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Abstract
We introduce an approximation strategy for the discounted moments of a stochastic
process that can approximate the true moments for a large class of problems. These
moments appear in pricing formulas of financial products such as bonds and credit
derivatives. The approximation relies on a high-order power series expansion of the
infinitesimal generator and draws parallels with the theory of polynomial processes.
We demonstrate applications to bond pricing and credit derivatives. In the special
cases that allow an analytical solution, the approximation error decreases to around 10
to 100 times machine precision for higher orders. When no analytical solution exists,
we numerically compare the approximation with existing numerical techniques.
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1 Introduction

For pricing and hedging applications, the interest is often in calculating the expected
value of a discounted function of a stochastic process,

E
[
e− ∫ t

0 r(Xs)dsf (Xt )
∣∣X0 = x

]
,

where f describes the contingent claim and r is the risk-free rate. Sometimes another
rate may be used for discounting, such as a hazard rate.

In several cases, this expectation has enough structure to allow analytical or semi-
analytical solutions. For example, if the process (Xt ) is an affine process and r is an
affine function, then the Fourier transform of f can be used to compute the expecta-
tion up to an integral and the solution to a system of Riccati equations (see Duffie et
al. [14]). Also, if (Xt ) is a polynomial process as defined by Cuchiero et al. [13], f is
a polynomial function and there is either no or constant discounting, then a simple
analytical expression exists.

This paper introduces an approximation formula that may work in situations where
no analytical expression can be found. The functional form of the approximation of
order k is

E
[
e− ∫ t

0 r(Xs)ds〈f̄ k, bk(Xt )〉
∣∣X0 = x

] ≈ 〈etAk f̄ k, bk(x)〉,
where bk(x) is a vector of certain basis functions evaluated at x (for now we take it
as (1, x, x2, . . . , xk−1) for a univariate process on R, but multivariate cases will be
considered) and f̄ k = (f0, . . . , fk−1) is a vector of length k so that the (standard)
inner product of vectors 〈f̄ k, bk(Xt )〉 = ∑k−1

i=0 fibi(x) represents a (polynomial)
expression of the value of the contingent claim. The matrix Ak can be derived from
the infinitesimal generator of the process and the function r . Naturally, when we are
interested in the ith discounted moment, we can choose as basis vector f̄ k = ei for
i = 0, . . . , k − 1. Here ei is the vector of length k that has 1 as the entry at the
ith position, all other entries being zero. Note that the numbering starts with i = 0,
which corresponds to the monomials xi , also starting with i = 0. Other choices
for the basis functions are equally well conceivable, and we in fact rely mostly on
Hermite polynomials in the remainder of this paper.

We investigate two primary applications of this approximation. The first is in the
calculation of bond prices in short-rate models. As the order increases, the approxi-
mation approaches machine precision, or falls within the margins of other numerical
techniques when the true bond price has no closed-form expression. This is shown
for Cox–Ingersoll–Ross (CIR) [12] and Black–Karasinski [7] bond prices. Figure 1
previews several orders of magnitude in performance gain over existing numerical
techniques. This comparison was made on a simple CIR bond price to illustrate the
convergence to the known analytical solution.

The second application is the calculation of spreads in a generalised Markovian
model of credit rating migrations that we develop in an accompanying paper [6].
This model follows the setup of Lando [19] and assumes that companies migrate
within a set of m ratings, e.g. {AAA, AA, . . . , CCC, D}, according to a Markov
chain (Rt ). The Markov chain has an m × m generator matrix Q(Yt ) that depends
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Fig. 1 Comparison of polynomial approximation against standard numerical methods for a CIR bond
price. All implementations are in Python, hence not optimised for computational efficiency or memory
usage

on a state Yt . Jarrow et al. [18] derive an analytical solution to spread curves
when Q is constant and does not depend on the state Yt . Lando [19] and Arvanitis
et al. [5] provide pricing equations when the generators Q(Yt ) commute (i.e.,
Q(y1)Q(y2) = Q(y2)Q(y1) for any values y1 and y2 that the process might take)
and (Yt ) follows an affine process. Hurd and Kuznetsov [16] apply these equations
to the case that Q(y) = y1Q1 + y2Q2 with (Yt ) a bivariate CIR process and Q1
and Q2 are two commuting generator matrices.

