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Abstract. We consider a nonparametric Bayesian approach to estimate the
diffusion coefficient of a stochastic differential equation given discrete time
observations over a fixed time interval. As a prior on the diffusion coefficient,
we employ a histogram-type prior with piecewise constant realisations on
bins forming a partition of the time interval. Specifically, these constants are
realizations of independent inverse Gamma distributed randoma variables.
We justify our approach by deriving the rate at which the corresponding
posterior distribution asymptotically concentrates around the data-generating
diffusion coefficient. This posterior contraction rate turns out to be optimal
for estimation of a Hölder-continuous diffusion coefficient with smoothness
parameter 0 < λ ≤ 1. Our approach is straightforward to implement, as the
posterior distributions turn out to be inverse Gamma again, and leads to good
practical results in a wide range of simulation examples. Finally, we apply
our method on exchange rate data sets.

1 Introduction

1.1 Problem description

Stochastic differential equations (SDEs) have been widely used as models in numerous appli-
cations ranging from physics (see, for example, Allen (2007)) to engineering (see Wong and
Hajek (1985)) and to finance (see Musiela and Rutkowski (2005)). We assume observations
from an SDE of the form

dXt = b0(t,Xt)dt + s0(t)dWt, X0 = x, t ∈ [0, T ], (1.1)

with a drift coefficient b0, (deterministic) dispersion coefficient s0, and a deterministic initial
condition x. Here X is real valued and W is a Brownian motion. We assume observations

Xn = {Xt0,n
, . . . ,Xtn,n}

from the solution X to (1.1) are available, where ti,n = i
n
T , i = 0, . . . , n. Our aim is to esti-

mate s0 nonparametrically within the Bayesian setup.
Model (1.1) covers the case of linear SDEs, such as the popular Ornstein-Uhlenbeck pro-

cess; see, for example, Section 5.6 in Karatzas and Shreve (1988). Among references that
study (1.1) as models for log returns of asset prices, we mention Lutz (2010) and Mishura
(2015), but the model has applications far beyond this context as well. A seemingly more
general SDE

dXt = b̃0(t,Xt)dt + s0(t)f0(Xt)dWt, X0 = x, t ∈ [0, T ], (1.2)
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can be reduced to the form (1.1) through a simple transformation of Xt , namely

Yt = x +
∫ Xt

0

1

f0(u)
du,

provided f0 is known and sufficiently regular; see p. 186 in Soulier (1998). Financial practi-
tioners often are content with a model of the type (1.2) as a simple and useful generalisation of
the Black–Scholes model; see, for example, pp. 7–14 in Gatheral (2006) for Dupire, Derman
and Kani’s pioneering work on local volatility. In particular, a discretely observed geomet-
ric Brownian motion with time-varying coefficients is also a special case of (1.2), once one
passes to the corresponding log returns (see Taleb (1997) for additional information and ap-
plications). As the drift in (1.1) is allowed to be non-linear, the distribution of Xt is in general
not Gaussian and may well exhibit heavy tails, which is attractive from the point of view
of financial applications. Finally, in some practical applications it is genuinely important to
employ a time-dependent diffusion coefficient; a real data example is given in Section 7.

1.2 Related literature

Statistical inference for SDEs is a well studied and very active field of research, that is far
from saturation. Relevant literature can be divided into two categories: works dealing with
parametric and works dealing with nonparametric methods. Parametric approaches specify
parametric forms for the drift and diffusion coefficients of SDEs. When these specifica-
tions use correct functional forms, such methods attain a higher statistical efficiency over
the nonparametric ones. On the other hand, nonparametric approaches, where one only as-
sumes qualitative features of the drift and diffusion coefficients, guard one against model
misspecification, which may have dramatically negative consequences for valid inference;
also, nonparametric techniques may suggest plausible parametric models in those situations
where these models cannot be derived from the first principles; see, for example, Silverman
(1986). For parametric approaches to inference in SDE models, see, for example, Chapter 2
in Kutoyants (2004), Chapter 3 in Iacus (2008), and references therein. Nonparametric sta-
tistical inference for SDEs of the type studied in the present work has been considered in
Genon-Catalot, Laredo and Picard (1992), Hoffmann (1997) and Soulier (1998) within the
frequentist setup, while Gugushvili and Spreij (2014b) and Gugushvili and Spreij (2016) have
explored the problem from the Bayesian perspective. Although the nonparametric methods
these papers study are implementable in principle, these works are primarily of theoretical
nature and practical performance of the corresponding approaches is not clear. Furthermore,
except Gugushvili and Spreij (2014b) and Gugushvili and Spreij (2016), there is hardly any
other work available on estimation of the dispersion coefficient (or diffusion coefficient) from
the nonparametric Bayesian point of view, which constitutes the central topic of our paper.
In this context, we can mention only a theoretical contribution Nickl and Söhl (2017) and a
practically oriented paper Batz, Ruttor and Opper (2018), but the models considered there,
as well as the sampling scheme, are different from ours, and the theory developed in Nickl
and Söhl (2017) does not cover the approach in Batz, Ruttor and Opper (2018). On a general
level, apart from a philosophical appeal for Bayesians, advantages of a Bayesian approach in-
clude automatic quantification of uncertainty in parameter estimates through Bayesian cred-
ible sets, and the fact that it is a fundamentally likelihood-based method (see Berger and
Wolpert (1988)). Furthermore, recent practical advances made in nonparametric Bayesian
estimation of the drift coefficient, see, for example, van der Meulen, Schauer and van Zanten
(2014), van der Meulen and Schauer (2017) and Papaspiliopoulos et al. (2012), would sug-
gest that comparable results can be obtained for estimation of the diffusion coefficient too.
We note, however, that from an implementational point of view nonparametric Bayesian esti-
mation of a dispersion coefficient is very different from drift coefficient estimation: the latter
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fundamentally relies on the equivalence of laws of continuously observed diffusion processes
that have the same diffusion coefficient, which is not applicable when the diffusion coefficient
itself is unknown and is a parameter to be estimated.

1.3 Approach and results

The main practical challenges for Bayesian inference in SDE models from discrete observa-
tions are an intractable likelihood and absence of a closed form expression for the posterior
distribution, which complicates considerably the inference; see, for example, Roberts and
Stramer (2001), Elerian, Chib and Shephard (2001), Fuchs (2013) and van der Meulen and
Schauer (2017). We circumvent these difficulties by intentionally misspecifying the drift co-
efficient, and employing a (conjugate) histogram-type prior on the diffusion coefficient, that
has piecewise constant realisations on bins forming a partition of [0, T ] (this is different from
Gugushvili and Spreij (2014b) and Gugushvili and Spreij (2016), where the drift b0 is in fact
zero, and other priors are used). Due to this, our nonparametric Bayesian method to estimate
the dispersion coefficient s0 in (1.1) is easily implemented, fast and requires little fine-tuning
from the user. We demonstrate its good practical performance on a wide range of simulated
data examples and we apply it on real data from finance, yielding interesting conclusions.

On the theoretical side, we investigate the asymptotic performance of our Bayesian proce-
dure from the frequentist point of view. Theoretical analysis of Bayesian procedures for in-
ference in SDE models from discrete observations is in general challenging; see, for example,
the contributions van der Meulen and van Zanten (2013), Gugushvili and Spreij (2014a) and
Nickl and Söhl (2017) for an impression, albeit in settings different from ours. We consider
the ‘infill’ asymptotics with the time T horizon staying fixed and the number of observations
n in the interval [0, T ] increasing; this asymptotic regime is standard in the literature and can
be thought of as reasonably satisfied in many financial applications. Complicating factors for
a theoretical analysis in our setting are due to influence of the unknown drift coefficient b0,
which we have intentionally misspecified. We address this through an argument based on Gir-
sanov’s theorem. The main theoretical result we obtain tells us that the drift misspecification
is asymptotically harmless and our procedure for estimating the diffusion coefficient is con-
sistent at rate n−β in the L2-norm, with the precise value of β depending on the smoothness
of the true dispersion coefficient. The corresponding posterior contraction rate is optimal for
estimation of Hölder smooth dispersion coefficients of order 0 < λ ≤ 1.

1.4 Organisation of this paper

Section 2 contains the model specification and a detailed description of our nonparametric
Bayesian approach. Section 3 contains the theoretical results. Our Bayesian method depends
on a hyperparameter, the number of bins forming the partition of the interval [0, T ], and
Sections 4 and 5 discuss possible practical methods of its choice. In Section 6 we investigate
practical performance of our method via simulations and provide illustrations of our theory
from Section 3. Examples with real data are studied in Section 7. Proofs of the results from
Section 3 can be found in Section 8. In the Appendix, we state and prove an additional
theoretical result.

1.5 Frequently used notation

We denote by ‖ · ‖2 the L2-norm with respect to the Lebesgue measure on the Borel sets of
[0,1]. We use the following notation to compare two sequences {an} and {bn} of positive real
numbers: an � bn (or bn � an) means that there exists a constant C > 0 that is independent
of n and is such that an ≤ Cbn. As a combination of the two we write an � bn if both an � bn
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and an � bn. We will also write an � bn to indicate that an/bn → ∞ as n → ∞. By a ∨ b

we denote the maximum of two numbers a and b.
We let Pb0,s0 denote the law of the path (Xt : t ∈ [0, T ]) from (1.1) under the true parameter

values (b0, s0). In particular, the notation P0,s0 is used for such a law when the drift coefficient
is equal to zero. We denote the prior distribution on the dispersion coefficient by �n (with
n the number of observations) and write the posterior as �n(· | Xn). We denote the posterior
expectation and variance by E�n(· | Xn) and Var�n(· | Xn), respectively.

2 Assumptions and Bayesian setup

We summarise the assumptions on our statistical model.

Assumption 1. Assume that

(a) the model (1.1) is given with x = 0 and T = 1;
(b) the drift coefficient satisfies a linear growth condition and is Lipschitz in its second argu-

ment: for some K > 0 it holds that∣∣b0(t, x)
∣∣2 ≤ K

(
1 + |x|2)

, ∀x ∈ R,∣∣b0(t, x) − b0(t, y)
∣∣ ≤ K|x − y|, ∀t ∈ [0,1],∀x, y ∈R;

(c) the dispersion coefficient s0 is Hölder continuous on [0,1] with Hölder constant L and
Hölder exponent λ ∈ (0,1], |s0(u) − s0(v)| ≤ L|u − v|λ for all u, v ∈ [0,1], and is
bounded away from zero and (by continuity also from infinity);

(d) a discrete time sample

Xn = {Xt0,n
, . . . ,Xtn,n}

from the solution X to (1.1) is available, where ti,n = i/n, i = 0, . . . , n. For future refer-
ence, we also define Yi,n = Xti,n − Xti−1,n

.

Under Assumption 1, equation (1.1) admits a unique strong solution, see, for example,
Theorems 2.5 and 2.9 of Section 5.2 in Karatzas and Shreve (1988). The minimal regularity
conditions on the dispersion coefficient s0 in Assumption 1(c) are needed for our asymptotic
statistical theory to work; see Section 3. The sampling scheme in Assumption 1(d) is referred
to as the high-frequency data setting and is a popular asymptotic setup for inference in SDE
models, see, for example, Dette, Podolskij and Vetter (2006), Florens-Zmirou (1993), Genon-
Catalot, Laredo and Picard (1992), Hoffmann (1997), Hoffmann (1999b), Jacod (2000) and
Soulier (1998). Financial data are often of a similar type, see Sabel, Schmidt-Hieber and
Munk (2015). As remarked in Ignatieva and Platen (2012), p. 1334, “while the estimation of a
drift coefficient function is theoretically of major interest in finance, for instance, for portfolio
optimization, it can practically rarely be achieved. It is a fact that accurate estimation of
drift coefficient functions requires considerably longer time series than typically available”.
This example, then, provides an instance of a setting when the assumption T → ∞ cannot
be thought to be reasonably satisfied. Other sampling schemes have been also considered
in the literature on nonparametric inference for SDE models, for example, when the time
horizon T → ∞, but the distance � between observation times stays fixed (the so-called low
frequency data setting; see, for example, Gobet, Hoffmann and Reiß (2004) and Nickl and
Söhl (2017)). Alternatively, one can assume observations are available at times �,2�, . . .,
and consider the case � → 0, T = n� → ∞, see, for example, Hoffmann (1999a) (this is
again referred to as the high-frequency data setting). The question which of the asymptotic
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regimes reasonably applies to a given dataset in practice can be decided only on the case by
case basis.

