2.6.l Processes with Independent Increments 
The local characteristics of a semi martingale, to be defined in 2.6.2 can be 
considered as an extension of the characteristics of a process with independent 
increments. We will see in section 3.1.5, that they play an important role in for 
instance studying weak convergence. In order to develop some feeling for what 
these local characteristics are, we will first briefly discuss the case of a process 
of independent increments. See JACOD [8] for details. 

Let X be a a process of independent increments and assume that X has no 
fixed discontinuities, meaning that for all t P(.:1X1=0)=1, X:ilX[O,oo)""Rd. 
Leth be a truncation function, that is, h(x)=x in a neighbourhood of 0, h is 
bounded and h has compact support. Transposed matrices are denoted by 
superscript T. We have the following result (Uvy-Khintchine formula) 

PRoPosmoN 2.6.1.1. There exists a unique tri,_let (Bh ,C,P) where 
Bh :[O, oo )"°'Rd is a continuous function, C :[O, oo )--7R Xd is continuous and 
C, - Cs ;;;i.o for t ";i!:s, .,, is a positive measure on [O, oo) X Rd (Levy-measure) satis­
fying 11((0,oo)X{O})=O, P({t}XRd)=O and flxl2 t\l 11([0,t]Xdx)<oo, Vt;;;i.O 
such that 

t - J j(eiuTx-1-iuTh(x))P(drXdx)} 
sR' 
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REMARK I: Observe that we get as a corollary that 
t 

exp(iuTX,-(iuTBf - ~ur C,u- J J (eiuTx -1-iuTh(x)}P(drXdx)) 
OR' 

is a martingale. A similar result will tum out to hold in the case where X is a 
sernitnartingale. 

REMARK 2: If we had taken another truncation function, h' say, then the rela­
tion between Bh' and Bh is given by Bh' = Bh + (h' -h )*P. 
One can show that there exists an equivalent description of the triplet 
(Bh,C,v). First we need some definitions: 

x1/ = ~(LlX9 -h(LlX9)), 
s<;t 

~ = x1/-B7 

c: = C, +hhT *Pt 

PROPOSITION 2.6.1.2. Let X be a process of independent increments, h a trunca­
tion fi.!11ction. (Bh,C,v) as defined above is the unique triplet satisfying 
i) -5( i:! a marftpgale 
ii) JI' (X'l - C is a martingale 
iii) '2.9 .;;,1f(LlX9 )-f*P1 is a martingale for all bounded measurable f that are zero 

in a neighbourhood of zero. 

This last proposition, opens the way to defining the local characteristics of a 
general sernitnartingale. However we will not discuss this notion in its full gen­
erality, but we will restrict ourselves to sernitnartingales that are quasi left con­
tinuous. Later on we will confine ourselves to the case that the sernitnartingales 
are also locally square integrable. In case EIX1j2 is finite one can show that 
lxl2*,,,<oo. 
Therefore (x -h(x))*v, is well defined as well as B, =B7 +(x -h(x))*v, and 
C1 = C1 + XXT *P1• 

In this case proposition 2.6.1.2 reads 

PROPOSITION 2.6.1.3: Let X be a process with independent increments such that 
EIX112 is finite. With the above notation (B,C,11) is the unique triplet satisfying 
i) X - B is a martingafe 
ii) (X - BXX - Bl - C is a martingale 
iii) '2.9 .;;1f(LlX9 )-f*P1 is a martingale for all measurable f such that 

lf(x)l~clxl2 for some cE(O,oo). 
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2.6.2 Semimartingales 
We will follow the notation previously employed for processes with indepen­
dent increments. Let X be a semimartingale and let h be a truncation func­
tion. We make the following assumption 

Al: X is a quasi left-continuous process. 
This means that for any increasing sequence of stopping times { Tn} with limit 
T we have on { T < oo} lim Xr. = Xr as. Then the following holds 

n.-+oo 

PRoPosmoN 2.6.2. l: There exist a continuous process of finite variation 
Bh:OX[O,oo)~Rd, B~ =O, a continuous process C:OX[O,oo)~Rdxd such that 
Ct(w)-Cs(w);;;oi.O, meaning that Ct(c.>)-C3 (c.>) is nonnegative definite if t';;!=s and 
a predictable random measure .,, on [O, oo) X Rd such that 
i) P(w, {t} X Rd)=O, Vt;;;oi.O, P(w,[O, oo )X {O})=O 

t 

ii) j j Ix 12 /\IP( w,dt X dx )< oo satisfying the following properties 
OR' 
i) 4h -:Qh is '.! Jocal martingale _ 
ii) X' cxY - c is a local martingale, where c: =et+ hh T *Pt 
iii) ~s<tg(il3)-g*Pt is a local martingale for all measurable and bounded 

functions g on Rd which are zero in a neighbourhood of zero. 

An alternative way of getting the triplet (Bh,C,P) is the following. Observe 
that Xh is a special semimartingale since it has bounded jumps. Let 
x!: =X0 + B~ +Ml be its unique special semimartingale decomposition. Split 
~ = M~ + M It• where Mc is a continuous local martingale and M It a compen­
sated sum of jumps martingale. Hence we get 

X, = Xo+B~+~+M1t+ ~(il3 -h(il3)) 
s<t 

Denote as usual by µ.x the jump measure of X and by .,, its dual predictable 
projection. Observe that t:J.M It =h(ilt)· Then we can write 

Xt =Xo + B~ + ~ + jh(x)(µ.x([O,t]Xdx)-P([O,t]Xdx)) 
R' 

+ J<x -h(x))µ.X([O,t]Xdx) 
R' 

or 

Xt = Xo+B~+~+h•(µ.x_.,,)t+(x-h(x))*Pt 

Define also C=<Mc,(Mcl>=[X,Xrf. Then one can check that the ififlet 
(Bh,C,P) is the same as that in proposition 2.6.2.1; similarly the process C in 
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proposition 2.6.2.l is given by eh= <Mh ,(Mhl>. 

REMARK: Notice that C and 11, in contrast to eh and Bh, don't depend on the 
specific choice of the truncation function h. 

There is a third way of defining the local characteristics of a semimartingale. 
Let Ku(x)=eirh _ 1-iuTh(x). Since there exists a constant Cu such that 
1Ku(x)l.s;;;cu(lxl2 /\1), Ku*" is well defined and we can then define the process 
A(u) by A(u),=iuTB~-*urc,u+gu*"t· Observe that A(u) does not depend 
on the function h, and that A(u) (in general being predictable and of finite 
variation) is a continuous process under the assumption that X is quasi left 
continuous. 

PROPOSmON 2.6.2.2: Let X be a cadlag process, X:OX[O,oo)~Rd. Leth be a 
tnmcation function and let (Bh,C, 11) be defined as in 2.6.2.1 and A (u) as defined 
above. Then the following statements are equivalent. 
a) X is a semimartingale with local characteristics (Bh, C, 11). 
b) For all ueRd, the process M(u):OX[O,oo)~C defined by 

I 

M(u)1=exp(iuXi)- Jexp(iuX9 _)dA.(u)9 is a local martingale. 
0 

CoROLLARY 2.6.2.3: If X is a semimartingale with local characteristics (Bh,C,v) 
and (Al) holds, then 

exp(iuTX-A(u)) is a local martingale. 

Observe the resemblance of corollary 2.6.2.3, with the remark following propo­
sition 2.6.1. L Parallel to the case where processes with independent incre­
ments were considered we have the following 

PRoposmoN 2.6.2.3: Assume that the semimartingale X satisfies 
(A2):X is locally square integrable. 
i) Then lxl2 •111<oo a.s. 'lft;;;ai.O, and X is a special semimartingale with canoni­

cal decompositipn X=X0 + B + M where B =Bh +(x -h (x))*v 
ii) <MT,M>=C=C+(xxT)*P 
iii) ~s..;;1g(~)-g*P1 is a local martingale for all measurable g such that 

lg(x)l.s;;;clxl2-

ExAMPLE: Let N be a counting process with intensity process >... Then the 
above applies with B1 = Jb"A5ds, C=O, P(_dtXdx)='A,dt®({l}(dx). Or if we 
~ould have taken E = { l} as the auxiliary space, then we can take 
O=OX[O,oo) and we simply get P(_dt)=A1dt. 
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Weak Convergence and Local Asymptotic Normality 

3.1 WEAK CoNVERGENCE 
Weak convergence of stochastic processes is a subject in probability theory, 
that equally well can be viewed as a subject belonging to functional analysis. 
To explain this clearly, we have to introduce the relevant vector spaces with 
suitable topologies and the relevant weakly compact subsets. After having done 
this we have to show how we can treat stochastic processes within this frame­
work and we have to present verifiable criteria that are sufficient to ensure 
weak convergence. · 

Historically, weak convergence was studied first for sequences of indepen­
dent random variables, later on for stochastic procesess with independent 
increments. 

As announced in section 2.6.1 the local characteristics of a semimartingale 
play an important role in studying weak convergence of a sequence of sem­
imartingales. In order to obtain some insight in this statement, consider first 
the case where the semimartingales are processes of independent increments. In 
this case the characteristics are related to the process via the Uvy-Khintchine 
formula, which is in fact a formula for the characteristic function. Clearly it is 
sufficient for finite dimensional convergence of a sequence of semimartingales 
with independent increments that the corresponding characteristic functions 
converge, which condition can then be formulated in terms of convergence of 
the corresponding characteristics. Hence one may anticipate similar conditions 
(although of course more restrictive) on the local characteristics of the sem­
imartingales that ensure weak convergence of the sequence under considera­
tion. This is partly attributable to the analogy of the results of propositions 
2.6.1 and 2.6.2.3. 

Before we arrive at these results, we will briefly review some basic facts on 
weak convergence of general stochastic processes. Relevant references for this 
chapter are unless others are mentioned, LIPTSER and SHIRYAYEV [29], JACOD 
and SHIRYAYEV [8] or, JACOD (18] and BILLINGSLEY [2]. 

3.1.1 General Concepts 
Let B be a real Banach space, with norm IHI. The dual space B' is the vector 
space of all continuous linear functionals on B with norm 

llAll = sup{jA.xl:xEB, llxll:E;;;l}, AEB'. 
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The weak topology on B is defined by the neighbourhoods of zero of the form 

Vr,n = {xeB:jA;xj<£, A;eB', i=l, ... ,n}, 

or equivalently by saying that a sequence {xn}CB converges to xeB iff 
Axn-+Ax, for all A eB'. 

The weak •-topology on B' is defined by the neighbourhoods of zero of the 
form 

uf,n = {AeB':jAx;j<£, X;EB, i=1, ... ,n} 

REMARK.: If B is separable, the weak *-topology on B' is metrizable. 

DEFINITION 3.1.1.l: A subset Eis called weakly compact if it is compact for 
the weak topology on B. 

A subset E in B is called weakly sequentially compact if every sequence in E 
has a weakly convergent subsequence with limit in E. 

PROPOSITION 3. L 1.2: If K is a weakly compact set of a separable Banach space, 
then it is also weakly sequentially compact. 

The usual setup for weak convergence in probability theory is the following. 
Consider a metric space S, with its Borel G-algebra Si. Let P,Pn, n = 1,2, ... be a 
family of probability measures or (S, Si). Oearly each P,Pn can be considered 
as a continuous linear functional on Cb(S), the space of bounded continuous 
functions on S, via Pf= fsfdP. Then llfll =sup {lf(x)l:x eS} makes Cb(S) a 
Banach space that plays the role of B in the preceding paragraphs and 
IPJl=s;;;lljll, so indeed PeCb(S)'. Observe that llPll=l, for all probabilities P. 
The situation in which we are interested is that of stochastic processes. A sto­
chastic process X:OX[O,oo)-+Rd can be viewed as a random variable 
X:0-+(R"j0•00>. In order to apply the preceding definitions we have to tum 
(RdjO,oo) into a metric space. Of course the space (RdjO,oo) is too large for this. 
Since we assumed that all of the stochastic processes have cadlag paths, we 
replace (RdjO,oo) with Dd[O, oo ), by definition the space of cadlag functions 
from [O;oo) into Rd. The next point is to metrize D[O,oo). This will be done 
by means of the so called Skorokhod metric to be defined below. It should be 
noticed here that weak convergence problems considerably simplify if the 
processes under consideration have continuous paths. We will give some 
results for the case where indeed the paths X(w) belong to Cd[O,oo), the space 
of continuous functions from [O, oo) into Rd. The results for Dd[O, oo )-valued 
random variables will then be seen to be close in formulation to this case. For 
the particular applications we are interested in, we can even restrict ourselves 
to studying weak convergence of stochastic processes with paths in Dd[O, l] or 
Cd[O, 1), the space of cadlag (respectively continuous) functions from [O, l] into 
Rd. 

DEFINITION 3.1.1.3: Let P,Pn, n=l,2, ... be probability measures on (S,£). The 
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sequence {Pn} is said to converge weakly to P if PJ-+Pf, for all feCb(S). 
Notation: Pn~P. 

Obviously, this fits in the general framework outlined above by taking 
B=Cb(S). 

DEFINITION 3.1.1.4: Let for each n Xn:(O,'i,P)-+(S,~) be a random variable. 
Then we say that { Xn} converges weakly to a random variable 
X:(O, 'i,P)-+(S,~) if the induced proba]?ility measures pn =PX;; 1 on (S,~) con­
verge weakly to Px-•. Notation Xn ~ X. 

The plan of attack in proving weak convergence in usually as follows. Firstly 
one shows that a sequence of probability measures is weakly compact. 
Secondly it is shown that the set of limit points is a singleton. This second 
point can be checked by considering finite dimensional distributions, and it 
turns out that the first step is the difficult part. A theorem by Prokhorov gives 
an equivalent formulation for relative compactness. First we need a definition. 

DEFINITION 3.1.1.5: 
1) A family II of probability measures on (S,~) is said to be tight if '9'£>0 

there exists a compact subset K of S such that P(K);;i.1-£, '9'P ell. 
2) A sequence of random variables {Xn}, Xn:O-+S will be called tight iff the 

induced sequence of probability measures {Pn}, Pn=PX;; 1 on (S,~) is 
tight. 

THEOREM 3.1.1.6: A set II of probability measures on (S,~) is weakly compact if 
and only if it is tight. 

3.1.2 Weak conver§.ence in Cd[O, 1) 
We first make C [0,1] a Banach space by defining for feCd[0,1] the norm 
lljll=sup{lf(x)l:xe[O,l]}. Next we define for feCd[0,1] its modulus of con­
tinuity W _t<B) by 

W_t<8) = sup{lf(t)-j(s)I: t,se[0,1], lt-sl.e;;;B}. 

and for any interval I~ [O, 1] 

Wj(I)=sup{lf(t)-f (s)l:t,seJ} 

In order to check the tightness condition of theorem 3.1.1.6 we need a charac­
terization of the compact sets in Cd[O, 1). This is given by the Arzela-Ascoli 
theorem. 

PRoPosmoN 3.1.2.1: A subset K of Cd[O,l] is relatively compact if! 
i) sup{lf(O)l:feK}<oo 
ii) funa....o sup{ Wj(B):f eK} =O. 

We are now in the position to state what tightness in Cd[O, 1) means. 
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PROPOSITION 3.1.2.2: A sequence {Pn} of probability measures on Cd[O, l] is 
tight iff 
i) 'V71>0: 3a>Osuch that supPn{xeCd[O,l]:lx(O)l>a}..;'lJ - n 
ii) °V'E,'IJ>O: 36e(O,l),noel\I: supPn{xeCd[O,l]:wx(B);;oi.£}..;'lJ 

n>n0 

3.1.3 Weak convergence in Dd[O, 1] 
In order to apply Prokhorov's characterization of weak compactness, we first 
have to make Dd[O, I] a separable metric space. This will be done via 
Skorokhod's topology. One of the requirements of a topology on Dd[O, l] is 
that the relative topology on Cd[O, 1] induced by it, should coincide with the 
norm-topology. Indeed Skorokhod's topology fulfills this requirement. Let us 
introduce some terminology. A time change on [O, 1] is a strictly increasing 
continuous function i\:[O, l]-7>[0, I] with i\(O)=O, i\(1)= 1. The set of time 
changes is denoted by A. 

DEFINITION 3.1.3.l: The Skorokhod topology is the topology defined by the fol­
lowing convergence concept. Let a, an eDd[O, l), Vn. Then an-7>ot. if there exist 
a sequence {An} of time changes on [O, 1] such that 
i) sup{li\n(t)-t!:te[O,l]}-7>0 for n-HX) 

ii) sup{lan(An(t))-a(t)i:t e[O, l]}-7>0, for n_,.oo 

PROPOSITION 3.1.3.2: Let a,,BeDd[O, l]. The fu.nction d:Dd[O, l]XDd[O, l]_,.R+ 
given by 

sup{la(i\(t))-,B(t)l:t e[O, l]}..;f} 

defines a metric on Dd[O, 1) that induces the Skorokhod topology, and for which 
Dd[O, l] is a separable metric space. 

Checking whether a sequence {an}CDd[O,l] converges to a function aeD may 
be a complicated task. However in some special situations it is easy to verify 
whether this is the case. 

PROPOSITION 3.1.3.3: Let a,an be increasing fu.nctions in Dd[O, I] with 
an(O)=a(O)=O Vn and assume that a is a continuous fu.nction. There is 
equivalence between the following three statements. 
i) an-7>afor the Skorokhod topology 
ii) an _,.a uniformly on [O, 1] 
iii) an(t)-7>a(t) for all t e[O, l]. 

It turns out that there exists an Arzela-Ascoli type theorem for (Dd[O, l]). 
Therefore we need an extension of the modulus of continuity as defined for 
continuous functions. Define w!(B)=inf{ max wx[t;-1>1;)}, where the infimum 

O<i.;;r 
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is taken over all partitions { t;} satisfying 0 = t 0 < · · · < tr = 1, and 
inflt; - t; -1 I ~8. 

PROPOSITION 3.1.3.4: A subset K of Dd[O, 1] is relatively compact if! 
i) sup sup jx(t)I < oo 

xetc te[lt,1] 
ii) lim supw!(8)=0. 

~xetc 

Via proposition 3.1.3.4 we arrive, similarly to the situation in Cd[O, 1 ], at a cri­
terion for tightness in Dd[O, 1]. 

PROPOSITION 3.1.3.5: A sequence {Pn} is tight if! 
i) for all £>0,3a>O such that supPn{suplx(t)l>a}.;;;;£ 

n t 
ii) V£,'1J>0:38>0,3n0 EN such that supPn(w!(8)~'1J)o;;;;£. 

n;;a.n0 

The following result, which will be convenient later on, is now intuitively clear. 
(In fact one only has to check tightness of the zn below) 

PROPOSITION 3.1.3.6: Assume that xn ~ x and that supl ¥;I~ 0 (hence in pro­
s<t 

babili'ty) then zn =Xn + yn ~X 

The cases that will be of interest to us are the ones in which the limiting meas­
ures are concentrated on Cd[O, I]. A sequence satisfying this property is called 
C-tight. In this case we can replace proposition 3.1.3.5 with 

PROPOSITION 3.1.3. 7: The following statements are equivalent. 
i) the sequence { xn} is C-tight 
ii) condition 3.1.3.5 (i) holds and '1£,11>0:3n0 eN,8>0 such that 

pn(wx- (8)';?!l11)~£ for n ~no 

iii) the sequence { xn} is tight and '1£>0 we have . 

lim.Pn(supl~1>£)=0. 
n~oo t 

The verification of the second criterion of proposition 3.1.3.5 may be difficult 
since it involves the calculation of (w.k- (8)). The following lemma gives a 
sufficient condition in terms of stopping times. Assume that each xn is 
adapted to a filtration P(={~heco, 11 ) and let yn be the set of P-stopping 
times. 

LEMMA 3.1.3.8: .lfVNeN,V£>0,V11>0:3n0 eN,8>0 such that 

n~n0~ sup{Pn<1rr-rs1>11):S,TeTn,1s-Tl~8}o;;;;£ 

Then VN EN,£>0, 11>0:3n0 eN,8>0 such that 

n ';?!lno~Pn(w.k- (8)>11)~£. 
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This lemma is particularly useful if we consider the case where the xn•s are 
P-martingales, that are locally square integrable. First we state an auxiliary 
result. 

LEMMA 3.1.3.9: (Leng/art's inequality): Let X be a stochastic process adapted to a 
filtration f={<?f,}iE[O,IJ· Let A be a f-predictable increasing process, such that for 
all f-stopping times Tone has EIXrl.s;;;EAr. Then for all t:,'IJ>O and all stopping 
times T 

COROLLARY 3.1.3.10: Let X be a locally square integrable martingale. Let 
A =");.j<Xj,Xj>. Then EIXrl2 .s;;;EAr by Fatou's lemma and 

P(~~Xsl;;;a.E).;;;;;t + P(Ar~'IJ). 

It is now very easy to derive a tightness condition for locally square integrable 
martingales: 

THEOREM 3.1.3.11: Let { xn} be a sequence of locally square integrable mar­
tingales and assume that XO = 0 for all n. Then { xn} is tight if {An} is C-tight, 
where An=");.j<Xnj,xnj>. 

It is also easy to provide a sufficient condition for C-tightness of the sequence 
{An} as defined in corollary 3.1.3.10. 

PROPOSITJON 3.1.3.12: Let {An} be a sequence of increasing processes. Suppose 
that A~ -1::7 f(t), where f is a continuous deterministic function. Then {An} is C­
tight. 

In general it is difficult to check the hypotheses for tightness as given in propo­
sitions 3.1.3.5,7, since they require knowledge of the distributions of the 
involved stochastic processes. Our aim is therefore to formulate sufficient con­
ditions that ensure the necessary and sufficient condition for tightness. It turns 
out that the local characteristics are useful when we consider the case where 
the sequence of processes { Xn} is a sequence of semimartingales. The idea 
behind this is motivated by the case where in addition { Xn} is a sequence of 
processes with independent increments, since in this case the distribution of 
each of the Xn is completely characterized by the corresponding characteristics. 
However let us remark that in the case where we deal with weak convergence 
of stochastic processes there is no equivalent description in terms of charac­
teristic functions as in the case where all Xn's take their values in some finite 
dimensional Euclidean space. See BILLINGSLEY [2] for examples. It is indeed 
this lack of analogy that leads to studying tightness of a family of distributions 
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on C'[0, 1] or D'[O, l). On the other hand if one is only interested in conver­
gence of the finite dimensional distributions, such an analogy indeed exists. 
Motivated by this brief explanation above we first give some results for 
processes with independent increments. 

3.1.4 Weak conYergence of processes with independent increments 
In view of proposition 2.6.1 it is easy to give conditions on the characteristics 
of the processes under consideration that are equivalent to converging of X'/ to 
X, in distribution for each t. Since weak convergence of the sequence { X"} 
deals with the whole paths one anticipates conditions on the characteristics 
that also involve the whole trajectories. Here is ~e result. 

THEOREM 3.1.4.1: Let {Xn}.X be processes with independent increments without 
fixed discontinuities, and h a truncation functio~ Let (Bh.n ,en ,Y') and (Bh ,C,11) 
be the corresponding characteristics. Then X" ~ X is equivalent to the following 
~et of conditions 
i) suplr,.n - B~l-+0 

(O,I] ';.}i.n -:.Ji 
ii) suplc.:, - C.:rl-+0 

(0,I] 

iii) suplf*(Y'-11)11-+0, for every bounded continuous 
{O,I] 

function f :R'-+R +, which is zero in a neighbourhood of zero. 

REMARKs: One can show that these conditions may be reformulated in terms 
of convergence for the Skorokhod topology. 

In the proof of theorem 3.1.4.1 its conditions are mainly used to prove tight­
ness. The fact that the law of X is completely determined by (B ,C,11) com­
pletes the proof. 

PROPOSITION 3.1.4.2: Condition ii) and iii) of theorem 3.1.3.1 are equivalent with 
respecJtv;ly _ 
ii) C,"' -+C:. "'' ;;;.o 
iii) f*117-+f*11,. 'r/t;;;i.O and for all f:R'-+R+, which are continuous, bounded 

and zero in a neighbourhood of 0. 

This proposition immediately follows from proposition 3.1.3.3 since the func­
tions that we consider are increasing and have continuous limits. We also 
have as an immediate consequence from the continuity theorem for charac­
teristic functions 

COROLLARY 3.1.4.3: Suppose that the processes with inde]J,endent increments 
{ xn}. x hwie no fixed discontinuities and suppose that X'/ --'=? x,, for all t ;;;.o. 
Then X" ~ X if and only if suplB~·n - B~ 1-+0. 

(0,1] 
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3.1.5 Weak convergence of semimartingales to a process with independent incre-
ments 

Let { xn} be a sequence of semimartingales. Each xn is defined on a complete 
filtered probability space (O", 'ff ,P ,Pn). In addition we assume that each xn 
satisfies condition .A 1 of section 2.6.2. Denote by (Bn, en ,v") the correspond­
ing local characteristics. X is supposed to be a process with independent incre­
ments without fixed discontinuities that has characteristics (B, C, 11). 

The next theorem 3.1.5.l parallels to a certain extent theorem 3.1.3.1 in that 
the given conditions are similar but only sufficient, and that the convergence 
takes place in distribution and thus in measure since the limiting processes are 
deterministic. 

THEOREM 3.1.5.l: Under the assumptions presented above we have xn ~ X if 
each of the next conditions is satisfied 
i) ~~IB~·n-B7l~O 

ii) c:·n ~ 2,, Vt E[O, l] 
iii) f *117 ~ f *111, for all continuous bounded functions f which are zero in a 

neighbourhood of zero. 

By specialization to the case where the semimartingales and the limiting pro­
cess are locally square integrable we obtain 

PROPOSffiON 3.1.5(.>~: Xn~Xifwe have (iii) of theorem 3.1.5.1 and 
i) ~~IB7-B,l-70 

ii) c:·~C1 , VtE[O,l] 
iii) lim limsupPn(lxl2 1{1xj>b} *117 >£)=0, '1£>0, Vt E[O, 1) 

btoo n _ 
where tl! usual Bn=Bh,n+(x-h(x))*v" and Cn=C"+xxT*v7 and likewise for 
Band C. 

Further specializing to the case where X is a continuous process with indepen­
dent increments and characteristics (B,C,O), we get 

PROPOSITION 3.1.5.3· Xn ~X if 
i) lxl2 l{lxl>i} *117 ~O, Vt,£>0 
ii) s~IB7-B,l~O. 

~ eA -
iii) 1 ~ C,, Vt >0. 

In the particular case that we deal with locally square integrable martingales 
proposition 3.1.5.3 reads 

PROPOSITION 3.1.5.4: Let {Xn} be a sequence of locally square integrable mar­
tingales, R-valued, and X a continuous Gaussian martingale with characteristics 
(0, c, 0). Then xn ~ x if 
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i) Ix 12 l{lxl>f} *"7 ---40 
ii) C'; ---4 C,, Vt >0. 
REMARK l: Condition i) is also known as "strong asymptotic rarefaction of the 
jumps of the second type", see (34]. Both proposition 3.1.5.3 and proposition 
3.1.5.4 are known under the name "functional central limit theorem" for 
(semi)martingales. 

REMARK 2: The sufficient conditions in the above propositions and theorems 
that involve the third characteristic are easily verified in the case that 
sup,jAx,'jE;;;cm Vn, where the deterministic sequence {en} tends to zero. 

REMARK 3: Of course the limiting process X is a Brownian motion if C, = t. 

REMARK 4: condition 3.1.5.4 i) implies that l{lxl'>t} *117---40. 

In LIPTSTER & SHIRYAYEV [29) it has been proved that this last property is 
equivalent to suol~l~O. Therefore in view of propositions 3.1.3.7 and 

s<t . 
3.1.3.11 one sees that conditions 3.1.5.4 i) and ii) imply that the sequence { xn} 
is C-tight. 

The convergence in condition 3.1.5.4 (i) takes place in probability. If we 
replace it with the stronger condition that convergence holds in L 1, then we 
get Lindeberg's condition: 

Ejxj2 l{lxl>t} *P7-+0. 

Observe that 

Ejxj2 1{1xl>t}*P7 = Elxj2 l{lxl>f}*P.7 = E~l~l2 l{l~l>t}• 
s<t 

which enables us to formulate sufficient conditions for weak convergence 
directly in terms of the jumps of xn. 

It may turn out to be convenient to work with other sufficient conditions. 
Some of these are listed below. The statement in the next proposition is obvi­
ous. Nevertheless we give the proof, since this proposition cannot be found in 
the standard references. 

PROPOSmON 3.1.5.5: Condition 3.l.5.3(i) is implied by lxl2+a*P7---40, for some 
a>O. 