The commutativity requirement is highly restrictive, as pointed out by Martin [22].
There is strong empirical evidence that upgrades tend to slow down when downgrades
speed up, suggesting that the upper and lower triangles of Q(y) are driven separately
by two negatively correlated processes. Upper and lower triangular matrices do not
commute. We can use our approximation to relax the commutativity requirement as
well as the CIR requirement. This relaxation allows us to cover several more stylised
facts about credit migrations and spreads, as argued in our accompanying paper [6]. In
the exceptional special cases where an analytical solution exists, our approximation
method approaches machine precision as the order increases.

While we provide theoretical conditions for the approximation to converge, we
were not able to prove that these conditions hold for any of the more interesting
applications. For the CIR bond price, we come close and prove convergence up to
one technical condition (see Sect. 4.1). Numerically, this condition appears to hold,
but the proof remains an open problem.

In general, the approximation we propose is easy to compute. It requires appli-
cation of the infinitesimal generator A to the terms in a polynomial basis. In the
canonical univariate case, this means computing Ab0,Ab1,Ab2, . . . for certain basis
functions bi and subsequently projecting the results on the same basis. Whereas this
computation can be done by hand in many cases, it is straightforward in general for a
symbolic software package.
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Once the correct form of the matrix Ak is found in this way, the computation of
moments is very fast. Al-Mohy and Higham [2] offer a very efficient and numeri-
cally accurate algorithm for calculating the action of the matrix exponential etAk f̄ k

for a series of times t . Subsequent computing of the approximation for a given state
x can also be very efficient. In the univariate case, per Horner’s method, this takes
k additions and k multiplications, where we found that usually an order of k = 20
is sufficient. This is especially convenient for empirical methods such as maximum
likelihood estimation, Kalman filtering or MCMC methods, where we typically dis-
tinguish between construction of etAk f̄ k that happens once per likelihood evaluation,
and subsequent computation of the inner product 〈etAk f̄ k, bk(x)〉 which is required
as often as once per time-step within a single likelihood evaluation.

Apart from the applications that this paper explicitly investigates, we list several
other applications. First, consider the generic problem of estimating the parameters
of a discretely sampled continuous-time stochastic process. Naturally, the availability
of moments lends itself to generalised-method-of-moments-based estimation, such
as described by Zhou [30]. But maximum likelihood estimations can also benefit
from moment approximations. There is a one-to-one mapping between moments and
cumulants, and given some technical conditions, probability density functions can
be accurately approximated by cumulants using Gram–Charlier type A series. Such
approximations can be much more efficient than PDE, tree or simulation-based ap-
proaches (see Aït-Sahalia [1]). Second, Gram–Charlier-based approximations of den-
sity functions can also be useful for option pricing; see Popovic and Goldsman [24],
Tanaka et al. [28]. Specifically, Chateau and Dufresne [11] show that a European op-
tion price has a Gram–Charlier-based approximation that is linear in the moments
of the process. This approximation does not, however, improve with the number
of moments included. Finally, Cuchiero et al. [13] outline how variance reduction
techniques can benefit from knowledge about the moments.