Our first observation is that under the sampling scheme as in Assumption 1(d), consistent
estimation of the drift coefficient b0 is impossible; see, for example, Mai (2014), p. 919.
Furthermore, in many contexts, for example, when pricing financial derivatives, knowledge of
the drift coefficient is in fact of no interest, whereas the dispersion coefficient is of paramount
importance; see Musiela and Rutkowski (2005). This motivates us to completely ignore the
drift coefficient in our estimation procedure by intentionally misspecifying the model and
acting as if the drift were equal to zero. We will justify this in Section 3. Then the pseudo-
likelihood associated with our observations is Gaussian and is given by

Ln(s) =
n∏

i=1

{
1√

2π
∫ ti,n
ti−1,n

s2(u)du
ψ

(
Yi,n√∫ ti,n

ti−1,n
s2(u)du

)}
, (2.1)

where ψ(u) = exp(−u2/2). Gaussian pseudo-likelihood is a widely used object in statistics,
see, for example, Section 5.2 in Brockwell and Davis (2002), Dimitriou-Fakalou (2014) and
Hualde and Robinson (2011) for some examples. Setting the drift to zero in our setting has a
practical advantage of obtaining a simple and tractable expression for the pseudo-likelihood.

With �n denoting a prior on the dispersion coefficient, provided all the involved quantities
are suitably measurable, Bayes’ theorem gives that the posterior probability of any measur-
able subset S ⊂ S of dispersion coefficients is given by

�n(S | Xt0,n
. . . ,Xtn,n) =

∫
S Ln(s)�n(ds)∫
S Ln(s)�n(ds)

,

where S denotes a space on which the prior �n is defined. From the above display various
point estimates of s0 can be obtained, such as the posterior mean.

It follows from (2.1) that the likelihood depends on the parameter of interest only through
the integrals

∫ ti,n
ti−1,n

s2(u)du and is otherwise ‘blind’ to precise values the diffusion coefficient
takes inside the intervals [ti−1,n, ti,n]. Consequently, it appears natural to a priori model the
diffusion coefficient as piecewise constant on intervals [ti−1,n, ti,n]. However, some smooth-
ing should also be performed, and this can be achieved by aggregated several neighbour-
ing intervals [ti−1,n, ti,n]. Thus, to construct the prior, we proceed as follows: Let m be
an integer smaller than n. Then we can uniquely write n = mN + r with 0 ≤ r < m, and
in fact N = � n

m

. Both m and N will depend on n (and we also write mn and Nn to em-

phasize this when appropriate). With this assumption, we have bins Bk = [tm(k−1),n, tmk,n),
k = 1, . . . ,N −1 and BN = [tm(N−1),n,1]. Note that the length of Bk is then equal to m/n for
k ≤ N − 1, whereas BN has length 1 − tm(N−1),n = r+m

n
< 2m

n
. For notational convenience

later on, we also write

Bk = [ak−1, ak), k = 1, . . . ,N − 1,

BN = [aN−1, aN ].
Let s = ∑Nn

k=1 ξk1Bk
. The prior �n on the dispersion coefficient s is defined by putting a prior

on the coefficients ξk’s. Since

s2 =
Nn∑
k=1

ξ2
k 1Bk

=
Nn∑
k=1

θk1Bk
, (2.2)

where we have put θk = ξ2
k , equivalently one can place the prior on the coefficients θk’s of

the diffusion coefficient s2.
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We call the prior �n a histogram-type prior. Conceptually somewhat similar priors have
already been employed in the nonparametric Bayesian density estimation context, as well
as the Poisson intensity estimation context, see, for example, Scricciolo (2003, 2004, 2007),
Arjas and Heikkinen (1997), Heikkinen and Arjas (1998), Castillo and Nickl (2014), Castillo
and Rousseau (2015) and Giné and Nickl (2011), but our problem is rather different from den-
sity or Poisson intensity estimation and requires the use of many different ideas. In practice,
for example, in financial applications, one can hardly hope to estimate the diffusion coeffi-
cient to a very fine degree of detail, and in that respect using a prior with piecewise constant
realisations does not appear to be unnatural. We note that a practical frequentist approach
to nonparametric volatility estimation in Sabel, Schmidt-Hieber and Munk (2015) likewise
produces piecewise constant estimates. There is yet another practical advantage in using pri-
ors with piecewise constant realisations: financial time series often exhibit jumps, accurate
detection of which is a delicate task. Due to their localised nature, our Bayesian estimates
of the dispersion coefficient are likely to quickly recover from negative effects of a moderate
number of undetected jumps.

If the prior coefficients θ1, . . . , θN are independent and have an inverse gamma IG(α,β)

distribution with parameters α,β > 0, which will henceforth be our assumption, then the
posterior is conjugate, as stated in the next lemma.

Lemma 1. Assume θ1, . . . , θN are independent with the inverse gamma IG(α,β) distribu-
tion. Then θ1, . . . , θN are a posteriori independent and, for k = 1, . . . ,N − 1,

θk | Xn ∼ IG(α + m/2, β + nZk/2).

with

Zk =
km∑

i=(k−1)m+1

Y 2
i,n,

whereas

θN | Xn ∼ IG
(
α + (m + r)/2, β + nZN/2

)
,

with

ZN =
n∑

i=(N−1)m+1

Y 2
i,n.

Proof. Write θ = (θ1, . . . , θN). The likelihood, considered as a function of θ , is given by

Ln(θ) =
n∏

i=1

φ

(
0;Yi,n,

∫ ti

ti−1

s2(u)du

)

∝ θ
−(m+r)/2
N exp

(
−nZN

2θN

) N−1∏
k=1

θ
−m/2
k exp

(
−nZk

2θk

)
.

Here φ(x;μ,σ 2) denotes the density of the normal distribution with mean μ and variance
σ 2 evaluated at point x. As the prior satisfies p(θ1, . . . , θN) ∝ ∏N

k=1 θ
−(α+1)
k e−β/θk , the result

easily follows. �

Posterior computations thus turn out to be elementary with our approach. For instance, the
posterior mean of s2 can be obtained from the posterior means of θk’s. Recall that the IG(α,β)
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distribution has mean β/(α − 1) and variance β2/(α − 1)2(α − 2) (if finite, to which end one
must have α > 2). Then, e.g., for k < N and m ≥ 2, the posterior mean of θk is equal to

E�n(θk | Xn) = β + nZk/2

α + m/2 − 1
. (2.3)

Conceptually the posterior mean of s2 in this context is similar to a regressogram; see,for
example, Examples 4.5 and 5.24 in Wasserman (2006). However, the Bayesian approach
deals with the entire posterior distribution and does not reduce to a point estimate, such as
the posterior mean.

Remark 1. Instead of a histogram-type representation in (2.2), one could have tried to base
the prior on some other series representation for s2. At first sight, for example, splines are a
sensible choice to that end. However, enforcing spline basis functions to have disjoint sup-
ports with endpoints at tn,i ’s does not appear to be a natural procedure, whereas other choices
would not have lead to simple posterior computations as in Lemma 1.

3 Asymptotic theory

3.1 Generalities

A highly desirable property of a Bayesian procedure, in particular from the frequentist point
of view, is that the posterior asymptotically concentrates around the true parameter value.
In fact, studying the rate at which the posterior contracts around the true parameter is sim-
ilar to studying convergence rates of frequentist estimators. Some of by now classical ref-
erences, where general conditions for derivation of posterior contraction rates are given, in-
clude Ghosal, Ghosh and van der Vaart (2000), Ghosal and van der Vaart (2007) and Shen
and Wasserman (2001). However, we will follow a rather different and more direct path of
the proof.

For ε > 0, we denote by

Us0,ε = {
s ∈ Sn : ‖s − s0‖2 < ε

}
the L2-neighbourhood of s0 of radius ε.

In the next proposition, we show that without loss of generality one may assume b0 = 0
in the proofs. This proposition also explains why ignoring the drift in our estimation pro-
cedure by intentionally setting it to zero still leads to consistent Bayesian estimation of s0.
The corresponding theoretical argument relies on an application of Girsanov’s theorem (see,
e.g., Section 3.5 in Karatzas and Shreve (1988)). We would like to stress the fact that given
the simplicity of our prior and intentional misspecification of the likelihood, the possibil-
ity of consistent estimation of s0 with our approach is not obvious and requires a thorough
investigation.

Proposition 1. Let Assumption 1 hold and assume that for εn → 0

E0,s0

[
�n

(
Uc

s0,εn
| Xn

)] → 0

as n → ∞. Then also

Eb,s0

[
�n

(
Uc

s0,εn
| Xn

)] → 0.
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3.2 Posterior contraction rates

As we consider the asymptotics n → ∞, we take the number of bins N to depend on the
sample size n, and indicate this in our notation by writing Nn. Then also m depends on n,
and we write mn to emphasise this dependence.

Assume that Assumption 1 holds for the remainder of this subsection. The following the-
orem shows that posterior contracts at rate n−λ/(2λ+1) in L2.

Theorem 1. Assume Nn � n1/(2λ+1). If we let εn � n−λ/(2λ+1), then for any sequence hn

tending to infinity (as n → ∞) we have

Eb0,s0

[
�n

(∥∥s2 − s2
0
∥∥

2 ≥ hnεn | Xn

)] → 0

as n → ∞.

In the next theorem, we give the posterior contraction rate for the sup-norm.

Theorem 2. Assume Nn � n1/(2λ+1). If we let ε̃n � n−λ/(2λ+2), then for any sequence hn

tending to infinity (as n → ∞) we have

Eb0,s0

[
�n

(
sup

x∈[0,1]
∣∣s2(x) − s2

0(x)
∣∣ ≥ hnε̃n | Xn

)]
→ 0

as n → ∞.

3.3 Discussion

Now we provide some discussion on the obtained theoretical results.

Remark 2. Establishing posterior contraction in the L2-metric is rather natural, as
∫ 1

0 s2
0(t)dt

is the quadratic variation of the process (Xt : t ∈ [0,1]) over the interval [0,1]. It is also the
variance of X1 when the drift coefficient b0 is a deterministic function depending only on
time.

Remark 3. The inequality ∥∥s2 − s2
0
∥∥

2 ≥ κ‖s − s0‖2,

valid for s0 satisfying Assumption 1 (here κ > 0 is a lower bound of s0), implies that the
rate of Theorem 1 is also valid with ‖s − s0‖2. A similar remark applies to the posterior
contraction in Theorem 2.

Remark 4. A comparison with the frequentist minimax convergence rate in Hoffmann
(1997) shows that the posterior for the diffusion coefficient contracts at the optimal rate in the
L2-metric (strictly speaking, the results in the latter paper are given for Bs

p,q -Besov smooth
diffusion coefficients with s > 1, but general arguments for derivation of lower bounds in our
statistical setup are classical and work also in the Hölder setting). With histogram-type priors
considered in this work no further improvement in the posterior contraction rate, when λ = 1,
is possible beyond n−1/3, even if the function s0 is smoother than a Lipschitz function. An
intuitive reason for this is that realisations of our histogram-type priors are too rough for this;
cf. p. 629 in Scricciolo (2007).

Remark 5. There exists an excellent and deep reference on Bayesian inference in misspec-
ified infinite-dimensional models, namely Kleijn and van der Vaart (2006). That paper pro-
vides some additional intuition why our approach is still successful despite the model mis-
specification. Summarised somewhat simplistically, the results from Kleijn and van der Vaart
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(2006) say that the posterior in misspecified statistical models asymptotically concentrates
around that value from the parameter space that is closest to the ‘true’ parameter value in
the sense of the minimal Kullback-Leibler distance between respective probability distribu-
tions. Asymptotically the observation scheme as in Assumption 1(d) is almost as good as
observing the process X continuously over the interval [0,1]. On the other hand, the laws
corresponding to paths (Xt : t ∈ [0,1]) with two different diffusion coefficients are mutually
singular, see Theorem 3.24 in §III.3d, Jacod and Shiryaev (2003), with a consequence that
the corresponding Kullback-Leibler divergence is infinite. Hence, irrespective of the prior
assumptions on the drift coefficient, the posterior for the dispersion coefficient (equivalently,
diffusion coefficient) should concentrate around the ‘true’ dispersion coefficient s0 (equiv-
alently, the true diffusion coefficient s2

0 ), for it is precisely this parameter value that yields
finite Kullback-Leibler divergence between the laws of the ‘true’ and various misspecified
models.

