Journal of Credit Risk 22(2), 1-33
DOI: 10.21314/JCR.2025.023

Copyright Infopro Digital Limited 2026. All rights reserved. You may share
using our article tools. This article may be printed for the sole use of the
Authorised User (named subscriber), as outlined in our terms and condi-
tions. https:/www.infopro-insight.com/termsconditions/insight-subscriptions

Journals

Research Paper

Credit risk meets insurance risk:
a unified framework

Guusje Delsing,! Michel Mandjes,>® Peter Spreij>*° and
Erik Winands'-®

"Rabobank, Croeselaan 18, 3521 CB Utrecht, Netherlands;
emails: guusje.delsing@rabobank.nl, erik.winands@rabobank.nl

2Mathematical Institute, Leiden University, Niels Bohrweg 1, 2333 CA Leiden,
Netherlands; email: m.r.h.mandjes@math.leidenuniv.nl

SKorteweg—de Vries Institute for Mathematics, University of Amsterdam, Postbus 94248,
1090 GE Amsterdam, Netherlands; email: p.j.c.spreij@uva.nl

4Institute for Mathematics, Astrophysics and Particle Physics, Radboud University,
Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands

SISEG Lisbon School of Economics and Management, University of Lisbon,
Rua do Quelhas 6, 1200-781 Lisbon, Portugal

(Received June 10, 2025; revised October 7, 2025; accepted October 20, 2025)

ABSTRACT

This paper introduces a continuous-time extension to the influential CreditRisk+
model for portfolio credit risk modeling. For capital calculations it introduces a risk
measure based on the maximum of the loss process of a portfolio over a specified
time interval. An extensive numerical study demonstrates that this extension pro-
vides an accurate risk assessment. The new framework has many advantages. First,
it enables loss evaluation over a continuous time period rather than at a fixed point
in time as in the original CreditRisk+ model. Second, the framework offers great
flexibility, for example, for the incorporation of collateral risks, interest income and
regime shifts. It also accommodates the calibration of almost any observed depend-
ence between counterparties, including dependencies of the form used in structural
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credit risk models. Finally, the framework establishes a direct connection to insur-
ance industry ruin theory models, allowing the model to leverage exact results and
established algorithms from this field to efficiently and accurately determine the
credit loss distribution within the continuous-time framework. This extended model
therefore provides a comprehensive and theoretically robust approach to assessing
credit risk over time and shows the potential for broader use in risk management.

Keywords: ruin theory; CreditRisk+; risk management; portfolio credit risk loss; continuous-time
modeling; dependence modeling.

1 INTRODUCTION

In recent decades, financial institutions have developed models to assess credit risk
in lending portfolios. Benchmark frameworks such as CreditMetrics (JP Morgan)
and CreditRisk+ (Credit Suisse Financial Products) have been pivotal in shaping
industry standards and influencing the Basel capital accords. The original Credit-
Risk+ model draws on insurance-based event-risk models, in which default is the
main source of credit risk.! Dependence between obligors/instruments is introduced
through background macroeconomic risk factors impacting the default probabilities
of the obligors/instruments. Our paper enhances CreditRisk+ by introducing a versa-
tile continuous-time framework that incorporates various dependence structures and
connects portfolio credit risk models with insurance industry ruin theory models.

A continuous-time framework is particularly relevant in light of regulatory and
internal capital management practices. As outlined by Basel Committee on Banking
Supervision (2017), banks’ capital requirements are based on two complementary
perspectives: regulatory capital (RC), reflecting regulatory and supervisory require-
ments; and economic capital (EC), capturing the bank’s internal risk view. Within
the RC framework for credit risk, capital calculations are based on the asymptotic
single risk factor (ASRF) model (see Basel Committee on Banking Supervision
2005). Whereas the value-at-risk (VaR) calculations in that model assume oblig-
ors can default only at the end of the horizon, the possibility of defaults occurring
throughout the year is still incorporated in RC, ensuring conservative capital buffers.
First, the estimation of the input parameters for the probability of default explic-
itly accounts for the default behavior of the obligors over the full period. Second, the
actual capital held by banks is not based solely on the VaR output of the ASRF model
but includes various regulatory and management buffers to, for example, account for
model simplifications, such as the ASRF assumption of defaulting only at the end

"For a comprehensive overview of CreditRisk+ and its extensions, see Gundlach and Lehrbass
(2004).
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of the time horizon. As mentioned, the EC perspective complements the RC frame-
work by allowing an institution to apply its own internally developed models and
methodologies tailored to its specific risks, portfolios and risk strategy. The results
of our paper can play a valuable role in precisely this context by reinforcing the
rationale behind the prudent adjustments and buffers within the RC framework. The
explicit incorporation of the continuous-time effect allows for the substantiation of
these buffers under both baseline and stressed conditions. Further, the economic view
provided by our continuous-time model can be used for capital allocation across busi-
ness lines and portfolios, particularly in areas where the impact of our extension is
most pronounced.

The original CreditRisk+ model, by evaluating only end-of-horizon losses, over-
looks fluctuations during the period. A discrepancy arises between the maximum
loss over the entire horizon and the loss observed at the end if losses are nonmono-
tonic and reach their peak earlier. Such behavior naturally arises once compensating
effects (eg, interest income, prepayments or expected losses) are taken into account.

In response, a growing literature extends portfolio credit risk models beyond the
one-period setting. Multiperiod models allow the joint evolution of defaults, migra-
tions and exposures to be captured dynamically. Notable contributions include those
of Garcia-Céspedes and Moreno (2017), who extend the VaSicek model to dis-
crete multiperiod losses, and Chongo and Julia-Sala (2024), who simulate correlated
defaults and rating migrations over multiple periods. However, these are both still
discrete-time approaches. A line of work more closely related to ours is pursued by
Reif} (2004), who extends CreditRisk+ by modeling risk factors as dependent geo-
metric Brownian motions, enabling a continuous-time description of credit risk. This
framework provides explicit expressions for the first two moments of the loss pro-
cess. While Reil} (2004) enriches the dynamics of the risk factors, our contribution is
to extend the loss process itself to continuous time, with explicit treatment of com-
pensating inflows and outflows. Our framework also accommodates more general
dependence structures, though we adopt geometric Brownian motions in our numer-
ical work to highlight the link to Reif3 (2004). In addition to these contributions, our
paper also explicitly connects portfolio credit risk to ruin theory.

Dependence between obligors in portfolio credit risk models is typically modeled
via common risk factors, often interpreted as drivers of the economic environment
such as macrofinancial variables. A stream of research has focused on embedding
different dependence structures into portfolio credit risk models. For instance, Han
and Kang (2014) extend CreditRisk+ by incorporating a generalized common risk
factor framework, and Fischer and Dietz (2011) develop the common background
vector model, in which sectoral dependencies are linked to multiple background
variables reflecting the state of the economy and macroeconomic conditions. In our
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continuous-time CreditRisk+ model we propose a general framework for depend-
ence between the underlying risk processes, and as a result the dependence between
counterparties can be modeled in terms of almost any observed structure.