To the best of our knowledge, this paper is the first to use an approximation of
the infinitesimal generator by applying it to a polynomial basis. There are, however,
myriad other ways to compute approximations of moments of stochastic processes
such as bond prices. Apart from standard PDE, tree or simulation-based approaches,
we mention a few. First, Tourrucôo et al. [29] and Antonov and Spector [3] approxi-
mate solutions of bond-pricing-related PDEs using perturbation techniques. Perturba-
tion approaches may quickly accumulate errors over time; hence this technique is not
suitable for longer-maturity bond prices. Second, Stehlíková and Capriotti [27] use an
exponent expansion technique (see Capriotti [10]) that yields quickly converging re-
sults at shorter maturities for Black–Karasinski bonds, but errors accumulate quickly
at medium to longer maturities. However, the authors present a convolution approach
to get higher accuracy at longer maturities (up to 4 significant digits in the 20-year
discount factor). Finally, Li et al. [20] rely on chaos expansion techniques to ob-
tain the moment-generating function of the integral of a mean-reverting process. This
approach yields simple explicit formulas, as demonstrated by pricing a quanto CDS.

This paper is organised as follows. Section 2 sets up the general notation of the
paper. Section 3 derives the theoretical results behind our approximation. Finally,
Sects. 4 and 5 show applications to the aforementioned short-rate models and credit
derivatives, respectively. Appendix A contains some supporting technical results.
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2 General notation

This section sets up general notation for the remainder of this paper. We borrow parts
of our setup from Cuchiero et al. [13]. Central in our analysis is the Feller process X,
i.e., a time-homogeneous continuous-time Markov process, with state space denoted
by D ⊆ R

d . If the process X is not conservative, we augment the state space with a
point � /∈ D to get the augmented state space D�. This point is usually referred to
as the cemetery state for killed processes and is used to incorporate discounting. Any
function f on D is extended to D� by the convention f (�) = 0. We further consider
the Feller semigroup (St )t≥0 (often simply denoted (St ) or even S) given by

Stf (x) := Ex[f (Xt )] (2.1)

and acting on all Borel-measurable functions f : D� → R for which the expectation
is well defined. Here we used Ex to denote expectation under the law Px that is
such that the process starts in x ∈ D, i.e., Px[X0 = x] = 1. When we need (in
applications to follow) that certain multi-powers of the Xt have a finite expectation,
it will be implicitly assumed that such moments exist and are finite. We also specify
later the space F of functions f to which the operators St are applied, together with
the norm on it. It will be such that the St have finite operator norm. We denote by A
the associated linear operator that describes the process, i.e.,

Af (x) := lim
t↓0

Stf (x) − f (x)

t
(2.2)

for all functions f : D� → R, f ∈ F , for which this limit is well defined. This set
is the domain of A, denoted by D(A).

This paper relies on series representations, mostly with respect to some orthonor-
mal basis. We start with a sequence b of linearly independent functions bi : D → R;
so b = (bi)

∞
i=0. We then further have sequences of real numbers b(x) = (bi(x))∞i=0

for x ∈ D. We denote by P the space of functions that can be written as a for-
mal (power) series with respect to b, i.e., for all f ∈ P , there exists a sequence
f̄ = (f̄i)

∞
i=0 in R such that

f (x) = 〈f̄ , b(x)〉 :=
∞∑

i=0

f̄ibi(x). (2.3)

We need the sum in (2.3) to be convergent in a suitable norm. The sequence f̄ then
denotes an infinite-dimensional vector representation of the function, and 〈 · , · 〉 is
the inner product notation for the infinite sum of vectors or vector-valued functions
evaluated at x. We formalise this now.

Consider a separable Hilbert space of functions on D, with a certain inner prod-
uct. A typical example is the L2-space with respect to an underlying measure. As a
specific example, we mention the L2-space of (Borel-measurable) functions f on R

satisfying
∫
R

f (x)2φ(x)dx < ∞, where φ is the standard normal density. Clearly,
this space contains all polynomials. Moreover, the Hermite polynomials form an or-
thonormal basis for this space, and if we choose the bi in (2.3) as these polynomials,
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the squared L2-norm ‖f ‖2 coincides with
∑∞

