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of M,, and the leading bias term B,, of G[m(,‘), m’,2)] for counting process can be considered as the output process of some 
c = 0.99 are stochastic system. The underlying state process then influences 

B,,, = h* + h4, B,, = Ji52r;T-Bh4. 
the counting process. A problem is then to estimate this state, 
given the observations. This is known as the filtering problem 

This shows that if h2 > l/(dm - 1) the mse of G[mj,‘), and has been investigated extensively [l]. 
t&*)1 dominates the mse of m,. Similar conditions can be found 
b;varying m(*) and rnc4). 

The solution of this problem requires knowledge of all parame- 
ters needed to describe the stochastic system, which means that 

In a practical situation a choice of R that avoids a situation of one can compute the solution to the filtering problem only if one 
this kind, described in the example, seems to be impossible. Such knows the correct parameter values. Unfortunately, in many 
a selection of R has to take into account the unknown values cases these are not known and therefore need to be estimated. 
m(*)(t) and mc4’(t). It is therefore impossible in a practical This may happen before the processes start running, using related 
solution to compute the parameter regions where G[mf), m’,‘)] additional information and/or observations. In the former case 
actually improves ordinary kernel regression estimate m,. some asymptotic results for off-line maximum likelihood estima- 

We also compared the leading terms of the mse G[m(,‘), tion are available [3], [4]. 
mf’]( t) and of the mse m,(t) of a fixed regression curve in The purpose of the present correspondence is to make a 
Table II. Shown are the ratios of the two leading terms for contribution to the on-line parameter estimation problem in a 
different values of h, h,, and c with n = 100 and u2 = 1. The specific case. The approach has proven to be fruitful in discrete 
regression curve m(t) = sin f was selected, and the mse at t = time ARMAX processes [7] or continuous time Gaussian AR 
m/4 was evaluated with K E g2 as before. A bandwidth h, processes [6]. 
being roughly about 0.3, would minimize the mse of m,(t); The correspondence is organized as follows. In Section II we 
therefore only combinations are shown with h, h, E give some basic results for counting processes. In Section III we 
{0.2,0.3,0.4}. The use of G[m(,‘), m’,*)] may result in an mse give a heuristic derivation of our parameter estimation algorithm. 
nearly twice as high as the corresponding mse of m, as can be Section IV corrtains the convergence proof of the algorithm. 
seen from the entry (h, h,, c) = (0.3,0.3,0.9) in Table II. 
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dn, = A, dt + dm,. (2.2) 
The process X is called the intensity process. 

Often a major problem for counting process observations is to 
identify the intensity process X. This problem can be set up in 
two stages. In the first stage we have to sqlve a filtering problem. 

An On-Line Parameter Estimation Algorithm for To be precise we have tp determine X, = E(X,]q”), where 

Counting Process Observations e” = a{n,, s I t}. Then X, is the optimal (in the sense of mean 
squared error) estimate given the observations during [0, t] c T 

PETER SPREIJ and given the values of deterministic parameters. We can then 
replace (2.2) by the minimal decomposit ion of n (i.e., with 

Abstract-The parameter estimation problem for counting process ob- respect to { 3;” }) 
servation is considered. It is assumed that the intensity of the counting 
process is adapted to the family of u-algebras generated by the counting 

dn, = ^x, dt + diii* (2.3) 

process itself and that the intensity depends linearly on some deterministic where E is a local martingale adapted to { q;n}rzO. In the 
constant parameters. An on-line parameter estimation algorithm is then second stage one looks for estimates of remaining unknown 
presented for which convergence is proved by using a stochastic approxi- deterministic parameters. If one adopts the maximum likelihood 
mation type lemma. criterion, (2.3) and the computation of A, appear to be crucial. 

The likelihood functional in this case is known [l, p. 1741 to be 
I. INTRODUCTION 

Counting processes frequently occur as observations in ‘(^hs - 1) ds +/u’log~,r-dn,]. (2.4) 
mathematical models for industrial processes and in biology, 
software engineering, and nuclear medicine. Usually, such a The Model 

From here on we assume that ^x has a special structure 
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process X. Self-exciting processes exist for which the intensity is 
of the form (2.5); see the example below. If & comes from a  
recursive filter, it cannot  be  expected that (2.5) is satisfied. For 
these (adaptive filtering) problems other algorithms are needed.  