A continuous-time CreditRisk+ model will share various characteristics with ruin
theory models, which study the cash reserves of an institution subject to claims and
premium inflows, with a focus on the probability of ruin (reserves falling below
zero) (see Asmussen and Albrecher 2010). Ruin-theoretic methods can be adapted
to portfolio credit risk to analyze maximum losses and default events in continuous
time. Prior work has explored this link: Chen and Panjer (2009) apply ruin theory
to individual obligor default by drawing parallels to first-passage structural mod-
els; Adékambi and Essiomle (2020) and Yang (2003) instead model institutional
cash reserves. Adékambi and Essiomle model loan arrivals as cash outflows, while
amortization payments and interest income form the inflows; our model, in line with
regulatory capital requirements, abstracts from new loan deals and instead focuses
on losses in the existing portfolio, with greater flexibility in default dependence
and loss amounts. Yang adopts a discrete-time setup in which reserve fluctuations
depend solely on credit ratings, modeled by a Markov chain; unlike our approach,
Yang’s framework cannot be calibrated to a portfolio with individual default risks and
explicit dependence. Collectively, the abovementioned studies illustrate the promise
of connecting ruin theory and credit risk, but they do not capture portfolio-level
dependencies and continuous-time loss dynamics. Our continuous-time extension
of CreditRisk+ addresses these gaps in the literature by focusing on portfolio-level
losses while retaining ruin-theoretic tractability.

The main contributions of our paper are the following.

e The original CreditRisk+ model is extended to a continuous-time version that
enables loss evaluation over a continuous period of time, rather than at a fixed
point in time as in the original CreditRisk+ model. An extensive numeri-
cal study shows that the difference between the two models increases when
systemic volatility rises or compensating effects increase. Approximating the
continuous-time model is achieved by evaluating losses at a finite number of
uniformly spaced points over the time horizon.

e The extended model creates an extremely flexible credit risk framework by
allowing for different loss distributions, compensating functions and risk factor
processes. This enables the inclusion of, for example, collateral risks, interest
income and regime shifts. In addition, the dependence between counterparties
can be modeled in terms of virtually any observed structure, including the cor-
relation structure in the widely used structural models that form the basis of the
Basel capital formula. In our numerical study we also examine the sensitivity
of the model to various parameters and correlation structures.
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e The proposed framework bridges the gap between portfolio credit risk mod-
els and insurance industry ruin theory models. Similarities are drawn between
credit and insurance risks, leading to a productive exchange of results and
methods. Specifically, the numerical work demonstrates that ruin theory meth-
ods can be effectively applied to accurately evaluate the credit loss distribu-
tion within the continuous-time CreditRisk+ framework, providing an alterna-
tive to simulation-based approaches. While the connection between credit and
insurance risk models has been noted previously (as discussed by, for exam-
ple, Delsing 2022), our work contributes to this line of research and may help
further encourage cross-fertilization between these fields.

The remainder of the paper is structured as follows. Section 2 introduces the origi-
nal CreditRisk+ model and its continuous-time extension. Further, it presents a com-
parison with a widely used class of structural models. Section 3 establishes a connec-
tion between portfolio credit risk models and ruin theory models. Section 4 provides
a detailed numerical study of the continuous-time framework. Section 5 states our
conclusions and discusses areas for future research.

2 THE MODEL

In this section we introduce our model, an extension of the Credit Suisse Financial
Products CreditRisk+ model, and explain its relevance for default and credit risk
modeling purposes. The objects of interest are the distribution of the (default) loss in
a credit portfolio and capital calculations based on this distribution. We start with a
brief introduction to the original CreditRisk+ model of default risk and use similar
notation to that of Gordy (2000).

2.1 The CreditRisk+ model

In the original CreditRisk+ model each obligor in the credit portfolio is considered
to have only two possible states: default and nondefault. If obligor i defaults, a loss
is suffered of fixed size z;. The default event of obligor i prior to the fixed maturity
time 7 is denoted by D; r, and its indicator function by 1p, ,.. The default event
can be written in terms of the default time 7;: D; 7 = {tr; < T'}. The probability of
default is given by
pi,r :=P(Dir).

Consider a portfolio of n obligors with the same potential fixed loss z; = z,
constructed by grouping together losses of similar sizes. The portfolio loss up to a
fixed time T is then given by

n n
LT = ZzilDi.T = ZZIDLT'

i=1 i=1
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Default correlations between obligors are introduced by the risk factor X := (Xy,
..., Xk). The X} are often assumed to be nonnegative and (independently) gamma
distributed. Conditional on X, the default events of obligors are independent and
Bernoulli distributed. The default probability of obligor i now becomes a random
variable, which in CreditRisk+ is specified as

K
Pi},(T = piT Z w; k Xk,
k=1
where the w; x represent factor loadings measuring the sensitivity of obligor i to
each of the risk factors, satisfying > ,le w; ¢ = 1. The risk factor and correspond-
ing weights are such that E[ pi{(T] = pi.r for all obligors. The CreditRisk+ model
assumes that conditional on X and under small default probabilities, the total num-
ber of obligor defaults can be approximated by a Poisson random variable N7 with
parameter ;L}T( =37, pl{(T (see Gordy 2000). This works when p; 7 is small as
we can then ignore the constraint that a single obligor can default only once. The
portfolio loss is then approximated by

Nt
fr=3z=:Np.
j=1

Traditionally, a bank’s credit risk is managed by considering its losses over a cer-
tain period [0, 7] and making sure these do not exceed a certain (high) level with a
given (low) probability «. This risk measure is often referred to as the value-at-risk
(VaR). More specifically, for losses L,

VaR*(T) :=inf{u = 0 | P(L7 = u) < a}. 2.1

Typical values for the maturity and threshold are one year (T = 1) and ¢ = 0.01%.
In practice, the losses are only considered at the end of the time horizon, at time 7.
Although it is impossible to know a bank’s credit losses over a particular time interval
in advance, an expectation of the losses can be determined. These losses are referred
to as “expected losses”. The expected losses over time are often already embedded
in the pricing of credit instruments and/or provisioning by the financial firm, as they
are viewed as a cost of doing business. A bank’s capital is meant to provide a buffer
against losses that significantly exceed expected levels. These losses are referred to
as “unexpected losses” and are the gap between the expected losses and VaR.

The CreditRisk+ model has been celebrated for its simplicity as it allows for an
expression for the distribution of portfolio losses. We refer the reader to Gundlach
and Lehrbass (2004) for a more comprehensive overview of the original Credit-
Risk+ model and various extensions and applications. These extensions of the frame-
work include the integration of migration risk and variable default severity. For the
integration of migration risk we refer the reader to Binnenhei (2004).

Journal of Credit Risk www.risk.net/journals
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2.2 A continuous-time CreditRisk+ model

In the original CreditRisk+ model, as well as most generalizations, only the loss at
the end of a certain time horizon is studied. We will often refer to this as the “static”
CreditRisk+ model. As mentioned by Reif3 (2004), it is also relevant to consider
credit risk over time. This is especially true when generalizing the model to consider
not only the outgoing cashflows due to defaults but also some positive cashflows such
as interest rate premiums received or (expected) losses that are already accounted for.
The maximum of the loss process over the time horizon, in this case, may occur prior
to the end of the time horizon. In this section we propose an extension of CreditRisk+
by adjusting the model on a few fronts, which results in a dynamic, “continuous-
time” portfolio loss process. We will elaborate on all the changes in later subsections,
but we start with a brief overview of the changes made to the original CreditRisk+
model.

e We allow for random losses Z; instead of fixed losses z;. The random losses
are independent and identically distributed (iid) and nonnegative.

e We include a compensating nonnegative increasing real function ¢ — h(t)
defined on R.

e We allow for risk factors to be random processes instead of random variables
(ie, X(t) := (X1(¢),..., Xk (2))). Let

X = (X(1))zefo0,17- X(t) :=0(X(s): 0<s<1),
denote the filtration generated by the multivariate risk factor process.

e For obligor i, instead of the Poisson random variable N;;, we consider the
inhomogeneous conditional Poisson process N; () with nonnegative intensity
process )LI.X (t), which is assumed to be X (¢z)-measurable and whose integral
fot AiX (s) ds is well defined and finite for all # = 0 almost surely. The Poisson
process is independent of the random losses Z;. Analogously to the original
CreditRisk+ model, for the number of defaults in the credit portfolio up to
time ¢, conditional on X(¢), we take the Poisson process N(¢) with intensity
parameter uX (1) := Y7, AX(2).