PROOF: Observe first that lxl2+a l{lxl>t} *P7 ;;..~+a l{lxl>E} *P7. Application of 

this and Holder's inequality (with p = 2!a ,q = 2:a) yields 

2 a 

I 121 n ~(I 12+a n) 2+a (l n) 2+a ~ X {!xl>t} *Pt .._,,, X *Pt {lxl>E} *Pt .._,,, 
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2 a 
.i;;;;£-"(lxl2+a*Y,')2+a (jxl2+"*11~)~ 

= £-"lxl2+"*11,'. D 
H we replace the convergence in proposition 3.1.5.5 by L 1-convergence, we get Lyapunov's condition: 

Elxl2+"*11~ -+0 

As above this condition can be reformulated in terms of the jumps of the X" as follows: 

s<t 

Parallel to proposition 3.1.5.5, one can show (see (46] for a different proof) that Lyapunov's condition implies Lindeberg's condition. The advantage of both these conditions is the fact that it is sometimes comparatively simple to compute expectations. 

3.1.6. 
In this subsection we discuss some other forms of the central limit theorem. The difference with previous sections is that we work with a single semimar­tingale and study the asymptotic behaviour as t tends to infinity. In the litera­ture, see for example [26,28] self contained proofs have been given for the results below. Here we will embed these into the framework that has been used throughout this chapter, thus giving alternative proofs. Results of this section will be used in determining the asymptotic distribution of certain recursive estimators that play a role in sections 4.2 and 4.3. First we present after some introductory notation and definitions the result of [26]. Let µ. be an integer valued random meas~e and 11 its dual predictable projection. Let f be a measureable function on 0 (see the terminoJegy of section 2.5) such that VT;;;ai.O: . 

T 

J flf<t,x)j211(dtXdx)<O a.s. 
OR' 

Then the following process r is well defined: 
t 

f; = f ff(s,x)(p.-11XdsXdx). 
OR' 

In [26] the following result can be found. 

PROPOSITION 3.1.6.1: Assume that there exists a function g :(0, oo )-+[0, oo) such that g(t)-+oo for t-+oo with 
T 

i) limg(T)-2 j jf(t,x)Jl(dtXdx)~l 
T~oo 0 R 

T 
ii) lim g(T)-(2+a) E j flf(t,x)l2+a11(dt Xdx) = 0, for some a>O T~oo OR 
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Then g(t)- 1 r1~N(O,l) as t~oo, where N(O,I) denotes a standard Gaussian 
random variable. 

PROOF: We have to show that for all sequences bn with bn~oo the random 
variable rb. has a distribution which is asymptotically normal with parameter 
(O,g(bn)2). Define an= g(bn>2. Without loss of generality we can assume that g 
is strictly increasing. Hence its inverse h is well defined. Let t E [O, l] and 
define 

h(...;;:1) 

Mn - - 1- J J f(s,x'J(p.-p)(ds Xdx). 
,-y;: 0 z 

Let~ =~cva;;-1 ), then Mn is P-adapted. We will now show that Mn satisfies 
the Lyapunov condition. 

/lM'f = _ ~ jJ(h(y;:t),x)µi,.{h(y;:t)}Xdx) 
van z 

Because µ({(y;:t)}) is in fact a Dirac measure for each 11J on Rd, concen­
trated on some point z =z(ant,11J) [8], we have 

lllM'fl2+a = a;;l-a/2 jlf(h(y;:t),x)l2+aµ({h(y;:t)}Xdx) 
z 

Hence 

h(...;;:1) 

~1~12+a = a;;l-a/2 J jlf(s,x)l2+a/L (dsXdx) 
s<t 0 z 

Since /L-.,, is a local martingale measure 

h(...;;:1) 

E~l~l2+a = a;;l-a12E J jlf(s,x)2+aP(dsXdx) 
s<t 0 z 

h(...;;;) 

~a;;•-at2E J flf(s,x)l2+aP(dsXdx) 
0 z 

h(...;;;) 

= (g(h(y;:)))-2-a E J flf(s,x)l2+aP(dsXdx)~O 
0 z 

by assumption (ii). So a fortiori the sequence {Mn} satisfies assumption 3.1.5.4 
(i). We proceed to investigate the process <Mn>. A simple calculation gives 

h(...;;:t) 

<Mn>, = - 1 J jlf(s,x)l2P(dsXdx) 
an o z 

= t I 
(g(h y;:t)))2 

h(...;;:t) 

J flf(s,x)l2P(ds Xdx)~t 
0 z 
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in probability by assumption i). 
We 8.f.,e now in the position to apply proposition 3.1.5.4 and we conclude that 
Mn -!:7W. where W is a standard brownian motion. In particular 

M'/ ~N(O,l) 
or 

h(y;;;) z 
j j f(s,x')(p.-vXds Xdx) ~N(O, I) 
0 

which gives us the desired result by definition of an. 

Corresponding to proposition 3.1.5.4 we have in this context the following 

PROPOSITION 3.1.6.2: Assume that there exists a function g :[O, oo )~g[O, oo) such 
that g(t)~oo as t~oo and 

T 

i) g(n-2 J flf<s,x)j 2 P(ds Xdx) -41 
Qf-' 

ii) g(n-2 J flf(s,x)j2 1nf<s,x)l>•g(T)}P(dsXdx)-4o 
oe• 

Then g(n- 1tr ~N(0,1). 

PRooF: As in the proof of proposition 3.1.6.l, we define a sequence of local 
martingales Mn by 

1 h(y;;:t) 

M'/ = ~ '- J jJ(s,x)(p.-vXds Xdx). 
Van 0 R' 

Again we see that <Mn>,~t, for fixed t. Next we need to verify that 
3.l.5.4i holds. We get 

~l~l2 InMr.1;;;.•} = 
s<t 

= ~-1 /lf(h(y;;;t),x)l2 l{lf(h(y;;;s),x)l>•y;;;} · µ({h(y;;;s)}Xdx) 
s<t <Jn 11' 

h(y;;:t) 1 
= J j-lf(s,x)l2 l{[f(s,x)i>•y;;;}µ(ds Xdx), 

o Ii' an 

Hence the strong asymptotic rarefaction of jumps property m this case 
becomes: 

1 h(y;;;t) 
- J /lf(s,x)l2 l{[f(s,x)i>(y;;;}v (dsXdx>17o 
<Jn 0 R' 

Now this integral is less than 
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1 b. 

--'2 J /lf(s,x)l2 l{lfts,x)>•g(b.)}P(ds'Xdx), 
g(bn) O 

41 

by definition of an. Indeed this quantity tends to zero in probability by 
assumption. 

REMARK: Observe that proposition 3.1.6. l is a special case of proposition 
3.1.6.2 in view of the relation between the conditions (ii) in both propositions. 

Of particular interest for us is the case where the random measure µ. is in fact 
a counting process n, and its compensator P is of the form P(dt)=A1dt. In this 

t 
case we have t 1 = fo/s(dn3 -')..3df) and proposition 3.1.6.2 reads as follows: 

PROPOSmON 3.1.6.3: Assume that there exists a function g:[O,oo)-+[0,oo) such 
that g(t)-+oo as t-+oo and 

t 

i) g(t)-2 f J:"Asttr ~I. 
o, 

ii) g(t)-2 JJ: lnt.l>•g(t)JAsds' ~-
o t 

Then g(t)- 1 /fs(dn9 -')..9 df) ~N(O, 1). 
0 

It is indeed this type of central limit theorem that will be used in sections 4.2 
and 4.3 to obtain the asymptotic distribution of certain recursive estimators. 

3.2 LIKELIHOOD RATIOS AND LOCAL ASYMPTOTIC NORMALITY 

In this section we discuss what is called local asymptotic normality (LAN) for 
counting processes. This LAN property is a special case of what is known as 
contiguity for two sequences of probability measures. First we spend a few 
words on the situation where the probabilities are concentrated on a finite 
dimensional space. This discussion facilitates the understanding of the 
relevant definition for the case when we deal with a sequence of stochastic 
processes. The raison d' etre of this section partly lies in the fact that we use 
some of the results in chapter 4. 

Consider a sequence of binary experiments (~,qi ,P7 ,P0 ), each P'/ being a 
probability measure on (~,qi). the sequences { P7 } and { P0 } are said to be 
contiguous if for all An E qi, 

lim P7 (An)={}tj lim Po (An)=O 
n->oo n->oo 

Think now of P7 and P0 as two alternative distributions of a random vector 
xn:~-+Rk. So the P'/ are now defined on (Rk,Bor(Rk)). Let p'/ be the 
corresponding densities with respect to some dominating a-finite measure and 
assume that for each n P7 ,..., P0. In this case one has the following result, 
known as Le Cam's first lemma [7]. 
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pi 
PRoPosmoN 3.2.1: Denote by e' the law of log- under PB. {PB} and {Pi } 

PB 
are contiguous if and only if the sequence { e'} is weakly compact and each limit 
point e satisfies 

J exp(y)f(~) = 1. 
R 

COROLLARY 3.2.2: Suppose that e' converges to a normal N(p.,a2) distribution. 

Then { P7} and {PB } are contiguous i.ff µ. = - ~ a2. 

1bis corollary makes the next definition of a specific case of contiguity under­
standable. Let { P3) be a sequence of probability measures indexed by a 
parameter DE 9 c R . Think of P3 being the law of a random vector 
xn : (l'1 ~Rk. Let Do play the role of the "true" parameter and let u E Rd. Let 
{Mn} be a sequence of matrices in Rdxd such that Mn ~o and define 
en =Do +Mn u. We will assume that Do Elnt9 and therefore that (!' E 9 for all 
n. Denote by PB the probability P00 and by Pi the probability P8 for fJ=tr. 
Define zn to be the sequence of likelihood ratios 

dPi zn = zn(u) = --· 
dPB 

DEFINITION 3.2.3: The family of measures { P3} is called locally asymptotically 
normal (LAN) at D0 , with normalizing sequence {Mn} if zn admits the 
representation 

where the An are random variables that converge weakly to a standard Gaus­
sian random variable A under the sequence {PB } and lim PB (lrn I >8) = 0, 
'9'8>0. 

REMARK: 
I 1 I Observe that E(uTA-2uru) = -2uru and Var(uTLl-2uru)=uru, 

which corresponds to the situation described in corollary 3.2.2. 
2 Of course we may replace the discrete parameter n, above by a continuous 

one. 

Now we will turn to the case where we are dealing with stochastic processes 
instead of finite dimensional random variables. Suppose that we have a 
sequence of stochastic processes xn, each of which is defined on a space 
((l'I, UJ' ,fN) and suppose that the time set is [O, l], and assume that 
xn eD[O, If. Denote by Po the law of xn on D[O, lf, where as before the 
parameter D is taken from a set 9 c Rd. With the same notation as before, 
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define 

ff' = 90 + Mnu, P3 = Pa, and P1 to be P3 for O=fl'. 

Assume that P1 <<P3 and define the likelihood ratio process Z7 to be the 
Radon-Nikodym derivative of P1 with respect to P3, restricted to 'Y'/. 

DEFINmON 3.2.4: The family of measures { P3 } is called locally asymptotically 
normal at 90 with normalizing sequence {Mn} if zn admits the representation 

1 
Z7 = exp(uT47-2uT <W>,u + r'/). 

Her&~1;} is a sequence of P-adapted stochastic processes such that 
an W, where the weak convergence to the Gaussian martingale W with 
continuous quadratic variation < W> takes place relative to the sequence 
{P3} and 

P3(suol~1>£)-+0. 
a<t 

R:BMA.RK: Observe that in definition 3.2.4 

logZn f(P3»uTw-1uT <W>u. 

Furthermore by taking t = 1 we get Z1=exp(uT47- ~ uT u + r'{) and 

41 f(PcD)N(O,J), 

thus we are back in the situation of definition 3.2.3. 

The point is now to identify for a given sequence { xn ,P3 } the processes 4n 
and the normaJizing sequence Mn as well as the likelihood ratio process zn 
itself. This problem will be treated in subsequent sections for the case where 
the xn are counting processes. Although we will not fully exploit the LAN 
property in the sense that we will not discuss asymptotic properties of (off-line) 
maximum likelihood estimators, we remark that establishing LAN is important 
for proving consistency and asymptotic normality. In a general context the 
reader is referred to IBRAGIMOV and KHAsMINSKII [7] and for counting 
processes for instance to KUTOYANTS [23,24] or LIN'Kov [27]. The heuristic 
idea is however simple enough to present. Suppose that one works with a sin­
gle counting process N defined on [O, oo ), and suppose that an unknown 
parameter e, entering in the intensity process, is to be estimated. In this case 
one usually establishes LAN as an asymptotic property for t-+oo. H LAN 
holds for the likelihood ratio z, with a normalizing sequence M(t) we have 

with fl=80 +M(t)u for Z 1= :: the representation 

1 z, = exp(uT 41 -2uT u + r1). 
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By ignoring the remainder term r we have for the maximum likelihood estima­
tor of fo in terms of u: u, = &., and hence the "real" maximum likelihood esti­
mator 81 should then be approximately equal to 

80 + M(t)U, = 80 + M (t)&.,. 
A A 

Hence 81 -80 ~M(t)&.,, which tends to zero in P 80 probability and tJ,-80 is 
asymptotically distributed as a normal N(O,M(tf) random variable. Similar 
properties are desired for recursive estimators to be treated in chapter 4. The 
analysis of their asymptotic behaviour as presented later on differs consider­
ably from what can be done for "off-line" estimators, since it is often not clear 
what the minimizing criterion is, in contrast with eg. maximum likelihood esti­
mation. However a clever interpretation of the form z, at least offers a way to 
guess a possible recursive algorithm that generates estimators with good 
asymptotic properties. 

In studying LAN for counting processes, we use proposition 3.2.5 below. 
Suppose that a counting process Non (0,<Jf,f,P0) admits an intensity process 
>.. Let m, =N1 - Jf,Asds, m is a local martingale. Let p be another nonnegative 
predictable process such that 

t 

j (p3 - l }Asds is a.s. finite for all t. 
0 

Then X defined by X, = /b<Ps - I)dm9 is again a local martingale. Let Z be the 
solution of the Doleans equation dZ1 = z, _ dX,, Z 0 = 1. Then 
z, = exp(/f, log p3 dN9 - /b<Ps - 1 )h9 ds ), and Z is a nonnegative local mar­
tingale. Assume that EZ 1 = l. It is known [37], that we can define another 
measure P 1 on (0, '§) such that for each t the restriction of P 1 to 'tf; is abso­
lutely continuous with respect to the restriction of P0 to the same 'tf;, and the 
Radon-Nikodym derivative on 'tf; equals z,. The next proposition is a special 
case of a result in [37]. 

PROPOSmON 3.2.5: Under Pb N has the intensity pA. 

PROOF: Define m 1 by ml =m, - /b<Ps - l)Asds =N,- /bPsAsds. We will prove 
that m 1 is a local martingale under P 1• Consider first the process m 1 Z. By 
the stochastic calculus rule 

d(m 1Z), = ml-dZ,_ + Z,_dmf + d[m1,Z1 

= ml-Z,_dX, + z,_dm,-Z,(p,-1)>.,dt + z,_d[m,X1 

= ml-Z,_dX, + Z,_dm, + z,_(p1 -1)[dN,-A.,dt] 

= m:_z,_dX, + z,_p,dm1• 

Hence we see that m 1 Z is local martingale under P 0 • Let { Tn} be a to oo 
increasing sequence of stopping times such that both {mlAT.zt/\T.} and 
{Zi/\T.} are martingales under P0 • Write E; for the expectation under the 
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measure P;. Then 

In the sequel we always assume that, whenever there are two probabilities Po 
and P 1 involved, the latter is an absolutely continuous transformation of the 
first. This is of course a restriction, but not too serious, if one accepts the idea 
behind the following example. Let (U,~P) be a probability space with_a_stan­
dard Poisson process N defined on it, and ~=a{N1,t<oo}. Let (U,'?f} be -o -1 
another measurable sp~ce with t_wo measures P and P which are mutually 
singular, for exapiple_U={O,l},P1 is the Dirac measure at_ii Form the pr~ 
duct space (U X n, '?}'>< '?f) wi..!_h the two product measure~ X P . If we define N 
on the product space by N1(w,i)=N1(w) then clear~ N has_iptensity 1 under 
each of the two product measures, although P XP ..LP XP . Suppose now 
that we are ~nly interest~ in what happens on ~00 • We see that the projec­
tions of PX P 1 and PX P 0 on this a-algebra coincide. So under this assump­
tion the fact that P XP 1 ..LP x'P0 is innocuous. 

In order to study LAN for counting processes in a proper way, we adopt the 
following approach. Suppose that we are given a sequence of binary experi­
ments (n",'?J',P,P7,P3). Here the filtrations Pare P={!JJ7},e[O,IJ· Let {Nn} 
be a sequence of counting processes, each Nn defined on (O,n,'?J',P) and 
assume that Nn admits the intensity >i_n under P3 and that P7 is such that Nn 
has the intensity pn>i_n under this measure, for some nonnegative predictable 
process pn. It follows that that P7 <<P3. The Hellinger process Hn is in this 
situation defined as 

t 

H7 = j(v;li -1)2>i.; ds. (3.1) 
0 

For a definition of the Hellinger process in a more general situation see [6]. In 
general the behaviour of the Hellinger processes Hn characterizes the 

dPn 
behaviour of the likelihood ratio --1 [6]. For multivariate counting processes 

dP3 
this has been explained in a fashion, tailored for nonparametric applications in 
[16]. In this section we will follow an approach that is close to [16], thus 
avoiding explicit technical conditions as given by other authors as LIN'Kov [27] 
and KUTOYANTS [23,24). In agreement with the previous notation we have for 

dP'l Z7 = --1§7 
dP3 

the expression 
t t 

z7 = exp(j logp;dN;- j(p;-1)h;ds). (3.2) 
0 0 
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So zn is the exponential of the local martingale Mn, defined by 
M; = Jh(p;- l)dm;, where mn is the local martingale part of Nn under P0. 
Let W be a continuous Gaussian martingale with (deterministic) quadratic 
variation process <W>. The result that we want to get is weak convergence 

of the sequence zn to the exponential of W, so to exp( W - ; < W > ), which is 

the content of the next theorem. 

l 
THEOREM 3.2.6: Assume that H7 converges to 4< W>, in P0-probability for 

each t and that for all t:>O 

I 

H7·' = f lny!p:-Il>•}cY,i -1)2X;ds 
0 

tends to zero in P0-probability. Then 

zn e(Po)) exp(W-; <W>), 

where zn is as defined in (3.2) and the weak convergence takes place with respect 
to the sequence { P0 }. 

PROOF: Write 

t t 

fcv';f-1)2dm; + 2f#..W)dN;, 
0 0 

l 
= 2Af7-2<W>1 + r,' 

where M7 = Jh( W - l)dm;, #._x)=logx-x + 1 + ; (x -1)2, and r,' is simply 

defined as log z7 - 2Af7 + ; < W > 1• Our plan of attack is to prove the fol­

lowing steps. 

l 2Mn- ;<W> e(P3»w- ;<W>. 

2 sup In t..1fll.4 o 
te[0:1) 

As soon as we accomplished doing this, then from proposition 3.1.3.6 we get 

log zn e(P3»w-; <W>. 

Step 1: Since < W > is deterministic it is clearly sufficient to prove that 

Mn e(P3>7iw. But this is immediate from proposition 3.1.5.4 under the 

assumptions that we have made. 
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Step 2: In order to prove this we will splil yn into parts 
yn = yn. 1 + yn. 2 + yn. 3 and we will prove that supll'7';1~ for i = 1,2,3. 

I 

I 
Step 2.1: Let r,1· 1 =2(H,'-4<W>1). Observe that Hn and <W> are 

increasing processes, that < W> is continuoys, and that t is an element of a 
compact sej,nHence proving that suplr,1· 11~ is now equivalent to proving 
that I r,1• 11~ for all t, which follows by assumption. 

Step 2.2.: Let £>0. Write 
I I 

r,1· 2 = f1<1v'P:-ti<•l<#-1)2dm; + flnv'P:-tl;..•l<#-1)2dm; 
0 0 

= r,· 2,< + r:· 2 •• 

First we will prove step 2.2.1: suplr,1· 2·'1~- Observe that yn.2,• is a locally 
square integrable martingale, so we can apply Lenglart's inequality in the fol­
lowing way: 

Here 

Therefore 

P8(suoll';· 2·'1;;;i:B)~~ + P8(<Yn· 2·'>,;;;i.11) 
s<1 B 

I 

<Yn,2,•>, = flnv'P:-li«}<#-I)4A;ds­
o 

P8(<Yn· 2·'>,;;;i.11).;;;;; P(H~;;;i:t).;;;;; 

E:;;P8(1H~- ~ <W>1 l;;;i:~) + l{<W>,;..g}}· 

By taking t: sufficiently small, the indicator disappears. Then by letting n tend 
to infinity, the last probability goes to zero. Since '11 is arbitrary step 2.2. l has 
been proved. 

Step 2.2.2: We have to prove that sup(Y"' 2''1~- Here we have the ine-
1 

quality 
T 

~~~1r:·2,·1~ f l{-../P:-11;..•}( # -1)2dN; + 
0 
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T 

+ f In...;p: -11--·H fr -1)2l\;<h. (3.3) 
0 

The last term in (3.3) tends to zero in { P3} probability by assumption. For the 
first one we have for any 8<£2. 

T 

P3(j l{l-../i[-11;;.•}(fr -1)2dN';~8)~ 
0 

P3(3s~T: In...;p:-11;;.,}aN; = 1) = 

P3(3s~T:laM;l~E) = P3~~JjJaM;l~E). 

However this last probability tends to zero since Mn converges weakly to a 
continuous martingale (step 1), hence {Mn} is C-tight and the claim follows 
from proposition 3.1.3.7. Step 2.2.2 has been proved. 

Step 2.3: This proof is similar to the one of step 2.2. First we split 

(3.4) 

t t 

= ftn...;p:-11;;..J#..fr)dN'; + f1n...;p:-1i«J#..fr)dN; 
0 0 

For the first term on the right hand side of (3.4) we can apply the procedure of 
step 2.2.2. Notice that by a Taylor expansion 

1#..x)I~ 2 3 lx-113 for lx-11~£. 
(1-£) 

Hence 
t 

~~~lfln-..fi[-11<t}#..fr)dN;1~ 
0 

T 

2£ 3 f l<1-..fi[-11«J( fr -1)2l\;<h + 2£ 3 sunlr,· 2·'1 (3.5) 
(1-£) 0 ' (1-£) t<T 

where we have followed the notation in step 2.2. We have already proved that 

sup1r,·2··1~. 
t<.T 

The remaining term in (3.5) can be treated as in step 2.2.1. The theorem has 
been proved. D 

PRoPosmoN 3.2.7: Under the assumption of theorem 3.2.6 we have 

t t 

2Jcfr-1)dm; e<Po»w if! j(p;-1)dm; e<P3)> w. 
0 0 



Weak convergence and local asymptotic normality 49 

t t 

PROOF: Let M'/ = 2 J ( # - 1 )dm; and M; = j (p; - 1 )dm; Then 
0 0 

t 

M; - M'/ = J ( # - 1 )2 dm;. So the conclusion follows as soon as we have 
0 

proved that 
-;-.,11 pn 

suolMs - M;I~ 0, 
s<t 

but this is exactly step 2.2 in the proof of theorem 3.2.6 D . 

The next corollary is now immediate. 

COROLLARY 3.2.8: Let the assumptions of theorem 3.2.6 hold Then 

where 

t I 
Z~ = exp(j(p;-l)dm;-2<W>, +~). 

0 

REMARK: Observe that in corollary 3.2.8 we have J!:·ven conditions such that -n (Jtpn) -n (.)/ n) 
M I:\ 0 ) Wand at the same time zn = &(M ) I:\ 0 ) &(W). Of course this 
procedure can be generalized to the situation where the processes zn loose 
their interpretation of being likelihood ratios. Furthermore it is noticed that 
corollary 3.2.8 can be proved direct~ by imposing the sufficient conditions for 
weak convergence of the sequence {Mn} as given in proposition 3.1.5.4. These 
are 

and 

t 

Ji'; = j(p;-1)2'>.;ds~ <W>,, 'v't>O. 
0 

t 

H;•f = f l{lp;-11;;.E}(p;- l)2X;ds~, 'v't,£>0. 
0 

A natural question is then to ask whether these conditions and those of 
theorem 3.2.6 coincide. The answer turns out to be affirmative. See theorem 
3.2.12 below. This means that there is an alternative but equivalent sufficient 
condition for LAN available. In order to prove theorem 3.2.12 we need some 
auxiliary results. 

LEMMA 3.2.9: Let X be a locally integrable increasing process, X 0 =O, and X its 
dual predictable projection. Then for all bounded stopping times T one has 
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-
EXT=EXT<,.oo. 

PROOF: Let M = 4 - X, then M is a local martingale. Observe that by by con­

vention X0 =0=*Xo=O, so M 0 =0. Let {Tn} be a fundamental sequence for 
M. Then Mn= {MT /\t },.,.0 is a uniformly integrable martingale. Hence - ·-
EXT/\ T. =EXT/\T. <,.EXT<,.oo. Because XT=limXTAT. we have from Fatou's 
lemma. 

EXT<,.liminf EXT/\T. <,.EXT. 

Similarly EXT~EXT. D 

PROPOSmON 3.2.10: Let X and X be as in lemma 3.2.9 and assume moreover 
that X is continuous and that T is a bounded predictable stopping time. Then 
'Vt:,'IJ>O: 

PROOF: Frow. lemma 3.2.9 we obtain EXT=EXT. _ 
Now O=ilT=E[.:l.XTl1FT-]. Hence EAXT=O and we get EXT=EXT-· 
Because the process {X-} is predictable, application of Lenglart's inequelity 
(3.1.3.9) yields 

P(X,;;;iot:)~..!l.. + P(XT- ;;i.'IJ).;;;;,...!l.. + P(XT;;;io'IJ) 
t: t: 

because of the fact that X is increasing. D 

R:EMARK: Trivially proposition 3.2.10 holds for a deterministic time t 

PROPOSmON 3.2.11: Let 
t 

it;·' = /l{lp;-11;;.f}(yf;;i -1)2X;ds 
0 

~n,E t 

H, = j lnp:-11..:;£}( yf;;i -1)2X;ds 
0 
t 

H;·( = f Inp:-11 .... }(p;-1)2x;ds 
0 

~,( t 

H, = j l{p;-11..:;f}(p;-1)2X;ds 
0 

The statements (i) and (ii) are equivalent: 
it: • pn :; n,£ pn 1 

(i) ,' ...£Ll.? 0, H, ~<W>,, \tt:,t>O. 
:?I• pn ~.£ pn 

(ii) n,' ...£Ll.?O, H, ...£Ll.?<W>,, \tt:,t>O. 
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PROOF: The first thing that we prove is 
;-.,11,• pn -;-.,.n,• pn 

'v'£>0, 'v't;;ai.O: n, ~ 'v'£>0, 'v't;;ai.O: n, ~ 0. 

Since (x -1)2 = (Yx -1)2Cv'x + 1)2 ;;;io(Yx -1)2 we have H;·' ;;;i:il;''. 
So we only have to prove that 'v'£>0,'v't;;ai.O: ii;·'~ implies 

t -;-..n• pn , In' 
'v'£>0, 'v't;;a:O: n,' ~- Define X'/'' = fl{IP:- 11.,.•J( y p; -1)2dN; 

0 
t 

X:'' = jl{IP:-11;;..•J(p;-1)2d.N;. 
0 - n • -;-,n • -;-..n • Observe that xn,• has compensator H , and A , has compensator n t, . 

Lenglart's inequelity we get 

P3(X'/•';a.8)<t + P3(i/;'';;a:ri) 

and from proposition 3.2.7 

p3(ii;·';;a:8)~t + P3(X'/·';;;iori). 
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and 

From 

~·? ~ ~· Soni'~ if and only if ){'/·•->o and of course the same holds for n 1' 

and X:''. Therefore we have to prove the implication 
pn -;-,11,< pn 

'v'£>0, 'v't;;a:O: ){'/··~==> 'v'£>0, 'v't;;a:O:A 1 ~. 

Let 8<~ /\£i, where £I = (1-v'l-h')2. 

which tends to zero by assumption. One remark about the choice _Ef 8. We 
can obviously restrict ourselves to small values of 8, because P3 ('X;'' ;;ai.8) is 
decreasing if 8 increases. The next point is showing that (i) implies 

Let 

Then 

~.• pn 
'v'£>0,t;;ai.O:H, ~<W>, 

: n,E ~,f : n,f. 
4(1-8- (£))H1 ~H1 ~4((1 +8+ (£))H, 

Let t,ri,£>0. Observe that lim._i08+(i)=lim._i08-(£)=0. Choose i' such that 
t:'~£ and 
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Then 
.:.n,£ 

P8(IH1 -<W>,1~211) 
~,( .:..n,c ~,c 

.e;;;;PS(IH, -H, 1~11)+ P8(IH1 -<W>,1~11). 

Now 

P3 (!Jf,'( - ft;" I .e;;;;11).e;;;;P3 (ii';·• ~11), 
which tends to zero from the first part of the proof. 