The minimal decomposit ion (2.3) now becomes 

dn, =  p’+, dt +  drz[. (2.6) 
Plugging (2.5) into (2.4) and  writing L,(p) instead of L, in order 
to express the dependence  of the l ikelihood functional on  p, we 
get 

L,(P) =  exp [ -p’[+y h  + t +  Jdlog( p%-) dn,]. (2.7) 

III. DERIVATIONOFTHEALGORITHM 

In this sect ion we state a  parameter estimation algorithm for 
the model  (2.5), (2.6). The  proof that the parameter estimates 
given by this algorithm indeed converge to the true parameter 
value will be  given in Section IV. The algorithm is constructed in 
such a  way that the estimates )t of p  approximately maximize 
the l ikelihood functional (2.7), or equivalently, minimize J,(.) 
g iven by 

J,(P) =  P’[$ ds - [log( @T-p) dn,. (3.1) 

After posing the algorithm we present a  heuristic derivation. 

A. Algorithm 
Consider the model  (2.5), (2.6). An approximate maximum 

likelihood parameter estimation algorithm is given by 

4% = R,k (dn, - +Tli, dt), (3.2) 

dR, =  - R,+,+TR, dt, (3.3) 
with initial condit ions a, and  R,, respectively. 

The  interpretation is that for each t $, approximately mini- 
mizes J,( .) as  stated earlier and  that R, is up  to a  multiplicative 
scalar factor an  approximation of the second derivative of J,( .). 
Thus (3.2) (3.3) can be  considered as a  quasi-Newton scheme for 
minimizing the family of functions {J,(.)},,,. Observe that R, 
stays posit ive definite when the initial value R, is chosen to be  
symmetric and  posit ive definite, s ince dRJ1 = $+$+ dt. 

B. Heuristic Derivation 
To understand the algorithm (3.2), (3.3) it is useful to consider 

first a  nonstochast ic situation. Let J: R + x Iw” -+ Iw, J E 
C2(tR+ x R”‘,lR) such that J(t, .): Iw”’ -+ R has a  unique 
minimum, attained for say x(t). Under  some regularity condi- 
t ions it then follows from the implicit function theorem that the 
function t -+ x(t) satisfies the differential equat ion 

dx(t) =  - $J(t,x(t)) 
I 

-1 (92 

anal”@, x(t)> dt. (3.4) 

Let us  now return to our estimation problem, that is, f inding 
the value 3r that for each t minimizes (3.1). For an  evolut ion 
equat ion for & one  tries to find an  equat ion like (3.4). However,  
the functional J of (3.1) does  not satisfy the desired smoothness 
condit ions, and  therefore one  has to look for something related to 
(3.4). Our  choice is 

(3.5) 
where prime denotes partial differentiation with respect to p  and  
a, means  the partial forward differential operator with respect to 
t. In order to specify the algorithm fully we also need  recursive 
expressions for J,“(B,) and  J,‘(B,). Later on  we will establish 
almost sure convergence of the family { jZ}, t 0  to the true param- 
eter value po. 

From (3.1) we get by  formal differentiation 

J,‘(P) =[%ds-[kdn,, 
5  

hence 

(Pt- 
a,J,,( p) =  & dt - ~  

P’& 
dn,. (3.7) 

Define k, =  (p,/$$+ and  Q, =  [J,“(&)]-‘. Using these expres- 
sions and  (3.7), we can rewrite (3.5) as  

dj, =. Q,-k,-( dn, - +T& dt). (3.8) 

The next problem is the finding of a  recursion for Q,. It turns 
out that an  exact equat ion for Q, cannot  be  obtained for p  E R” 
with m 2  2  and  that certain approximations are not satisfactory 
in that these cause problems in analyzing the convergence prop- 
erties of the algorithm. 

On  the other hand,  the case of p  E Iw’ is easy to handle, and  it 
will be  illustrative for the multivariable case. In this case (3.6) 
reads 

J,‘(P) = [$Wq (3.9) 

hence 

J,“(p) =  5. (3.10) 

Therefore, Q, becomes jf-/n, and  with k, =  l,& (3.8) reads 
n  

djTt=E(dn,-+,j&dt). (3.11) 
f 

Observe that B, =  n/a,, where @ ‘r = /,& ds satisfies (3.11), and  
this value for $( is also found by directly minimizing (3.1). One  
can prove that $, g iven by (3.11) converges to the true parameter 
value, using the method of Section IV. 