Remark 6. The result in Theorem 2 has to be compared to similar results on estimation
of the volatility (not necessarily a deterministic function of time, as in our paper) in the
L∞-norm. Such results have been obtained in Aït-Sahalia and Jacod (2014), Kanaya and
Kristensen (2016), Kristensen (2010) and Malliavin and Mancino (2009). As observed in
Aït-Sahalia and Jacod (2014), p. 273, ‘near to nothing is known on this topic’. Malliavin and
Mancino (2009) establish consistency of their Fourier-based estimator of volatility, without
deriving its convergence rate. The asymptotics considered in Kanaya and Kristensen (2016)
are different from the one in the present work, which makes a direct comparison difficult.
Finally, Theorem 3.5 in Kristensen (2010) gives a convergence rate of a kernel estimator
of volatility; when translated to our setting, the corresponding optimal convergence rate, up
to a log factor, is n−λ/(2λ+1). This is a faster rate than the rate obtained in our Theorem 2.
However, the suboptimal rate in Theorem 2 is likely to be an artefact of our proof, specifically
a somewhat rough bound employed in the second inequality of (8.5). Unlike our method,
the kernel estimator in Kristensen (2010) suffers from the boundary bias problem, which
necessitates studying its asymptotic properties on a time interval strictly contained in [0, T ].
Remark 7. In Soulier (1998), the following frequentist estimator of s2

0 is introduced,

ŝ2(t) =
n∑

i=1

Kh(t, ti)Y
2
i,n,

where K is a kernel function, a constant h > 0 is a bandwidth, and Kh(s, t) = 1
h
K( t−s

h
)

is a rescaled kernel. Suppose now K is a boxcar kernel, K(u) = (1/2)1|u|≤1, see p. 55 in
Wasserman (2006). Then

ŝ2(t) = 1

2h

∑
i : |t−ti,n|≤h

Y 2
i,n.

A brief reflection shows that for k < N , n large, and h = m/(2n) (half the bin length), ŝ2 is
quite similar to (2.3), the difference being that in that formula averaging occurs over individ-
ual bins, while here one averages locally over observations in a neighbourhood of each time
point t . We note, however, that the asymptotic theory in Soulier (1998) does not cover the
asymptotics of the posterior mean as in (2.3), and also that the regularity conditions of that
paper are different from ours. On the other hand, practical computation of the kernel estima-
tor ŝ2 would typically require from a user some form of data binning, cf. Appendix D.2 in
Wand and Jones (1995), so that from this point of view the posterior mean and the estimator
ŝ2 are closely related.
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Remark 8. We have already pointed out in the introduction that our setup covers more gen-
eral SDE models than those with deterministic dispersion coefficients, see equation (1.2);
this follows from an application of Itô’s formula. Under regularity conditions, a further gen-
eralisation of our results is possible to the case when the dispersion coefficient s0 is in fact a
stochastic process independent of the driving Wiener process in (1.1) (we cite an interesting
example in this context: a widely known stochastic volatility model arising as a diffusion
limit of a GARCH(1,1) process, see Nelson (1990)). Namely, in this case one can simply
follow the Bayesian methodology we described in Section 2 with no further changes, acting
as if the dispersion coefficient were a deterministic function. Despite (yet another) purposeful
misspecification, the resulting Bayesian procedure is consistent. This can be established by
combining arguments in the present paper with the ones similar to those in Kristensen (2010),
that deal with a kernel volatility estimator. Indeed, careful examination shows that one of the
main steps in our proofs is what can be termed a Bayesian bias-variance decomposition,
see the proof of Theorem 1. Both the ‘bias’ and ‘variance’ terms there are analysed using
techniques similar to those employed in for example, kernel regression or density estimation
problems, whence a possibility for further generalisations. Space considerations preclude us
from studying this interesting question in detail in the present work.

4 Bin number selection via DIC

In this section, we describe a method of choosing N that is based on the Deviance Information
Criterion (DIC) of Spiegelhalter et al. (2002); see also Spiegelhalter et al. (2014) and Gelman,
Hwang and Vehtari (2014). Further discussion is given in Section 6.

By M we denote the posterior mean of s2; logLn(M) is our notation for the log-likelihood
evaluated at the posterior mean. Introduce the DIC measure of predictive accuracy,

êlpdDIC = logLn(M) − νDIC,

where “elpd” is an abbreviation for “expected log predictive density” and

νDIC = 2
{
logLn(M) −E�n

(
logLn(s)|Xn

)}
is the effective number of parameters. Straightforward but tedious calculations employing
Lemma 1 and properties of the (inverse) gamma distribution give that

logLn(M) = −n

2
log(2π) − n

2
log

(
T

n

)

− 1

2

N∑
k=1

mk log
(

β + nZk/2

α + mk/2 − 1

)
− n

2T

N∑
k=1

Zk

α + mk/2 − 1

β + nZk/2
,

where mk denotes the number of observations in the bin Bk (with a harmless abuse of nota-
tion) and Zk is as in Lemma 1. By similar calculations,

νDIC = n

T

N∑
k=1

Zk

β + nZk/2
−

N∑
k=1

mk

{
�

(
α + mk

2

)
− log

(
α + mk

2
− 1

)}
,

where � is the digamma function. The formulae simplify even further, when mk = m, k =
1, . . . ,N .

Now the idea consists in evaluating êlpdDIC for a range of values of N , and choosing the
one that maximises êlpdDIC. This aims at optimising the predictive behaviour of the model.
We note that using predictive performance criteria for Bayesian model selection is a well-
established practice in the case of finite-dimensional, parametric models (see, e.g., Gelman,
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Hwang and Vehtari (2014)), but seems to be a new idea in the non-parametric Bayesian set-
ting. DIC in some sense constitutes a Bayesian analogue of Akaike’s AIC, and conceptually
our proposal is similar to employing information criteria for smoothing parameter selection
in the frequentist literature; see, for example, the widely cited work Hurvich, Simonoff and
Tsai (1998). On the computational side, our DIC-based method is very simple to implement
and does not require heavy computations. We test its practical performance in Section 6.

5 Bin number selection via marginal likelihood

In this section, we describe an alternative method of the bin number selection to the one we
discussed in Section 4. This is based on maximising the marginal likelihood

∫
S Ln(s)�n(ds)

as a function of N , which can be viewed as model evidence given the data. Model selection
based on the marginal likelihood (or Bayes factors) is well-established in Bayesian statistics.
See, for example, Wang (2012) for an application to smoothing parameter selection in the
context of smoothing spline regression, which is conceptually related to choosing the bin
number N in our problem. On a more general level, this is nothing else but an instance of a
well-known empirical Bayes method (cf. Gelman et al. (2013), Section 5.1).

Since we identify a piecewise constant diffusion coefficient s2 with its coefficients
θ1, . . . , θN , using a priori independence of θk’s and Fubini’s theorem, the marginal likeli-
hood in our setting can be evaluated as (here mk was defined in Section 4 and is the number
of observations in bin Bk)

MLN(Xn) =
N∏

k=1

{∫
[0,∞)

(
2π

n

)−mk/2 βα

�(α)
θ

−(α+mk/2)−1
k

× exp
(
− 1

θk

(
β + nZk

2

))
dθk

}

∝ βαN

�(α)N

N∏
k=1

�(α + mk/2)

(β + nZk/2)α+mk/2 .

From a numerical point of view, rather than using analytic tools for optimisation, we recom-
mend plotting the values of MLN versus its argument N , and performing graphical maximi-
sation. This results in a computationally simple model selection procedure and we apply it in
practice in Section 6.

6 Simulated data examples

In this section, we use simulations of diffusion processes with known drift and diffusion
coefficient to gain insight into the numerical performance of our method. We are particularly
interested in both the practical consequence of using a pseudo-likelihood ignoring the drift
and the empirical rate of posterior contraction attainable in examples.

In the first subsection, we simulate realisations from the model for different dispersion
and drift coefficients. Given subsamples of those realisations sampled at different rates we
compute the posterior distribution of the dispersion function using the piecewise constant
prior (histogram-type prior) with varying number of bins. As an illustration, plots of marginal
posterior bands are compared with the true dispersion function. The marginal posterior bands
are obtained by computing 1 − α central posterior intervals (see Gelman et al. (2013), p. 33)
separately for the coefficients θk’s using Lemma 1.
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By Proposition 1, assuming that there is no drift still leads to consistent Bayesian estima-
tion of the dispersion coefficient, even if the data are from a diffusion process with nonzero
drift. This is illustrated by our simulation results.

In the second subsection, we use Monte Carlo methods to determine the distribution of the
distance between samples from the posterior distributions and the true dispersion coefficient.
In Theorem 1, we showed that the posterior contraction rate in the L2-norm is optimal for
estimation of Hölder smooth dispersion coefficients of order 0 < λ ≤ 1 for the prior based on
the inverse gamma distribution. The results of the Monte Carlo simulation agree with this.
Furthermore, we numerically determine the rate of posterior convergence in the supremum
norm for two examples. The simulation results in this case are less conclusive, but suggest
that the posterior contraction rate in the L∞-norm in Theorem 2 is possibly suboptimal.

Our analyses were done employing the programming language Julia, see Bezanson et al.
(2017).

6.1 Influence of the drift

For this numerical experiment we simulated sample paths of the diffusion (Xt : t ∈ [0,1])
where the true dispersion coefficient is given by one of

s1(t) = 3/2 + sin
(
2(4t − 2)

) + 2 exp
(−16(4t − 2)2)

,

s2(t) = Wt(ω0) + 1,

and the drift is given by one of

b0(x) = 0,

b1(x) = −10x + 20.

The function s1 is a benchmark function used in Fan and Gijbels (1996) in the context of
nonparametric regression, up to a vertical shift to ensure positivity. To define s2(t), we took
a fixed realisation of a Wiener path starting in 1, with Wt(ω0) > −1 for t ∈ [0,1] (sampled
on an equidistant grid with 800,001 points in [0,1]). The function s1 is Lipschitz continuous,
while s2 is Hölder continuous with coefficient essentially 1

2 .
Specifically, we used the Euler scheme on a grid with 800,001 equidistant points in the

interval [0,1] to obtain a single diffusion path for each combination of drift and dispersion
coefficients given above, which then was subsampled to obtain n = 4000 ·2j +1, j ∈ {1,2,3}
observations each. As the prior on the coefficients on the individual bins we used independent
IG(0.1,0.1) distributions.

Figures 1 and 3 show marginal 98% posterior bands for different combinations of bin
number and observation regime for both dispersion coefficients when the drift is zero. Fig-
ure 2 shows the marginal posterior bands for s1 which are obtained if an affine drift term
b1(x) = −10x + 20 is present, but neglected in the estimation procedure. Comparison with
Figure 1 shows that presence of a strong nonzero drift hardly affects the obtained credible
bands. Note that credible bands successfully recover the overall shape of the functions si ,
although the recovery is not too refined; however, it would be misleading to visually compare
the results obtained in the SDE setting to for example, those obtainable in nonparametric re-
gression, as the latter constitutes a much easier inferential problem. The functions si do not
always pass through all the credible intervals, which is not surprising given the fact that these
intervals are marginal. In general, construction of uniform confidence bands in nonparametric
statistics is a long-studied and difficult problem, see Section 5.7 in Wasserman (2006); for a
general perspective on nonparametric uniform confidence bands see Faraway (2016). Less is
known about frequentist performance of nonparametric Bayesian confidence sets, although
some interesting results have already been obtained in recent years, see, for example, Nickl
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Figure 1 Estimation results for s1 with varying number of observations and bins, no drift. The solid curve is
the true dispersion coefficient while the light blue areas are 98% marginal posterior bands. n is the number of
observations, N is the number of bins.

and Szabó (2016), Szabó, van der Vaart and van Zanten (2015b) and Szabó, van der Vaart and
van Zanten (2015a). We do not address this issue in detail in this paper, but note that posterior
contraction at an optimal rate does not automatically imply ‘good’ frequentist coverage prop-
erties of Bayesian credible sets. Following pp. 130–131 in Wasserman (2006) in a similar
study in the case of histograms employed as nonparametric probability density estimators, in
our case it is arguably more natural to consider performance of Bayesian credible bands at
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Figure 2 Estimation for s1 with varying number of observations and bins and drift b1(x) = −10x + 20. The
solid curve is the true dispersion coefficient while the light red areas are 98% marginal posterior bands. n is the
number of observations, N is the number of bins.