~,£ 

P8(IH1 -<W>,1~11).e;;;; 
:) n,<' 1 

P3(4(1 +8+ (c))(H, -4<W>1)~11-8+(t)<W>i).e;;;; 

:) n,<' 1 !I... 
P3(4(1 +8+ (E'))(H, -4< W>,)~ 2 ), 

which tends to zero because of (i). A similar inequality holds for 
.:.n,c 

P3(H1 -<W>,.e;;;;-11) which completes this part of the proof. By a same 
way of reasoning one obtains that (ii) implies that 

:n,< pn l 
'1£>0,t~O: H1 ~<W>1 . D 

THEOREM 3.2.12: Let W be a Gaussian martingale with deterministic quadratic 
variation <W>. The conditions of theorem 3.2.6 are equivalent to 

and 

I 

Jl, = j(p;-If-A.;ds ~<W>1 , 'Vt. 
0 

I n:·· = f l{Jp:-11>•}(p;-1)2A.;ds~, 'Vt,£>0. 
0 

In either case we have the representation 

where 

I I 
z~ = exp(j(p;-I)dm;-2<W>1 + ~), 

0 

PROOF: The equivalence in the theorem easily follows from the fact that for 
I fq: 
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and conversely that Ix -1 I E:;;t: => I Vx -1 I E:;;t: and by applying propos1uon 
3.2.11. The representation for zn now follows from corollary 3.2.8. D 

Thus far we have established LAN for a sequence of counting processes 
{Nn}. It is also relevant to study LAN for a single counting process N where 
the time parameter t tends to infinity. It is possible to give sufficient condi­
tions on the intensity process A of N that ensures LAN, see for instance [24,27] 
or the slightly different conditions of proposition 3.2.18 below. However it 
may also be useful to see in the specific situation at hand whether LAN can be 
proved directly by inspecting whether the sufficient conditions of theorem 
3.2.12 hold after a suitable transformation of the given process N to a 
sequence of counting processes {Nn}. We will carry out this last procedure for 
counting processes with a particular form of the intensity process. This will be 
done with an eye to the recursive estimators that will be discussed in section 
4.2. 

Assume that we are given a counting process N on a filtered probability 
space ({},c:f,f,Po) such that it admits under the probability P8 the Doob-Meyer 
decomposition 

dN1 = q,'{ 8dt + dm1 No = 0. (3.6) 

Here q, is a predictable process, q,:nX[O,oo)~ [O,ool and 8E[t:,oo)d for some 
t:>O. Let 80 be the "true" parameter. We will prove LAN in proposition 
3.2.14 under the following assumption. 

ASSUMPTION 3.2.13: Let 

Q;-1 = J~1; ds. 
O 'i's 80 

Suppose that there exists an increasing function g:[O, oo )~[O, oo) with g(t)~oo 
as t~oo and a positive definite matrix P=PT ERdxd such that 

Pa - lim-l-pJ.SQ;-1 p¥i =I. 
0 1->00 g(t)2 

As said before we wish to prove LAN by applying theorem 3.2.12. Therefore 
we have to transform the above model to a different one that fits into the con­
text of this theorem. This will be done as follows. Let { bn} CR+ , with bn joo. 
Define an= g(bnf. Without loss of generality we may assume that g is strictly 
increasing and gEC1(R+). Then the same holds for its inverse function h. 
Define hn(t)=h(W). Our sequence of counting processes {Nn} will now be 
defined via N7=N11,.(t)>tE[O,l]. The relevant probability spaces (W,<W',P,P3) 
are now defined as W =n, <!¥' =<?f for all n and 11,' =1f11,.(i)> P3 =P ol'!fl =P 0 1<% •. 
Denote by 80 the true parameter and write P3 for Pd'.. For uERd we define 
on=8o+Mnu, where Mn=g(bn)- 1P¥i=a;¥ip¥i. Write Pj for P~. Under the 
measure P3 we have 

h,.(1) 

N7 = J q,; 80ds + mh.(i) 

0 
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t 

= jX;ds + m7 
0 

Here X7 =4{cr>80h'n(t) and mn is a local martingale under the measure P8. A 
similar expression holds for the decomposition of Nn under the measure P1. 
In the notation that we have used before 

cfJ{ct)BR (cfJ7lBR 
p7 = cfJ{(t)8o = (cp7)T80 

where the definition of the process q,n is obvious. Having introduced the 
relevant notation, we can write the Hellinger process Hn as 

h,,(t) 

m = J (Vi{-1)2cp[8ods 
0 

where 

-n 
Pt 

A similar expression holds for the process Wi·8 (which is m·· with f replaced 
by 8). 

PRoPosmoN 3.2.14: Under assumption 3.2.13 the following hold: 
. pn 1 T 8 pn 

(1) H7~u ut and S7• ~. V'!E(O, l],'7'8>0. 
t 

(ii) j( Vi{ -1)2q,[80ds~uT u as t-+oo and 
o, 

fln0:-11>&}(Vf[ -1)2q,[80ds~ as t-+oo. 
0 

PRooF: Let 8>0 and choose N such that IMnul<& for n;;.N. 
exists by assumption 3.2.13. Then 

1-n II 
1Vi{-11 = .;;; ~1;;;-11 = 

Ps +I 

· (cp[ 4's)~IMnul cp[llMnul 
~ ~ <8 

cp[8o cp[h 

Clearly such N 

where 1 is the ~\pmn vector with all its elements equal to + 1. So trivially we 
have that S7·8~. In order to prove the convergence of H7, take 8 and N 
as above. Observe that we can write 

h,,(t) T 
T j 4's4's - [::ii" -2 H7 = u Mn -T-( VPs +l) ds Mnu 

o 4's 80 
(3.7) 
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Since we have for n";;!!:N li>;-11<8 (see above) we get the inequalities 

1-6~ Y;[ ~l +16, which we use to obtain from (3.7) 

(2+ ~6)-2uTMnQh.<~>Mnu~H'/~(2-8)-2uTMnQh.chMnu (3.8) 

Now we can write 

MnQh.chMn = a; 1 g 2(hn(t))g- 2(hn(t))Py, Qh.chPy, 

= tg-2(hn(t))Py, Qh.(t)py, (3.9) 

which by assumption 3.2.13 tends to tl in P0-probability. Since 8 is arbitrary 
the assertion follows from (3.8). The second part follows from (i) by taking 
t =I and by taking any sequence {bn} with bn--'>00. D 

REMARK: The second part of the above proposition can be proved under a 
considerably weaker assumption than 3.2.13. If one has instead: 

AssUMPTION 3.2.15: There exists a map M:[O,oo)--'>Rdxd such that 
M(t)=M(tl>O, M(t)--'>0 for 1--'>oo and 

P 00 - lim M(t)Q;- 1 M(t) = I. 
t->OO 

The proof is then as follows. In the notation we have used above we replace 
hn(t) by t and arrive at M(t)Q;- 1 M (t) instead of (3.9). 

Now we are in the position to prove LAN for the model (3.6) (see definition 
3.2.3). 

COROLLARY 3.2.16: Consider the model (3.6). Let assumption 3.2.15 hold. 
Define If = 80 + M (t)u and 

t - q,'{'IJ' 
Ps - q,'{'80. 

Define 
t t 

Z1 = exp(/ log p!dN3 - J (p!- I)<P'{'80ds) 
0 0 

Then 

_ J' <Ps f(Po) pn where 6., - M (t) -T - dm3 , fl, )N(O,J) and r,~. 
O <Ps 80 

PROOF: This is now a direct consequence of corollary 3.2.8, proposition 3.2.14 
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and by noticing that 

I q,'{M(t)u 
p 1 - D 

s - - q,[60 

It is also possible to state LAN for a counting process that admits an intensity 
process {A1(6}} under the probability P 8 by giving conditions on A1(6} directly. 
We will do this for a scalar parameter 6. These conditions (assumption 3.2.17 
below) are close to those given in [24). 

AssUMPTION 3.2.17: There exists a function M:[O,oo)~R such that M(t)~O 
and 

I A1 (8 )2 
(i) P 80 - fun M(t)2 I ; (8\ dY = 1 

1-+<Xl 0 s 0 

(ll .. ) - fun 211 A',(80) _, A's(6o)2 -
P 80 M(t) ln--l;;..£Mci> J '\' (n ) dY -O 

1-+<X> 0 ).,(80 ) I\ s 110 

(iii) Ps0 - fun M(t)a. sup sup I ~:'s(~(J)) I = 0 for some 
1-+<X> s<1 IB-80 l<'CM(I) I\ s 110 

ae(O, 1) and VC>O. 

PROPOSITION 3.2.18: Let assumption 3.2.17 hold Then the family {Pe} is LAN 
at the point 60 with normalizing sequence {M(t)}. 

PROOF: We have to check the conditions of theorem 3.2.6, or those concerning - -. H 1 and H 1 in view of theorem 3.2.12 

- II I - ")\-s((}I) 
H1 = 0 (p!-1)2A3 (0o)dY, where Ps - As(8o), 81 = Oo + M(t)u. 

By a Taylor expansion 

l -
A3 (81) = A3 (8o) + (61 -8o)A'3(80) + 2,(81 -80)2A"s(81) 

- -
where 81 is between 80 and 81• Hence 

where 

Ps - fun SUPl£~1 =0 
0 t-+<X> s<1 

by assumption 3.2.17 (iii). Hence 

I A' (8 )2 
H = 1(8 -8 )2 s o (I+M(t)1-a.£1)2dY 

I I 0 A(8) s 
0 s 0 
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t ]\' (fl 'f 
= u2M(t'f[l s O (1+2M(t)1-at:! + (M(t)1-at:!'f)ds 

o As(Bo) 

_ 2 2 lt "A'i8o'f 
- u M (t)

0 
'As(Oo) ds + R 11 + R 2t. 
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From assumption 3.2.17 (i) we see that we are left to verify that both R It and 
R 21 tend to zero in P 11,, -probability. We will prove this for R 11 only, since for 
R2t the procedure is the same. For R It this immediately follows from the next 
inequality 

I 2 21t A's(8o'f I-a t IR It ~2u M(t) 
0 

As(fJo) ds·M(t) ~1!I,>i£sl· 

The last thing that we have to show is that n;~, where 

t 

ll, = l lnp:-11""•}(P~ -1)2">..s(Bo)ds. 
0 

Let Et = suplt:!I- Then 
s<t 

t A's(Oo) I-a 
IPs- ll~luM(t) As(Bo) 1(1 + M(t) Et) 

Hence 

(3.10) 

The first term in the right hand side of (3.10) tends to zero because of assump­
tion 3.2.17 (ii), whereas the last term tends to zero since iit~u2 and 
Po0 (M(t)1 -at:t>1)~0. D 
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Recursive Estimation 

In this chapter we will treat the problem of recursively estimating an unknown 
parameter that occurs in the intensity process associated with a given counting 
process. Contrary to the case where off-line procedures are studied, there are 
hardly any results for the recursive estimation problem except for a first 
attempt by VERE-JONES [47) and NIICITIN and SNEGOVOY [31). Maximum likel­
ihood estimation (off-line) has been treated by various authors such as 
LIN'KOV [27) KUTOYANTS [23), OGATA (32), and KONECNY [21,22). They 
proved that under conditions that differ from paper to paper, the maximum 
likelihood estimator has desirable properties like consistency, asymptotic nor­
mality and efficiency. These properties still have to be investigated for recur­
sive estimators. In sections 4.1, 4.2 and 4.3 we will do this for a rather specific 
case, viz. the case where the intensity process exhibits a linear structure. The 
first basic problem one encounters is that of designing a recursive procedure 
for parameter estimation. One of the justifications that we give for a certain 
choice of such an algorithm is based on the asymptotic expression of the likeli­
hood ratio process for counting processes, which has been studied in section 
3.2. We present a number of recursive parameter estimation algorithms for 
counting processes that admit an· intensity process that is linear in the parame­
ter. This is the model that we have encountered in section 3.2 (see equation 
(3.6)). Recall that this model is given by 

dN, = q,rDodt + dm, (4.1) 

where N is our counting process, q, is a predictable process, q,:[O, oo) X 0-+Rd 
and D0 eRd. Occasionally we will need some additional requirements for q, or 
Do. 

4.1 RECURSIVE LEAST SQUARES ESTIMATION 

In this section we~ study the model (4.1). So dN,=q,rD0dt+dm,. The least 
squares estimator D, by definition minimiz:es the quadratic form in D 

t t 

V,(8) = J (q,'[0)2ds-2 jq,'[DdNs (4.2) 
0 0 

For a heuristic justification of minimizing the criterion V,(8), observe that it is 
formally equivalent to minimizing the undefined expression 

t dN 
I <4>iD- dss f ds. 
0 
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Assume for a mQ._ment that the matrix f b4's4'I' ds is invertible, and denote by R1 

its inverse. Put <1>1 = fb4'sdNs. Then eq. (4.2) reads 

V,((J) = (fJ-R1tP1f R;- 1 (fJ- R1tP1)-tP1R1i 1 (4.3) 

From (4.3) we see that D, =R1i 1 minimizes Vi(fJ). Because dd R1 = - R1q,1q,f R1 
t - A 

we get by applying the stochastic calculus rule to the product R1<I>1 for fJ1 the 
equation 

dD, = R,q,,(dN, -q,TD,dt) (4.4) 

However it is a priori not clear that the matrix R1 as introduced above is well 
defined. Therefore we will modify its definition slightly. Let R0 1 be a strictly 
positive definite matrix. Define now R, to be the inverse of R0 1 + fb4's4'I' ds. 
One immediately sees that now R, is well defined. Usually one will wish Ro 1 

to be small in norm. Observe also that R0 =(Ro 1 )- 1, which makes the nota­
tion consistent. As before we still have 

d 
dt R1 = - R1q,1q,1R1dt. 

Furthermore let D0 be any vector in R~. Now we are in the position to define 
a recursive (least squares) parameter estimation algorithm as the following cou­
ple of stochastic differential equations together with their initial values 

dB, = R,cp,(dN, -q,fD,dt), D0 

dR, = - R1q,1q,1R,dt, Ro 

(4.Sa) 

(4.5b) 

The equations (4.Sa,b) will be referred to as least squares algorithm. Observe 
that this system of equations has a unique global solution since N has no 
explosions. 

REMARK: The algorithm ( 4.5) is invariant under non-singular linear transfor­
mations in tqe following sense. Let S eRdxd be a non-singular matrix. Write 
11=SfJ,~1 =SfJ1 ,~1 =s-T q,, and T, =SR,sr. Then (4.5) transforms into 

d~, = r,~,(dN, -~r~,dt), ~o 

dT, = -T1~1~fT,dt, T0 

which is exactly the least squares algorithm that corresponds to 
dN, = ~T 11dt + dm,, but this is nothing else but ( 4.1) because ~T 1/ = q,f fJ. 

4.1.1 Convergence of the least squares algorithm A 

In proving almost sure convergence of the estimators { 81 } defined by ( 4.5a, b) 
we will use the following lemma, which is nothing else but 2.2.20 for nonnega­
tive x. We restate it for convenience. Compare also to [39,42]. 

LEMMA 4.1.1.l: Let x,a,b be nonnegative stochastic processes and ma local mar­
tingale such that x =a - b + m Assume that a and b are increasing processes, 
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ao=bo=O and that li.mi ..... 00 a,<oo a.s. Then 
(i) limx, exists and is finite a.s. 

t-+OO 

(ii) limb, is finite a.s. 
t-+OO 

THEOREM 4.1.1.2 [45]: Consider the algorithm (4.5). Let 80 be the true parameter 
t 

value. Let 0,=0,-80 and let tf!,=q,f q,,,'11,= ftflsds +tr(Ro 1 ). 

0 

Assume: 
(i) lim '11, = oo a.s. 

f-+00 
00 

(ii) J '11 ;-2tf!,<1>,d1 < oo a.s. 
0 

t 

(iii) fun Vi"" 1 f <l>s<l>I' ds =C, where C ERmxm is positive definite a.s. 
t-+OO O 

Then A 

(a) lim0,=80 a.s. 
f-+00 

t 

(b) limv;- 1 j(q,'{Osfds=O a.s. 
t-+OO O 

PROOF: From (4.5) it follows that 

dO, =R,q,, _ (dN, -q,fO,dt)=R,q,, -(dm, -q,fOdt) 

dR;- 1 =<1>,<1>T dt 

-T - t -T 
Define the Lyapunov like process u, =8, R;- 181 + J (Os <l>sf ds. Applying the 

stochastic calculus rule to u" we obtain 
-T 

du, =28,_q,,dm1 +q,f R,q,,dN,. 

Observe that v, = tr(Ri"" 1 ). Define w, = u, '11 ;- 1, then 

0 

dw, = -'fl;- 1 w,tf!,dt +<t>T R,q,, v;- 1 oij q,,dt +dm It• (4.6) 

where m 1 is local martingale. We want now to apply lemma 4.1.1.1 to equa­
tion (4.6). Because u,w,'11 are positive, we then see that the only thing we have 
to check is 

00 

f <t>T R,q,, v;- 1oij q,,dt< oo. 
0 

To that end, let p,=trR,. Let "Yit be one of the eigenvalues of R;- 1, then 
li.mi ..... 00 '11 ;- 1 "Yit = c; >0 by assumption (iii) of the theorem. Hence 
"Yit=c;'l.11(1 +o(l)) (t~oo). Now Y;"°i" 1 is an eigenvalue of R,, 
Y;"°i" 1 =c/ 1'11,(l +o(l)),(t~oo). Hence 
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p1 ='11,- 1 (~c;-I +o(l))(t~oo), or p1 =0('111 1 ),(t~oo). 

Recall that for a positive definite matrix A, xr Ax.s;;;xr x.tr(A) and 
xr A 2x.s;;;xr x(tr(A)f. Then 

co co 
j q,f R, '111 14'//{ q,,dt = j q,f R1Rl 1 R,q,, '111 1 fl{q,,dt..;;;;; 
0 0 

co co 
..;;;;; j q,,R:q,iti{ q,,dt..;;;;; j q,f q,,p:ti{ q,,dt = 

0 0 

co co 
fJ'{ J tfJ,p:q,,dt = fJ'{ J q,,tfJ,O(ir/2 )dt < oo, by assumption (ii). 

0 0 
co 

Then from lemma 4.1.1.1 we conclude that w and J W9 '11; 1 o/sds almost surely 
0 

converge. We claim that limt-+co w, =O a.s. If not, there exists a subset of 0 
with positive probability and an t>O, such that lim, ... co w1 ;;;,i.2£ on this subset. 
But then we also have on the same subset 

co co [ ]co J '111 1w1t/J1dt;;i:£ J '111 11/J,dt = log(i',) = oo, by assumption (i). 
0 0 0 

But this contradicts the second assertion of lemma 4.1.1.1. Since w is the sum 
of two positive quantities we have both 

t 

lim '11I 1 j (ii; <Psf ds = 0 a.s. and 
t-+CO Q 

. -r R/ 1 -
limfJ, -:r;-01 = 0 a.s. 

1-->CO Y t 

Because of assumption (iii) we know that liminf '111 1 R/ 1 = C>O, hence 
1-+CO 

lim fJ1 = 0 a.s. 
t-+CO 

REMARK: It is possible the relax the third assumption of theorem 4.1.1.2 to the 
one in [15]. The analysis of the algorithm then becomes a bit more compli­
cated. We will not discuss this. However we will follow a similar procedure in 
section 4.3 for a different algorithm. We will give some examples for which 
the assumption of theorem 4.1.1.2 hold. 

ExAM:PLE l: Let q,:[O, oo )~R~, q,1 =[1,1 + sint], fJ= [a,b f. Then 

'111- ;1-2cost- ~sin2t+tr(R0 1 ). 

Clearly assumptions 4.1. l.l i) and ii) are satisfied and 

limir/lf<Ps<t>Ids = liml_f [l 13+sins l lds 
t-->co 0 t-->co St o I+ sin s 2 + 2sin s -2cos2s 
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- .!. [2 2] 
- 5 2 3 

ExAMPLE 2. Let qi:TXO~R2 , qi, =(l, 1 +(- l)N') and O=(a,b)ER~. As in 
(11, p. 59] the second component of qi jumps like a random telegraph process. 
Conditions (i) and (ii) of theorem 4.1.1.2 are easily verified. To check condi­
tions (iii), let us first define 

Then 

I 

X, = t-I j(-l)N'ds 
0 

t [ 1 1+.Xi l '11;2 fPsqifds = (3+t-ltr(RoI)+2X,)-l l+X 2+2x,. 
0 I 

We now proceed to compute as-limX,. Since N1 =(a+b)t+bt.Xi+m1, we 
l->00 

find that 

X, = b- 1(t- 1N,-t- 1m,-a-b) 

The quadratic variation process <m > 1 =(a+ b )t + bt.Xi :s;;,(a + 2b )t. It then 
follows from the strong law of large numbers for martingales that t- 1 m,~o 
a.s. Finally we have to evaluate the asymptotic behaviour of t- 1 N1• Define 
Tk=inf{t;;;ioO:N,=k}. Then 

~ _k_l }:i;;;,t- 1N :i;:: ~ ..!_l } 
~ Ti {T,..:t<T>+, ,....,, ~ Ti {T,..:t<T>+, · 

k=O k+I k=O k 

Consequently 

lim -IN lim k as- t 1 =as- -. 
t-->oo t--+oo Tk 

Let -rj=Tj-Tj-1>}=1,2, .... then {-rj} is a sequence of independent random 
variables, and E-r21 =a- 1,E-r21 +1 =(a+2b)- 1• Now the strong law of large 
numbers for independent random variables applies and we get: 

as-lim- = as-lim- ~-r·=- -+--. Tk . 1 k I [ l I l 
1-->oo k 1-->oo k j=I 1 2 a a +2b 

Collecting the above results we find 

as-lim X, = _!_[ a(a+2b) 
t-+oo b a +b 

b a-b]=---· 
a+b 

Conclusion: 

. -11' T - l [a +b al as,:!111 'l', o qisqis ds - 3a +b a 2a >0. 

a+b 
a(a +2b) 

ExAMPLE 3: Let X be a Markov process which takes its values in {O, l }. 
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Assume that the holding times in 0 and 1 are exponentially distributed with 
means Po and p.1 respectively. Assume that N, has intensity 
61 X, _ + 80(1 - x, _) which is left continuous, thus predictable. So 
cf>t=[X,-, 1-X,-t. Now v,=t+tr(Ro1 ). Again assumptions 4.1.1.2 i, ii 
are easy to verify and 

lim- ~ ipTds = lim- ds = 1 t 1 t [Xa 0 l 1 ["'1 0 l 
t-+CO Vt ! :r S t-+CO t ! Q 1 - Xa P.1 + IJo Q IJo 

4.1.2 Asymptotic distribution of the least squares algorithm 
In thjs section we will show that the algorithm ( 4.5) provides us with estima­
tors IJ, that are asymptotically normally distributed if we impose some addi­
tional requirements on the process <f>. We use some of the central limit 
theorems of section 3.2. It immediately follows from (4.5) that 

and 

A -1 A t 
IJ, = R,[Ro Bo + f <t>sdN,] 

0 

t 
_,, A -I A 

IJ, = IJ,-IJo = R,[Ro (80-60) + f <t>sdm,] 

Introduce the vector valued martingale 

then 

t 

M, = f<t>,dm, 
0 

t 

<M>, = /4>s4>I' <t>'I9ods 
0 

A -

0 

(4.7) 

Oearly the distributions of e, and 9, are governed by the ones of R, and M,. 
For the latter we have the following result. 

THEOREM 4.1.2.1: Let M be as defined in (4.7). Assume that there exists a func­
tion p.:[O,oo)-+[0,oo) with p.(t)-+oo as t-+oo such that 
(i) P-limp.(tr1<M>,=D, where DeRdxd is a positive definite non ran-

t-+co 
dom matrix 

t 

(ii) P-lim p.(t)- 1 f<t>'{<f>,l{+:+.>f/1'.t)}<f>'{9ods = 0,VE>O. 
t-+CO O 

Then 

<M>l*M, ~N(O,l). 
t 

PROOF: i) Let AeR' and define M~=ATD-*M,= J>..TD-*<1>1 dm1 • Then 
0 
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Hence 

(l\.TAµ.(_t))- 1 <MA>, = (ATA)- 1>-?D-*µ.(_t)- 1 <M>,D-*A--l>l 

in l?robability. Hence condition i in proposition 3.1.6.3 is satisfied with 
g(t)=ATAµ.{_t). In order to establish condition 3.1.6.3 ii) for j;=ATD-*q,, we 
compute 

t 

(ATAµ.(_t))- 1 jAT D-*<Ps<PI D-*M {IArD-"4>,l>£C.A">.P<.t))"J<PI 8ods = 
0 

t 

(ATAµ.{_t))- 1 AT D-Yi J <PI <Psl {ArD-"4>,l/J;v-">.>lA'AP<.t)}<PifJodsD-*A~ 
0 

t 

(ATAµ.(_t))- 1 AT D- 1 A J <PI <Psl {ArD-'A4>;4>,>lAl'(.t)}<PI8ods 
0 

which tends to zero in probability according to assumption ii since we can 
replace£ by fl-ATA(ATD- A)- 1. Now we have proved 

(ATAµ.{_t))-Yi M~ ~ N(O, 1) 

(ii) According to the Cramer-Wold device 

VAERd:(ATAµ.(_t))-* M~ ~ N(O, 1) 

if and only if 

µ.(_t)D-* M, ~ N(O,J). 

Since 

and 

D-*µ.(_t)-Y, <M >P--l>l 

in probability, we have finished the proof. 

R.EMARK: Stronger conditions than 4.1.2. l (ii) are the corresponding Lindeberg 
or Lyapunov conditions 

t 

'11£>0: µ.(_t)- 1 E J q,'{ <Psl {f/J;f/J,>E/J(.t)} q,'{ 8ods--l>O 
0 

t 

38>0: µ.(_t)- 1- 812 Efll<Ps113+8 ds--l>O, 
0 

where IHI denotes the (Euclidean) norm on Rd. 

COROLLARY 4.1.2.2: Under the conditions of theorem 4.1.2.1 we have 
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PROOF: 

<M>(~R( 1(01-eo)=<M>1-~[Ro 1 (0o-eo) + M,]. 

The fact that <M > ;- ~ R0 1 (00 -e0)""'0 in probability (this follows from 
4.1.2.1 i) gives us the desired result. 

REMARK: <M>1 depends on d!e unknown parameter e0 • As usual we can 
estimate <M>1 by substituting e,, which is strongly consistent, for e0 • 

The examples given below are continuations of examples 1-3 of section 4.1.1. 

ExAMPLE 1: cp(t)=[l,l+sint]T,e0=(ei.e2). Take µ.{,t)=t. Then we can calcu­
late 

limµ.{,t)- 1 <M>1 = 
t-+OO 3 3 5 el + 2e2 2e1 + 2e2 

which is a positive definite matrix. So assumption 4.1.2.l (i) is satisfied. To 
establish that assumption 4.1.2. l (ii) holds it is sufficient to remark that 
q,'{ q,9 .:s;;;;S. Hence for t>2_ we have 

£ 

/{.P:.P.>d} = 0. 

Another calculation shows that we have asymptotically 

A 1 [3e1 +e2 -281 -e2] 
(e, -eo)~N(O, t -261 -e2 261 +262 ) 

ExAMPLE 2: q,1 =[1,1 +(- l)N'_ ], e0 =(ei.e2). Take µ.{,t)=t. Then a simple cal­
culation yields: 

• _ 1 et+ 261 e2 [1 ll as-limµ.{,t) <M >1 = LI LI 1 2 
t-+OO 111 + 112 

which is positive definite. As in example l q,'{ .Ps is bounded, so again assump­
tion 4.1.2.l (ii) trivially holds. Combined with an expression for R, we can 
calculate that 

A 1 e1 +e2 [wr -er ] 
(e,-Oo)~N(O, 1 er+w1e2 -er (01+ei)2+e~ ). 

ExAMPLE 3: q,1 =[Xi-, 1-X,_]. Again takeµ.{,t)=t. Then 

as-limµ.{,t)-1<M>,= 1 [eo1µ1 ~ ]· 
t--.oo µI + P-O 11011<J 
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Since q,{ q,, = 1, again assumption 4.2.2.1 (ii) is trivially satisfied. Asymptoti­
cally we have 

A P.1 +Po [(})I P.1 0 l 
(8, -00)~N(O, t O Oo/Jlo ). 

REMARIC Observe that implicitly corollary 1.1.2.2 provides us with an estimate 
if t!J.e asymptotic speed of convergence of 01 -80 • If we consider for instance 
V,(8,-001 where V, tends to infinity, but V,R,<M>P tends to zero, then cer­
tainly V,(O, -80)~0 in probability. 

A 

The advantage of the least squares estimator O, of (4.5) is that we are able to 
obtain an explicit expression (see the first paragraphs of section 4.1). One of 
the drawbacks however is that they are in general not asymptotically efficient. 
(Compare with section 4.2.3 below). This is one of the reasons why we present 
in the next section another type of a recursive estimation algorithm. 