Applying the stochastic calculus to Q, =  3:/n, one  can verify 
that Q, satisfies 

dQ, =  -2Q:k,$+dt +  Qf-kf-dn,. (3.12) 

Returning to the multivariate case p  E Iw”‘, m 2  2  one  would 
like to extend (3.12) in order to obtain an  evolut ion equat ion for 
Q,. This suggests 

dQ, =  -2Q,k,+TQ,dt +  Q,-k,-kFQ,-dn,. (3.13) 

One  hopes  that (3.8) together with (3.13) constitutes the desired 
algorithm. Al though (3.8), (3.13) yield some appeal ing propert ies 
suggested by the case p  E R1, such as j, =  Q,@,, $TQ;‘$, =  n, 
and  @:$, =  n  f, we were not able to prove the desired conver-  
gence properties. The major bott leneck was the verification of the 
technical condit ion (see (4.5)) 

J mQ,-krmkFQl-dn, <  00, (3.14) 
0 

which is a  trivial exercise if p  E Iw’. The main cause of this 
technical problem was the term #j, in the denominator of k,. 
Therefore, we tried to incorporate this term in Q, so that Q,k, =  
R,&,, for some matrix valued process R,; the idea was then to 
find an  equat ion for R,. 

Inspect ion of the case p  E R’, neglect ing the derivatives of +  
and  using Q,k, =  R,+, then leads from (3.13) to 

dR, =  - R,+$R, dt. 

IV. CONVERGENCEPROOF 

(3.3) 

In this sect ion we present a  convergence proof for the al- 
gorithm (3.2) (3.3) which establ ishes almost sure convergence of 
the parameter estimates to the true parameter value. The proof is 
completely in the spirit of the proofs in [6], [7]. W e  begin by 
stating an  important technical lemma, which is a  simple version 
of a  more general  result in [6], that in turn can be  considered as 
the cont inuous time counterpart  of a  result in discrete time 
stochastic approximation [5]. 

Lemma I: Let x, a, b  be  nonnegat ive stochastic processes and  
m be  a  local mart ingale such that x =  a  - b  +  m; and  assmme Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on November 06,2024 at 13:41:45 UTC from IEEE Xplore.  Restrictions apply. 
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that 

1) a and b are increasing processes with a, = b, = 0, 
2) 3c E Iw, such that Vt: Aa, = a, - a,- I c almost surely, 
3) lim,,, a, < 00 almost surely. 

Then 

4 lim,,, x, exists and is finite almost surely, 
b) lim,,, b, is finite almost surely. 

Here is our main result. 

Theorem 1: Consider the algorithm (3.2), (3.3). Let p. be the 
true parameter yalue. Let 3, = j, - p. and let 4, = (pi&,, ‘k, = 
h~~s~;~eWR~ 1. 

1) lim , _ ,*, = 03 almost surely, 
2) /~\k,-21c/,+~ dt < co almost surely, 
3) lim I j ,\k,-‘j,#,+~ ds = C, where C E R”Ix” is positive def- 

inite almost surely. 

Then 

4 lb,, j, = p. almost surely, 
b) lim , _ ,*,-‘/~(+~~~)2 ds = 0 almost surely. 

Proof: From (3.2), (3.3) it follows that 

dj, = R,+,-( dn, - +Tj, dt) = R,+(dZ, - #jdt) (4.1) 

dR;’ = $+#- dt. (4.2) 

Observe that ‘k, = tr( R;‘). Define the Lyapunov process 

then 

w, = \E-’ I (WV% + /d( l’$+s)* d+ (4.3) 

dw, = -\k,-‘w,$, dt + #R,Cp,\k,-‘p&, dt + dml,, (4.4) 

where m, is a local martingale. Next we apply Lemma 1 to (4.4). 
Because w, \k are positive, we then see that the only thing we 
have to check is assumption 3 of Lemma 1: 

1 m+:Rl$+(\k; ‘p$, dt < M) . (4.5) 
0 

To that end, let pt = tr R,. Let y,, be one of the eigenvalues of 
R; ‘, then lim , _ ,\k,-’ y,, = ci > 0 by assumption 3 of the theo- 
rem. Hence yi, = c,‘k,(l + o(l)), (t --) 00). Now yi;’ 
value of R,, y,;’ = 

is an eigen- 
c;‘*~~‘(l + o(l)), (t + cc). Hence p, = 

\k,-‘(Zc;’ + o(l)), (t -+ w), or p, = o(\k,-‘), (t + cc). Recall 
that for a positive definite matrix A, xTAx I xrx . tr(A) and 
xTA2x I x x(tr(A))2. Then 

s m@W,~,-  ‘P&, dt 
0 

= 
J 

mT QJW;‘R,+,,\~;‘P& dt 
0 

Then from Lemma 1 we conclude that w and /F w~~~-‘\C/~ dr 
almost surely converge. We claim that lim,,,w, = 0 almost 
surely. If not, a subset of D  with positive probability and an 
c > 0 exists such that lim I+m~, 2 2~ on this subset. However, 
then we also have on the same subset 

s o’=~~-lw~~, dt 2 c / om*;l#t dt = [ log@‘,)],” = co, 

by assumption 1. This contradicts the second assertion of lemma 
. 