the resolution of the histogram-type priors, that is, for a histogramised version of a dispersion
coefficient s, obtained as

s̄ =
Nn∑
k=1

s̄k1Bk
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Figure 3 Estimation results for s2 with varying number of observations and bins, no drift. The solid curve is
the true dispersion coefficient while the light blue areas are 98% marginal posterior bands. n is the number of
observations, N is the number of bins.

for

s̄k = 1

�k

∫
Bk

s(t)dt, k = 1, . . . ,Nn,

where �k denotes the length of the bin Bk . In a frequentist approach to nonparametric infer-
ence this constitutes an alternative to attempting to get rid of the bias of a nonparametric esti-
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Figure 4 Detail of Figure 1, panels for N = 40 and N = 160, n = 16,001, zoomed-in to show t ∈ [0.2,0.5],
posterior credible bands only, with a histogramised s1 superimposed.

mator for confidence band construction purposes via an artificial device like undersmoothing.
Figure 4 gives a detail of Figure 1 (panels for N = 40 and N = 160, n = 16,001, zoomed-in
to show t ∈ [0.2,0.5], posterior credible bands only) with a histogramised s1 superimposed.
In comparison to Figure 1, the results appear to be visually even more pleasing, with the
Bayesian credible band covering the curve s1 in its entirety in the left panel. This suggests
to give the number of bins Nn an additional interpretation of a resolution at which one is
interested in learning properties of the function s. Obviously, this resolution cannot be made
arbitrarily fine, as this would distort the frequentist consistency property of our nonparamet-
ric Bayesian procedure as expressed in our theoretical results from Section 3. We close this
brief discussion on confidence bands by mentioning the fact that a number of authors have
argued in favour of the so-called average coverage as a more natural concept of coverage of
confidence bands than the uniform confidence bands, see Section 5.8 in Wasserman (2006)
and references therein.

Note that the recovery is somewhat less accurate for function s2, see Figure 3, than for
function s1, see Figure 1. This is in perfect agreement with our theoretical results from Sec-
tion 3, that give a slower posterior contraction rate for less smooth functions.

Our posterior contraction theorems only specify that the optimal number of bins Nn is
proportional to n−β , where the exponent β depends on the smoothness λ of a function to be
estimated. This does not give a directly applicable recipe on how to choose the proportionality
constant. In practice, we recommend to use our theoretical results as guidance and to try
out several choices of the number of bins, cf. Figures 1, 2 and 3. This is not unlike the
scale-space smoothing approach in the frequentist literature, see, for example, Section 5.11
in Wasserman (2006). Furthermore, a useful point of reference in our setup is the number of
non-overlapping neighbouring marginal posterior intervals. Figure 4 shows that if N is too
small to capture adequately the curvature of a dispersion coefficient, neighbouring marginal
posterior credible intervals tend to be disjoint. On the other hand, choosing too many bins
leads to undersmoothing and erratic appearance of marginal credible intervals.

Numerical experiments similar to the above were also performed for other benchmark
functions given in Fan and Gijbels (1996). As the results were similar, they are not reported
here.

We also tested the performance of the procedure for choosing the number of bins as dis-
cussed in Section 4. We considered the case with dispersion coefficient s1, drift b1 and 8001
observations. This corresponds to the leftmost column of Figure 2. We computed êlpdDIC for
N ∈ {5,10,20,40,80,160,320}. The results are in Figure 5, from which it is seen that the
criterion is maximised for N = 40. This corresponds to the bottom left panel of Figure 2. In
Figure 6, we plot the results obtained with the procedure for choosing the number of bins as
discussed in Section 5. Also this procedure suggests N = 40 as an optimal number of bins.
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Figure 5 A log plot of the êlpdDIC-values for estimating the dispersion coefficient s1 versus different bin num-
bers N , n fixed at 8001, with drift b1.

Figure 6 A log plot of suitably scaled and shifted ML-values for estimating the dispersion coefficient s1 versus
different bin numbers N , n fixed at 8001, with drift b1.

6.2 Empirical contraction rates

Of particular interest is the empirical size of the L2- and L∞-balls containing most of the
posterior mass. To assess this, we approximate the distribution of the L2- or L∞-distance
between posterior samples and the truth by sampling from the posterior. We do this for four
different realisations of the model denoted by X(ω1), . . . ,X(ω4). Note that q being the 90%-
quantile of this distribution entails that the L2-ball respective L∞-ball of size q contains 90%
of the posterior mass. To be specific, we employ the following steps four times for each si ,
i = 1,2 and both norms.

1. Simulate the diffusion (Xt(ω))t∈[0,1] with dispersion coefficient si (without drift) on a grid
with 800,001 points in the interval [0,1].

2. Subsample to obtain n = 2500 · 2j + 1, j ∈ {1,2,3,4,5} observations each.
3. Draw k = 1, . . . ,2000 samples S

i,n
k from the posterior using log(Nn) = log 5 + 1

2λi+1 ×
log(n) bins and determine the distance ‖Si,n − si‖2 (respective log(Nn) = log 5 +

1
2λi+1 log(n/ log(n)) bins for ‖Si,n − si‖∞).

4. Determine the 90% quantile qi,n(ω) of the distance samples and plot as function of n.

Figure 7 shows the 90% quantile qi(n) on a log-log scale for the L2-norm for i = 1,2.
The empirical findings for function s1 agree very well with the exponent 1

3 = λ
2λ+1 for λ = 1

obtained in Theorem 1. The function s2 is λ-Hölder smooth for any λ < 1
2 . The empirically

determined exponent is in excellent agreement with the exponent 1
4 = λ

2λ+1 for λ = 1
2 ob-

tained in Theorem 1.
Figure 8 shows the 90% quantile qi(n) for the L∞-norm. The number of bins Nn was

chosen in analogy to nonparametric kernel regression, see Theorem 1.8 in Tsybakov (2009),
as log(Nn) = log 5 + 1

2λi+1 log(n/ log(n)). Here the results are less conclusive than in the
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Figure 7 Estimate of the contraction rate of the size of L2-balls around s covering 90% of posterior probability
mass by sampling (blue); compared with rate (purple). Top: Lipschitz continuous case, example s1. Bottom: Hölder
coefficient essentially 1

2 , example s2.

case of the L2-norm. The empirical findings suggest the rate (n/ logn)
1
3 or similar for s1, and

the rate (n/ logn)
1
4 or similar for s2.

7 Real data examples

In this section, we apply our Bayesian method on two real data examples and study its im-
plications. The daily exchange rates (noon buying rates in New York City for cable transfers
payable in foreign currencies) JPY/USD and USD/GBP from January 1, 1999, to March 20,
2010 are available as data sets DEXJPUS and DEXUSUK from Board of Governors of the
Federal Reserve System (2016). We visualise the data in Figure 9 (time in this and subsequent
figures corresponds to the physical time, with unit being a year).

These exchange rate time series were considered for example, in Hamrick et al. (2011).
Based on discrete time observations assumed to have arisen from the solution of an SDE

dXt = b(Xt)dt + σ(Xt)dWt, X0 = x, t ∈ [0, T ], (7.1)

with space-dependent dispersion coefficient σ , Hamrick et al. (2011) proposed a maximum
penalised quasi-likelihood method to estimate nonparametrically the diffusion coefficient σ 2.

Plots of both series appear to indicate that the data are nonstationary, and this is confirmed
also by the outcomes of the augmented Dickey–Fuller test we performed using urca pack-
age in R, see R Core Team (2017) and Pfaff (2008). The test constitutes a standard unit
root test in time series analysis, see, for example, Chapter 17 in Hamilton (1994) and Sec-
tion 5.3 in Aragon (2011) for additional information. A similar conclusion on nonstationarity
is reached in Hamrick and Taqqu (2009). As stationarity is no prerequisite for application of
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Figure 8 Estimate of the contraction rate of the size of L∞-balls around s covering 90% of posterior proba-
bility mass by sampling (blue); compared with likely rate (purple) and rate of Theorem 2 (green). Top: Lipschitz
continuous case, example s1. Bottom: Hölder coefficient essentially 1

2 , example s2.

our nonparametric Bayesian method, we do not pursue this question any further in the paper.
We retrieved the estimates σ̂ given in Hamrick et al. (2011) from the figures published in
the digital version of the publication using WebPlotDigitizer, see Rohatgi (2015), and next
used them to calculate the induced estimates t �→ ŝ(t) = σ̂ (Xt ) of the historical volatility
at time t . In Figures 10 and 11, we contrast those induced estimates ŝ with 90% marginal
posterior bands for the deterministic dispersion coefficient s0 that were obtained through our
Bayesian procedure. Since nominal exchange rates vary widely with the denomination used,
we employed a non-informative IG(0.001,0.001) prior for coefficients θk’s from Lemma 1.
Our estimation results in Figures 10 and 11 show that the volatility was high in the final years
of the decade 2000–2010, coinciding with the sub-prime mortgage crisis and the following
recession. On the other hand, the model from Hamrick et al. (2011) does not appear to cap-
ture this fact. It is reassuring to see that our method recovers this relevant event from the data.
Based on this observation, we believe that including time-dependence of the volatility into
the model is more appropriate in this example.

A further confirmation of our findings comes from the change-point analysis of the data.
For both the DEXJPUS and DEXUSUK series, a simple estimator for detection of a change-
point in diffusivity of an SDE, see De Gregorio and Iacus (2008) and Section 4.3.1 in Iacus
(2008), that is implemented in R in the sde package (see Iacus (2016)), yields a change-
point in the volatility level before and after 2007, with volatility prior to 2007 being lower.
This is in excellent agreement with findings using our Bayesian method. See Figure 9 below,
where we plot the exchange rate data together with change point estimates, and compare to
Figures 10 and 11. We note, however, that our Bayesian approach yields more, in that the
method from De Gregorio and Iacus (2008) assumes that the volatility is constant before and
after the change-point, which is not what our Bayesian marginal credible sets suggest.
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Figure 9 Daily exchange rates JPY/USD (top) and USD/GBP (bottom) from January 1, 1999 to March 20, 2010.
Change-point estimates are indicated with dashed vertical lines.

Figure 10 90% marginal posterior band for the volatility of DEXJPUS. Plot of t �→ σ̂ (Xt ) as induced by the
estimates in Hamrick et al. (2011).
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Figure 11 90% marginal posterior band for volatility of DEXUSUK. Plot of t �→ σ̂ (Xt ).

8 Proofs

Proof of Proposition 1. By Theorem 6.10 in Höpfner (2014) and our Assumption 1(b)–(c),
the laws Pb0,s0 and P0,s0 of the path (Xt : t ∈ [0,1]) are equivalent, the result that ultimately

relies upon Girsanov’s theorem. Let Z = dPb0,s0
dP0,s0

, and let Zn = dPn
b0,s0

dPn
0,s0

be the density of the

respective laws of Xn. By Theorem 2 on p. 245 in Skorohod (1964) and Corollary 2 on
p. 246 there, Zn = E0,s0(Z | Xn). Then convergence of �n(U

c
s0,εn

| Xn) in P0,s0 -probability
to zero implies that it also converges to zero in Pb0,s0 -probability. Indeed, fix η > 0, let An =
{�n(U

c
s0,εn

| Xn) > η} and let ε > 0. Then

Pb0,s0(An) = E0,s0

[
Zn1An

] = E0,s0

[
E0,s0(Z1An | Xn)

] = E0,s0[Z1An].
Choose δ > 0 such that P0,s0(A) < δ for any event A implies Pb0,s0(A) = E0,s0[Z1A] < ε,
possible in view of Lemma 13.1 in Williams (1991). As eventually P0,s0(A

n) < δ, we have
Pb0,s0(An) < ε. �

Lemma 2. Define

M(x) := E�n

(
s2(x) | Xn

)
,

the posterior mean of s2(x). Assume mn � n2λ/(2λ+1) (equivalently, Nn � n1/(2λ+1)). If we
let εn � m

−1/2
n , i.e. εn � n−λ/(2λ+1), then for any sequence hn tending to infinity we have for
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any fixed x ∈ [0,1]
P0,s0

(∣∣M(x) − s2
0(x)

∣∣ ≥ εnhn

) → 0

as n → ∞.