4.2 RECURSIVE MAXIMUM LIKELIHOOD ESTIMATION 

In this section we study another parameter estimation algorithm for the model 
(4.1). In contrast with the least squares algorithm there seems to be ~o explicit 
expression for a criterion that is minimized by the estimators { e,} to be 
defined below, so we have to find another way to obtain an algorithm. Before 
stating the estimation algorithm, we prefer to formulate a preliminary version 
of it and provide a heuristic derivation. The preliminary algorithm is 

A Q,q,, TA A 

dO, = -A-(dN,-q,, 01dt), 80 (4.8a) 
q,{e,_ 

dQ, = Q,q,,q,! Q, dt, Q0 (4.8b) 

4>i o, 
We will give three approaches that justify, at least heuristically, the form of 
this preliminary algorithm. The first one is based on a "implicit-function 
theorem" type argument (4.2.1). The second approach is based on an associ­
ated filtering problem (4.2.2) while the last one uses an asymptotic expression 
of the likelihood functional (4.2.3). Assume that q,, is g:N _predictable. Let P1 

be the measure on the trajectory space of counting processes defined on [O,t] 
that is induced by ( 4.1) and let Q, be the measure on the same space induced 
by a standard Poisson process. In order to express the dependence of dP,ldQ, 
on(} we write L1(8)=dP,ldQ1• Then the following expression holds. 

t t 

L1(0) = exp[jlogq,I°0dN8 - j(q,I°O- l)dS'] 
0 0 

If q, is not g:N -adapted, we can always intewret L1(8) as a partial likelihood. 
The ma.xll:I!um likelihood estimator 01 by definition maximizes L1(8). 

Equivalently, 01 minimizes 
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t t 

J,(11) = jq,'{eds- Jiogq,'{(JdNs 
0 0 

If differentiation with respect to (J under the integral sign is allowed we look 
for zeros of 

t t '1>s 
l,((J)=\l9J,((J) = f 4>sds- J-r-dNs 

0 O '1>s (J 

If J,(IJ)=J(t, fJ) happens to be a smoot!?- function of both () and t, it follows 
from the implicit function theorem that e, satisfies the equation 

d A - A -J a A 

dt (J, - -[\/ 91,(9, -)] a;l,(01) 

A similar expression in the present situation where /1(0) is not smooth, but has 
jumps, is 

(4.9) 

where a, is the forward partial differential operator with respect to t. Since we 
have 

and 

I f/>sf/>I' 
\19/,(fJ) = [ (q,'{IJ)2 dNs 

equation (4.9) becomes after writing Q,=[\l9 /1(01)r 1 

A - Q,_q,, TA 
dlJ, - A (dN, -q,, IJ,dt) 

(q,f 8, _) 
(4.10) 

The next problem is to find an evolution equation for Q. One of the objectives 
is that the algorithm giv~s us strongly consistent estimators. Therefore we 
should have for large t, IJ, ~e0 • Hence for large t 

Q-1 ~ j '1>s4>I' dN = j '1>s4>I' ds + J '1>s4>I' dm (4.11) 
' o (q,'{Oo>2 s o 4>I'Do o (q,'{8°)2 s 

The last term of the right hand side of ( 4.11) is a zero mean martingale. We 
get a new approximation of Q,- 1 by deleting this last term. 

Q;--1 ~ j q,1'{ ds 
0 4>s Oo 

A 

Finally we replace 00 by Os and we arrive at 

dQ, = - Q,q,,q,! Q, dt 
4>T e, 

(4.12) 
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Observe from (4.12) that Q, is continuous. Consequently (4.10) is indeed 
(4.8a). 

Another way of justifying (4.8) is the following. Consider the following 
filtering problem. We have an observation equation 

dN, = q,f 8dt + dm1,no =O 

Here q, is a ~-predictable random process where~ =a{N9 ,0:s;;;s=s;;;t} and 8 is 
an unobserved random parameter, that is a(fJ)<t~ for all t. It is known [3] 
that the op~ (in mean squared error sense) estimator of 0 given the obser­
vations ~ is 81 : = E[ 81~ ], and that satisfies the following equation 

A P,_q,, A A 

d81 = -A-(dN,-q,f8,dt), 80 =EfJ. 
q,f 8, _ 

Here P, is the conditional covariance matrix E[(0-0,)(8-0,ll'F,'] and satisfies 

dP, = - P,<J>,:{P, dt + [E[(8-0,)(8-0,l(8-0,l<J>,l'?!,'J 
<Pt t 

t 

In this setting the innovations process N, - J <J>I'Osds is a martingale with zero 
0 

mean. We can approximate this equation by setting the martingale term equal 
to zero. Denoting the approximation of P1 by Q1 we find as a truncated 
second order filter 

A - Q,q,, TA 
d8, - -A-(dN -cp, 8,dt) 

'l>i 8, -
T 

dQ, = - Q, c/>ic/>: Q,dt 
'l>i 8, 

(4.13a) 

(4.13b) 

It can be argued that the effect of the pri9r distribution of 8 decays with time. 
Hence we will eventually get estimators 81 of 8 that are hardly depending on 
the prior distribution. Consequently the 81 's for large t will not change much 
if we would take 8 as a deterministic parameter. This suggests the use of the 
same formulas ( 4.13) for our original estimation problem. 

A third way to obtain the recursive scheme ( 4.8) is to make use of an 
asymptotic expression of the logarithm of the likelihood functional. See sec­
tion 3.2 for the relevant results and conditions. To illustrate what our aim is, 
consider the case where the process q, is deterministic. Define 

Q, = d "'S:; ds r 1 
o 'i>s 80 
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Then we have in a notation similar to that of section 3.2: 
_J_ t 

T- 2 f <f>s 1 T logZ1{u) = u Q -T-dm9 -2u u+p1 
o '1>s 60 

where p is a stochastic process that converges to zero in probability for t-H10 

and 

Q* j ~s dm9 

o '1>s 60 

converges in law to a gaussian (0,/) random variable. If we set p1 =0, then the 
value of u that maximizes logZ1(u) is 

I t 
A -2/ '1>s u1 = Q1 -T -dm9 

o </>s 60 

Hence an approximate maximum likelihood estimator of 60 is 

Or 

...... - JI '1>s 
61 = 60 + Q, -T -dN9 

O '1>s 60 

...... _JI '/ls 
61 = Q, .i.T(J, dNs 

O 'I's 0 
I 

-2-
0bserve th~t Q1 (D1 -D0) converges in law to a gaussian (O,J) random variable. 
Of course D1 is useless as an estimator of 60, since it depends on D0• We just 
use it at an intertl!_ediate ~ep in obtaining our algorithm ( 4.8). A simple calcu­
lation shows that D, and Q, satisfy 

...... Q,q,, ...... 
d81 = -T -(dN1 -q,'{D,dt) 

4>1 Oo 

dQ = - Q,q,,q,'{Q, dt 
' q,'{Do 

(4.14a) 

(4.14b) 

A ...... 

As before since O_!.le is looking for f,'s that are close to 80 (and thus 61) we 
replace D0 and 01 in (4.14) by D1, thus arriving again at (4.8). Other 
justifications of (4.14) can be given by using one step improvement techniques 
or suitable weighted least squares and some additional approximations. 

Having finished the explanation of the preliminary version of our algorithm, 
we will now present it in its final form. The change that has been made 
prevents estimators to escape to infinity. The reasons for the change will be 
apparent from the proof of theorem 4.2.1.1. We give a little discussion that 
tells us that this change does not affect the eventual performance of the algo­
rithm. Sugpose that 81 given by (4.8), converges almost surely to 00 • Then 
eventually O, will be in any neighbourhood of 00 • Hence if t:ER~ is such that 



Recursive estimation 71 

all its cqmponents are smaller than the corresponding components of 60 we 
have q,T6,>4>TE eventually. This is exactly the property that we need in the 
analysis. However ( 4.8) do not guarantee us, that this inequality holds. Obvi­
ously the modification below has the desired property. Define the indicator 
process I, as follows 

I, = J{~x.>+~E} 
where EeR'i is such that 0<E;<6o;,i = 1, .. .,d. We are now in the position to 
state our 

APPROXIMATE MAXIMUM LIKEUHOOD (AML) ALGORITHM 

Q,4>, T 
dx, = ,. (dN, -q,, x,dt), x0 

4>T6, _ 

dQ, = - Q,q,,:! Q, dt, Q0 
q,, fl, 

A 

6, = x,I, + E(l -J,) 
A 

(4.15a) 

(4.15b) 

(4.15c) 

Here x0 is taken such that 60 =x0 , and Q0 is a symmetric positive definite 
matrix 

Apparently one should !>e able to establish lower bounds for the components 
60 in order to compute 6, according to (4.15). In practical situations there are 
often physical considerations that enable us to do so. As for the least squares 
algorithm we can also prove invariance of (4.15) under non singular linear 
transformations. Contrary to (4.5) we even have invariance of (4.15) under 
time transformations. Let T= f(t) be a (possibly random) time transformation 
with inverse t =g(T). Assume that g has a derivative g' almost everywhere and 
g';;;a.O. Write y, =yg(,.) for the time transformed process y. Then we have 

- -T 
dN, = 4>t flog'(T)d'T + tJm, (4.16) 

The alg()rithm corresponding to (4.16) 

di,= 

dQ,. = 

Q,.cf>.r- - -T_ I 

- - (dN,.-q,,.x,.g(T)d'T) 
cf>.r_fl,._ 
---T-
Q,.cf>..4>,. Q.. '( )d 

T-:: g 'T 'T 
4> .. fl,. 

8,. = i,.J,. + f(l-J,.) 

which is indeed the same as the time transformed version of ( 4.15). 
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4.2.1 Convergence of the AML algorithm 
The procedure that we follow is similar to. the one of section 4.1.1. Again 
lemma 4.1.1.l plays a key role. 

THEOREM 4.2.1.1: Let 80 eR~ and let e: eR~ be such that 80 -e:eR~. Let 
t 

IP,= l <f>sds and assume 
0 

i) «Pf80~oo a.s. (t~oo) 

ii) liminf+ J q,1'[ ds = C>O. 
t-+OO jp 80 0 <f>s 80 

Then A 

i) a.s. lim 8, = 80 
t-+OO A 

.. ) lim-1_1' (q,'[(8s-8o))2 ds=O 
U a.s. T T 

t-+OO 80 jpl 0 <f>s 80 

Before proving the theorem we notice that conditions 4.2.1.1 i, ii are equivalent 
with (1=(1, ... ,ll) 
i') «Pf 1~ooa.s. · 

ii') liminf-1-j<t>s<t>I ds>O 
«Pf 1 0 q,'[1 

The equival~ce of i) and i') can easily be s~n by noting that 
IJ«Pf 1.;;;;8'{; IP, .s;;;IJ«Pf 1, where 8=min{80;, i = l, ... ,d}, 8=max{80;, i = 1, ... , }. 
The equivalence of ii) and ii') follOws similary. 

PROOF OF THEOREM 4.2. 1.1: i) Let x1 = x1 -80, Then 

- Q,q,, r-
dX1 = -A-(dm1 -<1>1 x,dt), 

q,f 8, -

Applying the stochastic calculus rule to :x; QI 1 x1 we obtain 
2 T- -T 2 T 

d(-TQ-1 - ) - <f>t X1 - d - (x, c/>1) d + c/>1 Q1<f>1 d'N x1 1 x1 - A m1 A t A 1 

ct>T 8, - ct>T 8, < ct>T e, - )2 
(4.17) 

- T 2 T 
-d - (x, q,,) d + f/>i Qt<f>t ,i,.T(J d - m 11 A t A .,,, 0 t 

< q,f 8, )2 ( q,f e, )2 

where we have summarized the martingale term of (4.17) as dm 11 . Define 

- (Q-1)+ 11 q,'[q,s ds r1 -tr 0 -T-
o <f>s £ 

Then 

(Q-1 )+ 1' q,'[ c/>s ds (Q-1) r,;;;,.tr o -A- =tr 1 • 

0 q,'[ (JS 
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Define the Lyapunov function 
t T- '\2 

- -1[-TQ-1- + J(4>sXsJ ds] u,-r, x, , x, TA , 
0 4>s (JS 

then 

du - - -1ct>f4>r d + -1dm + -1 ct>f Q,ct>, ,,.Ta dt (4.18) , - r, T u, t r, It r, TA '\2 .,., 110 
4>t ( ( 4>t (Jt) 

We are able to apply lemma 4.1.1.1 as soon we have verified assumption ii) 
which leads us to the calculation of 

0-Joo -1 ct>f Q,4>, ,,.Tad - Joo -l(Q-1) Qt4>t4>f Q, 4>t8o dt .... r, A '\2 .,., 110 t .... tr r, , A TA 
0 ( 4>t 8tJ 0 4>t 8, 4>t 8, 

oo Q .1. .1.TQ .1.T(J oo 'j,,.Tl 
:Ettr J ,.,,,;! ' .:!!...i!-dt:Ettr J (-dQ,)-Tdt 

o et>, 8, ct>T 8, o ~et>, 1 

i 00 i 
=-tr JC-dQ,}:EO-tr(Qo)<oo. 
~ 0 ~ 

Having verified assumption (ii) we conclude. that as-lim u, exists and is finite 
a.s. We also get from the same lemma and eq (4.18) 

lim Joo -1 ct>T 4>t d 
a.s. r, -T-u, t<oo. 

t-+00 0 4>t ( 
(4.19) 

Now 

t .1.T .1. t 

r, ;;a..!. J ~ds + tr(Qi) 1 );;a.-1-J ct>I' lds + tr(Qi) 1 ). 
"( 0 4>. 1 a; 0 

where we used in the last inequality that ct>T 4>t ;;a. ~ ( ct>T 1 )2. Hence from 

assumption 4.3.1.1 (i) r,-+oo a.s. Suppose now that on a set 0 1 co of positive 
probability we have lim u,;;a.8 for some 8>0. Then there is T such that t;;;i..,. 

implies u, ~8. But then 

oo c#>T 4>, I oo J r; 1 Tu,dt~8 J dlogr,=oo 
t' 4>t ( t' 

which contradicts (4.19). Hence as-lim, .... 00 u,=O. 
positive processes we have in particular 

Q-1 

lim -T t - O as- x, --x, = . 
t-+OO 1t 

- A 

Since u is the sum of two 

(4.20) 

Define now 9,=sup{8i."se[O,t], i =1, ... ,d} and write ~(A)=min o(A) for 
the minimal eigenvalue of a matrix A. Then 
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Q-1-Q-1 =lt 'f>s'f>'f' ds~J...1' 'f>s'f>'f' ds t 0 A :;--_ T • 
0 q,'[ (JS (}t 0 'i>s 1 

Hence 

0~ X~Xt Aunn [ T 1 1 J 'f>s:'f' ds] ~ 
fJ, <P, 1 + tr(Q0 ) 0 'i>s 1 

"''~x.~ [ •f1+~Qo1 J [Q;'-Qo'J] 

I -T(Q-1 Q-1 - 1 -1-T -1 -1)-~ T _ 1 x, , - o )x,~-r, x, (Q, -Q0 x, 
<P, 1 +tr(Qo ) ~ 

which tends to zero by (4.20). Consequently form assumption 4.2.1.l (ii) 
-T-
Xt Xt 
-_---+0 a.s. 

fJ, 
(4.21) 

- A 

Now it is easy toAprove that fJ is bounded. For suppose not, then there is Ou 
such that limsup 8u = oo. But then also limsup_ iu = oo and we get immediately 
from (4.21) that this cannot happen. Hence e,~K for some K>O. But then 
from 

-T-
-T- X 1 X1 
x,x,~K-=-· 

fJ, 

we see that i,--+0 and so eventually 
T T-T T T q,, x, = q,, x, +q,, 00 >q,, E. 

Then 11--+ I and consequently 
A 

8, = (i, + 8o)I, +t(l - 11)--+0o 

ii) 01;=i1I1+(1-I,)(t-80). Let T be such that 1;;:.-r implies J,=l. Then for 
1;;,,-r o, ===i,. Hence 

J (q,'f'o:i ds = j <<1i'f'o:)2 ds + J <'f>I'x:i ds 
0 <PI' {JS 0 <PI' (JS 'T q,'{ {JS 

From the fact that u1--+0 we have 

l " ("'TO )2 - l "I's : ds--+0. 
r, o q,f Os 

A 

But then it is easy to deduce from the fact that fJs--+00 a.s. that we also have 

_!_ l (q,~o:)2 ds--+ a.s. 
r, " 'i>s 80 
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and 

1 1 (q,J'Bsf -T-J T ds....+O a.s. 
60 «l>s o '/Js 60 

75 

Q.E.D. 

Before giving a few examples to which the theorem can be applied let us 
remark that a necessary condition for assumption 4.2.1.1 is 

t liminf+ jq,isds>O. t--+oo cl> 1 0 

Clearly this condition is not sufficient. q,, = 1 is a counterexample. 

REMARK: It is possible to relax condition 4.2. l.l (ii) in such a way that we still 
have the conclusion of theorem 4.2.2.1. However we have a small price to pay 
for this, which is a slight modification of the algorithm (4.15). See section 4.3. 

We give some examples for which the assumption in theorem 4.2.1. l hold. 

ExAMPLE 1: Let q,:[O, oo)-+R;., q,, =[1, 1 +sint]T. The following result will be 
used. For a >b;;ai:O. 

2w l 2'1T f dx = --;:::==-
0 a +bsinx v a2 -b2 

hence 

Then 

lim-1- ~ds = lim l 
t ,,_ ,,_T I [1 

1-+oo«I>it[ q,J'l t-+oo2t-cost+l! l+sinx 
1 +sinx l dx 
1 + 2sinx + sin2 x 2 + sinx 

rV3 1-_!_1 
= 4 1 1 

3 
, which is positive definite. 

--V3 -V3 3 3 

ExAMPLE 2: Let q,:[0,oo)XO....+R;_, q,,=[l,l+(-l)N'_f,0=[81 02f Introduce 

Then 

_1_ 1 '/Js'IJJ' ds _ 1 1 [1 l+(-l)N'] ds 
«I>it[ q,J'l - t(2+X,)! l+(-l)N, 2+2(-l)N' 2+(-l)N' 
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1 t [2-(-l)N, l+(-l)N' ] 

= 3t(2+X,)! 1+(-l)N' 2+2(-l)N, ds 

= l p-x, l+X, l 
3(2+X,) ll+X, 2+2x,. 

In section 4.1.1. we have found that 

B2 
as-lim.X, = ---

t-+oo B1 + B2 

So 

lim.--f:!!:!!_ds - >0 1 t ""' ,,..T l ~1 + 3B2 B1 l 
t-+OO ~rt 0 t/JI't - 3(261 +B2) B1 261 • 
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ExAMPLE 3: Let X be a Markov process that takes its values in {O, 1 }. Assume 
that the holding times in 0 and l are exponentially distributed with means P<l 
and µ1 respectively. Assume that N, has the intensit~ B1 x, _ + B0(1 - X, - ), 
which corresponds to 4'.r = [X,-, I - x, _ ]T and B= [B1 B0] • Then 

1im --f:!!:!!_ds = 1im -/ ds = . 1 t ""' ,,..T 1 t [X" 0 l 1 [P1 0 l 
Pt-+oo ~rt 0 q,'{t t-+oo 1 0 o I - x:r µ1 + P<i o P<i 

4.2.2 Asymptotic distribution of the AML algorithfr! 
The purpose of this section is to show that the B,'s generated by (4.15) have a 
limit distribution which is approximately normal. After some definitions we 
state a useful lemma. Define the following matrix valued stochastic processes 

Q--l = Q-1 + 1' q,'{Bo ds 
t 0 ,,..Ta 

0 '1'8 110 

ft t/J,t#J'{ T 
V, = r" '\2 4'.r B0ds 

0 (4'.r B.r) 
,.. 

LEMMA 4.2.2.l: Let B,,Q, as defined by (4.15) and let the assumptions of theorem 
4.2.1.1 be in force. Then 

i) as-lim.Q~Ql 1 Q~=I (4.22) 

ii) 

t-+OO 
. -ff -ff 

as-lim.Q, V,Q, =I. 
t-+00 

PROOF: ,.. 

(4.23) 

i) Let 8>0 and fix c.>, taken from the set with pr,.obability one where B,(c.>)-+B0 • 

Then there is T=T(c.>) such that Vf;;;.T we have IB11 -6o;l-s;;;;8 for all components 
i. Consequently (l-8)4'rB0 -s;;;;q,rB,-s;;;;(l +8)4'rBo for t";il:T. In the ordering of 
positive definite matrices we then have 
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_l_J1 cf>scf>'[ ~Q-l -Q-l ~-I-1' cf>scf>'[ ds 
1+8 ,,.Ta I ,. 1-8 ,,.Ta 

,. Ys 0 ,. Ys 0 

or 

I --1 --1 _1 _1 I --1 --1 
I+8(Q, -Q,. )~Q, -Q,. ~ l-8(Q, -Q,. ) 

which yields 

1 -*--1-* -* -1 -1 -* 1 -*--1-* 1 +8 (I-Q, Q,. Q, )~Q, (Q, -Q,. )Q, ~ 1-8 (I-Q, Q,. Q, ). 

Now take limits for t--Ht:> and use that Q,~o to get 

l I 1:_:_.,-Q*Q-1-Q* 1:- -Q*Q-1-Q* 1 I -1 t! ~Wl.lllll t t t ~lllllSUp t t t ~-1 ~ 
+o 1-+oo t-+oo -u 

Since (4.24) holds for all 8>0 the proof of (4.22) is complete. D 
ii) The proof of ( 4.23) is analogous. 

The following vector valued martingale is important. Define 

I cf>s 
M1 =1 A dms 

o 4>I°8s-
Notice that we have <M > 1 = V,. 

(4.24) 

THEOREM 4.2.2.2: Assume that there exists a function µ:[O, oo )~[O, oo) such that 

P- funµ(t)- 18ij<P, = 1 (4.25) 
t-+OO 

Then 

Q~ M1 ~ N(O,I). 

PRooF: Let C be as in assumption 4.2.l.2 (ii) 

C _ 1:_ 1 1' cf>scf>'[ ds _ t:- 1 Q--1 - as- !llll -- -- - as- !llll -- 1 
t-+oo eij <P, 0 cf>ilo t-+oo eij <P, 

Then we also have 

P-fun-1--jcf>s:'[ ds =C. 
t-+OO µ(t) 0 cf>s 80 

(4.26) 

Define 

then 
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(ATAµ{t))-1 <M >, = 

= (ATA)- 1 ATc-*"Q;* l'(t)-*Q~V,Q~ l'(t)-*"Q;* c-*A ~ 1 

by ( 4.25), ( 4.26). Hence assumption 3.1.6.3i is satisfied. As in the proof of 
lemma 4.2.2.1, let '1'("') be such that t;;;;i.'1'("') implies 

T" T T lc/>1 fJ, -et>, 6olEO;cf>, 608. 

Consider 

T lft (ATc-*ct>,,>2 '>tc• T 
CA Ap{t))- T(J" '2 Ic1~l>8<ATA,&(t)f8}cf>s 6ocb 

0 (cf>, s) +,B, 
(4.27) 

Let us split the integral in two pieces, one with integration bounds 0 and t /\ T 

and the second with bounds t/\T and t. Then clearly (ATAµ{t))- 1 times the 
former integral tends to zero almost surely. Hence we continue our investiga­
tion of the second integral which is after multiplication by (ATAµ{t))- 1 less 
than 

Now let t be such that 

ATc- 1A . . 
µ(t);;;;it. 2 '2 T' n2 • where (J = mm{60;,z = l, ... ,d} 

8 (1-8, A~ -

Then 

ATc-1MT"" ATc-iMT"" 
82ATAµ.(_t);;;;it. 'I's 'I's ;;i. 'I's 'I's 

fJ2(1-8)2(q,J't)2 (1-8)2(q,J'6of 

Consequently for large t the indicator appearing in the integral in ( 4.28) will 
be zero. As a result ( 4.27) converges to zero almost surely and a fortiori in 
probability, which gives us condition 3.1.6.3ii. Conclusion 

(ATAµ{t))-* M~ ~ N(O,I). 

As in the prQOf of theorem 4.1.2.1 the Cramer - Wold device gives us 

. (µ(t)C)-*M, ~N(O,I), 
if and only if 

(ATAµ.(_t))-*M~ ~ N(O,l), 

which has just been proved. 

Finally 
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Q~ M, = µ.(t)""'C""'µ.(t)-¥ic-""' M,. 

We know from (4.26) that µ.(t)""''Q""'c""'~J in probability, which completes the 
proof. 

CORO~Y 4.2.2.3: Under the assumptions of theorem 4.2.2.2 
i) Qt::~,~N(O,J) 
ii) Q, 8,~N(O,I). 

PROOF: i) By writing out the stochastic differential equation for Qi"" 1 x, one can 
show that the following relation holds 

i, = Q,d ~ dms + Qi 1 (xo -Do)] 
o r1>I8s-

And consequently 

Qi""""'O,=I,Q;-""' M, + I,Q;-""'Q0(x0 -80)+Q;-""'(l-I,)(£-00) (4.29) 

Since 1,~1 a.s. and QP~o a.s. as t~oo we see from (4.29) that the asymptotic 
distribution of Q;-""'8, will be sam~ as that of QP M,. From lemma 4.2.2.1 we 
know that we can replace Q, by Q, and the conclusion follows from theorem 
4.2.2.2. 
ii) This is an immediate consequence of i) 

The examples below are examples 1-3 of section 4.2.1 continued. 

E.xAMPLE 1: r/>(t)=[l, I +sint]r. Take µ.(t)=t. Then one finally gets after some 
tedious calculations: Approximately 

- 81 +82 + v' 8? + 28182 
o,~N(O, V) 

t 

with 

1 81 ¥ 8? (---) 8?+28182 +-
82 8~ o~ 

- ; 2 <v'o?+28182 -01) 
V= 

1 

E.xAMPLE 2: f/>1 =[1, I+(- l)N'_ ). One gets 

. I --1 I [(81 +8i)2 +O~ 
as-lim-Q, = 2 

t-+oo t 81 (81 +282X81 +82) 81 
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ExAMPLE 3: <Pt =[X1-, 1-Xi-1· Here 

lim 1 Q--1 as- - t 
t-+OO t 

Chapter4 

We see that in this case the asymptotic variance of 81 is the same as in exam­
ple 3 of section 4.1.2. 

A -

R.EMAu:.: The basic assumption in getting a limit distribution for 8, or 81 

which is Gaussian is 4.1.2.l(i) or (4.25) depending on the algorithm. This 
assumption more or less tells us that the quadratic variation process of the 
martingale M becomes deterministic as t grows. If this ass~ption is dropped 
one can still derive results for the asymptotic distribution of 61• The idea then 
is to perform some random time transformation T= /(t) after which the 
transformed version of <M> becomes deterministic. For the transformed 
algorithm (which looks the same in the AML case (4.16)) we can then infer 
asymptotic normality as 7' tends to infinity [36]. In the AML case a useful 
transformation is T='bf 80 • This idea has also been carried out in [36] for the 
off-line maximum likelihood estimation problem. Another way of getting 
other limit distributions is to look at process cp such that Local Mixed Asymp­
totic Normality holds for the associated family of probability distributions. 
See [1] for a deqmtion. In this situation one may anticipate asymptotic distri­
butions for the IJ/s which are convolutions of a normal distribution and some 
other distribution. Information about the asymptotic behaviour of the recur­
sive estimators can also be obtained by comparing their properties with general 
results in [16]. These approaches will not be discussed here. 

4.2.3 Asymptotic efficiency of the AML algorithm 
from the given examples it becomes clear that the asymptotic distributions of 
e,, generated by (4.5), or (4.15) will differ in general. Thus they cannot both 
give us efficient estimators. In general we have the following Cramer-Rao ine­
quality. An unbiased estimator of fJ based on the observations in [O,t] has a 
covariance matrix which is at least 

(4.30) 

where the likelihood ratio L,(8) is as before. Calculation of (4.30) gives us 

C,(6) = [E• l ~;;.Ur 
A 

This means that fJ, is an asymptotically efficient estimator if we have 
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A e 
C,(fJo)Vi(fJ, -fJo)-+N(O,J) (4.31) 

Oearly by comparing corollary 4.1.2.2 and ( 4.31) we see that the LS estimator 
of fJ will not be asymptotically efficient in general except for some specific 
choices of .p. Recall that this was one of the considerations for seeking 
another algorithm than ( 4.5). On the other hand the AML estimator given by 
(4.15) is a good candidate for being an asymptotically efficient estimator by 
coro~ 4.2.2.3 (ii). We will indeed have this property as soon as 
C1(fJ0 )Q1 

1-+/ in probability. However assumption (4.25) in theorem 4.2.2.2 
does not seem to be sufficient for guaranteeing this. But if we impose as an 
additional requirement that µ(t)- 1C,(fJ0)- 1-+C then indeed from (4.26). 

--1 -1--l p -1 
C,(fJ0)Q, = C,(fJ0)µ(t)µ(t) Q, -+C C = I. 