1. Since w is the sum of two positive quantities we have both 

dr = 0 almost surely (4.6) 

and 

Because of assumption 3 we know that lim, _ ,\k,-‘R;’ = C > 0, 
hence lim , _ ,& = 0 almost surely. 

v. EXAMPLES 

1) If +: T 4 R*, +(t) = [l,sin t + 11, then the conditions of 
the theorem are satisfied. The matrix C in assumption 3 becomes 
ir2 21 
312 31’ 

2) Let +: T X B --) R*, +, = (1,l + (-l)“~) and p = (a, b) 
E R:. By analogy, the second component of + jumps like a 
random telegraph process. Conditions 1 and 2 of Theorem 1 are 
easily verified. To check condition 3 let us first define 

x, = t-l / ‘( -1)“ds. 
0 

Then 

*,-*/d&@ u!s = (3 + t-’ tr( R,‘) + 2X0-l 

I 1 1 + x, 
x 1+x, 2+2x,. 1 

We now proceed to compute as.-lim,,, X,. Since n, = (a + 
b) t + btX, + m,, we find that 

X, = b-‘( t-‘n, - t-‘m, - a - b). 

The quadratic variation process (m), = (a + b) t + btX, I (a + 
2 b) t. It then follows from the strong law of large numbers for 
martingales that t-‘m, + 0 almost surely. Finally, we must 
evaluate the asymptotic behavior of t- ‘n,. Define Tk = inf { t 2 
0: n, = k}. Then 

Consequently, 
k 

as.- limt-‘n, = a.s.- lim 7. 
r-02 ,‘CC k 

Let ri = ?; - q-i, j= 1,2;.. . Then {T} is a sequence of 
independent random variables, and Er2, = u-l, ET*,+~ = (a + 
2b)-‘. Now the strong law of large numbers for independent 
random variables applies, and we get 

as. - lim k = a.s. - lim - C 7. = - 
I-+00 f+m kjl,J :(:+hi) 

at-b 

= a(u + 2b). 
Collecting the foregoing results we find 

a-b 1 b 
= -- 

a+b’ 

The conclusion is that 

’ 

VI. REMARKS 

Clearly, condition 3 of the theorem is sufficient to identify all 
the components of pO, but it seems that one cannot do without it. 
The strict positive definiteness of C is lost in either of the 
following situations that are worked out for p,, E Iw2. Let + = 
i+i. a2] ZIld let ILiir.,,+!r,/+~r = 0, Let y,, = ipol, po2 1’. %exi Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on November 06,2024 at 13:41:45 UTC from IEEE Xplore.  Restrictions apply. 
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one  can expect  to identify pOI. For suppose dn,, =  poi&, dt +  
dm,, 7  i =  1,2, and  let n, =  n,, +  nzf. Then eventual ly all the 
observat ions of n, are almost entirely those of rz2,, which does  
not yield much information about  pOl. Indeed C now becomes 

[ 1  i 7  . Similarly, if lim, _  m+l,/+ZL = c E (0, cc), one  can only 
expect  to identify cpOl +  p02.  

It might be  difficult to check assumpt ions 2  and  3  of Theorem 
2. Assumption 1  will in general  be  easy to verify. A sufficient 
condit ion for assumpt ions 1  and  2  to hold is, for example, 
+t - to (a >  - l/2). A necessary condit ion for assumpt ion 3  is 
that the eigenvalues of &#@~ ds are of the same order as  t + cc. 
Assumption 3  is similar to the not ion of persistence of excitation 
that appears  in identification problems for ARMAX systems. 

Condit ion 3  of the theorem appears  as a  technical condit ion, 
necessary for the proof of Theorem 2. It seems, however,  to be  
related to 

1  
lim ~ J 

t WJZ-  
- dr >  0  

f ’ m P,T4r, 0  Porps 
almost surely (6.1) 