As a result, the loss over a credit portfolio up to time ¢ is modeled as the random

process
N(t)

L(t):=)_Zi—hQ@). (2.2)

i=1
In the continuous-time framework, the default time t; of obligor i is explicitly
modeled as the first jump of a nonhomogeneous Poisson process with (possibly
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stochastic) intensity AX (). We denote by pX (1) := P(x; < 1|X(z)) the probability
of default by time ¢, conditional on the risk factor process. Under the continuous-
time CreditRisk+ model this is given by pl.X () =1—exp(— f(; /\iX (s) ds). As in the
original CreditRisk+ model, and as is common in credit risk over short time hori-
zons, for a small integrated default intensity f(; /\iX (s) ds this default probability can
be approximated by p¥X (1) ~ fé AX (s) ds.

The quantity of interest is the maximum of the loss process over a specified time
horizon. More specifically, for risk and capital calculations, we are interested in the
probability of large losses over the time interval. This is given by

Yu,T) = ]P’( sup i,(t) > u)
0<t<T
In many cases it is often easiest to first determine the conditional (on X (7))
probability and then integrate or simulate out the risk factor processes.
For capital calculations we consider the following risk measure:

p“(T):=inf{fu =0 | ¥u,T) < a}. (2.3)

If the expected losses are accounted for in /(¢), the loss process I:(t) represents
the unexpected losses and the corresponding risk measure p*(7') can be seen as the
capital estimation for credit risk. A similar risk measure is considered by Boudoukh
et al (2004), who, instead of the value at the end of the time horizon, as is considered
in the original VaR measure (2.1), use the maximum or minimum value before the
end of the time horizon.

The final model, as given in (2.2), is common in the field of ruin theory. We will
elaborate on this in Section 3 and show that results derived in ruin theory can be used
to determine the distribution of losses. We now proceed by further elaborating on the
above extensions of the model and their relation to the existing literature in separate
subsections below.

2.2.1 Random losses

While the current model allows for both constant and random losses, the latter are
often applicable in the presence of collateral risk. For the CreditRisk+ model, random
losses have been considered by Akkaya et al (2004).

2.2.2 Compensating function h(t)

By including a nonnegative function /(z), the model allows for compensating effects
such as interest income or adjusting for expected losses. While the original Credit-
Risk+ model and the regulatory ASRF model do not take this compensating aspect
into account, many other market practice models do consider it to some extent.

Journal of Credit Risk www.risk.net/journals
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Examples include CreditMetrics and Moody’s KMV, both of which have a valua-
tion module. Other examples in the literature include models by Schlottmann et al
(2004) and Adékambi and Essiomle (2020).

A linear function is an appropriate choice for the compensating function. Premi-
ums or interest rates received are often modeled as a linear function of time. A linear
function of time is also a logical choice in the case of the compensating function
h(t) representing the expected losses E[ZlN_(tl)Z ] over time when the Poisson pro-
cess N(t) is homogeneous. When, conditional on X(¢), the loss arrival process N(s)
for s < ¢ is a homogeneous Poisson process with fixed conditional intensity param-
eter AX € Ry and iid losses Z;, the corresponding conditional expected losses at
time ¢ are given by AXt[E[Z;], which is a linear function of time. By setting 4(¢) as
the expected losses, the loss process ﬁ(t) represents the unexpected loss process.

In practice, the compensating function /(¢) can be calibrated using empirical port-
folio data or by estimating expected losses. For instance, scheduled loan repayments,
interest or fee income and expected recoveries from defaulted exposures can pro-
vide a deterministic approximation of cumulative inflows. Constructing %(¢) from
future cashflows typically involves identifying and aggregating all predictable port-
folio inflows over the horizon, including contractual repayments, scheduled inter-
est and other recurring income. This requires detailed portfolio knowledge. Ideally,
these cashflows would also be incorporated directly into the loss process Z; by mak-
ing them time dependent; this remains an area for future research. Alternatively,
h(t) can be defined as the expected cumulative losses, which naturally aligns the
model with the unexpected loss process used for capital calculations. This is the
approach adopted in our numerical study in Section 4. The deterministic inflows and/
or expected losses can be aggregated across the portfolio and, if necessary, smoothed
to account for seasonal patterns or discretization, ensuring 4 (¢) captures the baseline
around which stochastic deviations occur.

2.2.3 Risk factor processes

The common risk factors representing the systematic component upon which oblig-
ors are dependent are often associated with the state of the environment/economy,
which changes over time. Reil} (2004) also considers a continuous-time version of the
original CreditRisk+ model and introduces a geometric Brownian motion to model
the risk factor processes. Our model deviates from the work of Reif3 (2004) as we not
only consider a different risk factor process but also factor in a compensating func-
tion, something that turns out to be very relevant when considering the difference
between the original and continuous-time CreditRisk+ models. Further, we present a
more general framework for the risk factor processes, presenting multiple examples
in addition to the geometric Brownian motion case.

www.risk.net/journals Journal of Credit Risk



10

G. Delsing et al

Another common way to introduce dependence is via regime switching or
Markov-modulation; that is, by introducing a Markov environmental process with
a finite state space that influences the parameters of the model (ie, the intensity
of the Poisson process). Further, note that our model setup still allows for piece-
wise constant processes such that the risk factors can also be modeled via random
variables.

2.2.4 Inhomogeneous Poisson process

The original CreditRisk+ model only studies the loss at the end of a certain time hori-
zon, but in many cases a continuous-time model is more appropriate. The inhomo-
geneous Poisson process is the natural extension of the original CreditRisk+ model
to continuous time.

2.2.5 Dependence structures

Our continuous-time CreditRisk+ model provides a general framework for the
dependence between the underlying risk processes. We will now elaborate on poten-
tial options to define the default intensity XIX (7). The most straightforward model for
the default intensity is an extension of the original CreditRisk+ model in the form

K
@) = pi(1) ) wik Xe (1),

k=1

where p; (1) denotes the one-year default probability of obligor i and the w; x = 0
are the factor loadings as in the original CreditRisk+ model (see, for example, Gordy
2000; Credit Suisse Financial Products 1997, Section A12.3). The risk factors X (¢)
are assumed to be nonnegative and satisfy E[ fol X ()] = 1, ensuring consistency
with the default probability p;(1). Recall that the default probability conditional on
X, piX (), can be approximated by fé )&IX (s) ds in the continuous-time CreditRisk+
model, which now gives E[piX(l)] ~ pi(1).