In fact under the assumption (4.25) requiring µ(t)- 1,f~fJ0) to converge to C is 
nothing else but demanding the collection { C,(fJ0)Q, 1 },..,0 to be uniformly 
integrable. 
Let us summarize the discussion of the proceeding paragraph in 

PROPOSITION 4.2.3.1: Assume that there exists a function µ:[O, oo )-+[0, oo) such 
that 

P-lim µ(t)- 1'PffJo = 1 
, ... co 

lim µ(t)- 1C,(fJo)- 1 = C 
, ... co 

A 

where C is as in assumption 4.2.1.2 (ii). Then the A.ML estimator 61 generated 
by (4.15) is asymptotically efficient. 

One easily checks that one can take in the proceeding examples µ(t)=t. 

4.3 RECURSIVE MAXIMUM LIKELIHOOD ESTIMATION II 
In this section we present a slight modification of the AM~ algorithm (4.15) 
that enables us to prove almost sure convergence of the { fJ,} under weaker 
conditions. These conditions are close to those in [15,25). However we do not 
require all of the conditions of [15) to hold. As such this can be considered an 
improvement. On the other hand we clearly deal with a more specific model 
than the general semimartingale regression presented in [15). Recall that our 
model is given by ( 4.1 ). Throughout this section the following assumption 
holds. 

AssUMPTION 4.3.1: 60 lies in a compact subset of R'i. Hence there exists t:>O 
such that t:<fJo;<.!., Vi= 1, ... ,d. 

t: 
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AML H ALGORITHM: 

l 11 = 1{4'~X,;;.•4'~1} 

121 = 1{.,,~x, .... -·.,,,1} 

Chapter 4 

(4.32a) 

(4.32b) 

(4.32c) 

(4.32d) 

(4.32e) 

CpMMENT: Introducing the £ above is done to establish a.s. convergence of 
{IJ,} to 00 • If we compare (4.32) to the AML algorithm (5.15) we see that we 
use the e~tra indicator pr~ss I 2. Oearly we require knowledge of t: to com­
pute the e,. The proof of o,~oo a.s. that we will give parallels to a certain 
extent the procedure in (15]. First we state an auxiliary result. 

--1 JI cf>scf>'f --1 
Define Q1 = -T -ds. Denote by 'A1 the minimal eigenvalue of Q1 and by 
_ o cf>s Oo -
A.1 its maximal eigenvalue. 

LEMMA 4.3.2.: There exist constants c andc such that 
i) c+~J;:,os;;i\nax(Q;-1).;,;;t:-2J;:,+-c 
ii) c+~A.1 os;;Auim(Qi"" 1 );;;.t:- 2 'A1 +c - - - -

PROOF: Define c= inf xTQc) 1x and c= supxTQc) 1x. 
- lxl=I lxl=I 

Since EcpT1.;,;;q,Te1 .;,;;£-1cpT1 we have for all xeRd: 

xTQ01x + ~xr'Q;1x~xTQ;-1xo;;;;xTQo'x + e-2xr'Q;1x. (4.33) 

By taking infima in (4.33) in the right order we get (i). The second assertion 
follows by taking suprema. 

THEOREM 4.3.3: Consider the AML II algorithm (4.32). Assume that 'A,~oo a.s. 

and that there exists a function f :(0, oo )~[O, oo) such that limx-->co 7..S20._ = oo 
x 

and such that 

A 

/(log'A,) 
sup 
1;;.tJ 

Then fJ,~IJo a.s. 

<oo a.s. 
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REMARKs 
1. Observe that ~~oo a.s. implies that N,~oo a.s. because 

t 

J T T--l T 
4>.r Bods = Bo Q, Bo --~Bo Bo. 

0 
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2. A possible choice of f that can be found in the literature (15,25] is 
f(x)=x 1+"', with a>O. 

The crucial step in the proof of theorem 4.3.3 is lemma 4.3.4 below. We will 
postpone the proof of this lemma and show first, after stating the lemma, how 
we use it in the proof of theorem 4.3.3. 

LEMMA 4.3.4: Consider (4.32). Let X,=X;-B0 and P,=i; Q;- 1X1• Then 
P1=0(1ogA1) a.s. (t~oo). 

PROOF OF THEOREM 4.3.3.: 

i; X1 = i; Q;-~Q,Q;-~ X,.._">.max(Q1)P1 = 

= P, = /(logX,) b . log J\1 ._!l_ 
Auim(Q;- 1) J\., Auim(Q;- 1) /(log J\1) log A, 

(4.34) 

Consider the right hand side of (4.34). Its last factor is bounded in view of 
lemma 4.3.4. The first factor is bounded because of the assumption in the 
theorem. The second factor is bounded because of lemma 4.3.2 and the third 
factor tends to zero because of the ¥Sumption on f. We conclude that x,~o 
a.s. But now it is easy to show that B,~Bo a.s. 

8, = 8,-Bo = x,11,121 + (l-I1tXd-Bo) + c1-121xe:- 11-Bo). 

Since -t>f B0 >-t>f1e: there is 7J>O such that cpfB0 -.4>f1(e:+71). Because X,~o we 
eventually have l.X;1l<7J,Vi. But then 

4>f.X; = cpfX,+ cpfBo-.-cpf1'1J + cpf1(t:+q) = cpT1t:. 

Ther~fore 11,~1. In a similar way one can prove that 121~1, which implies 
that B,~o a.s. 0 

The proof of lemma 4.3.4 involves a series of other lemmas. 

t 

LEMMA 4.3.5: Let P0 >0, PoeRkXk and let P,=Po+ Je<..s">«.slds for a left 

continuous function ~:[O, oo )~Rk. Then 
t 

(i) Je<..slP; 1e(s)ds = log det(P,)-logdet(P0) 

o, 
(ii) f e<..s)TP; 1€(s)ds = O(log ">.max(P,)). 

0 

0 
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PllooF: Let BeRkxk, WeRk and A =B+ wwr. Assume that A is invertible. 
Then 

(4.35) 

This can be seen as follows. Observe that wwr A - • has k - 1 eigenvalues 
zero and that the other eigenvalue is wr A - 1 W. Hence the characteristic 
polynomial of wwrA-1 isp~)=~k- 1~-wr A- 1 W). Observe now that 

det(l-WWTA- 1)=p(l)=I-WTA-1W, 

whence ( 4.35). 

For AtJ,O we have by definition of P1 

P1 = P1-t.t + fi.t)«t)T At + o(At) 

Notice that P1~P0 >0. Hence P; 1 exists and det(P,)>0. Application of 
(4,35) and the continuity of ti-+det(P1) yield 

!J.tfJ..t)Tp- I fi.t) = 1- det(P,_t.t) + o(At) 
1 det(P1) 

Hence 

det(P1)-det(P1-t.t) I 
((t)Tp;•fJ..t) = At det(P,) + o(l) 

or 

fJ..tlP; 1t = D-log det(P,) 

where D - denotes left derivative. So (i) has been proved. The second asser­
tion of the lemma is a simple consequence of (i). 

LEMMA 4.3.6: Let m be a quasi left-continuous locally square integrable mar­
tingale with <m > =A. Let f :[O, oo )~[O, oo) be a differentiable increasing func­
tion with 

00 dx 
lim/(x)=oo and J 2 <oo . 

.x-+oo 0 (l+/(x)) 

Define g1=1+f(A1). Then both g; 1m1 and g;2[m,m1 converge almost surely 
for t~oo. On {A 00 = oo} both limits equal zero a.s. 

PROOF: This is a simple application of lemma 4.1.1.l. Consider g; 1m1• 

Define X, = g;2m~. Then application of the stochastic calculus rule yields 

dX, = -2g;3f(A1)m~dA1 + g;2(2m,_dm, + d[m,m1) 

= -2g;1f(A,)X,dA1 + g; 2dA1 + g;2(2m,_dm, + d([m,m1-A1)) 
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Notice that f(A,)~O. Application of lemma 4.1.1.1 immediately yields the 
desired result since 

oo Am dx 

[ g;2dA, = [ (I+ f(x))2 <oo. 

On {A 00 = oo} the second part of lemma 4.1. l. l yields that X, ~o because 
00 00 

j g; 1j'(A1)X1dA1 = j X,dlog g,. 
0 0 

The statement about g;2[m,m 1 can be proved similarly. D 

REMARKs 
1. The statements of the lemma can be summarized as 

m1 = o(g1) + e{l) and [m,m], = o(i,') + e{l). 

2. Of course we may replace g, in the lemma by f (A,) since we consider the 
behaviour for t ~ oo 

3. Convenient choices of /in applications are /(x)=x*<1+0 >, with a>O. 

PROOF OF LEMMA 4.3.4: For X we have the following equation 

Hence 

or 

- Q,q,, -
dX, = -A-(dm,-q,fX,dt) 

q,T (J, -

I (X ,i. )2 
P, - po + 1 s :s ds = 

0 q,'{ (JS 

211 ,i.TB d + 1' q,'{ Qs4's ,i.T () ds + 1' q,'{ Qs'i>s d 'I's s - ms TA 2 'I's O TA 2 ms 
0 0 (4's (Js) 0 (4's (Js -) 

Write (4.36) in obvious notation as 

P,-P0 + L, = 2M11 + R, + M2r 

Compute 

(4.36) 

(4.37) 
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Hence i2L,~<M1 >r~t:-2Lr. Hence M1t=o(Lr)+O(l) in view of lemma 
4.3.6 (take f (x)=x), and remarks I and 2 that follow this lemma. Consider 
now Rr and notice that 

;. j4'I~4's ds~Rt~f-2 Jq,IQ:4's ds (4.38) 
o 4'I Bs o t/JI Bs 

The integrals in the extreme sides of (4.38) are of the form encountered in 

lemma 4.3.5. (Take €(s) = 4': • Q;- 1 = Pr). 
· (q,I6s)17 

Therefore Rr=O(log Auiax(Q;- 1)). The last term to analyze in (4.37) is Mu. 

M > _ ft (q,I Qs4's>2 ,i,.Tn ds _ ft_ 4'I dQs4's q,IOo ds < 2 t- A "l'"O - A A 

o (q,IBs>4 s o (q,Ies>2 q,Ies 

ft q,I tPs q,IOo -4 ft 
~ A ·-A-d tr( - Q3 )-s;;;t: d tr( - Q3 ) 

o (q,Ies>2 4>IBs o 

,.;;;;;t:-4 tr(Qo)<oo. 

M 
From lemma 4.3.6 we conclude that M 2 converges to a finite limit and 

< 2> 
since <M2 >r~t:-4tr(Q0), M 2 is a.s. bounded. Collecting the above results 
we get from ( 4.37) 

Pr-Po + L, = o(Lr) + 0(1) + O(log Auiax(Q;- 1)) + 0(1) 

or 

Pr-Po+ Lr(l+o(l)) = 0(1) + O(log Auiax(Q;- 1)) 

From lemma 4.3.2 we obtain after dividing by logAr 

p L 
-2=-- + (1 +o(l))-2=-- = 0(1) 
log Ar log Ar 

Since bot_!! Pr and (1 +o(l))Lr are (eventually) nonnegative we get 
Pr= O(logAr), as was to be proven. D 

We close this section by proving that the limit distribution of the AML II esti­
mators defined by ( 4.32) is asymptotically normal. Since this proof is essen­
tially the same as the end of 4.2.2.3 and related results we will only give the 
principal steps. 

THEOREM 4.3.7: Assume that {Or} given by (4.32) is a.s. convergent. Assume that 
there exist P:[O,oo)-+Rdxd and h:[O,l]X[O,oo)-+R+ such that 
(i) his an increasing/unction of each of its arguments, h(t,T)~h(l,1)=T, 

Vt,Te[O,l]X[O,oo) and limh(t,T) = oo, Vte(O,li 
T->oo 
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(ii) R(t) = lim P(T)-* P(h(t, T))P(T)-* exists and R(t)>O fort E(O, 1) 
T-"><XJ 

(iii) P(t)+*Q,P_(t)+*~J in probability for t~oo. 
Then Q;*e,~ N(0,1). 

PRooF: We use the same techniques~ in section 4.2.2. It is easy to~~ that 
the asymptotic distribution of Q;*e, is the same as that of z, = Q, * M,, 

- Jt .Ps where M, = -T -dm3 • Define 
0 .Ps Oo 

h(t,T) ,,,. 
zr = ATP(T)-* f ,,,.;: dms for AERd, tE[O,l], TE[O,oo). 

O "I's 110 

Then 

<ZT>, = ll.TP(T)*Q~:.T)P(T)*A. 
Hence <ZT>,~ll.TR(t)l\ in probability as T~oo, because of the assumptions 

82 
in the theorem. Now choose T0 such that l\TP(T)*ll..;;;.7 for T>T0 . The~ 

ATP(T)*.p3.p'{P(T)*A~ATP(T)ll..p'{.p3 ~ ~ q,'{q,3 .;;;. ~ .p'{q,s.;;;. ~ (q,'{1)2~82 (.P'f'Oof 
Hence for such T 

h(t,T) .p .pT 
ATP(T)* f ~1(1>.7P(T)*<1>.l;;;.8}dsP(T)*l\ = 0, 'o'tE[0,1]. 

o .Ps Oo "'· 8• 

The above ,Ynplies that the assumptions of proposition 3.1.5.4 are satisfied. 
Hence zT-!:7W, where W is a Gaussian martingale with <W>,=R(t). In 
particular Zf =Qi =Q~M,~N(O,I), because R(l)=J. D 
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Counting Process Systems 

In this chapter we treat some problems for counting process systems with a 
finite state space. Two specific classes of counting process systems will be 
treated viz. conditionally Poisson systems and self-exciting systems, which are 
the topics of sections 5.2 and 5.3. The main problem we adress is the charac­
terization of minimality of a system, which means minimality of the state 
space. The reason why this topic is important lies partly in identification 
problems for such systems in the situation where the state process cannot 
directly be observed. It is known for instance in deterministic linear system 
theory that a state· space, which is too large for explaining the behaviour of the 
output process, contains unobservable components. This implies among other 
things that if one wants to perform output-based parameter estimation one will 
not be able to identify the true parameter values that govern the behaviour of 
the state process in an unobservable part of the state space. For counting pro­
cess systems to be treated in the next section a similar reasoning holds. H for 
instance one wants to identify transition rates of the state process (which turns 
out to be a Markov process) and if two different states yield the same 
behaviour of the observed counting process, then one is clearly not able to dis­
tinguish whether the state process assumes one of these two values, let alone 
that one is able to draw reliable conclusions about rates that govern a transi­
tion from one of these states to the other one. Therefore one can anticipate 
that minimality is also a prerequisite for consistency of estimators generated by 
recursive algorithms as in chapter 4, in the situation where the state process is 
not observed. The lesson of these considerations, as is well known, is that one 
should always work with minimal representation of a stochastic system. 

5.1 COUNTING PllOCESS SYSTEMS 

Counting process systems form a subclass of what is known as stochastic sys­
tems. Roughly speaking a stochastic system without input consists of two sto­
chastic processes X and Y where X is called the state process and Y the output 
process. As in deterministic system theory the state process at time t should 
summarize all the relevant information about the past of the system in order to 
describe the future output. Contrary to what can be done in deterministic sys­
tem theory the state process at time t cannot exactly predict the values of Ys 
for s~t. It can only describe the probabilistic behaviour of the output pro­
cess. These notions are made precise in definition 5.1.l that in abstract terms 
describes what a stochastic system without inputs is. This definition is 
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followed by a more detailed treatment of stochastic systems where the output 
process is a counting process. First we have to introduce some notation. Let 
a complete probability space (0, 'ff,P) be given together with a filtration f. Let 
X and Y be f-adapted stochastic processes. Then §f =a{Xs,s~t} and 
<ffT =a{Yns~t} are the a-algebras generated by the past of the procesesses X 
and Y. Similarly §f+ =a{Xs,s;:;;iot} contains the information of the future of X 
after t. We also use the a-algebra that describes the future increments of the 
output process Y, ~Y+ =a{Ys-Y,,s;:;;iot}. 
If ~, ~ and g are sigma algebras contained in 'ff, then we say that ~ and '!Ji 
are conditionally independent given g, if for all integrable ~-measurable func­
tions X 1 the following relation holds 

E[Xd~V§] = E[X1l§J. 

We will use the notation (~.~l~eCJ. 

DEFINITION 5.1.1: [38]: A continuous time stochastic system is a multiple 
(0, '!f,P, T,f,X, Y, ~ 61:1) such that 
(i) (0, '!f,P) is a complete probability space 
(ii) TCR,T an interval. 
(iii) f ={'ff, heT a filtration on (0, 'ff,P) 
(iv) X and Y are f-adapted processes with values in the measurable spaces ~ 

and 61J res~ectively. 
(v) (§f+ V6Jf' + ,'?Y,lo(X,))eCJ for all 1;:;.i.O. 

Formally speaking each of the components of the multiple in definition 5.1.l is 
part of the definition. However if no confusion can arise we will often write 
(X, Y) for a stochastic system. The crucial property in the definition of a sto­
chastic system is (v), which says that given a whole past 6J; it is sufficient to use 
only X1 for the prediction of the future values of X and the future increments 
of Y. Observe that 5.1.l (v) implies that X is a Markov process with resfect to 
the filtration IF. Finally it is noticed that usually 'ff, = §f V 6J; and 
T=(-00,00) or T=[O,oo). 
Oearly the above definition is too abstract for practical purposes. In particu­
lar cases one has to specify the distribution of the state and output process. 
One way to do this is to pose stochastic differential equations that X and Y 
satisfy. In this chapter we will treat stochastic systems where the output pro­
cess is a counting process and X a finite state process. 

DEFINITION 5.1.2: A counting process system is a stochastic system where the 
output Y is a counting process. We write in this case N for the output process 
instead of Y. The shorthand notation is then (X,N) for a counting process 
system with state process X. 

We will treat in more detail the class of conditionally Poisson systems. 

DEFINITION 5.1.3: Let N:OX[O,oo)~N be a counting process, IF-adapted with 
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Doob-Meyer decomposition w.r.t. f: dN1 =A.1dt+dm1• Let ~ =o{A.,,t;;;;i.O}. 
1\1 is called a conditionally Poisson process, or a doubly stochastic Poisson pro­
cess, iff for all t,h ;;;;a.O, u ER 

t+h 
E[exp(iu(N1 +h-N1))1<?fiV~J = exp((e;"-1) J °'A3 ds) 

, I 

So conditioned upon <F,V~ N 1+h-N1 has a Poisson distribution with mean 
Jl+hAsds 

PROPOSITION 5.1.4: _N is _a conditionally_ Poisson process if! mas given in 5.1.3 is 
a martingale w.r.t. f={<?f,},;;.0, where <?f,=<?f,V~. 

PROOF: If N is conditionally Poisson, then 
t+h 

E[m1+h-m1l§;J = E[N1 +h-N1l§;J-E[ f "Asdsl§;J 
I 

I +h t+h 
= J A3 ds- J A8 ds = 0. 

I I 

Conversely assume that m is a martingale w.r.t. f. Apply the stochastic cal­
culus rule to exp(iuN1) to obtain 

t+h 
exp(iuN1 +h) = exp(iuN1) + (e;"-1) J exp(iuN3 _)dN3 

I 

t+h 
= exp(iuN,) + {e;"-1) J exp(iuN3 _)(A.9 ds+dm3 ) 

I 

Take conditional expectation w.r.t. <?ft and get 

t+h 
E[exp(iuN1 +h)l§;J = exp(iuN1) + (e;" -1) J E[exp(iuNs)l§;JA.sds 

I 

Define g(t +h,t)=E[exp(iu(N1+h-N1))1<?fiJ. Then we get 
t+h 

g(t +h,t) = l + (eiu -1) J g(s,t)A.8 ds, 
I 

t+h 
from which we find g(t +h,t)=exp((e;"-1) J A.8 ds). D 

I 
Next we present a method for the construction of a counting process system. 
Let a probability space (~,'?f,P0) be given together with a standard Poisson 
process N and a Markov process X (with state space 'X) defined on it such that 
N and X are independent processes. Notice that such a probability space 
always exi_sts. We assume that X ha§ cadlag paths. Consider the following 
filtrations: o=N, fx, IF= {'?Jf V</Jf},;;.0,f = {'?Jf V<B! ),.,.0 • The following obser­
vation is important. Let m1 =N1 -t. By definition m is an IFN-martingale. 
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However because of the independence assumption m is also an f- and f­
martingale. Similarly X is also Markov with respect to the filtration f. Let 
A:[O,oo)X~(O,oo) be a measurable function such that 
EofbA(s,Xs)ds<oo, 'rft. Write A1 =A(t,JCi_). Then {Xi} is clearly both f and 

t 

f-predictable. Then M defined by M1 = J (lt.s- I)dihs is an F-martingale and 
0 

t I 

A1 =exp(/ logXsdNs - J (As - 1 )ds) 
0 0 

and A is an f- and f-local martingale. We make the followiy.g assumption: 
E 0A1 =1, 'r/t;;;;i.O:. We can now define a new measure Pon (~,'!f00 )=('1,'!f00 )_as 
follows. If A E'It then by definition P(A)=E0[1AA1]. The extension to_ '!f00 

follows by Caratheodory's theorem. Observe that the restrictio~ of P to 'Ii is 
absolutely continuous with respect to the restriction of P to 'Ii with A1 as 
Radon-Nikodym derivative and that A1>0 P0 a.s. Observe also that the res­
trictions of P and P 0 to ~ coincide. 

PRoPosmoN 5.1.5: Under the new measure P 
I 

(i) m1 =N1 - /Asds defines a martingale with respect to IF and F. 
0 

(ii) X is a Markov process with respect to IF. 

PROOF: The first assertion has already been proved in proposition 3.2.5. So 
here we prove only (ii). Let f be a bounded measurable fun£tion on <!X, and 

h>O. Then because A1 is the Radon-Nikodym derivative dPI~ 
dPol'Ii 

Eo[f(X1 +h)A1l'ItJ 
E[f(X,+h)l'Itl = Eo[A,l'It]. = E 0[f(X,+h)l'ItJ = E 0[f(X1 +h)ia(X1)] 

In the second equality we have used the fact A1 is 'It-measurable and in the 
third one that X is f-Markov under P0 • D. 

THEOREM 5.1.6: Under the new measure P the pair (X,N)forms a stochastic sys­
tem. 

PROOF: From part (i) of proposition 5.1.5 and proposition 5.1.4 we obtain that 
N is conditionally Poisson. Notice that we even have 

t+h 

E[exp(iu(N1 +h - N1))1§;J = exp((eiu -1) J A3 ds). 
t 

Hence 
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which shows that 

(~+ ,'F,l~+)ECJ, 'Vt;;a.O. 

The fact that X is f-Markov yields 

(~+ ,<F,lo(X,))ECJ, 'Vt;;a.O. 

Now we can use the following result which is obvious. Let F1'F2 , G be a­
algebras. Then (F1>F21G)ECJ and (FJ.F3IGV F 2)ECI is equivalent with 
(F1>F2 V F3IG)ECI. 
In our case we take G =a(X,), F 2 =~+, F 1 =<F, and F 3 =~+ and we 
obtain (<tf,,~+ V~+ la(X1))ECJ. 0 

Thus we have constructed a stochastic system where (as always) X is a Markov 
process and the output process is a conditional Poisson process. Notice that 
so far we have used an evolution equation for N whereas for X we only have 
the Markov property. The next objective is to describe the evolution of X in 
terms of a stochastic differential equation. Throughout the rest of this chapter 
the following assumption will be in force. 

ASSUMPTION: The state process X takes its values in the finite set 
'X={x1>···•xn}, where the x; are different. Moreover for all i and 
t>O: P(X,=x;)>O. 

Define Y:OX[O,co)~{O,l}n by its components Y;1:=l{x,=x,} Denote by <I>(t,s) 
the matrix of transition probabilities of X. That is for 1;;-a.s, with the notation 

z+ =z-1 l{z*'1} and the understanding ~ =O 

<I>;j(t,s) = P(X1 = x;!Xs = xj) = (Eljs)+ E(ljs Yil). 

Then we have the following well known facts. Semigroup property: 
<ll(t,s)=<I>(t,u)<ll(u,s) for 1;;-a.u;;a.s. Assume that for all 1;;-a.O the following limit 
exists 

A (t): = lim hl [«P(t + h, t) - J] 
hio 

A (t) will be called the generator of X at time t. So A (t) has nonpositive diag­
onal elements, the other entries are nonnegative and the column sums are zero. 

Such a matrix will be called a Markov matrix. Then :t <I>(t,s)=A (t)<ll(t,s) In 

particular :t <I>(t, O)=A (t)<I>(t, 0). From this equation we get 
I 

det<Ii(t, O)=exp(L trA(s)ds). Hence, by definition of A(t), we see that <Ii(t, 0) is 
invertible for all ?;;a.o. 

PROPOSITION 5.1. 7: Define Z :0 X [0, co )~Rn by Z1 = <ll(t, 0)- 1 Y1• Then Z is an 
f -martingale and Y satisfies the stochastic differential equation 
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dY1 =A (t)Y1dt + «P(t, O)dZ1 (5.1) 

PROOF: Using a representation of a conditional expectation when the condi­
tioning Ii-algebra is generated by a finite number of disjoint sets we get 

E[Z1 l~J = «P(t, 0)- 1 E[Y1 1~1=«P(t,0)- 1 E[Y1la(X9 )] = 

= «P(t, 0)-l E[Y1la(Y9 )] = «P(t, 0)- 1 ~E[Jjs]+ E[Yr Yjs]J}s = 
j 

= «P(t, 0)- 1«P(t,s)Ys = «P(s, 0)- 1 Ys = Z9 • 

The second assertion can easily be proved by applying the stochastic 
differentiation rule to the product Yr =«P(t, O)Z1• 0 

I 

Notice that fr «P(s, O)dZs appearing in (5.1) is again a f-martingale since «I>(·,O) 
is trivially pr&ti.ctable. 
Proposition 5.1.7 thus gives us a representation of Markov processes in terms 
of a linear stochastic differential equation driven by a martingale. The next 
result gives a converse statement. 

PROPOSITION 5.1.8: Let X:OX[O,oo)-71X be a stochastic process, IF-adapted, and 
let Y be associated with X as before. Assume that Y satisfies 

dY, = A(t)Y,dt + dmT (5.2) 

Here A :[O,oo)-?Rnxn is a Lebesgue measurable function (deterministic !) and 
my an f-adapted martingale. Then X and Y are f-Markov processes. 

PROOF: We have to prove that E[f(X,)11fs]=E[f(X1)la(X3 )] for all 
J :{x1> ... ,xn}-?R. Since f(X1) = '2.jf(cj)J}1 we only have to prove 
E[Y111fs]=E[Y1la(X9)]. Let: B(t)=«l>(t, 0). Then 

B(t)=A(t)B(t), B(O)=I 

Now we can write the solution Y, of (5.2) as 

I 

Y, = B(t)Y0 + B(t)jB- 1(s)dm]'. 
0 

I 

Notice again that fo B- 1(s)dm[ is an IF-martingale and B(t) deterministic. 
Hence 

E[Y1l1fsJ = B(t)Yo + B(t)fos B- 1 (u)dm~ = 

= B(t)Yo + B(t)[B- 1(s)Ys - Yo]= B(t)B- 1(s)Y9 

Since we have a(Xs)=a(Ys)C1fs we get 

E[Y,la(Xs)J = E[E[Yrl1fsJla(Ys)J = E[B(t)B- 1(s)Ysla(Ys)] 

= B(t)B- 1(s)Ys = E[Y111fs]. 0 
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Concluding we see that the statement X and Y are f-Markov is equivalent 
with saying that the indicator process Y satisfies equation (5.2). 

Next we give a result on Markov solutions of stochastic differential equations 
(see also [33] for related problems). 

PROPOSITION 5.1.9: Let X be the solution of the stochastic differential equation 

dX, = g(t,X,)dt + dmf, X 0 (5.3) 

where mx is an f-martingale and g:[O,oo)X~R. Assume that the jump meas­
ure µ. of X admits a compensator v (with respect to f and P) such that 
v(dt,dy,w)=p(t,X,(w),dy)dt. Then X is an f-Markov process. 