i=0 f̄ 2
i . If we take the bi as the monomic

polynomials in (2.3), then in the same L2-space, ‖f ‖2 can be written as f̄ �P f̄ for
a certain strictly positive definite infinite-dimensional matrix P . In what follows, we
always assume, unless stated otherwise, that P is a Hilbert space of functions with
respect to an appropriate inner product 〈 · , · 〉 and that it admits an orthonormal basis
b such that any f ∈ P can be represented as in (2.3) with a sum that is convergent
in P . We denote by H the Hilbert space (actually an ℓ2-space) of vectors f̄ associ-
ated with f ∈ P , for which we then automatically have 〈f̄ , f̄ 〉 < ∞. Here, with a
little ambiguity of notation, 〈 · , · 〉 denotes the inner product of ℓ2. It follows that the
ℓ2-norm of f̄ coincides with the Hilbert space norm of f . With a little but innocuous
abuse of notation, we invariably use the same symbol to denote inner products, sums,
norms and thus have 〈f̄ , f̄ 〉 = ‖f̄ ‖2 = ‖f ‖2 = 〈f, f 〉 and f = 〈f̄ , b〉.

Of course, other L2-spaces with respect to a different weight function than φ and
other orthogonal polynomials are also conceivable. For instance, if the relevant do-
main is [0,∞), there are clearly relations to finance as prices are nonnegative, and La-
guerre polynomials come into the picture. If the domain of the functions is a compact
interval like [−1, 1], then Jacobi, Chebychev or Legendre polynomials are relevant
to consider. Moreover, in the case of such a compact domain, also Fourier expansions
are a possibility, whereas for functions defined on all of R, one may also think of
expansions on a basis of Haar functions. Of course, one has to ensure that the St form
a semigroup of bounded operators on the underlying function space.

By Hk , we denote the subspace of H of sequences f̄ with f̄i = 0 for all i ≥ k.
We further let Pk be the space of ‘polynomials’ with k terms (the terminology is sug-
gestive) associated with Hk , meaning that f ∈ Pk if and only if f = ∑k−1

i=0 f̄ibi . An
element f̄ of Hk is also in a natural way identified with a vector (f0, . . . , fk−1) ∈ R

k .
Note that (a, b, c, . . .) for vectors or scalars a, b and c denotes vertical stacking into
one (potentially infinitely) long vector. This convention is used throughout the pa-
per. In the case of Hermite polynomials of a single variable, the space Pk consists of
all polynomials of degree k − 1 or less. We denote the Hermite polynomial of order
k by Hek(x). For higher-dimensional state spaces D ⊆ R

n, we use multi-index nota-
tion k to denote Hek(x) = Hek1(x1)Hek2(x2) · · · Hekn(xn) for ki ∈ N0,

∑n
i=1 ki = k.

For example, for n = 2, He0(x) = 1 is scalar, He1(x) = (He1(x1), He1(x2)) is a
2-vector, He2(x) = (He2(x1), He1(x1)He1(x2), He2(x2)) is a 3-vector, etc. Then un-
der this notation, for D = R

n and D = R
n+, b(x) = (He0(x), He1(x), He2(x), . . .)

has the same symbolic representation as the one-dimensional case. Another useful
state space to which we return later is the set of basis vectors D = {e1, . . . , ed}
of Rd . In this case, b(x) = He1(x) is an adequate basis as other powers (i.e., Hek(x)

in the vector sense and with k = 1) of unit vectors are linearly dependent. A gen-
eral notational convention follows. We write bk(x) = (b0(x), . . . , bk−1(x)), which is
also identified with bk(x) = (b0(x), . . . , bk−1(x), 0, . . .), the vector where the first k

entries of b(x) are followed by zeros.
The crux of our approximation theory relies on finite-dimensional modifications