Below, we briefly introduce some dependence structures (ie, options for the inten-
sity of the Poisson process A% (¢)) based on the literature, and we reflect on their
advantages and disadvantages. Each dependence structure results in a different dis-
tribution of the loss process I:(t) and the corresponding maximum loss distribution
W(u,T). In Section 4 all of the following correlation structures are implemented for
the continuous-time CreditRisk+ model.

(1) In the industry, credit risk modeling often employs credit ratings, commonly
represented as a finite-state continuous-time Markov process (see Berd 2005).
When considering a two-state model (ie, default and nondefault), with an
absorbing default state, the survival probability of obligor i up to time ¢ is
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given by e ¢’ (and the corresponding default probability by 1 —e~¢’) for
some constant ¢; > 0. This aligns with the survival probability over a fixed
time ¢ when default is the first jump of a homogeneous Poisson process with
constant intensity rate ¢;. Thus, a Poisson process with constant intensity
rate ¢; is a suitable choice for modeling default/nondefault environments with
absorbing defaults in a continuous-time Markov model. Using the approxima-
tion 1 —e™ = ¢; for ¢; ~ 0, the intensity constant ¢; can be set to the one-
year probability of default p;(1) when this probability is small. Dependence
between obligors can be introduced as in the regular CreditRisk+ framework
by assuming the common risk factor is constant for all ¢ (ie, Xz (t) = X,
where X} is a random variable). More specifically,

K K
)t,X(t) =¢j Zwi,ka, WithE[Zwi’ka] =1.
k=1 k=1

As a result, conditional on the common risk factors X, the process N() is
a homogeneous Poisson process. Popular choices for X include independent
gamma variables or a discrete distribution with finite states. While condition-
ing on X yields a simpler homogeneous Poisson process, it does not capture
changes in risk factors over time, which are often seen in practice.

ReiB (2004, Section 13.2) suggests a continuous-time extension of the original
CreditRisk+ by considering a Poisson process in which the default intensity
of obligor i is set as the one-year probability of default p; (1), assumed to be
small. Dependence between obligors is introduced through dependent geomet-
ric Brownian motion factor processes X (¢), k € {1, ..., K}, and the assump-
tion that Xz (0) = 1 and E[X,(¢)] = 1. The default intensity of obligor i for
Reil} (2004) is then a stochastic process given by

K
A0 =pi()) wiaXe @),

k=1

where the factor weights ensure Zle w;r = 1 for each obligor i. The
advantage of this dependence structure is that the risk factor changes over time.

Regime switching is a popular method for introducing uncertainty or depend-
ence in models, including ruin theory models. We consider a single finite-state
Markov process X (¢) that influences the intensity of the Poisson process. This
gives default arrival intensity )Ll.X (t) = A;,; for obligor i when X(¢) = J,
where A; ; is fixed (see, for example, Asmussen and Albrecher 2010, Chap-
ter VII). The advantage of this dependence structure is that it allows for the

www.risk.net/journals Journal of Credit Risk

11



12

G. Delsing et al

risk process to change over time but reduces the complexity by limiting the
number of potential outcomes. Since analytical expressions over a finite time
interval are not available, numerical approximations must be resorted to.

(4) We pose for known and small piX () the approximation

0
AX() ~ —pX
i () Btp’ (t)

to obtain the already established approximation piX (t) = fot AZ.X (s)ds. This
is in line with the original CreditRisk+ model methodology. An example
where piX (t) is known from a continuous-time structural model is given in
Section 2.3. By imposing very few conditions on the intensity )LlX (1), this
dependence structure allows for a lot of flexibility, and dependence may
change over time. On the other hand, calculations can become complicated
and time-consuming.

The functions /() and X (¢) are time dependent but not influenced by default lev-
els. This assumption is reasonable when defaulted credit assets/obligors are replen-
ished by similar ones with the same credit quality and/or when the number of defaults
is small relative to the total number of obligors in the portfolio. Delsing and Mandjes
(2021) investigate a model in which the income rate and the (default) arrival rate are
dependent on the number of surviving obligors in the system.

2.3 Comparison with structural models

In the continuous-time CreditRisk+ model, default is modeled with a reduced-form/
intensity model (ie, default is described through an exogenous jump process). In
this section we consider a continuous-time structural default model (ie, default is
triggered by the value of the firm dropping below the debt level). We will compare it
with the continuous-time CreditRisk+ model.

In the continuous-time structural model, the loss over a credit portfolio up to time ¢
is a random process given by

L(t):=Y_ Zip,, —h(),

i=1

where we have used the same notation as above; ie, Z; and A (¢) denote the random
losses and nonnegative compensating function, respectively. The default is given by
D;; := {t; <t}, where the first passage time is 7; := inf{t = 0: A;(¢) < B;}. The
asset value process A;(¢) is a geometric Brownian motion such that the log return
of the asset value is a Brownian motion with constant drift ;t; and volatility o;. The
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unconditional probability of default of obligor i up to time ¢ in the structural model
is given by

pi(t) = P(Ip,,) = P(ly<) = B inf Ai(s) < B;)

= P(oiﬂ’fst wis +0iWils) <log AiiO))
_ b (log(Bi/Ai(O)) - Mil)
oi1
A;(0)\ 24177 (og(Bi/A;(0)) + it
* ( B; ) (D( oi/t )

where W (¢) denotes a standard Brownian motion. The final expression is derived in a

2.4)

straightforward manner from the distribution of the maximum of a Brownian motion
with drift as given by Debicki and Mandjes (2015, (4.6)). As in the CreditMetrics and
KMV structural models, we introduce dependence through common risk factor pro-
cesses X(f) := (X1(¢),..., Xk (¢)) (with factor loadings w; := (w;i,1,..., Wi K))
driving the asset values of the obligor. More concretely,

K
Wit) = Y wi g Xi () + misi(t),
k=1

where ¢;(¢) (with weight 7;) denotes an idiosyncratic process independent of the
common risk factor processes. The process X(¢) is a K-dimensional Brownian
motion with mean zero and covariance matrix E[X ()X (¢)T] = X't with unit diago-
nal. The idiosyncratic risk processes €1(¢), . . ., ek (¢) are mutually independent stan-
dard Brownian motions. Without loss of generality, we impose the condition that
V[W;(t)] = t, where V[X] denotes the variance of the random variable X . We adopt
the same notation as in Section 2, using X to denote the filtration generated by the
multivariate risk factor process.

Similar to the work in Gordy (2000) on the original CreditRisk+ model, we will
map the continuous-time structural model onto the mathematical framework of the
continuous-time CreditRisk+ model. As the compensating function /(z) and the loss
size distribution in both models can be set equal, we focus on the default events and
number of defaults in the portfolio. We first derive the implied default probability
function (up to time ¢) of obligor i conditional on the risk factor process (ie, piX )
in the structural model:

K
. B;
P = P(ngsz Wis + oi kE_l w; k Xk (s) + oiniei(s) < log 1 (10) ‘ X(t))-
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The unconditional default probability up to time 7 is then given by p; (1) = E[pX (1)].
As mentioned in Section 2.2.5, the default intensity of the Poisson process condi-
tional on the risk factor process /\iX (¢) can now be determined as

2 p()
ar

i=1
where we have assumed that piX (¢) is given by the structural model as above and
is differentiable with a positive derivative. In Section 4 we implement this as the
“Structural” dependence structure. Finally, we still need to simulate the risk factor
process X ().