PROOF: We show that for the indicator process Y the representation of propo­
sition 5.1.8 holds. From (5.3) we get from the stochastic calculus rule for all 
k~O: 

dx';= kx';~ 1 dX, + j[(X,_ +y)k-x';_ -kX,C~ 1y]µ.(dt,dy) 
% 

= kX,C- 1(g(t,X,)+ j[(X, +yf-x';-kx';- 1y]p(t,X,,dy))dt 
% 

+ dm~k> (5.4) 

Here dm~k) summarizes all the martingale terms in (5.4). In a more compact 
notation we can write (5.4) as 

dx'; = g<k>(t,X,)dt + dm~k) (5.5) 

where g<k>:[O,oo)X~R. Now we can write X,C as [xf, ... ,x~]Y, and g<k>(t,X,) 
as G<k>(t)Y, where G<k>(t)=[g<k>(t,x 1), ••• ,g<k>(t,xn)]. Introduce the following 
notation. V is the (n Xn) matrix with k-th row equal to [xf- 1, .•• ,x~- 1 ] 
(~= l, ... ,n). G(t) is the (n Xn) matrix with k-th row G<k-l>(t) (k = 1, ... ,n). 
M, is the martingale with components m~k). If we consider (5.5) as a system of 
equations for k =O,. .. ,n -1 we can summarize it (with G(t) and Vas defined 
above) as 

-
VdY, = G(t)Y,dt + dM, (5.6) 

Observe that Vis a V andermonde matrix, that is 11onsingular because all the X; 

are different. Let A (t)= v- 1G(t) and MT= v- 1 M, then (5.6) becomes 

dY, = A(t)Y,dt + dMT (5.7) 

Because Mis an f-martingale and A (t) is nonrandom, we obtain from (5.7) by 
applying proposition 5.1.8 that X is f-Markov, with generator A (t). D 

If we collect the above results we get the following 
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THEOREM 5.1.10: Let the process X and the counting process N satisfy the follow­
ing equation 

dX1 = g(t,X1)dt + dmf, Xo 

dN1 = A.(t,X,)dt + dm1, N 0 =0 

Here A and g are measurable Junctions from [O, oo) X CX. to R and R + respectively 
and mx a'!,d mare F-martingales. Assume moreover that m is a martingale with 
respect to F = {ii," V ~ } and that the jump measure µ. of X admits a compensator 
.,, of the form P(_dt,dy,w)=p(t,X,(w),dy)dt. Then the pair (X,N) is a counting pro­
cess system. 

5.2 MINIMALITY OF CONDITIONALLY POISSON SYSTEMS 

In this section we will confine ourselves to stationary systems. This means that 
the functions A,g and A. in theorem 5.1.10 are not explicitly dependent on t. 
So we use the representations 

dY, = AY,dt + dMT, Y 0 

dN = CY,dt + dm1, N 0 =0 

Here C is a row vector in Rn with elements c; =A.(x;). 

(5.8a) 

(5.8b) 

Equation (5.8) is called the forward representation of the system (X,N). It is 
also possible to give a backward representation. The starting point of this sec­
tion is the system of equation (5.8). The word minimality in the title refers to 
the minimality of size of the state space CX. in a way to be made precise below. 
The external behaviour of the system _(X,N) is the_process N. We call (X,N) 
minimal if we cannot find a system (X,N) wh~e X has a smaller state space 
than X. Observe that the exte!!tal behaviours (X,N) and (X,N) are both given 
by the same P!.~.! N. For (X,N) we use the equation (5.8) with Y,A and C 
replaced with Y, C,A. 

DEFINITION 5.2.l: The forward representa!!_on (5.8) of the system (X,N) is 
called strongly reducible if there exists a set CX. of lower cardinality than CX. and 
a function f =~~such that with X, = f(X,), the pair (X,N) is a stochastic~­
tern with a forward representation of the form (5.8) and such that CY1 = CY1• 

In this case (X,N) is called strongly forwardly reducible. If (X,N) is not 
strongly forwardly reducible, it is called strongly forwardly minimal. 

Some remarks are appropriate. 
1. If (X,N) is strongly reducible then the "new'' state process X is again Mar­
kov. 

2. The adverb strongly in definition 5.2.l can be thought of as opposed to 
weakly. One~~ call a system weakly reducible if there exists a ~~t!!,ig pro­
cess system (X,N) on some possibly different probability space (Sl, ~P) such 
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that the s!!te space of X has strictly smaller cardinality than that of X and 
such that N is equal to N in distribution. One can also define strong reducibil­
ity for the backward representation of (X,N). We will not treat weak prob­
lems and problems for the backward representation. For this reason we will 
speak of mimimality and reducibility throughout this section when we mean 
strong forward minimality and strong forward reducibility. 

The problem that we want to treat is the characterization of minimal count­
ing process systems. In view of remark I above we first focus our attention on 
functions of a Markov process. 

From the equivalence of F-Markov processes and solutions of certain linear 
stochastic differential equations (Propositions 5.1.7 and 5.1.8) it is easy to see 
when functions of a Markov chain again yield a Markov chain. We give a 
result that also holds for non stationary chains. 
To be specific let as before X be a F-Markov chain with state space 'X. Let H 
be another set and f :~H a function. Oearly f (X) is again Markov if f is 
injective. To avoid trivialities let us assume that H={h., ... ,hm}, m<n and 
that f is onto. Write Z1 = /(X,). Associate with Z the indicator process W as 
usual: 

W:SlX[O,oo)~{O,l}m, W;1 = l{Z,=lr,}· 

Define FeRmxn by .F;j=l{ft.x,)=lr,}· Notice that 1~F=1~, where 1m is a 
column vector with as elements + 1. Then W,=FY,. Notice that because /is 
onto, F has rank m, i.e. it has full row rank. Let KeRnX(n-m) be a fixed 
matrix such that it columns span Ker F. Let as before A (t) be the matrix of 
transition intensities of X. We have the following. 

THEOREM 5.2.2: Let X be F-Markov with finite state space 'X. Let /:~H. Then 
f(X) is again F-Markov iff FA (t)K = 0 where the columns of K span Ker F and 
F is related to f as indicated above. If this condition is satisfie4 then the,. matrix 
B(t) of transition intensities of f(X) is given by B(t)=FA (t)F, where Fis any 
right inverse of F. 

PROOF: We have dY,=A(t)Y,dt+dmT. Hence 

dW, = FA(t)Y,dt + FdmT 

Now Z is F-Markov iff dW,=B(t)W,dt+dm"f for some matrix-valued func­
tion B and a F-martingale m w. By the uniqueness of the special semimar­
tingale decompositiop Z is F-Markov if and only if there is a B(-) such that 
FA(t)=B(t)F. Let F be a fixed right inverse of F. It exists, since F has full 
row rank. Then the last equation implies B(t)=FA(t)F. Of C9urse for B to be 
well defined it ~ould not depend on the particular choice of F. A 

Starting from F all other right inverses G of F are given by G = F + KX, where 
XeR<~-m)xm is .. an arbitrary matrix. Hence B(t) is well defined iff 
FA(t)F=FA(t')(.F+KX) or iff FA(t)K=<>. D 
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REMARK: The result as such is not new but can be found in a slightly different 
form in KEMENY and SNELL [10, p.126] where Markov chains in discrete time 
are considered. However the proof given here is shorter. 
We will work with a ~ right inverse of F, the Moore-Penrose inverse 
which is defined as F =FT(FFT)- 1 Because of the prominent role that 
matrices F as defined before play, we will refer to these as reduction matrices. 
Observe that the only invertible transformations of the state space ~ are per­
mutations, which correspond to special reduction matrices F, the permutation 
matrices, that also have the property F1=1. 

PROPOSITION 5.2.3: The pa}! (X,N) is_ reducible iff there exists a r!.._duction 
mat~ F such that with A =FAF+ ,C=CF+ _!he equalities FA =Af an!!._ 
C =CF hold Moreover for the reduced system (X,N) the generator of X is A 
and the intensity of N is given by CY,. In this case one says that F reduces 
(X,N). 

PROOF: Obvious in view of remark 1 after definition 5.2.1. 

REMARK: Ob!_erve that from purely algebraic considerations FA = AF implies 
that indeed A is a generating matrix of some Markov process. Indeed, let 
k = k (j) be the unique integer such that Fki = l. Then 

Ailc = ~FilAlj = ~F;1Alj + F;jAjj· 
I l,,P.j 

~ow if i =k, then Ailc = ~l+iFilAlj+~ii~~l+iAlj+Aii=O. And if i=/=-k.i.. then 
A;k=~1+iF;1Alj;a.o. FU!!hermore 1r A =O. Observe ~o that ~A =AF is 
equivalent with F•(t)=•(t)F, where •(t)=exp(At) and •(t)=exp(At). 

Since the stochastic nature of the pair (X,N) is determined by the pair (A,C) 
in view of eq. (5.8), we will often speak of minimality or reducibility of (A, C) 
instead of (X,N). 

Observe that the reduction procedure is transitive, which means the follow­
ing. Suppose F 1 reduces (X,N) into a new system (X.,N) and suppose that 
F 2 reduees (X1,N). Then F 2F 1 reduces the original system (X,N). Indeed if 
F 1 reduces (X,N) then F 1A =A 1F 1 for A 1 =F1AF( and C=C1F 1 for 
C1 =CF(. If then also F 2 reduces (Xi.N), then we can write F 2A 1 =A 2F 2 
and C1 =C2F2. But then F2F1A =F2A 1F 1 =A 2F 2F 1 and 
C=C1F1 =C2F2F1 which is what we have to prove. Notice however that 
given a reduction matrix F that reduces (X,N) one cannot always decompose F 
as F=F2F., where F 1 reduces (X,N) and F2 reduces (X.,N). A simple 
example is the following. Suppose that X has generator 

A=[-~ -~ ~i 
l 2 -4 
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and N has constant intensity A=A1TY,. Then clearly F =[11 I] reduces (X,N) 
but no reduction matrix FeR2x 3 reduces (X,N) as can easily be checked. 

DEFINITION 5.2.4: Let the row vector CeRn be given. Then Dis defined to be 
the diagonal ~atrix diag(C) which has as the j-th diagonal element cj. For 
u eR,D(u)=(e'" - l)D. 

LEMMA 5.2.5: Let F be a reduction mattj_x, with right i.!!_verse p+ and let K be a 
matrix whose columns span Ker F. Let C =CF+ and D = FDF+. The following 
statement~ are equivalent 
(i) C=CF 
(ii) FDK ==._ 0 
(iii) FD=DF 

PROOF: (i) => (ii): 

(FDK)ij = "2.kF;kckKkj = "2.k,1F;kCtF lkKkj-

Because of the special form of the matrix F, there is only one nonzero element 
in each column. Hence a product F;kF11c equals zero if i=fal. Therefore the last 
summation can be written as 

~F;kc;F;kKkj=C;~fkKkj=C;~F;kKkj=O. 
k k k 

(ii)=>(ili): FDK=O means that FD is contained in the left kernel of K which 
is F. Hence there is a matrix L such _!hat FD = LF. But then by postmultiply-
ing with p+ we oQ_tain L =FDF+ =D. _ _ 
(ili)=>(i): FD==._DF_implies that 1TFD=1TDF or 1TD=1TDF. However 
1TD=C and 1TD=C. 0 

REMARK: Assume that FD =DF for some reduction matrix F. Then D is 
necessaEJy diago~. Indeed we have from this assumption: 
Fijcj=D;kFkj+"2.,.:/=jDilFlj. Assume that i=fak an_j. multiply this ~ation with 
Fkj· Then, since F;jFkj=O for i=fak we have O=Dik.Fkj• and hence D;k"2.jFkj=O. 
Since the summation "2.jFkj~ 1 for all k, we have D;k =O. 

LEMMA 5.2.6: Let F and K be as in lemma 5.2.5 and let e; be the i-th basis vector 
of Rn. Let (X,N) be a stochastic system as in (5.8). Assume that FAK=O. 
Then F reduces (X,N) if C is such that Fek =Fej for some k and j implies ck =cj. 

PROOF: We only have to prove that we can write C=CF, where C=CF+. 
Observe first that 

(FFT)ij = ~F;kFjk = ~Fik~ij• 
k k 

where l>ij is the Kronecker symbol. In particular (FF)f; = "2.kFik Observe furth­
ermore that for all i,j,k ckFikFij = cjF;kFij because of the assumption on C. 
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Now we calculate (CF)i=(CFT(FFr)- 1 F)i= 

= ~ckFjk(FFT);/ 1 Flj = ~ckF;kF;/FFT)/; 1 = 
i,k,I i,k 

cj ~F;/FFT);/ 1 ~ik = ci~Fij=ci. 
i k i 

So CF=C. D 

REMARK: From proposition 5.2.3 it follows that a necessary condition for 
reduction of (X,N) (or (A,C)) is that some of the c; are identical. However 
this condition is not sufficient, since also the transformed process f(X) has to 
be Markov. See the example that follows after proposition 5.2.3. 
However if F reduces a pair (A,C), th~, as follmys fr~om lemma 5.]..6, at the 
same time it reduces any other pair (A, C), where C =CF for some C. Observe 
that here all the c; may be different, which is not necessarily the case for the c;. 
Thi~ mean~ that if F reduces (A, C), it also reduces any other pair 
(A,C)=(A,CF), if there exists a map g such that g(cj)=c;. Or, equivalently, if 
there exists a map g such that g(c;)=c;. Indeed this equivalence holds, because 

g(c;)=g<~iiFJ;)=~jg(cj)Fj; =~i~FJ; =c;. 

To see whether a system (X,N) is reducible one may check whether the criteria 
of proposition 5.2.3 hold for a reduction matrix F. If the state space 'X. is very 
large this is of course quite a task. So we are looking for more easily verifiable 
criteria. It turns out, as can be expected, that a definition of stochastic obser­
vability offers an alternative approach to find a possible reduction. Before 
defining this concept, we have to introduce some notation and we also need 
some properties that are satisfied by the objects that play a role in the follow­
ing definition. 

DEFINITION 5.2.7: Let for each intefer k;;o.I, Uk be the set of bounded left 
continuous functions from R+ to R. Write U=U1 and if ueUk, then u(t) 
will be written as a row vector. Define for u E u, PE um' a reduction matrix 
FeRmxn and T;;o.1;;;.o 

T T 

g'jl(t,T) = E[exp(ij u(s)dNs + ijv(s)FYsds)I~]. (5.9) 

Because (X,N) is a stochastic system, we may replace the conditioning a­
algebra in (5.9) by a(Xi). Hence there exists a deterministic h'fa'(t,T)eC1xn, 
such that g'P"(t,T) = h'fa.,,(t,T)Y,. 

The following proposition gives a representation for h'fap(t,T) as defined above. 
We use the following notation throughout the rest of this section. Let x be a 
row or column vector in Rn. Then diag (x) is the n X n diagonal matrix with i­
th diagonal element equal to x;. Note that g'P.,,(t,T) can be inte~reted as a 
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conditional characteristic function of part of the future behaviour of the sys­
tem, given its entire past. 

PlloPosmoN 5.2.8: Let h';•(t,T) be as in definition 5.2.7. Then it satisfies the 
integral equation: 

T 

h'j•(t,T) = tT + /h'i•(s,T)(i diag(Jl(_s)F) + D(u(s)))W(s -t)ds (5.10) 
t 

In the points where h';"(·,T) is differentiable, we have 

:t h';•(t,T) = - h'j•(t,T)(i diag(Jl(_t)F) + D(u(t)) +A) (5.11) 

PROOF: We suppress in this proof the dependence on u,11 and F. 
T T 

Let g(T)=exp(i J u(s)<JN8 + i J v(s)FY8 ds). Then from the stochastic calculus 
0 0 . 

rule (theorem 2.3.5), we obtain 

T T 
g(T) = I+ jg(s-) (eiu<s>-l)<JN8 + jg(s)iv(s)FY8 ds. (5.12) 

0 0 

Now we take £0nditional expectations in (5.12) w.r.t. i;=~ V ~- Because 
CY is also the F-intensity of N, we get 

T 

E[j(T)li;J = g(t) + E[jg(s)(eiu(s) _ l)CYadsli;J+ 
t 

T 

+ E[jg(s)iv(s)FYadsli;J 
t 

T 

= g(t) + J E[j(s)l~Keiu(s) _ l)CY8 ds + 
t 

T 

+ J E[j(s)li;]iv(s)FY8 ds. (5.13) 
t 

Define g(t,T)=E[i(t)- 1g(T)li;J=g(t)- 1 E[j(T)li;]. Then (5.13) yields 

T 

g(t, T) = 1 + jg(t,sX(eiu(s) - l)CY8 + iv(s)FY8 )ds. 
t 

So, g(t,T)=exp(1T((eiu(s>-t)C+iv(s)F)Y8 ds). From this expression we also 
obtain a "backwatd" integral equation: 

T 

g(t,T) = 1 + jg(s,T)((eiu(s) _ l)C + iv(s)F)Y8 ds. (5.14) 

Define now g(t,T)=E[j(t,T)l~J, and observe that this is indeed the quantity 
in definition 5.2.7. So we can write g(t,T)=h(t,T)Y,. Then from (5.14) 
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T 

g(t,T) = 1 + E[jE[i(s,T)l~J((e"*>- t)C + iv(s)F)Ysdsl~J 
t 
T 

= 1 + E[jg(s,T)((eill<s>- t)C+ iv(s)F)Ysdsl~J 
t 
T 

= 1 + E[jh(s,T)Ya((eiu(s) _ l)C + iv(s)F)Ysdsl~J 
t 
T 

= l + E[jh(s,T)(D(u(s)) + i diag(v(s)F))Ysdsl~J 
t 

T 

Chapters 

= 1 + jh(s,T)(D(u(s)) + i diag(v(s)F))'f>(s -t)dsY, (5.15) 

Or, since 1TY,=1,g(t,T)=h(t,T)Y, and (5.15) has to hold for all possible out-
T 

comes of Y,, we get h(t,T)=1T + 1 h(s,T)(D(u(s)) +i diag(1'(,s)F) 'f>(s -t)ds. 
This proves (5.10). ' 
Furthermore, if differentiation w.r.t. t is allowed, (5.10) yields 

~~ (t,T) = - h(t,T)(D(u(t)) + i diag(1'(,t)F) 

T 

- jh(s,T)(D(u(s)) + i diag(1'(,s)F)'f>(s -t)Ads 
t 

= -h(t,T)(D(u(t)) + i diag(1'(,t)F)) + (1T -h(t,T))A 

= -h(t,T)(D(u(t)) + i diag(1'(,t)F) +A), 

because 1T A =O. Hence (5.11) holds. 0 

In several cases an explicit expression for h'Pv(t,T) is available. We need the 
following notation. Let M 1>··.,Mk be square matrices of the same order. Then 
we denote by Ilf=t*M; the ordered product MkMk-I····M1. 

COROLLARY 5.2.9: Let t =t0 <t1 < .... <tk=T. Let for j = l, ... ,k, u1 ER and 
v1ERm and define u(s)=~j=1u1 1<11_,, 1is), v(s)=~j=1v1 1<11 _,, 111(s). Then with 
this choice of the functions u and 11 we have 

k 

h'P"(t,T) = 1T1~/exp((i diag(111F) + D(u1) + A)(t1-t1_ 1)). (5.16) 

PR.0011: Follows directly from equation (5.11). 

The usefulness of the h)•(t,T) is partly the content of the next lemma. 

LEMMA 5.2.10: Assume that F reduces (X,N~ Let %=Ker F and K be a matrix 
whose columns span% Then h'Pv(t,T)K=<J, and hence there exists a factorization 
h)Y(t,T)=hU,Y (t,T)F. 
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PROOF: Observe first that, always, F diag(v(s)F)=diag(v(s))F. From the fact 
that F reduces {A,C), we have FAK=FDK=O. Hence there exist matrices 
N1'N 1(t) and N 2 such that AK=KNI> 'P(t)K=KN 1(t),DK=KN2. Therefore, 
with suppression of the dependence on u, v and F: 

T 

h(t,T)K = 1TK + jh(s,T)(.i diag(v(s)F) + D(u(s)))'P(s -t)Kds = 
t 

T 

=O+ jh(s,T)K(iN(s)+(eiu(s)_I)N2)N1(s-t)ds. (5.17) 
t 

Since h(t,T)K=:O is a solution of (5.17), and since solutions are unique, the 
proof is finished. D 

Apparently, for stepfunctions u and v as in corollary 5.2.9, only the differences 
ti - ti _ 1 are important. Therefore we introduce functions h'P,'k(t) as follows. 
Let {tj}_r;, 1 cR+ ,{uj}j= 1 CR, {vj}_r;, 1 cRm and define h'f,'k(t) as in (5.16) 
with the differences ti-ti- 1 replaced by ti. Let H be the cone 
{(t,T)eR2 :T;;;;.t;;;;.O}. Clearly for all ueU, PEUm and (t,T)eH,h'jv(t,T) 
induces a linear map from Rn into C. So we can introduce 
hFee(Rn, cuxU"'xH) by hF(u,v,(t,T))=h'jp(t,T)Ee(Rn, C). Denote by :J{f;- the 
kernel of hF. 
In a similar way we can introduce operators hF,k> by considering the functions 
h'P,'k(t), and their kernels :J{f;-,k· Now we can prove the following. 

THEOREM 5.2.11: Let :J{f;- be Ker hF and :J{f;-,k =Ker hF,k· Then 
co 

(i) :J{f;-, 1 :J :J{f;-, 2 :J .... and n :J{f;-,j = :J{f;-
· = 1 

(ii) If for some j :J{f;-,j = ~,j + 1> then :J{f;-,j is D,A and diag(vF) invariant, for all 
v E Rm and :J{f;- = :J{f;-,j 

(iii) :J{f;- CKer F _ 
(iv) If moreover hF factorizes as hF=hF, then :J{f;-=Ker F 

PROOF: Since we work with fixed F, we suppress the dependence on F. For 
notation~ convenience we also suppress dependence on u and P. 

(i) Let ti=tj+J.j;;;;.I. Let v 1 =v, u 1 =u. 

Then hi+ 1(t)=hj(t) exp({i diag(vF)+D(u)+A)t 1). (5.18) 

Now hi+ 1 (t)~+ 1 =0. So in particular for t 1 =O, we get hj(t)~+ 1 -o, 
which shows that ~+ 1 c~. 
Certainly :ice~. for all j, so :ice n ;:1 ~· But since any u E u and PE um 
are pointwise limits of stepfunctions, also the reversed inequality holds. 

(ii) Assume ~ = ~ + 1• Differentiation of (5.18) with respect to t 1 gives 

O=-aa hi+ 1 (t)~ = hi+ 1(t) (i diag(vF) + D(u)+A)~. (5.19) 
11 
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Now take in (5.19) t 1 =O, u=O and v=O. Then 

O=h1(t)A~ 

which yields~ to be A-invariant. With this information we take in (5.19) 
t 1 =O and u=O but we allow.,, to be free. This yields~ is also diag(vF) 
invariant for all "'· Similarly~ is also D(u) invariant for all u, hence D 
invariant. Hence%= n~1~=~. 

(iii) From (ii) we know that % is diag(vF) invariant (for all v). Hence 
Fdiag(vF)%=0 or diag(P)F%=0 =>F%=0. 

(iv) Obvious in view of (iii). 

PRoPosmoN 5.2.12: The following statements are equivalent. 
(i) ~:(t,T) = h"'.(t,T)F 
(ii) h satisfies the integral equation 

T 

h"'" (t,T) = 1T +{ii"'" (s,T)(i diag('P(s)) + D(u(s)))°i(s -t)ds (5.20) 

where FD = DF, F'P(t) = 'P(t)F 

PROOF: (i) ==>(ii): From theorem 5.2.11, we know that Ker F=Ker hp~ a D,~ 
and diag(v(s)F) invari_!D.t subspace_of R". So there exist matrices D and A 
such that FD=DF, FA =AF, and as always we have 
F diag(v (s )F) = diag('P(s ))F. Hence 

T 

h';;" (t, T)F = 1T + J"h"'" (s, T)F(i diag('P(s)F) + D(u(s)))'P(s -t)ds 
t 

T 

= 1T + J"h"'"(s,T) (i diag('P(s)) + D(u(s)))°i(s-t)dsF 
t 

After postmultiplication with p+, the claim follows. 

(ii) ==> (i): Postmultiply (5.20) by F, then we see that "h"'J.t, T)F satisfies the 
same integral equation as h'V(t,T). Because h"'"(T,T)F=1TF= 
1T =h';"(T,T), the claim follows. D 

The following proposition, that summarizes some of the preceding results 
forms the basis of definition 5.2.14 below and makes it understandable if one 
keeps the interpretation of g'P" (t, T) as a conditional characteristic function in 
mind. 

PRoPosmoN 5.2.13: Let X,=f(X1), Y1 =FY1, where the reduction matrix Fis 
associated with f "!.usual. There is equivalence between 
(i) E.Jg'P"(t,T)la(X,)]=g'P"(t,T)for all u,.,, and t:rr;;,.T. _ 
(ii) (X,N) is a stochastic system and g'P"(t,T)=E[g'P"(t,T)l~V~] for all u,.,, 

and 1:rr;;,.T. 
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(iii) There exists a factorization h'Y (t, T)==hu,r (t, T)F. 

PROOF: (i) ==>(iii): There exists a matrix Q, sue! that E[Y,la(X,)]= Q, Y,. 
{!l,, then implies h'P"(t,T)Y1 =h'f"(t,T)Q1Y1 =h'Pv(t,T)Q1FY1• So take 
h (t,T)=h'V(t,T)Q, 
(iii) ==> (i): E[g'P.,(t, T)la{i,)]=E[hu,., (t, T)FY1la(i,)]=E[h"'7 (t, T)Y,la(X,)] 

-u,p -= h (t,T)Y, = h'j"(t,T)Y1. 

- -
(iii)==> (ii): E[g'P"(t,T)l'YfV'!Jf] = E[E[g';"(t,T)l'YfV'!Jf]l'YfV'!Jf] 

= E[h'.f'"(t,T)Y,1#,v<?Jf1 = E[h;:" (t,T)Y,1#,v<?Jf1 = g'Y(t,T). 

This, together with proposition 5.2.12 also shows that (X,N) is a stochastic sys-
tem. _ 
(ii) ==> (iii):_!z'.f'"(t, T)Y, =E[g'P,,(t, T)l~,V<?Jf J=E[g'P"(t, T)ia(X,)] 
=h;:"(t,T)Y1 for som~ determinis_Ec h/(t,T) since the last conditional expecta-
tion is a function of X,. Because Y, =FYr the result now follows. D 

DEFINITION 5.2.14: The n-th order system (X,N) is said to be strongly stochasti­
cally observation equivalent with some m-th order system (m "'§_n) if there exists 
a reduction matrix FERmxn such that a factorization hF=hF holds. If any 
such factorization implies that Fis a permutation matrix, then (X,N) will be 
called strongly stochastically observable. 

Some comments are appropriate. Let (X,N) be described by equation (5.8). If 
(X,N) is strongly stochastically observation equivalent with some m-th order 
system, then from pro~sition~ 5.2.12 and 5.2.13 it follows that this one is 
described via matrices A and C by an equation like (5.8). Therefore w~ ~ 
also say that (A, C) is strongly stochastically observation equivalent with (A, C). 

The interpretation is as follows. If we condition the distribution of the 
future of the bivariate stochastic process if (X),N) on the entire past of (X,N), 
or equivalently just on the current state X,, then this determines f (X1) only, 
instead of X, itself. We also know from proposition 5.2.13 that (j(X),N) is 
again a stochastic system. 

Suppose now that (X,N) is strongly stochastically observ_!lble and that F is a 
mXn reduction matrix (m<n). Then a factorization hF=hG always exists for 
another reduction matrix G, which may be the identity (or a permutation 
matrix). However, because then KerGCKerhFCKerF (see theorem 5.2.11 
(iii)), where the last inclusion is strict, it follows that there exists yet another 
reduction matrix H such that HG=F. Hence the conditioning of the distribu­
tion of (j(X),N) on X, determines strictly more then f (X,). Stated otherwise, 
f (X,) is not sufficient to predict the future distribution of (j(X),N). Note also 
that in this case (X,N) can only be strongly stochastically observation 
equivalent with another n-th order system. 

We also mention that this definition differs from the current definition of 
stochastic observability in the literature for linear Gaussian systems, where the 
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future evolution of the state processes is disregarded. However the Gaussian 
analogue of our definition is equivalent with what can be found in the litera­
ture. The reason behind our alternative is that we now force the transformed 
process f(X) to be Markov, which is automatically the case in the linear Gaus­
sian situation. Therefore a slightly different terminology appears to be advis­
able. The idea behind strong stochastical observation equivalence, is that it 
should provide us with a link to (strong forward) reducibility. Moreover it 
should give us information about what reductions of the original systems are 
possible. This is the content of the next result which, although obvious, brings 
the concepts mimimality and observability together. 

THEOREM 5.2.15: ]:et (X,N) be gi~en by equation (5.8). Let F be a reductioin 
matrix and define A =FAF+ and C=CF+. 
(i) F reduces (A, CU!_ and only if (A, C) is strongly stochastically observation 

equivalent with (A, C). 
(ii) (A,C) is (strongly forwardly) minimal if and only if (A,C) strongly stochasti­

cally observable. 

PROOF: Direct consequence of definition 5.2.14, theorem 5.2.11 and proposi-
tion 5.2.12. D 

At first glance this theorem seems to be not very helpful, if one is looking for 
possible reduction of (A,C), since also definition 5.2.14 involves the unknown 
F that describes the reduction. But it turns out that it is a useful step to the 
finding of the F (if any) that reduces (A,C). We first introduce some new nota­
tion and an auxiliary result. Take in the definition of h'V (t, T) the function v 
to be identically zero and write instead h"(t,T). Observe that this quantity 
does not depend on the specific F anymore. By taking u to be a stepfunction 
we can again, parallel to what we did after lemma 5.2.10, construct h~(t)ECn 
and from these the operators h and hk. Some of the properties of the h'fev(t,T) 
and h'fe,k(t) carry over to h"(t, T) and the hHt). There are however some 
differences. The precise result is the following. 