Proof. Assume x ∈ Bk for some k < N (note that then k = �nx
m


 + 1). The case x ∈ BN

follows later on. We compute

M(x) = E�n(θk | Xn) = β + n
2

∑km
i=(k−1)m+1 Y 2

i,n

α + m/2 − 1

= 2β

2(α − 1) + m
+ n

∑km
i=(k−1)m+1 Y 2

i,n

2(α − 1) + m
.

Note that

E0,s0

[
km∑

i=(k−1)m+1

Y 2
i,n

]
=

∫ tmk

tm(k−1)

s2
0(u)du.

Hence,

b(x) := E0,s0

[
M(x)

] − s2
0(x) = 2β

2(α − 1) + m
+ n

∫ tmk
tm(k−1)

s2
0(u)du

2(α − 1) + m
− s2

0(x).

We consider

n
∫ tmk
tm(k−1)

s2
0(u)du

2(α − 1) + m
− s2

0(x) = n
∫ tmk
tm(k−1)

s2
0(u)du

2(α − 1) + m
− n

m

∫ tmk

tm(k−1)

s2
0(x)du

= n

m + 2(α − 1)

∫ tmk

tm(k−1)

(
s2

0(u) − s2
0(x)

)
du − 2(α − 1)s2

0(x)

m + 2(α − 1)
.

As s0 is bounded from above by some constant K > 0, the last term is of order 1
m

. We continue
with the integral expression. By Hölder continuity of s0, it follows that |s2

0(u) − s2
0(v)| ≤

2KL|u − v|λ. Using the sharp bound (attained at x = tm(k−1) and x = tmk)∫ tmk

tm(k−1)

|u − x|λ du ≤ 1

λ + 1

(
m

n

)λ+1
,

we get the order bound (uniformly in x ∈ Bk)

∣∣b(x)
∣∣ ≤ O

(
1

m

)
+ O

(
n

m

(
m

n

)λ+1)
= O

(
1

m

)
+ O

(
m

n

)λ

.

For the variance, we obtain (using that Yi,n and Yj,n are independent for i �= j )

Var0,s0

[
M(x)

] =
(

n

2(α − 1) + m

)2 km∑
i=(k−1)m+1

Var0,s0

[
Y 2

i,n

]

=
(

n

2(α − 1) + m

)2
2

km∑
i=(k−1)m+1

(∫ ti

ti−1

s2
0(u)du

)2

≤ CαK4 1

m
= O

(
1

m

)
,
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for a positive constant Cα , uniformly for x ∈ Bk . Balancing bias and standard deviation yields
the order equality

O

(
1

m

)
+ O

(
m

n

)λ

= O

(
1√
m

)
,

or

O(1) + O

(
mλ+1

nλ

)
= O(

√
m),

which gives mλ+1/2 � nλ, so that

m � n
2λ

2λ+1 . (8.1)

A similar analysis holds for x ∈ BN . We highlight the main steps for this case. For instance,
we now get

M(x) = E�n(θN |Xn) = 2β

2(α − 1) + m + r
+ nZN

2(α − 1) + m + r
,

and

E0,s0[ZN ] =
∫ 1

tm(N−1)

s2
0(u)du.

This results in the bias

b(x) = O

(
1

m

)
+ O

(
m + r

n

)λ

= O

(
1

m

)
+ O

(
m

n

)λ

,

as 0 ≤ r < m. Similarly, we get

Var0,s0

[
M(x)

] = O

(
1

m + r

)
,

which is, using again 0 ≤ r < m, of order O( 1
m

). Hence, balancing gives the same order

relation m � n
2λ

2λ+1 as for the case k < N in (8.1).
With the above choice for m we obtain, for any x ∈ [0,1], for the mean squared error that

E0,s0

[(
M(x) − s2

0(x)
)2] � n− 2λ

2λ+1 .

Hence, upon taking εn � n− λ
2λ+1 , the result follows from Chebyshev’s inequality:

P0,s0

(∣∣M(x) − s2
0(x)

)∣∣ ≥ εnhn) ≤ E0,s0[(M(x) − s2
0(x))2]

ε2
nh

2
n

� 1

h2
n

→ 0

as n → ∞. �

Corollary 1. Under the assumptions of Lemma 2, we have

E0,s0

[∥∥M − s2
0
∥∥2

2

] � ε2
n,

where ‖ · ‖2 is the L2-norm on [0,1].
Proof. Simply note that

E0,s0

[‖M − s0‖2
2
] =

∫ 1

0
E0,s0

[∣∣M(x) − s0(x)
∣∣2]

dx

=
Nn∑
k=1

∫
Bk

E0,s0

[∣∣M(x) − s0(x)
∣∣2]

dx,
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and apply the bounds derived in the proof of Lemma 2 on each bin Bk separately, 1 ≤ k ≤
Nn. �

Proof of Theorem 1. First assume b0 ≡ 0. By Chebyshev’s inequality, one has

E0,s0

[
�n

(∥∥s2 − s2
0
∥∥

2 ≥ hnεn | Xn

)]
≤ (hnεn)

−2
E0,s0

[
E�n

(∥∥s2 − s2
0
∥∥2

2 | Xn

)]
. (8.2)

The bias-variance decomposition gives

E0,s0

[
E�n

(∥∥s2 − s2
0
∥∥2

2|Xn

)]
= E0,s0

[∥∥M − s2
0
∥∥2

2

] +
Nn∑
k=1

∫
Bk

E0,s0

[
Var�n

(
s2(x) | Xn

)]
dx.

The behaviour of the first term on the right-hand side was derived in the proof of Lemma 2.
For the second term, we consider x ∈ Bk for k < N . As in the proof of Lemma 2, the case
x ∈ BN is similar. We obtain

Var�n

(
s2(x)|Xn

) = Var�n(θk|Xn) = (β + nZk/2)2

(α + m/2 − 1)2(α + m/2 − 2)

= O

(
1

m3

)
+ O

(
n2

m3

)
Z2

k . (8.3)

By Assumption 1(c), s0 is bounded by a positive constant K. We have

E0,s0

[
Z2

k

] = Var0,s0[Zk] + (
E0,s0[Zk])2

=
km∑

i=(k−1)m+1

Var0,s0

[
Y 2

i,n

] +
(∫

Bk

s2
0(u)du

)2

≤ 2
km∑

i=(k−1)m+1

(∫ ti

ti−1

s2(u)du

)2
+

(
m

n

)2
K4

≤ 2
km∑

i=(k−1)m+1

K4n−2 +
(

m

n

)2
K4

= O

(
m

n2

)
+ O

(
m

n

)2
= O

(
m

n

)2
.

This implies

E0,s0

[
Var�n

(
s2(x)|Xn

)] = O

(
1

m3

)
+ O

(
n2

m3

m2

n2

)
= O

(
1

m

)
.

Combining the above order bounds then yields

E0,s0

[
E�n

(∥∥s2 − s2
0
∥∥2|Xn

)] =
[
O

(
1

m

)
+ O

(
m

n

)λ]2
+ O

(
1

m

)
.

Balancing these terms was already done in the proof of Lemma 2, and gives the value for m

depending on n as in display (8.1). This implies the stated result for b0 ≡ 0. Proposition 1
implies the result is not only true for b0 ≡ 0, but in general. �
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Proof of Theorem 2. We first prove

E0,s0

[
sup

x∈[0,1]
∣∣M(x) − s2

0(x)
∣∣] � ε̃n. (8.4)

For that, we first consider a selected bin Bk for k < N (the analysis on BN would yield
the same order estimates) and supx∈Bk

|M(x) − s2
0(x)|. Note that for x ∈ Bk one has that

M(x) does not explicitly depend on x, being equal to E0,s0(θk|Xn). We thus occasionally
write M(x) = Mk , whenever this is convenient. For any x ∈ Bk one has, recalling b(x) =
E0,s0[M(x)] − s2

0(x),∣∣M(x) − s2
0(x)

∣∣2 ≤ 2
∣∣M(x) −E0,s0

[
M(x)

]∣∣2 + 2
∣∣E0,s0

[
M(x)

] − s2
0(x)

∣∣2
= 2

∣∣Mk −E0,s0[Mk]
∣∣2 + 2

∣∣b(x)
∣∣2,

and hence

sup
x∈Bk

∣∣M(x) − s2
0(x)

∣∣2 ≤ 2
∣∣Mk −E0,s0[Mk]

∣∣2 + 2 sup
x∈Bk

∣∣b(x)
∣∣2.

Turning to supx∈[0,1] |M(x) − s2
0(x)|, we obtain from the above that

sup
x∈[0,1]

∣∣M(x) − s2
0(x)

∣∣2 = sup
k

sup
x∈Bk

∣∣M(x) − s2
0(x)

∣∣2
≤ 2 sup

k

∣∣Mk −E0,s0[Mk]
∣∣2 + 2 sup

k

sup
x∈Bk

∣∣b(x)
∣∣2

≤ 2
∑
k

∣∣Mk −E0,s0[Mk]
∣∣2 + 2 sup

k

sup
x∈Bk

∣∣b(x)
∣∣2, (8.5)

and therefore

E0,s0

[
sup

x∈[0,1]
∣∣M(x) − s2

0(x)
∣∣2]

≤ 2
∑
k

Var0,s0[Mk] + 2 sup
k

sup
x∈Bk

∣∣b(x)
∣∣2.

Note that in the proof of Lemma 2, we obtained the uniform order bounds, not depending on
x and k, b(x) = O( 1

m
) + O(m

n
)λ and Var0,s0[M(x)] = O( 1

m
). It follows that

E0,s0

[
sup

x∈[0,1]
∣∣M(x) − s2

0(x)
∣∣2]

≤ NnO

(
1

m

)
+

(
O

(
1

m

)
+ O

(
m

n

)λ)2

≤ O

(
n

m2

)
+

(
O

(
1

m

)
+ O

(
m

n

)λ)2
.

Balancing of the two summands, using m = O(nα), is obtained for α = 2λ+1
2λ+2 . This results in

E0,s0

[
sup

x∈[0,1]
∣∣M(x) − s2

0(x)
∣∣2]

= O
(
n− λ

λ+1
)
,

so that

E0,s0

[
sup

x∈[0,1]
∣∣M(x) − s2

0(x)
∣∣] = O

(
n− λ

2λ+2
)
,

which completes the proof of (8.4). The proof of the second statement of the theorem follows
upon combining elements from the proofs of Theorems 1 and of this result.

Proposition 1 implies the result is not only true for b0 ≡ 0, but in general. �
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Appendix

In this appendix, we present an alternative asymptotic frequentist analysis of our Bayesian
procedure. A principal difference with the one in the main text is that our prior on the coeffi-
cients θk’s is not bound to be inverse gamma. On the downside, the L2-posterior contraction
rate we obtain is slower than that in Theorem 1. This is due to the fact that in our arguments
we cannot rely on the conjugacy of the inverse gamma prior anymore.

Definition 1. Let Sn denote a set of dispersion coefficients s : [0,1] → [κ,K], that are piece-
wise constant on the bins Bk :

s =
Nn∑
k=1

ξk1Bk
. (A.1)

The prior �n on the dispersion coefficient s is defined by putting a prior on the coefficients
ξk’s.

s2 =
Nn∑
k=1

ξ2
k 1Bk

=
Nn∑
k=1

θk1Bk
,

where we have set θk = ξ2
k .

A.1 General contraction rate

Theorem 3. Let Assumption 1 hold with bounds 0 < κ ≤ s0(t) ≤ K < ∞ for all t ∈ [0,1].
Assume the prior �n is defined as the law of a random function s from (A.1), where the
random variables κ ≤ ξk ≤ K, k = 1, . . . ,Nn, are independent and identically distributed
with a density that is bounded away from zero on the interval [κ,K]. Then for any sequence
mn � n1−α , equivalently Nn � nα , with α ∈ [1

2 ,1 − λ
2 ], there exists a constant M̃ > 0, such

that for εn = M̃n−β logγ n with β = λ
4 and arbitrary γ > 1,

Eb0,s0

[
�n

(
Uc

s0,εn
|Xn

)] → 0 (A.2)

as n → ∞.

The essential term determining the posterior contraction rate is n−β . Here β depends on
λ in an increasing way: a smoother function s0 allows for a faster contraction rate. The opti-
mality of the choice of α, the exponent β and the condition γ > 1, at least within the context
of our proof, is elaborated in Remark 11 on page 575. The best possible rate obtainable from
Theorem 3 is achieved for λ = 1 and is (essentially) n−1/4. The possibility that the posterior
contraction rate for arbitrary priors is in fact faster than the one given in Theorem 3 cannot be
discarded: although our proofs for this general result use intricate technical arguments, they
still might be not sharp enough.