3 RUIN THEORY

The continuous-time CreditRisk+ model (2.2), conditional on X(¢), has previously
been considered in ruin theory for modeling an insurer’s cash reserves. Consequently,
all applicable results from ruin theory can be used to determine the loss distribution.
For example, many of the ruin theory results presented by Asmussen and Albrecher
(2010) can be used in this context. In this section we discuss how and which results
from ruin theory can be used to calculate the (conditional) distribution of losses and
capital reserves for the continuous-time CreditRisk+ model.

In the classical Cramér—Lundberg model, the evolution of the cash reserves of an
insurance firm experiences fluctuations due to the claim amounts (Z;), the arrival
of claims (N(¢)) and the incoming premiums (4(¢)). Ruin theory primarily focuses
on determining the probability of ruin: the probability that the supremum of aggre-
gated losses (due to claims minus the received income) over time exceeds the initial
capital reserves. More concretely, the probability of ruin over infinite and finite time
horizons is given by

W (u) = P(z(u) < 00) = IP’( sup S(1) > u)

0<t<oo
Y, T):=Pkru)<T) = IP’( sup S(t) > u),
o<t<T
respectively, where S(¢) denotes the aggregate loss (or risk) process, u the initial
reserve level, and t(u) := inf{t = 0: S(¢) > u} the time of ruin. Note that the finite-
time ruin probability coincides with the probabilities of interest, ¥ (u, T'), given in
Section 2 when S(7) = L(¢).

Without wishing to provide a full overview of the ruin theory literature, we pro-
ceed by describing some results that are applicable in determining the distribution of
L(t) and ¥ (u, T). As previously mentioned, in most cases it is easiest to first con-
dition on the common risk factor process X(¢) and then derive the conditional ruin
probabilities.
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When conditioned on the risk factor process X(¢), if the loss arrival N(¢) is
a homogeneous Poisson process and the compensating function is linear in time
(ie, h(t) = rt for fixed r = 0), then the loss process I:(t), as defined in (2.2),
corresponds to the classical Cramér—Lundberg model from ruin theory. The classi-
cal Cramér-Lundberg model is a well-studied standard model, and analytic formulas
for the finite- and infinite-time ruin probability have been found for a few special
cases depending on the distribution of the loss sizes (or claim sizes in the context of
insurance modeling). One such case is when losses/claims are assumed to be expo-
nentially distributed. In most cases, however, numerical or analytic approximations
must be resorted to in order to calculate the probability of ruin, especially in finite
time. These approximations are validated and in general very accurate.

Another special instance occurs when the risk factor process is a Markov process
that drives the parameters (intensity and, possibly, the loss size distribution) of the
classical Cramér-Lundberg model (see Section 2.2.4). This regime-switching model
is fairly common in ruin theory (see, for example, Asmussen and Albrecher 2010,
Chapter VII; Dickson and Qazvini 2018). To determine ruin probabilities, especially
in finite time, numerical or analytic approximations are typically resorted to.

For more general inhomogeneous premium and arrival mechanisms, we refer the
reader to Lefévre and Loisel (2009) or to Asmussen and Albrecher (2010, Sec-
tion VIL.6), which predominantly focuses on periodic risk processes. Those refer-
ences consider the classical Cramér—Lundberg model, with nonlinear premium pro-
cess h(t) and inhomogeneous Poisson arrival process N(¢) as specified in (2.2). To
our knowledge, no explicit analytic formulas exist for the finite-time ruin proba-
bility of this model. Analytic and numerical approximations include an averaged
model, as studied by Asmussen and Albrecher (2010) (who apply the classical
Cramér-Lundberg framework with averaged parameters), and recursion formulas,
as studied by Lefevre and Loisel (2009). We draw the reader’s attention to the recur-
sion formulas from Lefevre and Loisel (2009), which accommodate a general time-
dependent compensating function /(¢), making them highly valuable for practical
implementation.

In this section and throughout the remainder of the paper we focus on the results
of ruin theory, which can be used to analyze the credit risk loss distribution. How-
ever, we would like to emphasize that the established connection between portfolio
credit risk models and ruin theory facilitates a much broader exchange of results
and methods. Further details are given by Delsing (2022). One notable result in ruin
theory, which is of significant interest for credit risk management, is the existence
of several generic methods for optimally allocating capital reserves across various
business lines and subportfolios (see Delsing et al 2022).
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4 NUMERICAL WORK

This section studies the continuous-time CreditRisk+ model and its relation to the
original CreditRisk+ model and continuous-time structural model using comparative
simulations. The main aim of this section is fourfold:

(1) to show the effect of time in the CreditRisk+ model;
(2) to compare the continuous-time CreditRisk+ and structural models;

(3) to show the sensitivity of the results to various parameters and correlation
structures; and

(4) to demonstrate the efficiency and higher accuracy of using ruin theory results
instead of simulations.

We consider a homogeneous portfolio consisting of 500 obligors with similar risk
characteristics and with equal contributions to the portfolio, as it allows us to best
demonstrate the various features of the models. The same exercise can also be carried
out for a portfolio that is heterogeneous (in terms of the probability of default and
size distribution), but for ease of computation and to better demonstrate the various
features of the models, we have chosen to consider homogeneous portfolios in our
experiments.

The credit quality of these obligors is characterized by the Standard & Poor’s
rating grade BBB, with a corresponding unconditional annual default probability
pi(1) of 0.18% (see Table 6.9 of the CreditMetrics technical document by Gupton
et al (2007)). Historically, the normalized volatility of the default probability of a
single BBB obligor, «/V[piX (1)]/ pi (1), has a value of 0.4 according to Gordy (2000,
Section 3.2, Table 2). Here we have used the notation V[X] to denote the variance of
the random variable X . Similarly to the numerical work of Gordy (2000), we assume
that the loss given default is a fixed proportion (30%) of the book value. The losses in
the CreditRisk+ model (original/static and continuous-time) are then given by z; =
Z; = 0.3(1/500) for a portfolio with a total book value of 1. Except for Section 4.3,
where we examine the sensitivity of the results to other values of r, we assume the
compensating function is given by A(¢) = rt withr = 0.3x0.18% = 0.00054. Note
that this corresponds to the expected loss of the portfolio over one year (ie, E[L(1)]).
Further, we consider a time horizon of one year in all numerical experiments, in line
with regulatory banking requirements.

In Section 2.2.4 we introduced several dependence structures, all of which will be
considered in our numerical (simulation) experiments, leading to different loss distri-
butions. To calibrate these dependence structures, we follow the approach of Gordy
(2000), matching the implied model and historical values for the annual default
probability and its volatility.
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All dependence structures considered in this numerical study are based on a sin-
gle stochastic risk factor process, X(¢). For notational convenience, we define the
systemic volatility £ in the continuous-time CreditRisk+ model as

£2 = V[[gl X(t)dt].

Following Gordy (2000), who examined systemic volatility values of 1.0, 1.5
and 4, we set £ = 1.5 in our analysis. The sensitivity of the results to variations
in & is explored in Section 4.3.

Except in the case of the structural model, we further assume that the intensity
process for obligor i is given by )LI.X (t) = pi(H(1 —w 4 wX(z)). This specification
corresponds to a two-factor version of the model mentioned in Section 2.2.5, where
the first risk factor is 1 (ie, has zero volatility). To ensure that the expected default
probability aligns with the one-year default probability, we impose the condition
E[piX(l)] = p;(1), as in Section 2.2. This condition implies ]E[fo1 X(t)dt] = 1.