PROPOSITION 5.2.16: Let :X=Kerh, ~=Kerhj. Then 

(i) :J4 :J 9<2 :J ... ' and n : 1 ~=:JC 
(ii) If for some j ~ = ~ + 1, 1then :X= ~ and %= ~ is D and A invariant. _ 
{iii) If F reduces (A,C), the'!_ Ker FC% hence there exists a factorization h =hF. 
(iv) If a factorization h = hF exists such that Ker h =Ker F for a reduction 

matrix F, then F reduces (A, C). 
(v) There is equivalence between 

-u 
(a) J.!:(t,T)=lz (t,T)G and Ker h =Ker G for some matrix G and 
(b) h (t, T) satisfies the inte~a/ equa,tion 

h"(t,T)_=1T + J'h'Js,T)D(u(s))°i(s -t)!ls _ 
where DG=GD, D(u(s))=(eiu(s) _ l)D and <P(t)G =G<P(t). 
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PROOF: (i) and (ii) are proved in the same way as (i), (ii) of theorem 5.2.11, 
(iii) follows in the same way as lemma 5.2.10, (iv) follows from (ii) and (v) can 
be proved as proposition 5.2.12. 0 

REMARK: The most striking difference between hand hF is the !?llowing. Sup­
pose that %=Ker h:F{O}. Then we have a factorization h =hG for some G 
which is such that Ker h =Ker G. It may happen that it is impossible to choose 
G to be a reduction matrix. See examples 5.2.23 and 5.2.24. Notice also that 
we imposed in (v) of proposition 5.2.16 that Ker h =Ker G, whereas for the 
analogous statement of proposition 5.2.12 the equality Ker hF=Ker F automat­
ically holds. The next proposition implicitely offers a way to compute the '.J{j 
and% 

PROPOSITION 5.2.17: There exist a sequence of matrices Wj, as indicated in the 
proof, such that Ker hj =Ker Wj for all j ~ 1. 

PRooF: Let z =e;"- l and let (with a little abuse of notation) hi(t)=hY(t). Let 

W1(z) be the nXn matrix withj-th row equal to <:/hHO)=lT(zD+Ay- 1 

(use :aation (5.11) with v =O). By the Caley-Hamilton theorem for k~n one 

has (at f hf(O) = ~J ~J akil T (zD + AY for some real numbers akj. Hence 

Kerh 1 =%if and only if W 1(z)%={0} for all z. Next we form the matrix W1 
in the following way. Each row tT(zD+Ay- 1 of W 1(z) can be written as 
~-;:,bz\Bkj• where the /Jkj are row vectors in Rn. W 1 is now the matrix 
obtained by stacking all the Pkj in a large matrix with n columns. It is evident 
that Ker h 1 =Ker W 1• In an analogous way we can also construct matrices 
Wj(z) via the partial derivatives of hj(t) with respect to the vector t evaluated 
at t =O. And as above by grouping the equal powers of z that appear in the 
rows of Wj(z ), we obtain a matrix Wj. Hence the '.J{j appearing in proposition 
5.2.16 are the same as the kernels of the matrices Wj. 0 

Some additional properties of h are described by the following lemma. 

LEMMA 5.2.18: 
(i) For all u EU the function h"(-, 1) is left differentiable at t = T and 

;t h"(T,1)= -(eiu(T) _ l)C. 

(ii) Let V be the n X n Vandermonde matrix with j-th row equal to l T Dj - I. 

Then Ker h c Ker V. 
(iii) Assume that there exists a reduction matrix F such h"(t, 1)=ii" (t, 1)F. 

Then C can be written as CF. If moreover all the elements of C are different 
from each other, then %=Ker h =Ker F. 

(iv) If all the C; are different then Ker h = {O}. 

PROOF: (i). Immediately follows from eq. (5.11) since h(T, 1) = 1 T and 1 TA = 0. 
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(ii) From proposition 5.2.16 we know that Ker h is D invariant and since 
tTKer h =h(T, T), Ker h =JO} we _!I.ave 1r Di-I Ker h = 1r Ker h = {O}. 

(ill) We have to prove that X=K~h={O}. Because_of (i) an~ lemma 5.2.5 
~~e ~sts a diagonal ma_!!ix D ~eh ~at FD=DF. No!' X=FX Hence 
DX=DFX=FDXCFX=X So % is D invariant. If V is the Vander­
!!londe !!latrix with j-th row equal 1 r[y- i then we_ have as in (ii) 
XCKer V. The latter is zero, since all the elements of Care assumed to 
be different. 

(iv) Follows from (ill). 

The role that the h"(t,T) play in the finding of a matrix F that reduces (X,N) 
is revealed by the following theorem. 

THEOREM 5.2.19: There is equivalence between 
(i) (.A, C) is strongry stochasticalry observation equivalent with (A, C). 

-14 

(ii) There exists a reduction matrix F such that h"(t,T)=h (t,T)F for all t~,..T 
and all Au E ¥ and a slfr!ilar factorization hofds for any other pair (A, C) 
lJ~ere C'7

14
CF. So if h is related to (A,C) as h is to (A,C), then: 

h (t,T)=h (t,T)F for all t~T and all UE U. 

PROOF: 

(i) ~(ii). From _!heorem 5.2.!_5 we know that there exists a reduction matrix F 
such that FA = AF and C =A CF. But !hen in view of the 1emark after lemma 
5.2.6 Falso reduces any (A, C) where C can be written as CF. Hence from pro­
nosition 5.2.16 we have both the factorization h"(t,T)=h\t,T)F and 
-"u -u 
h (t,T)=h (t,T)F. A -

(ii) =;> (i). ~ince the assumption holds for any C =CF, we may tajce all the ele­
ments of C to be different. Then from lemma 5.2.18 (iii) Ker h =Ker F and 
from proposition 5.2.16 Ker Fis A invari!!:!lt, so FA =AF, with A =FAF+. By 
assumption and from lemma 5.2.5 FD=DF. Hence Fis a matrix that reduces 
(A,C). The result now follows from theorem 5.2.15 (i). 

The following result is closely related to theorem 5.2.19. 

PROPOSITION 5.2.20: Let (X,N) satisfy equation (5.8) and let (X,N) be another 
stochll!tic system that satisfies an equation jike ( 5. 8) with C = [ c 1 ,. • ., Cn] replaced 
with C=[ci. ... ,cn] and let X=Kerh and X=Kerh. Assume that there exists a 
map g such that c; = g(c;). Then &c % 

A A A A 

PROOF: % is a D and A invatj_ant subspace of Rn, where D = diag( C) (proposi-
tion 5.2.16). We claim that % is also D invariant. If the claim l}olds, then it 
llm;pediately follo~s frcim equation (5.10) with v=O, that h"(t,T)%={0}, ~ince 
1T%= lO}. Since % is .f?. invariant, it is spanned by some eigenv~tors of D. So 
let ke% be such that Dk=c;k, for one of the eigenvalues c; of D. Hence for 
all j we have cjkj =c;kj if k =[k1 ,. . .,kn]T. If kj =0 then certainly cjkj =c;kj. If 



Counting process systems 109 

ki=/=O then ci =c;, but then also ci =c;. So again we have ciki =c;ki.: Hence k 
is an eigenvector of D with eigenvalue c; = g(c;), which shows that % is also D 
invariant. 

All results so far obtained form the basis of algorithm 5.2.21 below, that 
yields for a stochastic system (X,N) a minimal representation. 

ALGORITHM 5.2.21: 
1. Compute Kerh and find a reduction matrix F such that h"(t,T)=h"(t,T)F 

-u 
and such that h (t, T) cannot be factorized further by means of some 
other reduction matrix. 

2. If Ker h =Ker F, then the algorithm produces F as its outcome. Else we 
go toA step 3. 

AU 
3. Let C=CF, where all tpe c; are different from each other. Form h (t,T) 

(which is related}o (A,C) as was h"(t,T) to (A,C)). 
4. Apply step 1 to h "(t, T) in lieu of h"(t, T). 

Before proving_ t!!_at the matrix _F produ~ by the algorithm, induces a 
minimal pair (A, C) defined by A = F AF+ , C =CF+ , we discuss the way it 
works. The finding of F in step 1 is relatively simple. Compute Ker h by using 
the matrices Wk Qf proposition 5.2.9 as far as needed. This results in a factori­
zation h"(t,T)=h"(t,T)G, where G is such that KerG=Kerh. Next one 
inspects the columns of G. If any two of them are identical, then the same 
holds for the corresponding columns of F, which determines F up to a permu­
tation of its columns. An alternative way is to inspect the elements of the hHt) 
for all k as far as needed. If two columns of F are identical then the same 
holds for the corresponding elements of all the h~(t) and vice versa. If the 
algorithm stops at step 2, then it follows from proposition 5.2.16 that F 
reduces (A, C). If instead Ker h=f=Ker F and step] is performed then we ~ow 
from lemma 5.2.18 that some of the elements of C {which is such that C =CF) 
are identical. Hence it makes sense to A construct C as prescribed. Then from 
proposition 5.2.20 we obtain A that Ker h CKer h and moreover that this inclu­
sion in strict, since also Ker h c Ker F ip. . view of lemma 5 .2.18 (ii), applied to 
the Vandermonde matrix with rows 1TD1 - 1, which has kernel equal to Ker F. 
Hence the algorithm constructs a strictly decreasing sequence of kernels, until 
it terminates which happens after finitely many iterations. 

THEOREM 5.2.22: Let F 1!._e..!_he final res'!Jt of alg_orithm 5.2.21._~en F reduces 
(A,C). Hence there exist A,C with FA =AF,C=CF. Moreover (A,C) is minimal. 

PRooF: The resulting F has the property that in the final iteration a factoriza-
"u -u "u 

tion of tpe form h (t,T)=IJ. (t,T)F holds, where h,.. (t,T) corresponds to some 
pair (A, C) and where Ker h =Ker F. So Ker F is D and A invariant (proposi­
tion 5.2.16) and also D invariant (see the proof of proposition 5.2.20). Hence F 
reduces (A,C). Now let F 1 be a matrix that gives a maximal reduction of 
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(A,C). So with A =F1AFt and C=CFt we have that (A,C) is a minima] 
pair. F 1 is determined up to a permutation of its columns. Then in step 1 of 
the algorithm we have a factorization (as follows from proposition 5.2.16) 
h"(t,T)=h(t,T)F2Fi. where possibly another reduction matrix is involved. 
Suppo~ th!t step 2 is skipped, otherwise the proof is compl~te. So we con­
struct C =CF 2F 1• Then of course (lemma 5.2.5) Ker F 1 is D invariant and 
therefore h11(t,T) factorizes as h11(t,T)F3Fi. with possibly again another reduc­
tion matrix F 3, A which A has the property thilt Ker F 3 C Ker F 2, because 
Ker(F3F 1)CKerh CKer ~=;=Ker(F2F1 ), where Vis the Vandermonde matrix 
with j-th row equal to 1TDr1• (Use also lemma 5.2.18). Hence in each itera­
tion of the algorithm a factorization of functions like h"(t, T) holds, where the 
matrix F 1 is always part of the factorization, and where the kernels of the 
F 2. F 3 etc. are shrinking. Th~ef9re in the final step of the algorithm we have 
a factorization of the form h=hF*F1• From the first part of the proof we 
know that F.F1 is a matrix that reduces (A,C), but since F 1 gives the minimal 
reduction F * has to be a permutation matrix. D 

In the next two examples, we apply algorithm 5.2.21. 

ExAMPLE 5.2.23: Let X takes its values in {1,2,3,4,5} and let 

A= 

-14 l 1 1 I 

9 
1 

3 

-14 2 3 1 
9 -7 7 1 
1 2 -12 1 
3 2 1 -4 

Assume that N has the intensity CY, where C=[l 1112). 
The matrix W1 of proposition 5.2.17 now becomes (use tT A =O): 

1T 
1 1 l 1 

1TD 
1 1 l 1 

tTD2 1 1 1 1 
tTDA 3 3 2 1 
1TD3 l 1 1 1 

W1= 1T(D2A+DAD) = 12 12 8 4 
1TDA 2 -32 -32 -11 10 
1TD4 l 1 l l 

1T(D3A+D2AD+DAD2 ) 33 33 22 11 

1T(D2A 2 +DADA +DA 2D) -172 -172 -63 46 

1TDA 3 402 402 51 -300 

l 
2 
4 

-4 
8 

-20 

25 
16 

-68 

166 

165 

Now Kerh 1 =Ker W1 is spanned by [1 -1 OOO]T and [O I -21 O]T. Observe 
that these two vectors are eigenvectors of both D and A. So Ker h 1 =Ker h. 
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The reduction matrix Fin step I of algorithm 5.2.21 is easily seen to be 

1 1 0 0 0 
0 0 1 0 0 
00010' 
0 0 0 0 1 

111 

since the first two columns of W 1_ are identical- Oearly Ker F=f:Ker h. So step 
3 of the algorithm appli~. Let C = [l 312], C = [11 3 4 2]. Of course one can 
now construct a matrix W 1• Then Ker W 1 CKer F (lemma 5.2.18 (ii)), which 
is spanned by [ 1 - 1 0 0 0(. Since, as observed above, [ 1 - 1 OA 0 Of is ff. and D 
invariant, we see that Ker W 1 =Ker F and also, as above, Ker h =Ker W 1. 

Hence the outcome of the algorithm is 

1 1 0 0 0 
0 0 1 0 0 
0 0 0 I 0 
0 0 0 0 1 

The next (partially worked) example is apart from an illustration of algorithm 
5.2.21 also interesting in the light of the remark that followed proposition 
5.2.16. 

ExAMPLE 5.2.24: Change the matrix A in the preceding example into 

-4 1 1 2 1 
1 -5 4 2 2 

A 3 -8 I 3 
0 l -8 4 

2 3 -10 

but let C be the same. If one again computes the matrix W 1 than it turns out 
that its kernel 54 is again spanned by kf = (1 - 1 0 0 Of and 
kf =[O 1 -21 Of. Let K=[k 1k 2]. A calculation shows that 

[-5 ll AK= K l _ 10 and DK=K 

Hence Ker his spanned by k 1 and k 2 , since already :J4 is a D and A invariant 
subspace. The matrix Fin stepA 1 of algorithm 5.2.21 isA the same as in the 
preceding ex~ple. Take again C=[l 1342]. 1Jie matrix W1 contains <lne row 
equal to 1 T DA = [ 6 7 - 11 - 19 8]. Since Ker h belongs to both Ker W 1 and 
Ker F as exp!ained in the discussion after the description of the algorithm, we 
see that Ker h = {O}. The F resulting from the algorithm is therefore the iden­
tity matrix (or another permuation matrix). The intriguing feature of this 
example is, that in spite of the fact that most of the c; are equal, no reduction 
is possible. 
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We close this sec.!!on with some considerations that indicate ways of future 
research. Let first X, = j(X,) and let F the reduction matrix associated with f 
Assume f :{1, ... ,n}-+{!i_ ... ,m}. Trivially each entry F;i of F has the following 
interpretation:_F!i=P(X,=ilX,=j). In both the two examples above we can 
factorize h as hG, where 

G = 1~ ~ : ~ ~]· 
0 0 0 0 1 

Observe that each column of G can be considered as a probability vector. The 
idea is now to extend the interpretation of the F;i as a conditional probability 
to the entries of G. This idea allows us to consider so called probabilistic 
reductions of the system (X,N) be looking at suitably defined random func­
tions of X,. This new approach seems to be connected with the behaviour of 
the solutions of the filtering problem that is defined by the finding of E[Y,l~J. 
Results in this direction will be reported in another publication...:.. We only men­
tion that in the last example the following identity hold: GA =AG, where 

A = 1-~: -~: ;:]. 
1 3 -10 

which is indeed the rate matrix of some Markov process, that lives on a state 
space with 3 elements. This already indicates that some reduction, of another 
type than described in this section, should be possible. 

5.3 SELF EXCITING COUNTING PROCESS SYSTEMS 

In this section we study what are called self-exciting counting process systems. 
These can be considered as being on the opposite side of the whole spectrum 
of counting processes if they are compared to the conditionally Poisson sys­
tems. As shown in section 5.1, conditionally Poisson systems can be con­
structed by a measure transformation, where under the original measure the 
state process and the counting process were independent. As a consequence 
the state process and the counting process never have jumps at the same time 
with probability 1. In this section we will see that for self-exciting systems 
(the previously made assumption that the state space 'X is finite is maintained) 
the state process can only jump when N jumps. The motivation for studying 
this class of systems is roughly the following. From a practical point of view it 
is attractive when the state process evolves on a finite space. For instance 
finite dimensional filters for state estimation exist in this case. On the other 
hand one can argue, see also BoEL [13), that in the situation where one cannot 
observe a state process and where there are no physical grounds that lead to 
an obvious choice of a state model, it is perhaps better to use self-exciting 
models for identification purposes. 
Here we adopt both these points and the question arises whether this yields an 
interesting model. To put it a little bit more precise, we want to characterize 
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the class of counting processes that admit an intensity, which is a function of a 
finite state process which is Markov with respect to the flow of a-algebras gen­
erated by such a counting process. Or, to formulate it in terms of a stochastic 
realization problem, given a counting process, under what conditions can it be 
represented as the output of a stochastic system, where the state process 
assumes finitely many values, and is Markov with respect to the filtration gen­
erated by the output. 
The purpose of this section is to present a solution of the above stated prob­
lems. In particular a detailed investigation is made of finite state processes 
which are Markov with respect to a given counting process. 

DEFINITION 5.3. l: A self-exciting counting process system is a stochastic system 
(X,N) such that~ c~,'Vt~O. So(~+ v6J(H+ .~lo(Xi))eCJ. 

This definition implies that the state process X is Markov with respect to the 
filtration fN, whereas of course for N we still have the equation 

dN1 = 'h1(X1)dt+dm1 

where m is now an fN -adapted martingale. A good deal of this section is 
devoted to fN-Markov processes and we make again the restriction that the 
state space of X is finite, so assumption 5.1.7 holds. 

Before we are treating these fN -Markov processes we present some preliminary 
results that will be used later on. Let (0, 'J,P) be a complete probability space. 
Let N:OX[O,oo)-71\10 be a counting process and let~ =o{N3,s~t} be the o­
algebra generated by the collection {NS>s~t}. Write fN = {~,t~O}. Assume 
that N admits the minimal decomposition 

dN1 = 'h1dt + dm1 

where 'A:'1X[O,oo)-7R+ is the fN -predictable intensity process of N and 
m :0 X [O, oo )-7R is a fN -adapted martingale. 
The following lemma, known as the martingale representation theorem, plays a· 
crucial role. 

LEMMA 5.3.2: 
(1) Let M:OX[O,oo)-7R be an fN -adapted martingale. Then there exists an 

fN -predictable process k: 0 X [O, oo )-7R such that for all t;;;;;.. 0 
I 

M, =Mo+ jk3 (dN3 -A9 ds) 
0 

The process k is P(dw)h1(w) a.e. uniquely defined and for all t~O 
I 

f ks'hsds < 00 a.s. 
0 

(2) Let S:OX[O,oo)-7R be an g=N -adapted semi-martingale of the form 
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S, =So+ V, + M,. Here V is a process of bounded variation which is 
assumed to be continuous, V0 =O and Mis a fN-adapted martingale. 

i) S can jump only when N jumps i.e. !;..S1=/=0~b.N, = I 
ii) If moreover S is a pure jump process (which is the case if it takes its values 

in a countable set), then 

I 

S, =So + J ksdNs 
0 

and V is absolutely continuous satisfying 

I 

V, = /ksAsds 
0 

where k is as in lemma 2.1. 

PRooF: The proof of (l) can be found in [3, p. 76]. for (2) we have 
I 

i) From lemma 5.3.2 we know that M 1 = jks(dn3 -'ll,3 ds) for some fN 
0 

-predictable process k. But then from the assumption that V is continu-
ous M, =!;..M, =k1Ml1• 

I 
ii) Now S1 -So =~11 .;;; 1 !;..S., =~11 .;;; 1k11b.N11 = f k3 dN3 and V, =S,-So-M1 = 

I I t Jo lo k3 dN3 - lo k3 (dN3 -')\3 ds)= lo k3 ')\3 ds. a.s. 

REMARK: The assumption that V is continuous implies that the given decom­
position of S is fN unique, since S is now a fortiori a special semi-martingale. 

- -
PROPOSITION 5.3.3: Let_N and N be two counting processes and let 'A and 'A be 
their f~ -, respectively fN -predictable intensities. Equivalent are _ 
(i) ~ C~, and~ and~ are conditionally independent given~-

1 

(ii) N, = J I(i.,>o}dNs and ~1 = l{A.>o}'Ai . 
0 

PROOF OF PROPOSITION 5.3.3: We will use the following result which is obvi­
ous. Consider two filtrations F and G, such that for all 1;;;.0:'if; c§,. Then 
there is equivalence between 
(i) Any F-martingale is a G-martingale 
(ii) '?f00 and §1 are conditionally independent given 'if;. 

(i)~(ii): Write dir, =~1dt +dm1, the Doob-Meyer decomposition of N with 
respect to fN. From the above equivalence m is also an IFN-martingale. 

- r' H~ce _m1 = J, h3dms for a P(dw)®dN_t(w) a.e. unique process h. Then 
dN1 =('A1 -'h1h~dt+h1dN1 , which gives dN1 =h1dN1 and 'A,=h1A.1• Therefore on 
th~ jump_ time~ Tk of N we have h}. =hT.· Hence we can also write 
dN1 = h1dN1 = h1A.1 + h1dm,. From the fact that predictable intensities are unique, 
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we find 'A, =h1A1 a.s., which implies that h, l{~>O} = l{~>O}. An obvious choice 
of h that satisfies this relation is h'1 = l{~>O}. It is certainly fN -predictable and 

00 

E J l{h,*lr~>0i}dN, = E ~ l{hT•*l<Ar,>0J} = 
0 n~I 

= E ~ [l{hr.=l,Ar.=O} + l{hr,=0,~r.>O}] = 0, 
n~I 

- -which can be seen as follows. It hT = 1, then N jumps at Tn, so that AT >0, 
- - " - II and if hT. =O, then AT. =O from A1 =h1A1• The uniqueness of the process h now 

gives the result. 
- - t 

(ii)~(i): Noti~ first that~ C~, s~ce by the assumption N, = fo l{~>o}dN3 , 
the sequence { Tk} of jump times o( N is contained in the sequence { Tk}. It is 
now sufiicient to prove that any fN -martingale is a fN -martingale. So let M 
be a fN -martingale. Then there is a fN -predictable process h such that 

r' -~,=Mo+ lo ~dm3 • Now _ 

'A,dt+dm,=dN, = l{~>O}dN, = l{~>O}A,dt+ l{~>O}dm, =A,dt+ l{~>O}dm, 
-

by assumption. Because of~ C~ the process l{~>O} is fN-predictable, hence 
m is also a FN -martingale. But then the same conclusions holds for M. D 

REMARK: The formulation of condition (ii) of proposition 5.3.4 can be replaced 
by 
(ii)' There exists a fN -predictable process u such that 

t 

N, = f UsdNs and X, = u,'A,. 
0 

Later on one can identify u as u1 = l{~>O}, showing that it even becomes fN -
predictable. 

The next object that we want to study is the class of fN -Markov processes. 
We will combine the results of corollary 5.3.3 and propositions 5.1.7, 5.1.8 
applied to the situation where F = FN in order to find an integral representa­
tion of a finite state fN -Markov process in terms of its infinitesimal charac­
teristics and the intensity of the counting process. Let as before 

'A,+ = ~1 lp,,>O}> with the understanding that ~ =O. 

'THEOREM 5.3.4: Let X be an fN-Markov process with state space {xi. ... ,xn} 
and let Y be the indicator process associated to X as before. Then 

t 

Y1 =Yo+ j'A: A(s)Y3 _dN3 

0 

(5.15) 
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t 
PROOF: Y is a pure jump process satisfying Y, = Y 0 + 1 A (s) Y8 ds + mT where 
m Y is a fN-martingale. Hence a multivariate extensio'h of 5.3.2-(2) applies: 

t 
Y,=Yo+ f k8 dN8 , where k:OX[O,oo)--+Rn is fN-predictable. In the notation lo , 
of this corollary we have V, = fo A (s)Y8 ds. Sok satisfies for all t;;;i.O 

t t 

jA(s)Y8 ds = jk9 A9 ds. 
0 0 

Hence, in order to ensure FN -predictability of k we have 

A (t)Y,_ = k,A, (5.16) 

Now define k by k,=k,l{A,>O}- Then k is FN-predictable and 

co co 

Oos;;E j Ic1c,+~}">.,dtE.;E j l{A,=o}A,dt = 0. 
0 0 

Hence k and k a.re P(dt.J}>.1("') a.e. the same. From the uniqueness result of 
5.3.2 we may use k as well as k. So we have 

A(t)Y,- =k,A,. 

Hence 

A(t)Y,_At =k,A,At =k,. 
Now drop the tilde on k and the proof is complete. D 

COROLLARY 5.3.5: We have the following explicit expression for Y: 
k 

Y,l{T,<t<T01 ) = Il(Ai,A(T,) +/)Yo l{T,<t<T>+,} 
/=I 

PllooF: Immediate from theorem 5.3.4 by noting that Y T,- = Y T,_, and the fact 
that Y is right continuous. D 

ExAMPLE: Assume that the intensity process A does not depend on t. Then 
A,(,.,)=A for some non random constant A since AoO is ~-measurable. 
Assume A>O. Assume further that X is a homogeneous Markov process. Then 

Y,l{T.<t<Trn} =(A-IA+ If Yol{T.<t<Tu,} 

or 

Y1 =(A- 1A +I)N'Yo 

Since Y, is a unit vector for all t, A - I A +I is a semi-permutation matrix in the 
sense that each of its columns has exactly one + I entry and the other entries 
are zero. Of course two + 1 entries may occur in the same row. Consequently 
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all the diagonal elements A;; of A are either zero or equal to - A. If some 
A;;= -A then there is in the i-th column A; of A exactly one Aji equal to + A. 
All the other entries of A; are zero. If A;; =O for some i then the whole 
column A; =O. 

A similar remark applies to the general expression in corollary 5.3.5. We 
have for all i A;;(T1):E;;0. Then if A;;(T1)<0 there is exactly one j = j (i, T1) such 
that Aj;(T1)= -A;;(T,). Since T1 can assume any value >0, we have that for 
each i and t there is exactly onej=j(i,t) such that Aj;(t)= -A;;(t), all the 
other entries in the column A;(t) being zero. 

We will now investigate how A and A are related. Equation (5.16) relates the 
intensity At of the counting process with the matrix A (t) of transition intensi­
ties of X by means of the intermediate process k. In this subsection we will 
study this relation a little further. 
Multiply (5.16) by Yf_ to obtain 

AtYf_kt = Yf_A(t)Yt- (5.17) 

At a jump time Tn of the counting process there are two possibilities. If X also 
jumps then Yr. =tf=Yr.- =Yr._, and YL,kr. = YL, (Yr. -Yr,_)= -1. If X 
does not jump then YL,kr. =O. So assuming that Xjumps we get from (5.17) 

A = - yr A(T. )Y T11 T"_ 1 n T,._ 1 (5.18) 

This last equation (5.18) suggests the following connection between A and A: 

At= -Yf-A(t)Yt-

This connection will be studied in the sequel. First we need a definition. 
- - l 

Define N :0 X [O, oo )--7R by Nt - 2 [yr, Y]t. Here [yr, Y] is the optional qua-

dratic variation process of Y. It satisfies 

t 

YfYt = Y;fYo + 2 jY'[_dYs +[Yr, Y]t 
0 -

(5.19) 

Observe that N counts the transitions of the Markov chain. We now have the 
following proposition. 

PROPOSmON 5.3.6: 
i) N is an fN and F Y -adapted counting process with g::N and f Y -predictable 

intensjty At= -Yf_A(t)Yt-
ii) N - N is also a counting process. It is only g::N -adapted and has g::N -

predictable intensity At+ Yf_A (t)Yt-
- t -

iii) Nt = fo lfi>o}dNs and At= l{~>O}At _ 
iv) 'fJf and ~ are conditionally independent given 'fJf 

PROOF: 

i) In view of eq (5.19) we have 
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t 
O=YfY,-Y'{Ys=2 l Y~_dYu+[YT, Y]1 -[YT,Y1= 

l t T 1' T y - -=2 s YuA(u)Yudu+2 s Yu-dmu +2(N,-N5 ). 