Remark 9. The statement of Theorem 3 is in some respect similar to that of Theorem 1 in
Gugushvili and Spreij (2016). Significant differences are that Gugushvili and Spreij (2016)
choose a different prior and assume that the function s0 is differentiable; cf. our remarks in
the introduction to the paper. Not only does this amount to difference in statements, but also
proofs in the present paper are more involved than the ones in Gugushvili and Spreij (2016).
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Remark 10. The inequality

‖s − s0‖2 ≥ 1

2K
∥∥s2 − s2

0
∥∥

2,

valid for s ∈ Sn and s0 satisfying Assumption 1, together with Theorem 3 implies that also
the posterior for the diffusion coefficient s2

0 contracts around the truth with the rate εn given
in that theorem.

A.2 Proof of Theorem 3

Some of by now classical references, where general conditions for derivation of posterior
contraction rates are given, include Ghosal, Ghosh and van der Vaart (2000), Ghosal and van
der Vaart (2007) and Shen and Wasserman (2001). The proof of Theorem 3 follows the same
roadmap as these papers, however without appealing directly to their results, as our statistical
setup is somewhat different from the ones covered by those papers. In particular, note that the
distribution of the observations Xti,n’s depends on the index n, which is not covered by the
results in the above-mentioned references.

We first introduce some notation and definitions: pi,n,s and pi,n,0 will be the densities
of increments Yi,n = Xti,n − Xti−1,n

under the parameter values s and s0, with drift equal to
b0 = 0 in both cases. The notation Zi,n,s(Yi,n) = log(pi,n,s(Yi,n)/pi,n,0(Yi,n)) will stand for
the log-likelihood ratio corresponding to a single observation Yi,n. Rn(s) = Ln(s)/Ln(s0)

will denote the likelihood ratio. Furthermore, in line with the notation in van de Geer (2000),
we let

zi = ti−1,n, Wi = 1 − Y 2
i,n∫ ti,n

ti−1,n
s2

0(u)du
,

fs(z) =
∫ z+1/n
z [s2

0(u) − s2(u)]du∫ z+1/n
z s2(u)du

.

Under the parameter pair (0, s0), the random variables Wi’s are i.i.d. with zero mean and
variance equal to two. Since their distributions do not depend on n, we take the liberty to
omit an extra index n in our notation. For notational simplicity, we also omit an extra index
n in zi ’s and fs , though, strictly speaking, it is still required there.

Proof of Theorem 3. As in the proofs of results from the main body of the paper, we may
assume b0 = 0: the statement for a general b0 follows from this particular case, see Proposi-
tion 1. The general structure of the proof is similar to the one of Theorem 1 in Gugushvili and
Spreij (2016) and ultimately Ghosal, Ghosh and van der Vaart (2000) and Shen and Wasser-
man (2001), but many details differ, as evidenced in particular by the proofs of the lemmas
in Appendix A.3.

Write

�n

(
Uc

s0,εn
| Xt0,n

, . . . ,Xtn,n

) =
∫
Uc

s0,εn
Rn(s)�(ds)∫

S Rn(s)�n(ds)
= Nn

Dn

.

Let ε > 0. For any events En and Fn we have

P0,s0

(Nn

Dn

> ε

)
≤ P0,s0

({Nn

Dn

> ε

}
∩ En ∩ Fn

)
+ P0,s0

(
Ec

n

) + P0,s0

(
Fc

n

)
, (A.3)

which we shall use for suitably chosen En and Fn having the property P0,s0(E
c
n) → 0 and

P0,s0(F
c
n ) → 0.
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Denote Sn(s) = n−1 logRn(s) and note that Dn = ∫
Sn

exp(nSn(s))�n(ds). As in
Gugushvili and Spreij (2016), we write

Sn(s) = 1

2

1

n

n∑
i=1

Wifs(zi) + 1

2

1

n

n∑
i=1

[
log

(
1 + fs(zi)

) − fs(zi)
]
.

Below and in Appendix A.3 we need, for arbitrary ε > 0, the neighbourhoods Vs0,ε = {s ∈
S : ‖s − s0‖∞ < ε}, where ‖ · ‖∞ is the usual L∞-norm. We will use these for ε = ε̃n �
n−β logγ n. We have the following lower bound on Dn,

Dn ≥
∫
Vs0 ,̃εn

Rn(s)�n(ds) ≥ inf
s∈Vs0 ,̃εn

Rn(s) × �n(Vs0 ,̃εn).

Let

En =
{

sup
s∈Vs0 ,̃εn

∣∣∣∣∣1

n

n∑
i=1

Wifs(zi)

∣∣∣∣∣ ≤ δn

}
,

with δn = ε̃2
n. Lemmas 4 and 6 from Appendix A.3 yield that on En one has

inf
s∈Vs0 ,̃εn

Rn(s) ≥ exp

(
−2K2

κ4 ñε2
n − n

2
sup

s∈Vs0 ,̃εn

∣∣∣∣∣1

n

n∑
i=1

Wifs(zi)

∣∣∣∣∣
)

≥ exp
(
−2K2

κ4 ñε2
n − ñε2

n

2

)
,

whereas P0,s0(E
c
n) → 0. Hence on En we have, using the prior mass result of Lemma 3,

Dn ≥ exp
(
−

(
2K2

κ4 + 1

2
+ C

)
ñε2

n

)
.

Next, we consider Nn, for which we have the trivial upper bound

Nn ≤ sup
Uc

s0,εn

Rn(s).

Let

Fn =
{

sup
s∈Uc

s0,εn

Rn(s) ≤ exp
(−c1nε2

n

)}
,

with εn � n−β logγ n and the constant c1 > 0 as in Lemma 8. According to the latter lemma,
we have P0,s0(F

c
n ) → 0. Putting the above results together, we obtain on En ∩Fn the inequal-

ity

Nn

Dn

≤ exp
((

2K2

κ4 + 1

2
+ C

)
ñε2

n − c1nε2
n

)
.

Taking εn = M̃ε̃n, with M̃ > 0 large enough, gives a positive constant M for which on En ∩
Fn the inequality

Nn

Dn

≤ exp
(−Mñε2

n

)
holds. It follows that

P0,s0

({Nn

Dn

> ε

}
∩ En ∩ Fn

)
= 0
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for all large n. We then obtain from (A.3) that

�n

(
Uc

s0,εn
|Xn

) Pb0,s0−−−→ 0.

The assertion of the theorem now follows from this and the dominated convergence theorem.
The optimal choice for β in εn � n−β logγ n, as well as of α in Nn � nα , is a consequence of
a discussion in Remark 11. �

A.3 Proofs of the remaining technical results

We use the following notation: Mε will denote the smallest positive integer, such that
2Mεε2 ≥ 4K2. Note that this definition implies 2Mεε2 ≤ 8K2, so that Mε � log2(1/ε) for
ε → 0. We also define sets Aj,ε = {s ∈ S : 2j ε2 ≤ ‖s − s0‖2

2 < 2j+1ε2} and Bj,ε = {s ∈ S :
‖s −s0‖2

2 < 2j+1ε2} for j = 0,1, . . . ,Mε . The measure Qn will be the uniform discrete prob-
ability measure on points zi’s, while ‖ · ‖Qn will denote the L2(Qn)-norm. In this appendix,
we use these sets for ε = ε̃n � n−β logγ n.

The next lemma verifies the prior mass condition in the proof of our main theorem. This
corresponds, roughly speaking, to for example, condition (2.4) in Theorem 2.1 of Ghosal,
Ghosh and van der Vaart (2000). This prior mass condition is crucial in establishing posterior
contraction rates and we refer to Ghosal, Ghosh and van der Vaart (2000) for an additional
discussion on it. Note that in Gugushvili and Spreij (2016) this condition is verified for an-
other, somewhat artificial, prior.

Lemma 3. Under the conditions of Theorem 3, the prior �n satisfies

�n(Vs0 ,̃εn) � e−Cñε2
n (A.4)

for some constant C > 0.

Proof. Since ξk’s are independent, we have

�n(Vs0 ,̃εn) = �n

(
Nn⋂
k=1

{
sup
x∈Bk

∣∣s(x) − s0(x)
∣∣ < ε̃n

})

=
Nn∏
k=1

�n

(
sup
x∈Bk

∣∣s(x) − s0(x)
∣∣ < ε̃n

)

=
Nn∏
k=1

�n

(
sup
x∈Bk

∣∣ξk − s0(x)
∣∣ < ε̃n

)
.

Now, since s0 is Hölder continuous and Bk is of length at most 2mn/n, we have

s0(x) = s0(ak−1) + O

(
mn

n

)λ

, x ∈ Bk,

where the order term is uniform in x ∈ [0,1]. Remember also that by our conditions(
mn

n

)λ

� ε̃n. (A.5)

Then for all n large enough and all k,

�n

(
sup
x∈Bk

∣∣ξk − s0(x)
∣∣ < ε̃n

)
≥ �n

(∣∣ξk − s0(ak−1)
∣∣ <

ε̃n

2

)
≥ const · ε̃n,
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where const > 0 is some constant independent of k and n, and the last inequality comes from
the fact that ξk has a density bounded away from zero on [κ,K]. It then follows that

�n(Vs0 ,̃εn) ≥ (const · ε̃n)
Nn

= eNn log(const·̃εn).

We want to show existence of a constant C > 0, such that for all n large enough,

Nn log(const · ε̃n) ≥ −Cñε2
n.

But this is immediate from our conditions on Nn (equivalently, mn) and ε̃n, e.g. for C = 1.
The proof of the lemma is completed. �

The following lemma is an analogue of Lemma A.2 in Gugushvili and Spreij (2016). The
statement is slightly different, and so is the proof.

Lemma 4. Let the conditions of Theorem 3 hold and let s ∈ Vs0 ,̃εn . Then, uniformly in s,

1

2

1

n

n∑
i=1

{
log

(
1 + fs(zi)

) − fs(zi)
} ≥ −2K2

κ4 ε̃2
n.

Proof. As in the proof in Gugushvili and Spreij (2016), one derives

1

2

1

n

n∑
i=1

{
log

(
1 + fs(zi)

) − fs(zi)
} ≥ − 1

2n

n∑
i=1

f 2
s (zi). (A.6)

Using the Cauchy–Schwarz inequality, the bounds on s and the fact that s ∈ Vs0 ,̃εn , one gets

f 2
s (zi) =

(∫ z+1/n
z [s2

0(u) − s2(u)]du∫ z+1/n
z s2(u)du

)2
≤

1
n

∫ z+1/n
z [s2

0(u) − s2(u)]2 du

κ4/n2

≤
4K2

n

∫ z+1/n
z [s0(u) − s(u)]2 du

κ4/n2 ≤ 4K2ε̃2
n

κ4 .

The result follows by inserting the latter upper bound into (A.6). �

Lemma 6 below is a more precise version of Lemma A.1 in Gugushvili and Spreij (2016).
Its proof is similar in general terms, but differs substantially in the entropy estimates used, as
well as some other arguments. In its proof and that of Lemma 7, we will need the following
lemma.

Lemma 5. Let g : [0,∞) → R be Hölder continuous of order λ > 0 and Hölder constant
L > 0. Then ∣∣∣∣∫ z+h

z
g(u)du − hg(z)

∣∣∣∣ ≤ Lh1+λ

1 + λ
.

Furthermore, if zi = i
n

, for i = 1, . . . , n, then∣∣∣∣∣
∫ 1

0
g(u)du − 1

n

n∑
i=1

g(zi)

∣∣∣∣∣ ≤ L

(1 + λ)nλ
.
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Proof. For the first statement, we consider∣∣∣∣∫ z+h

z
g(u)du − hg(z)

∣∣∣∣ =
∣∣∣∣∫ z+h

z

(
g(u) − g(z)

)
du

∣∣∣∣
≤

∫ z+h

z

∣∣g(u) − g(z)
∣∣ du

≤
∫ z+h

z
L(u − z)λ du = Lh1+λ

1 + λ
.

For the second one we have, using the first part,∣∣∣∣∣
∫ 1

0
g(u)du − 1

n

n∑
i=1

g(zi)

∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

∫ i
n

i−1
n

(
g(u) − g(zi)

)
du

∣∣∣∣∣
≤

n∑
i=1

∣∣∣∣∫ i
n

i−1
n

(
g(u) − g(zi)

)
du

∣∣∣∣
≤ L

(1 + λ)nλ
.