of mappings on H. To this end, we introduce some notation that involve projections
and subspaces. Let Pk : H → Hk , k ≥ 1, be a sequence of projection operators, i.e.,
idempotent operators with co-domain Hk . Above we have made the special choice
where H is the ℓ2-space of sequences f̄ (satisfying 〈f̄ , f̄ 〉 < ∞), and Hk is the space
of finite vectors f k = (f0, . . . , fk−1) also identified with (f0, . . . , fk−1, 0, . . .).
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While multiple projections can be considered, this paper assumes that Pk is the
finite-section projection, i.e., we take the Hilbert space of sequences in ℓ2 with
Pkf̄ = (f̄0, . . . , f̄k−1, 0, . . .). Correspondingly, if we fix a sequence of basis func-
tions b(x) in P that forms an orthonormal basis and let Pk be the orthogonal projec-
tion on Pk which is the linear span of b0, . . . , bk−1, then Pkf ∈ Pk has the represen-
tation Pkf̄ ∈ Hk . Here we deliberately use the same notation Pk for the projections
onto Pk and Hk .

In general, we consider a fixed sequence of basis functions b(x) that forms
an orthonormal basis, and projections Pk : H → Hk onto finite-dimensional
subspaces Hk . Note that the orthogonal projections Pk : H → Hk given by
f̄ k := Pkf̄ ∈ Hk have the nice property that the operator norm ‖Pk‖ = 1 and
‖f̄k‖ ≤ ‖f̄ ‖. For any linear operator B : H → H, define the finite-section
approximation

Bk := PkB|Hk
: Hk → Hk. (2.4)

The restriction to Hk lets us interpret Bk as a k × k matrix when Hk has dimension k,
as in the case that we just considered. Note that the Bk are automatically bounded
operators, whereas B is typically only closed in the cases that are of interest for us.
Where necessary, one can also consider the Bk as operators Bk := PkB : H → Hk

simply by embedding Hk into H. This abuse of interpretation should not cause any
confusion, and we freely switch between Bk defined on Hk and on H.

If B is invertible, we can find a unique solution ḡ ∈ H to the system Bḡ = f̄ ,
namely ḡ = B−1f̄ . The approximation by the finite-dimensional system Bkḡ

k = f̄ k

is called the finite-section method (FSM). The main theorem in Sect. 3 applies the
FSM to the resolvent of a map A : H → H, i.e., if we let B = λI − A, then
B−1 = R(λ,A) := (λI − A)−1. We use the same notation for the resolvent of
a linear operator A, namely R(λ,A) := (λI − A)−1. The resolvent is said to be
defined if λ is in the resolvent set, i.e., if the inverse exists.

Finally, some more notational conventions follow. On finite-dimensional spaces,
we use the notation 0, I and ei to represent the zero matrix, the identity matrix or
operator and the ith standard basis vector (the ith column of I ), respectively. For
these objects, we assume that the size is clear from the context and may be infinite,
unless explicitly provided. The operator ⊗ stands for the Kronecker or matrix direct
product, and diag(a) represents the diagonal matrix with the elements of a vector a on
the diagonal. We also write diagi (ai), where i identifies all elements of the vector a.

3 Polynomial moment approximation theory

This section contains the heart of this paper, i.e., the theoretical results behind the
polynomial approximation that we propose. Consider a Feller process X on a state
space D with Feller semigroup of operators (St ) and (infinitesimal) generator A.

Definition 3.1 A Feller semigroup S = (St ) and the associated Feller process X is
called f -sequential if for f ∈ P and t ≥ 0, (i) Stf is well defined and (ii) Stf ∈ P .
Furthermore, (St ) is called sequential if it is f -sequential for all f ∈ P .
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Remark 3.2 Cuchiero et al. [13] call a time-homogeneous Markov process X poly-
nomial with semigroup (St ) if for all k ≥ 0, we have Stf ∈ Pk for all f ∈ Pk and
t ≥ 0. The key difference with sequential processes is the additional requirement that
a polynomial of order k cannot return a higher order polynomial when (St ) is applied.
Therefore all polynomial processes are sequential.