The weight w is determined by matching the normalized variance (or volatility) of
the default probability from the model, V| piX (1)]/ pi (1)2, to historical observations.
In our examples, this normalized variance is given by

VI AX (1) de 1
Vi A (0 d] (2) I w2V|:/ X(t)dt] = w?.
pi(1) 0
Given £2 = 1.5% and an observed normalized variance of 0.42, the weight w is

uniquely determined as 0.267.
We now present the different dependence structures and briefly describe the
calibration of their risk factor processes.

Discrete. In line with (1) in Section 2.2.5, we make use of a discrete and constant
common risk variable (ie, X(¢) = X for all #). The common risk variable X is a
discrete random variable that has two possible states, x; and x,, with correspond-
ing probabilities ¢ and 1 — ¢g. These parameters are selected arbitrarily, subject to
the following conditions: 0 < ¢ < 1, E[X] = 1 and V[X] = £2 = 1.5%. We take
g = 121/130, x; = 13/22 and x, = 13/2.

Gamma. As another example of (1) in Section 2.2.5, we again consider X(¢) = X
constant over time. Aligned with the original CreditRisk+ model, the risk factor X
is now assumed to be gamma distributed with shape parameter £ > 0 and scale
parameter 6 > 0. The model is calibrated in the same way as the discrete example
above by setting E[X] = 1 and £2? := V[X] = 1.52. This gives § = 2.25 and
k=1/6.
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Geometric Brownian motion. We now examine the dependence structure given in
(2) in Section 2.2.5 by considering the common factor process X(¢) given by a
geometric Brownian motion:

X(t) = X(0) exp((ux — o)t + ox W(1)),

where W(t) is a standard Brownian motion and py, oy denote the drift and volatil-
ity parameters, respectively. Further, X(0) = 1 and E[X(z)] = 1 forall ¢ > 0, as
described in Section 2.2.4. These restrictions give uy = 0. Note that this also
gives E[/, 01 X(t)dt] = 1. We calibrate the remaining model parameter in a similar
way to the discrete and gamma cases by setting £2 := V[ fol X(t)dt] = 1.52. This
gives oy = 1.6777 due to the fact that

t 2(— 2[ 0)2(1_1
V[/ X(s)ds:|: (Toxt ¢ ) _p2,
0

ox

Regime switching. We now assume that the common factor process X(¢) is driven
by a Markov environmental process J := {J(¢): ¢t = 0} with support {1, 2}.
This leads to the scenario described in (3) of Section 2.2.5. More concretely, if at
time ¢ the environmental process J is in state j, the common factor takes on value
xj > 0. The transition rate matrix governing J is denoted by Q = (qk 1)k 1e{1,2}-
Inspired by Asmussen (1989), we assume that transitions of J from 1 to 2 occur
at rate 1,2 = p, and those from 2 to 1 at rate g,; = 2p. We further assume that
the initial environment is in state 1. The parameters of the model (ie, x1, x2 > 0
and p) are arbitrarily chosen such that

: _ 2. [ : ]_ 2
E[/O X(t)dz]_l, &=V /0 X(t)dt | = 1.5%.

Let 77 denote the occupation time of environmental state 1 (that is, T :=
fol 17()=1dz). We may now write the expectation and variance of the integral
over the factor process as

1
E[/ X(1) dl‘i| = (x1 — x2)E[T1] + x2,
0

1
V[/ X(1) dl‘i| = (x1 —Xz)ZV[Tl].
0
This gives

x1=x2+ (- Xz)/E[Tl],

x2 = EE[T1]v1/V[T1] + 1.
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Expressions for E[T7] and V[T}] can be obtained from the probability distribution
function, given by Yoon et al (2011, (6)). Finally, we set p = 1/2, x; = 0.0848
and x, = 5.7801.

Structural. To implement structural dependence, we follow the approach in (4) from
Section 2.2.5. The intensity function of the Poisson process, conditioned on X(¢),
is given by 8piX (t)/0t, where piX () is defined in Section 2.3. We approximate
this intensity /\iX (¢) numerically by solving the Volterra equation from Peskir and
Shiryaev (2006, Theorem 14.3) using the discretization method of McLeish and
Metzler (2011, Section 4.1). The factor process X (¢) follows a standard Brownian
motion, with drift and volatility set at u; = 0.05 and o; = 0.3 for all i, consis-
tent with Zhou (2001). The default threshold log B;/A;(0) is calibrated to match
the unconditional observed annual default probability p;(1) = 0.18%, yielding
log Bi /A;(0) = —0.8907, where p; (1) is determined using (2.4). Since we con-
sider a single risk factor process X(z) and a homogeneous portfolio, the depend-
ence parameter w is the same for each obligor and represents their correlation
(ie, E[W; (1)W;(¢)] = w?t fori # j). The value of w is determined as before by
matching the model’s normalized variance for the default probability to historical
observations. Following Gordy (2000), the variance of the default probability in
this structural model is given by

B
A1(0)°

IP’( inf pit + oy Wi(t) <log
t€f0,1]

. B> 2
f t WL(t) <1 — pi(1)~.
il K2 + 02 Wa (1) < log A2(O)) pi(1)
An expression for this probability, evaluated numerically, is given by He et al
(1998). By equating the model and observed variances, we find w = 0.1227,
which closely aligns with the systemic risk weight in the static structural model
(Gordy 2000, Table 2).

By considering multiple dependence structures and various parameters (see Sec-
tion 4.3), we ensure that our findings are general and not dependent on any one
specific instance of the model.

In the following subsections, all the evaluations are retrieved by simulation
using PYTHON. The quantiles of a distribution are determined using linear inter-
polation where necessary. To ensure accuracy we performed 2 million simulations
(1 million for the structural dependence due to numerical complexity) using a time
discretization step of 0.005 years.

We note that current industry practices commonly rely on simulation approaches
and often implement a multiperiod discretized time grid to capture cashflows and
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FIGURE 1 Continuous-time CreditRisk+ sample paths.
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migration risk. Consequently, the need for simulation should not be seen as a sig-
nificant drawback of the model, especially given its solid intuitive foundation. For
large-scale portfolios, computational efficiency can be greatly improved through
parallelization and variance-reduction techniques, such as importance sampling.

4.1 The effect of time in the CreditRisk+ model

As mentioned, the original or static CreditRisk+ model only considers the loss dis-
tribution at a certain point in time (ie, L(1)). In practice, however, the maximum of
the loss process is often attained not at the end of the interval but prior to that: see the
sample paths of ]:(t) in the CreditRisk+ model in Figure 1. In the continuous-time
CreditRisk+ model we therefore consider the distribution of sup,¢[o 1] L(r) instead.
In this subsection we investigate the difference between these two distributions and
the resulting capital estimates (based on quantiles as in (2.3) and (2.1)).