Wiener filters. A general model of a suboptimal Wiener filter over a group 
is defined, which includes, as special cases, the known filters based on the 
discrete Fourier transform (DFT) in the case of a cyclic group and the 
Walsh-Hadamard transform (WHT) in the case of a dyadic group. Statis- 
tical and computational performances of various group filters are investi- 
gated. The cyclic and the dyadic group filters are known to be computa- 
tionally the best ones among all the group filters. However, they are not 
always the best ones statistically and other (not necessari ly Abelian) group 
filters are studied. Results are compared with those for the cyclic group 
filters (DFT), and the general problem of selecting the best group filter is 
posed. That problem is solved numerically for small-size signals (I 64) for 
the first-order Markov process and random sine wave corrupted by white 
noise. For the first-order Markov process with the covariance matrix 
II”,” = pi’-‘1 as p increases, the use of various non-Abelian groups 
results in improved statistical performance of the filter as compared to the 
DFT. Similarly, for the random sine wave with covariance matrix B(“,‘) = 
cos X (s - I) as h decreases, non-Abelian groups result in a better statisti- 
cal performance of the filter than the DFT does. However, that is 
compensated for by the increased number of computations to perform the 
filtering. 

where Qr = /&& ds. Here (6.1) has  an  appeal ing interpretation. 
To  see this, def ine a  normal ized version of (3.1) by  I. INTRODUCTION 

H,(P) =  j&J,(P). (6.2) 
t 

Then minimization of H,( .) is equivalent with minimization of 
J,(.). One  can easily check that for large t H/(p)l,=,, can be  
approximated by (6.1). Hence (6.1) says that for t --f cc pO is 
indeed a  minimum point of H,(e). 

W e  have not d iscussed the asymptotic distribution of the 
estimates j, generated by (3.2) and  (3.3). This issue will be  
addressed in another publication. 

In recent years interest has  grown in utilizing orthogonal  
transforms in digital signal processing in order to improve statis- 
tical or computat ional performance to permit a  trade-off between 
these two criteria by  utilizing a  certain chosen orthogonal  trans- 
form PI, [31, 171,  1141.  
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A common quality shared by many fast transforms which 
enables their classification (see, e.g., [4], [5]) is that they can be  
represented as Kronecker products of matrices which may or may 
not be  sparse or structured. By virtue of this Kronecker product 
representat ion new transforms can be  generated from old ones  
simply by  using the Kronecker product.  In a  given problem, such 
as W iener filtering with given statistical characteristics of a  signal 
and  noise, one  can select a  computational ly good  approximating 
transform to a  statistically optimal transform and  the selection 
can be  done  out of the family of known fast transforms with a  
Kronecker product representat ion. (See [lo], where a  good  refer- 
ence list can be  found, and  [l].) 

Statistical and Computational Performance of a Class 
of Generalized W iener Filters 

MARK G. KARPOVSKY, SENIOR MEMBER,  IEEE, 
AND LAZAR A. TRACHTENBERG, MEMBER,  IEEE 

Ahstrac~-A class of suboptimal Wiener filters is considered, and their 
computational and statistical performances (and the trade-off between the 
two) are studied and compared with those for known classes of suboptimal 

Another approach to the same problem of W iener filtering 
would be  to construct a  computational ly good  approximation to a  
given statistically optimal transform. A possibility of solving that 
problem analytically for c lasses of signals def ined by their covari- 
ante matrices (e.g., for signals whose covar iance matrices are 
Toeplitz) has  been  pointed out in [12], [18], [19], [28] and  this 
approach deserves further elaboration. Yet another approach is 
to construct experimental ly a  computational ly good  approximat- 
ing transform to a  transform which is known to be  good  statisti- 
cally. For example, the discrete cosine transform (DCT) has  a  
nearly optimal statistical per formance for highly correlated 
Markov signals (see [24]), and  it has  recently been  approximated 
by computational ly convenient transforms [8]. Here even for 
small n  (up to 32  vector-components of a  signal) the problem is 
difficult, involves tedious trial and  error procedures,  and  requires 
artistry rather than clear-cut methods. Another d isadvantage is 
that a  success with approximating one  transform (as DCT) for 
some n  (say n  = 16, 32)  cannot  be  general ized to be  used to 
approximate other transforms [8], [26]. 
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A number  of researchers [15], [l], [3], [ll], [17] have selected a  
family of fast transforms which are group theoretic by  their 
nature; i.e., they are based on  group characters of corresponding 
Abelian groups: examples are the discrete Fourier transform 
(DFT) in the case of a  cyclic group and  the Walsh-Hadamard 
transform (WHT) (or simply the Walsh transform) in the case of 
a  dyadic group [l], [3], [ll], [15]-[17], [27]. The  use of non-Abel ian 
groups was discussed in [13], [20]. 
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These transforms exist for any  number  n, are computed ana-  
lytically by  formulas, and  possess Kronecker product represen- 
tations (which guarantee speed of computat ion for nonpr ime 
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