The proof is completed. �

Lemma 6. Let the conditions of Theorem 3 hold and assume b0 = 0. Then

P0,s0

(
sup

fs∈Fs0 ,̃εn

∣∣∣∣∣1

n

n∑
i=1

Wifs(zi)

∣∣∣∣∣ ≥ δn

)
� 1

nλε̃2
n

,

where Fs0 ,̃εn = {fs : ‖s − s0‖∞ < ε̃n} = {fs : s ∈ Vs0 ,̃εn}, and δn is an arbitrary sequence of
positive numbers, such that δn � ε̃2

n. In particular, as n → ∞, the probability on the left-hand
side of the above display converges to zero.

Proof. Introduce

gs(z) = s2
0(z) − s2(z)

s2(z)
, Gs0 ,̃εn = {

gs : ‖s − s0‖∞ < ε̃n

}
.

The function gs approximates fs in the following sense:∣∣fs(zi) − gs(zi)
∣∣ ≤ 2KL

κ2nλ
, i = 1, . . . , n, (A.7)

which can be seen as follows. Every interval [zi, zi + 1/n) is contained in some bin Bk ,
so that s2 is constant on [zi, zi + 1/n). Hence, one obtains fs(zi) = n

∫ zi+1/n
zi

gs(u)du. It
follows from Definition 1 and boundedness and Hölder continuity of s0 in Assumption 1 that∣∣gs(u) − gs(v)

∣∣ ≤ 2KL

κ2 |u − v|λ.
Hence, equation (A.7) follows from Lemma 5. Note that the right-hand side of (A.7) is uni-
form in s.

Let

ρn = 2KL

κ2n1+λ

n∑
i=1

|Wi |.
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Then

sup
fs∈Fs0 ,̃εn

∣∣∣∣∣1

n

n∑
i=1

Wifs(zi)

∣∣∣∣∣ ≤ sup
gs∈Gs0 ,̃εn

∣∣∣∣∣1

n

n∑
i=1

Wigs(zi)

∣∣∣∣∣ + ρn.

Hence,

P0,s0

(
sup

fs∈Fs0 ,̃εn

∣∣∣∣∣1

n

n∑
i=1

Wifs(zi)

∣∣∣∣∣ ≥ δn

)

≤ P0,s0

(
sup

gs∈Gs0 ,̃εn

∣∣∣∣∣1

n

n∑
i=1

Wigs(zi)

∣∣∣∣∣ + ρn ≥ δn

)

≤ P0,s0

(
sup

gs∈Gs0 ,̃εn

∣∣∣∣∣1

n

n∑
i=1

Wigs(zi)

∣∣∣∣∣ ≥ δn/2

)
+ P0,s0(ρn ≥ δn/2).

The Markov inequality gives

P0,s0(ρn ≥ δn/2) � 1

nλδn

= 1

nλε̃2
n

.

Therefore, in order to prove the lemma, it is enough to show that

P0,s0

(
sup

gs∈Gs0 ,̃εn

∣∣∣∣∣1

n

n∑
i=1

Wigs(zi)

∣∣∣∣∣ ≥ δn

)
� 1

nλε̃2
n

. (A.8)

We will apply Corollary 8.8 from van de Geer (2000) to show that (A.8) holds true, since the
assertion of that corollary, inequality (8.30), implies that

P0,s0

(
sup

gs∈Gs0 ,̃εn

∣∣∣∣∣1

n

n∑
i=1

Wigs(zi)

∣∣∣∣∣ ≥ δn

)
≤ c̃1 exp

(−c̃2ñε2
n

)
, (A.9)

for some positive constants c̃1, c̃2. The right-hand side of the above display is asymptotically
much smaller than 1/(nλε̃2

n).
Application of the mentioned corollary amounts to verification of formulae (8.23)–(8.29)

in van de Geer (2000). Exactly as in Gugushvili and Spreij (2016), conditions (8.23)–(8.27),
(8.29) can be satisfied by choosing Rn = 2Kε̃n/κ

2, K1 = 3, σ 2
0 = 2E0,s0[W2

i e|Wi |/3], K2 =
2Kε̃n/κ

2, C1 = 3, K = 4K1K2, and C0 = 2C, with C a universal constant as in Corollary 8.8
in van de Geer (2000). Finally, we need to verify formula (8.28) in van de Geer (2000),

√
nδn ≥ C0

(∫ √
2Rnσ0

δn/26
H

1/2
B

(
u√
2σ0

,Gs0 ,̃εn ,Qn

)
du ∨ √

2Rnσ0

)
. (A.10)

Here HB(δ,Gs0 ,̃εn,Qn) is the δ-entropy with bracketing of Gs0 ,̃εn for the L2(Qn)-metric (see
Definition 2.2 in van de Geer (2000)).

First of all, note that
√

nδn � √
ñε2

n � Rn � ε̃n,

holds, since we have ñε2
n → ∞. Thus it suffices to show

√
nδn ≥ C0

∫ √
2Rnσ0

δn/26
H

1/2
B

(
u√
2σ0

,Gs0 ,̃εn ,Qn

)
du.

In order to do this, we will upper bound the right-hand side by first upper bounding the
integrand with a manageable and simple expression, and thereby we obtain a bound on the
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integral itself. We will use H∞, the entropy for the supremum norm (see Definition 2.3 in
van de Geer (2000)) and the inequality HB(δ,G,Q) ≤ H∞(δ/2,G), valid for any collection
of functions G and a probability measure Q, see Lemma 2.1 in van de Geer (2000), to obtain∫ √

2Rnσ0

δn/26
H

1/2
B

(
u√
2σ0

,Gs0 ,̃εn ,Qn

)
du

≤
∫ √

2Rnσ0

δn/26
H 1/2∞

(
u

2
√

2σ0
,Gs0 ,̃εn

)
du

= 2
√

2σ0

∫ Rn/2−δn/(27
√

2σ0)

0
H 1/2∞

(
u + δn

27
√

2σ0
,Gs0 ,̃εn

)
du

≤ 2
√

2σ0

∫ Rn

0
H 1/2∞

(
u + δn

27
√

2σ0
,Gs0 ,̃εn

)
du.

We will now estimate the entropy in the last integral in the above display. Suppose u > 0 is
fixed. For every g ∈ Gs0 ,̃εn construct an approximating function

g̃ =
Nn∑
k=1

u

⌊
g(ak−1)

u

⌋
1Bk

.

The quality of approximation can be assessed as follows: we have

‖g − g̃‖∞ = max
k

∥∥(g − g̃)1Bk

∥∥∞

= max
k

sup
x∈Bk

∣∣∣∣g(x) − g(ak−1) + u
g(ak−1)

u
− u

⌊
g(ak−1)

u

⌋∣∣∣∣
≤ max

k
sup
x∈Bk

∣∣g(x) − g(ak−1)
∣∣ + u.

Since s2 is constant on Bk and s2
0 is Hölder, while Bk is of length at most 2mn/n, we have

sup
x∈Bk

∣∣g(x) − g(ak−1)
∣∣ = sup

x∈Bk

∣∣∣∣s2
0(x) − s2

0(ak−1)

s2(ak−1)

∣∣∣∣
≤ 2KL

κ2

(
2mn

n

)λ

,

so that

‖g − g̃‖∞ ≤ u + 2KL

κ2

(
2mn

n

)λ

. (A.11)

According to our assumptions, (
mn

n

)λ

� δn, (A.12)

and hence for any pair of positive constants A and B one eventually has

A

(
2mn

n

)λ

≤ Bδn.

This implies that for all n large enough,

H 1/2∞
(
u + δn

27
√

2σ0
,Gs0 ,̃εn

)
≤ H 1/2∞

(
u + 2KL

κ2

(
2mn

n

)λ

,Gs0 ,̃εn

)
.
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The entropy on the right-hand side of the above display can be estimated by bounding the
corresponding covering number of Gs0 ,̃εn , which can be achieved by counting the number of
different g̃’s. In fact, as we shall see below, although Gs0 ,̃εn is an infinite set, the number of
different g̃’s is finite and can by easily estimated from above.

First, recall that ‖g‖∞ ≤ (2K/κ2)̃εn for g ∈ Gs0 ,̃εn . This implies that there are at most⌊
4K
κ2

ε̃n

u

⌋
+ 1

possible values for g̃(a0). Next, by the triangle inequality and (A.11),∣∣g̃(ak) − g̃(ak−1)
∣∣ ≤ ∣∣g̃(ak) − g(ak)

∣∣ + ∣∣g(ak) − g(ak−1)
∣∣ + ∣∣g̃(ak−1) − g(ak−1)

∣∣
≤ 2u + 4K

κ2 L

(
2mn

n

)λ

+ 2‖g‖∞.

Thus, once g̃(ak−1) has been determined, g̃(ak) can take at most⌊
1

u

(
4u + 8K

κ2 L

(
2mn

n

)λ

+ 4‖g‖∞
)⌋

+ 1

values. Therefore, in total there can be at most(⌊
4K
κ2

ε̃n

u

⌋
+ 1

)(⌊
4 + 8K

κ2

L

u

(
2mn

n

)λ

+ 8K
κ2

ε̃n

u

⌋
+ 1

)Nn−1

different g̃’s, which yields an upper bound on the covering number of the set Gs0 ,̃εn . Using
(A.12), for large n, the logarithm of the above display is bounded by

Nn log
(

const + const
ε̃n

u

)
for some constant const > 0 independent of n and u. This expression gives an upper bound
on the entropy of the set Gs0 ,̃εn . Inserting this upper bound into the entropy integral, we get
that for all n large enough,∫ Rn

0
H 1/2∞

(
u + δn

27
√

2σ0
,Gs0 ,̃εn

)
du

≤ √
Nn

∫ Rn

0
log1/2

(
const + const

ε̃n

u

)
du

= ε̃n

√
Nn

∫ 2K/κ2

0
log1/2

(
const + const

1

u

)
du

� ε̃n

√
Nn,

since the integral in the second line is convergent, because the integrand is bounded by a
constant times u−1/2, and the latter function is integrable in the neighbourhood of zero.

Summarising the above intermediate calculations, we obtain that in order to prove (8.28)
in van de Geer (2000), we need

√
nδn � ε̃n

√
Nn (A.13)

and (A.12) to hold. Both are satisfied with our choice of ε̃n and Nn (equivalently, mn). Hence,
all conditions of Corollary 8.8 in van de Geer (2000) are satisfied and (A.9) follows. This
completes the proof. �

The next lemma, to be used in the proof of Lemma 8, is an analogue of Lemma A.4 in
Gugushvili and Spreij (2016). Its proof is also similar in structure, but differs in details.
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Lemma 7. Let the conditions of Theorem 3 hold and assume b0 = 0. There exist two positive
constants c̃0 and C̃0, depending on κ , K and L only, such that for all n large enough and all
s ∈ Aj,εn , j = 0,1, . . . ,Mεn , we have

n∑
i=1

E0,s0

[
Zi,n,s(Yi,n)

] ≤ − c̃0κ
2

K4 2j ε2
nn + C̃0n

1−λ.

Proof. Below we use the following elementary inequality: for any fixed constant C > 0 there
exists another constant c̃0 > 0, such that for x ∈ (−1,C), log(1 + x) − x ≤ −c̃0x

2 holds.
It follows from Assumption 1 that∫

[zi ,zi+1)
[s2

0(u) − s2(u)]du∫
[zi ,zi+1)

s2(u)du
≤ K2

κ2 − 1 =: C > 0.

Hence, for some c̃0 > 0,

E0,s0

[
Zi,n,s(Yi,n)

] = 1

2
log

(
1 +

∫
[zi ,zi+1)

[s2
0(u) − s2(u)]du∫

[zi ,zi+1)
s2(u)du

)

− 1

2

∫
[zi ,zi+1)

[s2
0(u) − s2(u)]du∫

[zi ,zi+1)
s2(u)du

≤ − c̃0

2

{∫
[zi ,zi+1)

[s2
0(u) − s2(u)]du∫

[zi ,zi+1)
s2(u)du

}2
.