In Figure 2 the cumulative distribution functions of the two variables f,(l) (static)
and sup;¢pg 1] I:(t) (continuous time) are compared assuming a gamma dependence
structure. The static distribution is piecewise linear, whereas the continuous-time
CreditRisk+ model gives a smoother cumulative distribution function due to the
effect of the compensating function %(¢), which is considered not only at the end
of the time interval but also at all times prior to that. The continuous-time Credit-
Risk+ cumulative distribution lies to the right of its static counterpart, illustrating
that the continuous-time CreditRisk+ distribution obtains higher loss values than
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FIGURE 2 Comparison of static and continuous-time distributions with gamma depend-
ence.
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its static counterpart with the same probability. This is what we would expect. The
difference between the static and continuous-time CreditRisk+ distributions is less
pronounced for large tail percentiles/quantiles of the distribution. As the number of
defaults/jumps increases, the difference between the maximum value and the value
at the one-year horizon decreases. This phenomenon is evident in the sample paths
depicted in Figure 1 and can also be observed from certain distributional statistics
in Tables 1 and 2. Considering the gamma dependence structure, the 75% quan-
tile differs by a factor of 10, whereas the 99% quantile only differs by 8% and the
99.9% quantile differs only by 2.6%. In capital calculations it is often the higher
quantiles that are of interest, while provisions are often calculated based on expected
losses. For the lower quantiles we note that the static L(1) can also obtain nega-
tive values, corresponding to losses smaller than the expected losses. The supremum
function, however, is naturally floored at zero. This effect is most pronounced in the
(relatively) lower tail percentiles of the distribution, where there are fewer defaults/
jumps.

To bridge the gap between the static and continuous-time models, we could con-
sider taking the maximum of a finite number of points in the interval. More specifi-
cally, instead of considering only i(l), we could consider two points in time and take
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TABLE 1 Static CreditRisk+ distribution £(1) with different dependence structures.

Discrete Gamma GBM RS Structural

Mean —1.5510e—7 —1.5510e—7 —3.9000e—9 —2.4633e—6 —3.0420e-7
SD 6.0845e—4 6.0882e—4 6.0776e—4  6.0670e—4 6.0794e—4
Skew 1.3851 1.3689 1.7437 1.3002 1.2790

Kurtosis  5.7517 5.7343 13.6025 5.1048 5.0151

0.5 6.0000e-5 6.0000e-5 6.0000e-5 6.0000e-5 6.0000e-5
0.75 6.0000e-5 6.0000e-5 6.0000e-5 6.0000e-5 6.0000e-5
0.99 1.8600e—3 1.8600e—3 1.8600e—3 1.8600e—3 1.8600e—3
0.999 3.0600e—3  3.0600e—3 3.0600e—3 3.0600e—3  3.0600e—3

SD, standard deviation. GBM, geometric Brownian motion. RS, regime switching.

TABLE 2 Continuous-time CreditRisk+ distribution sup,e[m]l:(z) with different depend-
ence structures.

Discrete Gamma GBM RS Structural

Mean 3.6020e—4 3.6000e—4 3.6129e—4 3.5184e—4 2.6908e—4

SD 4.8264e—4 4.8172e—4  4.8370e—4 4.7518e—4  4.4165e—4
Skew 1.9733 1.9589 2.6152 1.8873 2.3773
Kurtosis  8.5744 8.6248 25.8038 7.6605 10.0109
0.5 1.7340e—4 1.7340e—4 1.8420e—4 1.5720e—4 8.4300e-5
0.75 5.5950e—4 5.5950e—4 5.6220e—4 5.5410e—4 2.5710e—4
0.99 2.0193e-3 2.0112e-3 1.9815e—-3 1.9896e—-3 1.8897e—3

0.999 3.1518e—-3 3.1410e—3 3.1950e—-3 3.0924e—3 3.0654e—-3

SD, standard deviation. GBM, geometric Brownian motion. RS, regime switching.

their maximum, max(L (0), i,(l)), or three points in time, with max(ﬁ (0), i,(O.S),
L(1)). We refer to these as the static case with multiple evaluation points. In Fig-
ure 2 we plot the static case with three, five and nine points in time. When consid-
ering m uniformly spaced evaluation points between 0 and ¢, we will denote this
case by L (¢). When the number of evaluation points increases, the distribution
comes closer to the continuous-time distribution, as we would expect. In Figure 3
the maximum of the absolute error |£("’)(1) — SUP;¢[o,1] i(t)| is given as a function
of the number of evaluation points m. The error is computed per simulation and the
maximum over all simulation runs is shown. A small number of evaluation points is
sufficient to achieve a substantial reduction in approximation error; for instance, with
just 13 uniformly spaced points (including the starting point ¢ = 0), the error has
already dropped significantly, and further increases in resolution yield only marginal
improvements. In other words, assessing losses on a monthly basis and taking the
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FIGURE 3 Maximum absolute error across simulations between the static approximation
with multiple evaluation points L (1), based on m uniformly spaced time points, and the
continuous-time maximum sup;¢[g 1] L(¢)-
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maximum across all months yields results much closer to the continuous-time case
than those of the static approach of evaluating losses only at maturity.

4.2 Comparison between the structural and CreditRisk+ models

Gordy (2000) shows that the mapping of a static structural model to the origi-
nal (static) CreditRisk+ model produces L (1) distributions that are roughly similar.
The same can be observed for the continuous-time distribution sup;¢[g,j L(1): see
Table 3.

As the derivation of the CreditRisk+ model assumes small probabilities of default,
we include a similar comparison for a homogeneous CCC rated portfolio in the same
table. The annual default probability of these CCC rated obligors is p; (1) = 19.14%,
and the expected one-year loss is given by r = 0.3 x 19.14% = 0.05742. Fur-
ther, the other parameters are calibrated using the same values as before, giving
log B;/A;(0) = —0.3561 and w = 0.2852. We observe, in line with Gordy
(2000), that as the credit quality deteriorates, the extreme percentile values in the
continuous-time CreditRisk+ increase more quickly than in the continuous-time
structural model. The difference, however, still remains below 2%.
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TABLE 3 Comparison between the continuous-time structural model and CreditRisk+
with structural dependence for a BBB rated and CCC rated portfolio.

BBB cccC

CreditRisk+ Structural CreditRisk+ Structural

Mean 2.6908e—4 2.6835e—4  1.0229e—2  1.0180e-2
SD 4.4416e—4 4.4034e—4  1.5625e—2  1.5470e-2
Skew 2.3773 2.3814 1.9509 1.9239

Kurtosis  10.0109 10.0567 7.2140 7.0403

0.5 8.4300e—-5 8.16e—5 7.9650e—4  8.6730e—4
0.75 2.5710e—4 2.5440e—4 1.6077e—2 1.6077e-2
0.99 1.8897e—-3 1.8897e—3 6.5841e—2  6.4952e-2
0.999 3.0654e-3 3.0654e—-3 9.2241e—2  9.0780e—-2

SD, standard deviation.

4.3 The sensitivity of the results to various parameters

In this subsection we demonstrate the effects of some of the parameters in the models,
such as the systemic volatility £, the rate r and the number of obligors in the portfolio.
While the numerical experiments are based on the gamma dependence structure,
similar results are obtained for the other dependence structures (discrete, geometric
Brownian motion and regime switching).

The systemic volatility £ controls the shape of the distribution of fol X(t)dt, and
tail probabilities are sensitive to the choice of &. There is, however, no obvious addi-
tional information available to determine the value of this parameter. As mentioned
by Gordy (2000), the difficulty of calibrating ¢ should not be interpreted as a dis-
advantage of the CreditRisk+ model compared with the structural model, because
the structural model simply does not allow for this additional flexibility; the struc-
tural model imposes very strong restrictions on the shape of the distribution tail by
assuming a Brownian motion risk factor process.