By observing that fo Y~ _ dm~ is again a fN and f Y martingale we get the 

desired result according to the definition of intensity. 
ii) From known results in stochastic calculus we get 

- t t 
2N, =[YT, Y], =lo k'{ksdNs =2 lo I{Y>~Y.-}dNs because we only need to 
know k at the jump times Tn. If X does not jump when N does then 
kT. =O, and if it jumps then kt_kT. =2. Hence N,:s;;;.N, for all t and 

- t -
N,-N, =lo l{Y,=Y,_)dN5 which yields in view of (i) that N-N has the 
described intensity. _ 

iii) N~tice that l{Yn#'Y71t_1 } = lp,n:;:;o.~>O} = l{~>O}> since AT, :s;;;.)i.T,· Hence 

dN1 =l{A.>o}dN1• But then dN1 =l{&>o}A1dt+l{A.>o}dm1, which s_!iows 
that l{A.>o}Ai is the fN-intensity of N which is then also equal to A1 by 
part (i). 

iv) This is an alternative formulation of (iii) in view of proposition 5.3.3. 

An important corollary of this proposition occurs when all the A;;(t) are 
strictly negative. It is stated as the next 

THEOREM 5.3.7: 
i) Let all the A;;(t) be strictly negative. Then N=N, 6.fT ='!Jf for all t>O and 

A,=-Yf_A(t)Y,_ 
_ T -1 _ A;(t) 

ii) k,--(Y,_A(t)Yi-) A(t)Y,_--~A-·(t)Y;1 -, where k satisfies 
- " 

dN1=k1dN1 

PROOF: 

i) From eq. (5.17) we have 

i\.T. yt__1kT, = YL1A(Tn)YT,_1 =~;A;;(Tn)I{Xr.-1 =c,} <0. 

Hence i\.T. >0 and kT .. *O, which means ~at X always jumps as soon as N 

jumps. Hence N = N ._ Since always '!Jf C 6.fT C '!Jf we now also have 
'!Jf =6Jf. Finally N=N implies A1 =i\.1 = -Yf_A (t)Y1 _. 

ii) This is a simple consequence of formula (5.15) and part i) of the theorem. 

It is appropriate to inspect the results of proposition 5.3.6 and theorem 5.3.7 
a little closer. In general we have for all 1;;;;:.o '!Jf c6JT c'!Jf. In the case 
described in theorem 5.3.7, we get equality of those a-algebra's. Since now N is 
also the total number of jumps (or transitions) of the Markov chain and 
6.fT ='!Jf it seems logical to expect that we have in the general situation (where 
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N counts the transitions of the chain) '1t," =<ffT, which means in words that if 
we have a Markov chain adapted to a counting. process then it is also adapted 
to the counting process that d~bes the total number of transitions of the 
the chain. One could say that N is sort of "minimal" counting processes to 
which X is adapted. _ 
Next we show that the claim '1t," = <ffT holds true. It is a consequence of 

-
THEOREM 5.3.8: Let X be finite state fN -Markov, then Y, is 'lt,"-measurable. 

PROOF: Let Ti.T2 , ••• be the possibly finite sequence of jump_ times of N. From 
the discussion leading to (5.18) we see that AT.= -Y~- 1A(T1-)YT._ >0. Con-

- } J- JI 

sider first T 1• Then Ar is a (measurable) function of T 1 only. Hence from 
N I 

Yr =(Ai1A (T1)+ I)Y0 the random variable Yr is also a measurable function 
1..., I I .... 

of T 1 only. But then by induction we find that YT. =(AT. 1A(Tn)+I)YT._ is a 
..., ..., - • ...,a a I 

measurable function of Ti. .... ,Tn, say Yr. =yn(Ti. ... , Tn)· 
Consequently, by right continuity of Y, we get withy0 = Y0 

00 N N 

Y, = Yo + ~Yn(Ti. ... , Tn)l(r.<t<r •• i}· 
n=l 

Notice thatyn ~ 'ffi.-measurable since_~ =a(i\, ... ,Tn)· Now we invoke 

the fact that ~ niTnE;;t<Tntd='lt," n{TnE;;t<Tn+d (see BREMAUD [3, 
p.308]) to see that indeed Y, is '1t," measurable. D 

The statement of the theorem is sometimes immediately seen in specific cases. 
Consider for example the case wher~ A,3>0 and A is a constant matrix. 
Then we have in fact Y, =(A -I A +it· Y 0. 

-
COROLLARY 5.3.9: If X is a finite state fN -Markov process, then it is also FN 
Markov. 

PRooF: Since a process that is Markov with respect to some filtration is also 
Markov with respect to any other smaller filtration to which is adapted, this is 
an immediate consequence of theorem 5.3.8. 

So far we have seen the following results.. Given the fact ~t we have a fN -
~arkov process X, X _ is also fN -Markov and N has intensity 
A,= -YT_A(t)Y,_, where N is as before the process that counts all the transi­
tions of X. As such these results form necessary conditions that follow from 
the existence of such processes. One might raise the question how to formu­
late sufficient conditions on a given Markov matrix function A (-) such that 
there exists an associated fN -Markov chain X. 
Secondly, given that a process X is FN-Markov, what other counting processes 
N do exist such that X is also fN -Markov. 
Answering the first question will be postponed until the end of this section. 
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Concerning the second one we have - as a converse of previous results -

-
PllOPOSITION 5.3.10: Let X be FN-Markov. Let N be another counting process 
with FN -predictable intensity A such that 

t 

(i) ii,= f t<A.>o>dN• 
- 0 

(ii) >., = 1{~>0}>., 
Then X is also FN -Markov. 

- -
PllooF: From proposition 5.3.3, \l{e see that~ c~ and that~ and~ are 
conditionally indq>?dent given ~. Hence X is certainly FN -adapted. 
Observe first that A,=O<=>Yf_A(t)Y,_ =O implies A(t)Y,_ =Oas i result of 
the fact that A (t) is a Markov-matrix. Since X is FN -Markov: 

-+ -
dY,=A, A(t)Y,_dN, (theorem 5.3.4). Hence 

-+ -+ -
dY, =A, A,A(t)Y,dt +A, A(t)Y,-diii, 

-+ -=A(t)Y,dt +A, A(t)Y,_diii,. 

From the conditional independence relation (proposition 5.3.4) the last term is 
an FN -martingale. Therefore application of proposition 5.1.8 completes the 
proof. 

REMARK: In view of the remark following the proof of proposition 5.3.3 one 
- t 

£ail replace conditions (i) and (ii) in proposition 5.3.10 by N, = fo u8 dN8 and 
>., = u,>., for some FN -predictable process u. 

Until now we have studied processes X that are FN-Markov and thus F~­
adapted. As mentioned before, one of the results is then, that X is also FN -
Markov (corollary 5.3.9). Kno~g this, one can prove all the results men­
tioned in the foregoing, such as A,= Yf_A (t)Y,- etc. 
An interesting question is to see whether a process which is Markov with 
respect to its own flow of a-algebras and which is FN -adapted, is also FN -
Markov. In general this is not true. For instance if N is standard Poisson pro­
cess and X is defined by X, =N Y:it• then X is fx-Markov, but not FN-Markov. 
Theorem 5.3.11 gives a sufficient condition for an affirmative answer. Let us 
first remark that any bounded process that is a semi-martingale with respect to 
some filtration is special. See DEI.LACHERIE & MEYER [5, VH.25) 

THEOREM 5.3.11: Let X be a finite state fx-Markov chain and assume that X is 
adapted to FN - for some counting process N. Assume moreover that the indicator 
process Y, being a FN - special semi martingale, admits a decompositi.(Jn such that 
the predictable process of fi1Vte variation is continuous. Then ~ = ~ Vt ;;;;i.o and 
x is FN -adapted and thus FN -Markov. 

PROOF: From corollary 5.3.2 we know that dY,=k,dN, for some fN-



Counting process systems 121 

- - 1 predictable process k. By definition of N we have dN,- 2d[YT, Y]1 = 
I - -[YT,Ylt- 2kik1dN1• So AN1=0 iff k1 =0. Therefore we can write dY1=k1dN1• 

Observe that N is f Y -adapted. As in BREMAUD [3, p. 2, 13), we can interpret k, 
dY. 

as a Radon-Nik:odym derivative--;).... on the fY-predictable sets. Therefore we 
dN, 

may take k to be fy-predictable. For N we have by its definition 

dN1 = -Yi-dY1 = -Yi_A(t)Y1_dt - Y1_dmT 

so 

dY, = k1cJN1 = -k1 Yi-A (t)Y,-dt - k1 Yi-dmT 

on the other hand 

dY, =A (t)Y,dt + dmT 

(5.20) 

(5.21) 

Since all processes in (5.20) and (5.21) are FY-adapted, we have from the 
uniqueness of the decomposition of a special semi martingale that 
-k1Yi_A (t)Y1 _ =A (t)Y1 _ a.s., which then leads to 
k1 =-(Yi-A(t)Y,-)~A(t)Y1 _. As in the proof of tile theorem 5.3.8 we can 
conclude that Y is FN-measurable. Therefore 6JT c'?If c6JT. Hence X is fx­
Markov is now equivalent to Xis fY =fN-Markov. D 

REMARK: The statement of theorem 5.3.11 indicates why N.L1 cannot be fN -
2 

Markov. This is immediately seen by noting that N_J_1 is fN -predictable. 
2 

Hence its dual predictable projection with respect to FN is the process itself, 
which is discontinuous. 

We proceed with some consequences of the foregoing for the case where X is a 
homogeneous chain. 

COROLLARY 5.3.12: Assume that X is a homogeneous chain 
i) If A;; <0, then in the corresponding column A; of A there is exactly one 

j = j(i) such that A ji = - A;; and all other Aki 's are zero. If A;; = 0 then the 
whole column A;= 0. 

ii) k is now a left continuous piecewise constant process and satisfies 

k,1{1;.<t<T •• ,} = - ~;t A;l{xT.=x,} l(T.<t<T •• ,} 
i 

A 

ill) The sampled chain Xn:=XT is now a deterministic process and completely .A 
known given the initial state X 0 = X 0• 

iv) If there are no absorbing states, then the process A assumes only a finite 
number of values. Specifically A1 e { - A 11, ... , - Ann}. 

PROOF: i), ill) iv) follow immediate from the explicit expression in corollary 
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5.3.5 ii) requires a little work. Recall that we have k1 ="Ai AY1 _. _!,et T be the 
absorption time of the chain. Then AY,_ l{t>T}=<>· Hence "A,>~t=r;;;;;T. 
Therefore 

"A,l{t<T} =Arl{t<T} = -Yf-AY,_ l{t<T}-

Hence k1 = -~1Ail A1Yu- l{t<T} = -~1Ail A1Y,1-, becauseA;Y;1 - lc,>T} =O. 

At this point one might raise the question in virtue of corollary 5.3.12 iv) 
whether "A is also a Markov process. Oearly this is the case if all the A;; are 
different or when they are all the same. Interesting is the case when there exists 
at least one pair (i,j) such that A;; =Aft. We will answer this question by 
means of theorem 5.2.2. Assume that there are 2.s;;;;m oS;;;n - 1 distinct values 
among the A;;. Call these a i. ... , a,,. and denote for all j = 1, ... , m by E1 the 
set of of allj such that An=Ot· Define FeRmxn by .fij=lcjeE;} We have 
the following result in the terminology of theorem 5.2.2. 

PROPOSmON 5.3.13: In the terminology of theorem 5.2.2: "A is an FN-Markov 
chain if! FAK =O. If the last <;.ondition is satisfied then the matrix B of transition 
intensities of "A is given by F AF. 

ExAMPLE 
i) H 

A= 

-a 0 0 b 
a -b 

0 b 
0 0 

0 0 
-a 0 

a -b 

then A is MOikov with B = [-: _:] and state space {-a, -b}. Here we 

should takeF= [~ ~ ~ ~ l 
ii) H 

-a 0 0 b 
a -a 0 0 

A= 0 a -b 0 
0 0 b -b 

. [ a-bi then "A is not Markov, which is seen by calculating FAK= -a b 

. [ 1 0 0 0 l T [ 1 -1 0 0] 
with, F= 0 0 1 1 ' K = 0 0 1-1 
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REMARKs: 
i) Although it might happen that A is not Markov of course (A,X -) is 

jointly Markov. 
ii) Since it follows from proposition 5.3.8 iv that the number of values that A 

can assume is always at most the number of states that X can assume, we 
see that a necessary condition for a process X to be Markov is, that it 
takes values in a set which is at least as big as the set of values of A: So 
n;;.. # {A1:t;;a.O}. Hence a homogeneous chain X cannot have a finite state 
space if A has a continuously varying component. In the same way as 
checking, whether A is FN -Markov one can investigate whether there exist 
Markov processes X 1 with a smaller state space than X by considering all 
possible choises of F. Thus obtaining a description of a "minimal" Mar­
kov process. This is of some relevance in connection with the stochastic 
realization problem to be posed at the end of this section. 

iii) The case where A is FN -Markov itself implies here that it changes value as 
soon as N jumps. Thus we can immediately see from the A-matrix 
whether A is FN -Markov or not. In the previous example i we see that at 
jump times A switches from a to b or conversely, which is in agreement 
with the fact that it is Markov. In second part of the example we see that 
it is possible that A stays in a even when N jumps. 

We have seen that the existence of a homogeneous FN -Markov chain X does 
not necessarily imply that A is also FN -Markov. Hereafter we describe some 
consequences of the situation where indeed A is an FN -Markov process with 
finite state space. Since in this case A assumes only a finite number of values it 
follows that A (being predictable) may be taken as a left continuous process. 
Write X, = A1 + , the right continuous version of A. We will apply the previous 
results to this particular choice of X. 
Denote by {A1> ... ,An} the state space of X. If there are no absorbing states 
then A;; <0 and we have that A;= -A;; for all i in view of corollary 5.3.12 iv. 
So all A;>O. 
For reasons of completeness we will show what happens if some of the A;; are 
equal to zero or if one of the A; equals zero. The latter case clearly implies that 
the corresponding A;; =O. Hence this case is covered by the first one. Define 
.B C {1, ... , n} to be the set of integers i such that A; is an absorbing state. 
Define also T=inf{t;;a.O:Xie{A;,ieB}}. 
Notice that T < oo a.s. if and only if B=/= 0, and for i eB we have A;;(t)_O, 
and hence the whole column A;(t)=O. The principal result of this subsection 
is the next proposition which tells that for t .s;; T we can more or less identify 
the intensity A1 as one of the A;;(t)'s, and that A;;(t) only assumes the values 
-'A; or 0. 

PROPOSITION 5.3.14: Assume that A is FN -Markov with state space {Ai. ... , An} 
and transition intensity matrix A (t). Let T be the absorption time as defined 
above and B the set of integers co"esponding to the absorbing states. Then 
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and/or iEBC:A;;(t)= -A; if A;;(t)<O. 

PROOF: Let X,=A,+, then Y;t=l{x,=A,} and Yir- =l{A,=A,}· In the notation 
that we have used previously, N has rate 

A,= - YT-A (t)Y,_ = -l:ieB•A;;(t)l{A,=A,} l{t<T} 

Since 'A,= {A.>o)At (proposition 5.3.6 iii) we have 

At l{t<T} = l{A,>0} l{t""T}At + l{A,>O} l{t>T}At 

= l{A.>o}'A,, 

- -
since A, >0 implies toe;;; T and conversely t > T implies 'A, = 0. Hence 

- ~;;(t)l{A,=A,} l{r""T} = l{A,>O} ~A; l{A,=A,} 
i i 

Now let iEBc. Then 

-A;;(t)l{A, =A,} l{t<T} = l{A,>o} l{A,=A,}A;. 

Observe that 

l{A,>0} l{A,=A,} = l{A.(t)<O} l{A,=A,} 

and for iEBc 'A,='A; implies t=e;;;;T. Hence we get 

-A;;(t)l{A,=A,} = l{A,(t)<O} l{A,=A,)A;. 

Since we may assume that P('A, ='A;)>O we now get by taking expectations 

-Ali(t) = l{A,(t)<O)Ai 

which proves the second assertion of the proposition. Furthermore 

'A, = 'Arl{t>T} +'A, l{r<T} = 

= Arl{t>T} + l{t<T} ~ l{A,=A,}Ai 
ieB' 

which proves the first assertion. D 

REMARKs 
1. If 'A is a homogeneous fN -Markov chain, then A is a constant matrix and 

we have for ieBc the identity A;;(t)=-'A;. Hence 

A,= 'Arl{r>T} - ~A;;l{A,=A,}· 
ieB' 
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And of course if there are no absorbing states or if the value zero is the 
only one, thenA;;(t)=-A.; for all i and A.,= -~f= 1 A;;lp,,=A,} 

2. Now it is easy to see that for any function /which is not injective or con­
stant /('A) cannot be a FN -Markov chain, since we have tacitly assumed 
that all the A; are different. Hence the number of states of A. is now the 
minima] number of elements that a set should have in order that it can 
serve as a state space for some FN -Markov process. In this sense one can 
say that A., if it is fN -Markov, is the minimal fN -Markov chain. 

We conclude this section by solving a certain stochastic realization problem. 
The solution involves a technical result on the existence of g:N -Markov 
processes which is formulated in lemma 5.3.15. 

It is known that given a Markov-matrix function A :[O,oo)~RNxn, one can 
always construct a probability space (D, ~P) and a Markov process 
X:'1X[O,oo)~{l, ... ,n}, such that its transition probabilities are generated 
by A. This is a consequence of Kolomogorov theorem (2.12) 
In this section we are concerned with a version of this problem under a restric­
tive condition, namely given a complete probability space (Kl, ~P) a counting 
process n :'1 X [O, oo )~No and a Markov matrix function A :[O, oo )~Rn xn, does 
there exist an fN-Markov process X:OX[O,oo)~{l, ... ,n} such that A gen­
erates its transition probabilities. We kpow from previous result§ that given 
such a process we have the identities A.1=-Yf-A(t)Y,_ and A.,=A.1 l{~>O} 
and that for each (i,t) such that A;;(t)<O, there exists only one j such that 
Aj;(t)= -Aii(t). Hence for the existence of such a process X this imposes some 
necessary conditions on the matrix A (t). In lemma 5.3.15 we present a set of 
sufficient conditions that implies the existence of such a desired process X, and 
we also give a construction for X. Before stating the theorem let us emphasize 
that one should not overestimate its content, since in a sense it looks like a 
tautology. On the other hand it shows how one can extract a g:N -Markov pro­
cess that is hidden in a suitable matrix function A. After having proved the 
theorem we give an example, how to use the construction of X. 

LEMMA 5.3.15: Given a counting process N with fN -predictable intensity A. and a 
Markov matrix function A:[O,oo)~Rnxn. There exists a FN-Markov process 
X: 0 X [O, oo )~ { 1, . . . , n} with A as its infinitesimal generator if there is a 
unique sequence of random variables {xm}m;;a.o,xm:~~{l, ... ,n} such that the 
following two conditions hold 
a) Ax.,x)TmXAx.,x.,(Tm)+A.TJ)=O,'o'm. 
b) If Ax.,x)Tm)<O then Xm+I is such that Ax.+1x)Tm)= -Ax.,x.,(Tm) and if 

Ax..xJTm)=O, then Xm+I =xm. 
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PROOF: Let us define a process Y-:OX[O,oo)~{o,1y by requiring that 

Y; l{r._,<i.;;r.,} = YT., l{r.,_1<1.;;r.,} and YiT .. = l{x.,=i}· Then 

Xf..~;j(Tm)Yj"T .. = Xf..~;j(Tm)l{x .. =j} = 
j j 

= Xi.,Aix,. (Tm)= Ai.,AX..+ix .. (Tm)l{x.,+1 =i} + 

Xf..Ax..x.. (Tm)l{x.=i} + Xi.,A;x .. (Tm)l{x,,*i,X,,+1*i} 

= -Af..Ax..xJTm)l{x..+i=i} l{A-(r.,)<O} + 

Xf..Ax..x..(Tm}l{x,,=i} + 0 
+ , 

= -Ar.,Ax,,x,,(Tm)[l{x..+i=i} - l{x.,=i}] 

= l{x..+i=i} - l{x.=i} = YiT .. +1 - Y1"T •. 

So in vector notation we have 

YT.,+ 1 - YT., = Xi.,A(Tm)Y'.r .. {5.22) 

Notice that Ar .. =O implies A(Tm)YT., =O. Therefore with the usual conven­

tion that ~=Owe have from (5.22) 

yT- - yT- = AT. 1A(T.m)YT.. 
•+I • • "' 

Define now Y:OX[O,oo)~{O,l}n by Y1 =Y;+. Then YT..+i =Yr .. · Hence (5.22) 

reads 

Y. - Y. =A - 1A(T. )Y. r. r .. _1 r., m r.,_1 

which can be rephrased as 

dY1 = >i.; 1A (t)Y1 _dN1 

or 

dY1 =A (t}Y1 -dt + Xi A (t)Y1 _dm1 

We now want to apply proposition 5.1.8. Therefore we have to verify that Y1 _ 

is fN -predictable. Observe that 

(5.23) 

Now the sequence {xm}m;;..o is such that Xm+l is selected on the basis of 
knowing Xm and Tm, or iteratively is selected on the knowledge of 
{Ti. ... , Tm}· Therefore Yir .. = YiT .. +1 = l{x..+i =i} only depends on 
{T1> ... , Tm}· From (5.23) and [3, p.307] we now find the desired result. D 

ExAMPLE: Let A be constant between the jump times T; and evolve according 
to Xi.X2,A3,Ai.A2,A3 · · · etc. Let 

->i.1 0 A2 

A1 = A1 -A3 0 

0 A3 -A2 
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Then we see that A 1 cannot be a transition matrix of a fN -Markov chain 
X:OX[O,oo)~{l,2,3}. Because from condition a) of the theorem we see that 
Xi=l ifD.,=A1> X,=3 iff A1 =A1 and Xi=2 iffA1 =A3 • From Xi=l it can only 
jump to 2 according to A 1• But from the given sequence of A's it should jump 
from I to 3. However 

is compatible with the sequence of A's as one can easily verify and thus A 2 can 
act as the transition matrix of a FN-Markov chain X:OX[O,oo)~{l,2,3}. 

Finally we will adress a certain stochastic realization problem, and see how we 
can solve it by means of lemma 5.3.15. Let us state the problem precisely. 
We are given a complete filtered probability space (0,'?f,fN,P), where the filtra­
tion fN is generated by a counting process satis~g dN1 =A.1dt+dm,, where A 
is the fN -predictable intensity process and m a f -martingale. 
We pose the following question. Does there exist a homogeneous fN-Markov 
process X with finite state space ~and a (measurable) function f :~R+ 
such that 'A, = f(Xi - )? 
One can reformulate this question in terms that are used in stochastic realiza­
tion theory as follows. Given a counting process N on (0, '?f,P) can we find a 
stochastic system on (0,'?f,fN,p) such that its state process X is homogeneous 
and has finite state space ~ and such that the output processes is N with fN -
predictable intensity f(X, _ > for some f:~R + . 
Let us suppose that we can affirmatively answer this question. From corollary 
5.3.12 we see that the sequence {Ar.} is eventually constant or periodic. This 
observation also gives us a sufficient condition for solving the problem, which 
is the content of the next theorem. 

THEOREM 5.3.16: There exists on (0,'?f,fN,P) a finite state fN-Markov process X 
with state space ~ and a function f :%-+R + such that A.,= f(Xi-) if and only if 
there exist a jump time Tk of N such that the sequence {'Ar. } for Tn ~ Tk is either 
constant or periodic. 

PROOF: We only have to prove that this condition on A is sufficient for the 
existence of X. 
(i) Consider first the case where {Ar .. } is eventually constant. Let k be the 

smallest integer such that Ar .. =ArN for all m~k. Now we can construct a 
fN -Markov process X with state space { 1, ... , k + l} as follows. Define 
AeR<k+t)X( +I) as follows A··=-'Ar. A·+1 ·=-A··=Ar.-1 for 

U 1-1' I ,I II I ' 

i = 1, ... , k and all other A;/s equal to zero. 

-Ar. 

+Ar. 
A= 
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This matrix clearly satisfies the conditions of lemma 5.3.15, which yields 
the existence of the desired X. The function f: { l, ... , k + 1 }--+R + we 
are looking for is of course defined by f (i)="AT,_,, i = 1, ... , k + 1. 

(ii) Consider now the case where {Ar. } is eventually cyclic, which means that 

there exist integers k' and p' such that AT.+; =AT, for ;;;;,.k'. Let k and p be 

the smallest of such integers. Now we can construct an fN -Markov pro­
cess X with state space { 1, ... , k + p} as follows. Define 
A eR<k +p)X(k +p) by A;;= -AT,_, for i = 1, ... , k + p, 

A;+i,;= -A;;=Ar.,_, for i = l, ... ,k +p -1 and Ak+l k+p=Ar. . 
' t+p-1 

All other A;j are zero. 

A= 

-Ao 
Ao 

+A T.t+1 -1 

As in the first case the existence of the X we are looking for is guaranteed 
by theorem 5.1 and/is defined by /(i)=AT,_,,i=l, ... ,k +p D 

R:EMARK: The behaviour of the system for t ~ Tk (Tk as defined in the proof of 
theorem 5.3.16) can be considered as the transient behaviour of the system. If 
one would assume that time runs from minus infinity, instead from zero, then 
the necessary and sufficient condition in theorem 5.3.16 would read: The 
sequence {Ar. } is either periodic or constant. 

One other problem that remains to be solved is that of minimality of the solu­
tion of the realization problem. In our context minimality means minimality of 
the number of elements of the state space E. We have the following result. 

CoROLLARY 5.3.17: The solution of the stochastic realization problem as 
presented in the proof of theorem 5.3.16 is minimal. 

PROOF: In principle one can prove the corollary by applying the FAK=O cri­
terion. Here we give an alternative proof. Consider first case (i). Assume that 
there exists a function g such that g(X) is Markov and a function h such that 
h(g(X,))=f(X,)="-t. Consider a statej of X,j~k. Then there is no i~j-1 
such that g(i)=g(j), otherwise the sequence {"Ar.} would reach a loop, which 

is forbidden by assumption. Similarly there is no i ~k such that g(i) = g(k + 1 ), 
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otherwise the absorption time would be smaller than Tb which is minimal by 
construction. This shows that g is injective, so that E is minimal. A similar 
argument_ applies to case (ii). Assume again that there is a function g such that 
g(X) is Markov. For the transient states we have the same argument as in case 
(i). For the cyclic part of the chain we have for each recurrent state j that 
there is by definition no transient state i <j such that g(i)=gU), but also no 
recurrent state i<j such that g(i)=gU), because that would contradict the 
minimality of the number (period) p. Again g is injective. D 

The object that we have studied in this section was a stochastic process X that 
is FN -Markov, where FN denotes the filtration that was generated by some 
given counting process N, and has finite state space. The additional require­
ment that X is homogeneous resulted in the fact that then X has to be eventu­
ally either cyclic or constant. Consequently the idea of viewing N as the output 
of a stochastic system, with such a process X as state process, leads to a rather 
restricted class of counting processes that satisfy this requirement. This partly 
negative result answers a question posed in the beginning of this section, 
namely whether we get an interesting class of counting processes that obeys 
the afore mentioned conditions. 

r 
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Conclusions 

In this monograph we have considered recursive parameter estimation algo­
rithms and realization problems for counting process systems. As stated ear­
lier one of the problems that show up in recursive estimation is the design of 
an algorithm. It turned out that exploiting the asymptotic structure of the 
likelihood ratio process offered a way to find a possible form of a recursive 
algorithm. The use of the likelihood ratio process for this purpose motivated a 
detailed study of this process, which has been presented in chapter 3. In 
chapter 4 we have studied asymptotic properties of various recursive algo­
rithms. The underlying model was a counting process with an intensity of the 
form A.1 =fJT q,,. Because of this linear structure quadratic Lyapunov functions 
appeared to be a useful tool in establishing almost sure convergence of the 
recursive estimators. It is of course a serious restriction to confine oneself to 
intensity processes that exhibit this linear structure. The results that we 
obtained should be understood as a first step towards an analysis of recursive 
algorithms for the general case where A., depends on () in a nonlinear way, 
which problem is of course a real challenge. This kind of problems occur for 
instance in adaptive filtering. Even if A.1 = ()T q,, where q, is a process that is not 
observed, nonlinear problems arise, because to compute estimates we have to 
use the conditional expectation of q,1 given the past observations of the count­
ing process, which is in general a nonlinear function of 6. We feel that the 
procedure that we have followed to find a recursive algorithm for the situation, 
where the intensity has a linear structure, also yields useful algorithms in the 
nonlinear case. However proving that the resulting estimators converge is not 
as easy. The difficult point is to find a suitable Lyapunov function. It is not 
clear whether quadratic forms, which were helpful in the linear case, are again 
a good choice. Much research remains to be done. In chapter 5 we con­
sidered minimality questions for counting process systems. These questions 
arise in the context of stochastic realization theory. We presented a criterion 
that enables one to judge whether a given realization of a conditionally Pois­
son system is minimal. For selfexciting counting processes we have also shown 
under what conditions such a process can be seen as the output of a stochastic 
system with a finite state space. For conditionally Poisson processes this is 
still an open problem, which is interesting enough to merit further research. 
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