We now focus on the term in braces. Let g(u) = (s2(u)−s2
0 (u))2

s4(u)
. On bins, and hence on intervals

[zi, zi+1), the function s is constant and positive, and by Hölder continuity and boundedness
of s0 also g is Hölder continuous. Application of Lemma 5 gives∫

[zi ,zi+1)

(s2(u) − s2
0(u))2

s4(u)
du = 1

n

1

s4(zi)

(
s2

0(zi) − s2(zi)
)2

+ O

(
1

n1+λ

)
. (A.14)

Next, by a similar argument,∫
[zi ,zi+1)

[s2(u) − s2
0(u)]du∫

[zi ,zi+1)
s2(u)du

= s2(zi) − s2
0(zi)

s2(zi)
+ O

(
1

nλ

)
. (A.15)

Combination of (A.14) and (A.15) and the bounds in Assumption 1 yields{∫
[zi ,zi+1)

[s2(u) − s2
0(u)]du∫

[zi ,zi+1)
s2(u)du

}2
− n

∫
[zi ,zi+1)

(s2(u) − s2
0(u))2

s4(u)
du = O

(
1

nλ

)
.

Consequently, by summation,

1

n

n∑
i=1

{∫
[zi ,zi+1)

[s2(u) − s2
0(u)]du∫

[zi ,zi+1)
s2(u)du

}2

−
∫ 1

0

(s2(u) − s2
0(u))2

s4(u)
du = O

(
1

nλ

)
. (A.16)



572 Gugushvili, van der Meulen, Schauer and Spreij

Hence, for all n large enough,
n∑

i=1

E0,s0

[
Zi,n,s(Yi,n)

] ≤ − c̃0n

2

∫ 1

0

(s2(u) − s2
0(u))2

s4(u)
du + O

(
n1−λ)

≤ − c̃0κ
2

K4 2j ε2
nn + C̃0n

1−λ.

Here the first inequality follows from (A.16) and the last inequality from the assumption
s ∈ Aj,εn . The proof is completed. �

The following lemma is an analogue of Lemma A.3 in Gugushvili and Spreij (2016). The
proof also shares similar general arguments, but differs in details.

Lemma 8. Let Assumption 1 be satisfied and assume also b0 = 0. For a fixed and small
enough constant c1 > 0, for any sequence εn � n−β logγ n of strictly positive numbers with
γ > 0, and any sequence mn � n1−α (equivalently, Nn � nα) as in Theorem 3, there exist a
constant c0 > 0 (depending on κ , K and L) and a universal constant C > 0 for which the
inequality

P0,s0

(
sup

s∈Uc
s0,εn

n∏
i=1

pi,n,s(Yi,n)

pi,n,0(Yi,n)
≥ exp

(−c1nε2
n

)) ≤ CMεn exp
(−c0nε2

n

)
(A.17)

holds for all n large enough.

Proof. As in the proof of Lemma A.3 in Gugushvili and Spreij (2016), one has

P0,s0

(
sup

s∈Uc
s0,εn

n∏
i=1

pi,n,s(Yi,n)

pi,n,0(Yi,n)
≥ exp

(−c1nε2
n

))

=
Mεn∑
j=0

P0,s0

(
sup

s∈Aj,εn

n∏
i=1

pi,n,s(Yi,n)

pi,n,0(Yi,n)
≥ exp

(−c1nε2
n

))
. (A.18)

Furthermore, using Lemma 7 above, by arguments identical to those in the proof of
Lemma A.3 in Gugushvili and Spreij (2016), we have for all n large enough

P0,s0

(
sup

s∈Aj,εn

n∏
i=1

pi,n,s(Yi,n)

pi,n,0(Yi,n)
≥ exp

(−c1nε2
n

))

≤ P0,s0

(
sup

s∈Bj,εn

∣∣∣∣∣1

n

n∑
i=1

Wifs(zi)

∣∣∣∣∣ ≥ δn

)
, (A.19)

where

δn = δ2j+1ε2
n =

(
c̃0κ

2

K4 − C̃0

2j ε2
nn

λ
− c1

2j

)
2j+1ε2

n. (A.20)

Note that δ > 0 for all n large enough, by choosing 0 < c1 < c̃0κ
2/(2K4) and nλε2

n → ∞ as
n → ∞. The former is a restriction on c1 alluded to in the statement of the theorem.

To bound the right-hand side in (A.19), we will apply Corollary 8.8 from van de Geer
(2000). To that end, we need to verify its conditions. Under our assumptions, we have∫ 1

0

(s2
0(u) − s2(u))2

s4(u)
du ≤ 4K2

κ4 2j+1ε2
n,
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and the O(n−λ) term in (A.16) is less than 2j+1ε2
n for all large n. Hence, (A.16) yields

1

n

n∑
i=1

{∫
[zi ,zi+1)

[s2
0(u) − s2(u)]du∫

[zi ,zi+1)
s2(u)du

}2
≤

(
4K2

κ4 + 1
)

2j+1ε2
n

for all n large enough and all j = 0,1, . . . ,Mεn . Thus, taking

Rn =
{

4K2

κ4 + 1
}1/2

2(j+1)/2εn

yields sups∈Bj,εn
‖fs‖Qn ≤ Rn. This verifies the unnumbered condition in Corollary (8.8) in

van de Geer (2000).
With constants K1, C, C0 and C1 chosen as in the proof of Lemma 6, K2 = 2K2/κ2 and

K = 4K1K2, it is easy to see that conditions (8.23)–(8.8.27) and (8.29) in van de Geer (2000)
will be verified.

Finally, we have to check (8.28) in van de Geer (2000), that amounts to checking the three
inequalities δn ≤ C12R2

nσ
2
0 /K , δn ≤ 8

√
2Rnσ0, and

√
nδn ≥ C0

(∫ √
2Rnσ0

δn/26
H

1/2
B

(
u√
2σ0

,Fs0,j,εn,Qn

)
du ∨ √

2Rnσ0

)
, (A.21)

where Fs0,j,εn = {fs : s ∈ Bj,εn}, and σ 2
0 = 2E0,s0[W2

i e|Wi |/3].
Both these inequalities follow by taking δ > 0 in (A.20) sufficiently small. This can be

accomplished by taking c̃0 and hence c1 small enough, still obeying the inequality below that
equation. Note that for such a small chosen c̃0 the upper bound of Lemma 7, needed at the
beginning of this proof, is still valid.

Now we move to verifying (A.21), the third inequality. This amounts to separately check-
ing that for all n large enough and all j = 0,1, . . . ,Mεn , the inequalities nδ2

n ≥ C2
02R2

nσ
2
0

and

nδ2
n ≥ C2

0

(∫ √
2Rnσ0

δn/26
H

1/2
B

(
u√
2σ0

,Fs0,j,εn,Qn

)
du

)2
(A.22)

hold. The first of these two inequalities is again straightforward, because nε2
n → ∞, so we

move to the second one. As a preliminary step, we will show how the bracketing numbers
of the set Fs0,j,εn for the L2(Qn)-norm can be bounded by the bracketing numbers of the
set Bj,εn . Suppose we have a bracket [�,u] for functions s. Then it follows directly from the
definition that [fu,f�] is a bracket for functions fs . Now we will compare the norms, in order
to compare sizes of the brackets: let s1, s2 be two dispersion coefficients. Then, using (A.7),
the c2-inequality and applying Lemma 5, we obtain

‖fs1 − fs2‖2
Qn

= 1

n

n∑
i=1

(
fs1(zi) − fs2(zi)

)2

= 1

n

n∑
i=1

{
s2

0(zi) − s2
1(zi) + O(n−λ)

s2
1(zi)

− s2
0(zi) − s2

2(zi) + O(n−λ)

s2
2(zi)

}2

≤ 2
1

n

n∑
i=1

{
s2

0(zi) − s2
1(zi)

s2
1(zi)

− s2
0(zi) − s2

2(zi)

s2
2(zi)

}2
+ O

(
n−2λ)

= 2
∫ 1

0

{
s2

0(u) − s2
1(u)

s2
1(u)

− s2
0(u) − s2

2(u)

s2
2(u)

}2
du + O

(
n−λ)
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= 2
∫ 1

0

s4
0(u)(s2

1(u) − s2
2(u))2

s4
1(u)s4

2(u)
du + O

(
n−λ)

≤ 2
K4

κ8

∥∥s2
1 − s2

2
∥∥2

2 + O
(
n−λ)

≤ 8
K6

κ8 ‖s1 − s2‖2
2 + O

(
n−λ)

.

Taking square roots, we get from the elementary inequality
√

a + b ≤ √
a + √

b with
a, b ≥ 0 that

‖fs1 − fs2‖Qn ≤ √
8
K3

κ4 ‖s1 − s2‖2 + O
(
n−λ/2)

.

Suppose u ≥ δn/26, as in the entropy integral (A.21). Then for all n large enough, the re-
mainder term in the above display satisfies O(n−λ/2) ≤ u/2. For this we need the condition
O(n−λ/2) ≤ ε2

n, that is,

4β ≤ λ (A.23)

to be satisfied, which holds under the stipulated assumptions on εn. Furthermore, if also

‖s1 − s2‖2 ≤ κ4
√

32K3
u,

we get by the triangle inequality that ‖fs1 − fs2‖Qn ≤ u. It follows that

HB

(
u√
2σ0

,Fs0,j,εn,Qn

)
≤ HB

(
κ4u

8
√

2K3σ0
,Bj,εn,Qn

)
.

The entropy on the right-hand side, using HB(δ,Sn,Qn) ≤ H∞(δ/2,Sn), see Lemma 2.1 in
van de Geer (2000), can be further bounded by

HB

(
κ2u

8
√

2K3σ0
,Sn,Qn

)
≤ H∞

(
κ2u

16
√

2K3σ0
,Sn

)
. (A.24)

Now recall that for all s ∈ Sn, we have κ ≤ s ≤ K. This and the fact that there are Nn bins in
total imply that the minimal number of balls with radii v to cover the set Sn with respect to
the supremum norm is bounded by (

1 + const
1

v

)Nn

,

for some constant const > 0 independent of n. Hence, the entropy on the right-hand side of
(A.24) is bounded by

Nn log
(

1 + const
1

u

)
.

Now this bound shows that the required condition (A.21) will follow, if we show the inequal-
ity

√
nδn � √

Nn

∫ Rn

0
log1/2

(
1 + const

1

u

)
du.
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The integral in this display (without loss of generality we take the const equal to 1) is of
order Rn log1/2(1 + 1/Rn), which can be seen as follows.∫ Rn

0
log1/2

(
1 + 1

u

)
du

= Rn

√
log

(
1 + 1

Rn

)
+ 1

2

∫ Rn

0

1√
log(1 + 1/u)

1

u + 1
du,

where the latter integral is upper bounded by log(1+Rn)/
√

log(1 + 1/Rn). This upper bound
is for small Rn of lower order than Rn

√
log(1 + 1/Rn). Hence, it is sufficient to show that

√
nδn � √

NnRn log1/2
(

1 + 1

Rn

)
.

However, the latter relationship follows from

nε2
n � Nn log

(
ε−1
n

)
, (A.25)

which is true under our choice of Nn and εn as given in Theorem 3.
Since we verified all the conditions in Corollary 8.8 in van de Geer (2000), as in the proof

of Lemma A.3 in Gugushvili and Spreij (2016) we can apply it to the right-hand side of
(A.19) to obtain

P0,s0

(
sup

s∈Aj,εn

n∏
i=1

pi,n,s(Yi,n)

pi,n,0(Yi,n)
≥ exp

(−c1nε2
n

)) ≤ exp
(−c0nε2

n

)
,

where c0 > 0 can be expressed in terms of previous constants, cf. van de Geer (2000) and
Gugushvili and Spreij (2016). This inequality and (A.18) yield the statement of the lemma. �

Remark 11. The optimal choice for β in ε � n−β logγ n in the statement of the lemma
results from coupling the conditions (A.23) and (A.25) with our earlier restrictions (A.5),
(A.12) and (A.13) on mn, Nn, εn and ε̃n.

Indeed, putting Nn � nα gives from the coupling of these five conditions, in the above
presented order, 4β ≤ λ, 1 − 2β ≥ α and γ > 1, β ≤ αλ, β ≤ αλ/2 and β ≤ (1 − α)/2.
The third and the last conditions can be omitted, which leads to the conditions 4β ≤ λ, β ≤
(1 − α)/2 and β ≤ αλ/2 on α and β .

It turns out that the maximal possible β is β = λ
4 , this attains the first condition and also

satisfies the other two, for α ∈ [1
2 ,1 − λ

2 ].
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