In the original CreditRisk+ a single-factor model calibration of the model (ie, w =
1) is used to determine the value of £ as 1 (see Credit Suisse Financial Products
1997, Section A7.3). For our homogeneous portfolio of BBB rated obligors, this
would yield § = 0.4 and w = 1. To illustrate the sensitivity of the systemic volatil-
ity &€, simulation results of the distribution with gamma dependence are presented
in Table 4. For £ = 0.4, the skew and kurtosis of the static L(1) and continuous-
time sup,¢o 1] i,(t) distributions are closer together than under all other consid-
ered values, resulting in tail distributions that are also the closest together. As &
increases, both the static and continuous-time CreditRisk+ distributions exhibit heav-
ier tails. While standard deviations remain relatively unchanged, 99.9% tail per-
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FIGURE 4 The 99% and 99.9% quantiles of the static and continuous-time (CT)
CreditRisk+ models with 4(¢) = rt as a function of r.
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centiles rise significantly, consistent with findings of Gordy (2000) on the original
CreditRisk+ model. As the static distribution remains rather stable over time, due to
its piecewise linear form as observed in Figure 2, the difference between the static
and continuous-time distribution also generally increases if the systemic volatility
increases.

If the negative slope of the sample paths increases (ie, a higher value of r), the dif-
ference between the supremum sup, (g 1 f,(t) and the final Va}ue Z,(l) also grows.
Figure 4 illustrates the 99% and 99.9% quantiles for the static L(1) and continuous-
time sup; g 1 L(1) CreditRisk+ model under a gamma dependence structure, show-
ing that higher r leads to diverging tail percentages. In this specific instance the static
model reflects a lower level of risk than the continuous-time CreditRisk+ model as
r increases, with a 99% quantile difference of 8% for r = ]E[f,(l)] = 0.00054,
25% forr = 2]E[f,(1)] and 75% forr = 3E[ﬁ(1)]. The difference is less pronounced
for higher tail percentiles, as we concluded before.

Finally, we also change the number of obligors in the portfolio. The original port-
folio contained only 500 obligors and, as a result, the static cumulative distribution
function is discrete with a relatively low number of possible values in practice. Due
to this discrete distribution for the static model, the difference between the static
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FIGURE 5 Difference between the simulated and exact cumulative density functions for
continuous-time CreditRisk+ with discrete dependence.
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and continuous-time CreditRisk+ models is fairly large. In Table 5 we present the
results for the gamma dependence CreditRisk+ model with portfolio sizes of 1 000,
5000 and 10000 obligors. The distribution of these portfolios has a larger number of
attainable values for the static case, and as a result the static and continuous-time dis-
tributions are closer together, especially for the high tail percentiles such as 99.9%.
In other words, a small portfolio size may lead to a large difference between the
static and continuous-time CreditRisk+ distributions. Further, as observed by Gordy
(2000), risk is reduced significantly when increasing the number of obligors. Specif-
ically, the standard deviation of the portfolio with 10000 obligors is roughly 80%
smaller than that of the portfolio with 1000 obligors, and the 99.9% quantile values
drop by about 50%.

4.4 Using ruin theory results

Section 3 elaborated on the use of ruin theory methods for determining the distribu-
tion of losses in the continuous-time CreditRisk+ model. Here, we implement some
of these methods to showcase their workings and their accuracy in comparison with
the simulation approaches applied so far. We apply general ruin theory methods to
derive the distribution of the supremum of the loss process, sup;¢pg 1 i(t), using
recursive formulas instead of relying on simulation. When conditioning on the factor
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TABLE 6 Quantile comparison of simulation and exact results for continuous-time
CreditRisk+ with a discrete dependence structure.

Simulation Exact

0.5 1.73e—4 1.75e—4
0.75 5.60e—4 5.59e—4
0.99 2.019e—-3 2.024e-3
0.999 3.152e—3  3.156e-3

process X (7), the distribution of sup,¢g 1 f,(t) can be derived from ruin probabili-
ties. In fact, for discrete and gamma dependence, conditional on the factor process,
the losses I:(Z) take on the form of a classical Cramér—Lundberg model with con-
stant claims. A recursive formula for calculating the finite-time ruin probability in
the classical Cramér-Lundberg model with constant claims is provided by Rulliere
and Loisel (2004, Theorem 2.6). We will apply this formula to the continuous-time
CreditRisk+ model incorporating a discrete dependence structure. In Figure 5 we
present the difference between the cumulative distribution function of simulation-
driven results and the distribution obtained by using the exact recursive formula for
ruin probabilities. Table 6 shows that the results are near-exact. In addition to being
highly accurate, this recursive approach is also computationally more efficient: in our
implementation on the same system, the simulation-based method is almost 10 times
slower than the exact ruin theory approach.

4.5 Summary

The numerical results obtained in this section are summarized below.

e The continuous-time CreditRisk+ model offers an accurate representation of
risk over the full time horizon. In specific instances, the static (final time point)
CreditRisk+ distribution may indicate lower risk and required capital than
are captured by the continuous-time model. However, differences between the
static and continuous-time approaches tend to diminish in the upper-tail per-
centiles of the distribution, regardless of the dependence structure. A practical
approximation of the continuous-time model can be obtained by evaluating
losses at a finite number of uniformly spaced points throughout the time hori-
zon. Importantly, even a limited number of such points yields a maximum of
the loss process that closely aligns with the continuous-time outcome.

e Having high values of systemic volatility & and/or a high positive com-
pensating function A(#) results in a large difference between the static and
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continuous-time CreditRisk+ model outcomes. Moreover, a small number of
obligors in the portfolio will also have a more pronounced effect.

e Using a structural dependence structure in the continuous-time CreditRisk+
model results in a loss distribution very close to the loss distribution of the
actual continuous-time structural model itself. This is the case even for large
default portfolios.

e General ruin theory methods should be employed where possible to obtain
more accurate loss distributions in the (continuous-time) CreditRisk+ model.

5 DISCUSSION AND CONCLUDING REMARKS

This paper extended the original CreditRisk+ model to a continuous-time version that
models credit/default losses continuously rather than only at the end of a time inter-
val. The extension not only accounts for outgoing cashflows due to defaults but also
includes a positive compensating function representing, for example, interest rate
premiums or (expected) losses that may already be accounted for. As a result, the
maximum of the loss process over the time interval may occur prior to the end of the
interval. The continuous-time CreditRisk+ model offers an accurate representation
of risk over the full time horizon. The difference between the static/original Credit-
Risk+ model and the continuous-time model was demonstrated through a series of
numerical experiments and is strongly influenced by the level of systemic volatility
and the compensating function. Further, the introduced continuous-time model is a
flexible framework for portfolio credit risk assessment, accommodating various risk
factors and dependence structures, including the dependence used in the widely used
structural models that are the basis for the current credit risk capital requirements
for banks. Finally, the portfolio credit risk models from the banking industry were
successfully connected to ruin theory models used in the insurance sector. Notably, it
was demonstrated that ruin theory methods can replace simulation methods for credit
risk capital calculations in the continuous-time CreditRisk+ model. The analogies
established between these model classes pave the way for broader cross-fertilization
of results and methods, which will be a focus of future research.
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