Remark 3.3 The quantity Stf appears to represent a standard moment in (2.1), but
can also represent a discounted moment when (St ) is not a conservative semigroup,
namely through appropriate specification of the killing rate at which the process jumps
to the cemetery state �. For more details, see Sect. 4 or Duffie et al. [14, Sect. 11].
This feature allows us to show that the Cox–Ingersoll–Ross (CIR) bond price is
an expectation of an f -sequential process with killing rate (see Sect. 4.1). Due to
the stochastic killing rate, this process is not polynomial. We should note that we
were not able to verify all technical conditions necessary to apply our polynomial
moment approximation theory to the CIR bond price. One technical condition
remains an open problem (see Sect. 4.1).

Remark 3.4 The time-homogeneity of the Feller assumption can potentially be re-
laxed to piecewise time-homogeneity. A typical example happens in the context of
local models where up to a time τ1, the process X evolves according to a certain
semigroup and starting from τ1 according to another semigroup, and then repeatedly
changes at times τk . These times are usually chosen to correspond to tenors of deriva-
tives. For some practical applications, this is useful, but it complicates notation and
analysis considerably, and is not pursued further in the present paper.

Any sequential semigroup is a family (St ) of linear maps from P to P , and hence
with a fixed basis b, these induce linear maps S̄t from the sequence space H to H
which have an infinite-dimensional matrix representation. Let g(t) := Stf . Then,
using the vector representations ḡ(t) of g(t) and f̄ of f , we may write

ḡ(t) = S̄t f̄ ,

where the ji-element S̄t,j i is defined as S̄t,j i = c̄
(i)
j (t) resulting from the representa-

tion of c(i)(t) := Stbi .
In an analogous way, we consider the derivative in (2.2). Assuming that each bi

belongs to D(A), we put c(i) := Abi and then the c(i) belong to P as well, i.e.,
A : D(A) → P (which notably does not imply that D(A) = P). In all examples that
follow, this assumption is satisfied. As all the c(i) belong to P , we can represent them
by their coordinate vectors c̄(i) ∈ H with elements denoted by c̄

(i)
j . We then define

the infinite-dimensional matrix A representing a map from H into H having ji-entry
Aji = c̄

(i)
j . We call A the matrix generator of the process X. In fact, any linear map,

call it A again, from P into itself naturally induces a map A : H → H in a similar
way. As any f ∈ P can be identified with a sequence f̄ ∈ H, and similarly a function
g ∈ P can be identified with a sequence ḡ ∈ H, one can define ḡ = Af̄ if g = Af

for f ∈ D(A).
Since a generator A of a semigroup is a closed operator, so is A. To see this, we use

the duality between elements of P and those of H. We use that A is closed if and only
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if D(A) is complete with respect to the graph norm given by ‖f ‖2
A = ‖f ‖2 +‖Af ‖2

(see Bobrowski [8, Exercise 7.3.3]) and similarly that A is closed if and only if D(A)

is complete with respect to the graph norm given by ‖f̄ ‖2
A = ‖f̄ ‖2 + ‖Af̄ ‖2. But by

construction, ‖f ‖A = ‖f̄ ‖A. In the sequel, we freely switch between f ∈ P having
an orthogonal expansion in terms of a sequence f̄ , and between Af and Af̄ .

For Feller semigroups, we have ∂tStf = AStf for f ∈ D(A). Hence for
g(t)= Stf , we have ∂tg(t)=Ag(t), and in the corresponding sequence space H, one
has ∂t ḡ(t) = Aḡ(t). Paralleling finite-dimensional notation, we write ḡ(t) = etAf̄ as
is done for polynomial processes in Cuchiero et al. [13, Theorem 2.7], although in
general the matrix A is genuinely infinite-dimensional (and has infinite norm, so that
we should only interpret this exponential action as a definition, not as a method of
computing ḡ(t)).

We use the finite-dimensional matrix Ak to approximate the semigroup. That is, in
ordinary finite-dimensional notation, we use

ḡk(t) := S̄k
t f̄ k, S̄k

t := etAk , (3.1)

to approximate ḡ(t). We use the name polynomial approximation as a consequence
of the polynomial structure of the approximating gk(t) as functions in x, when the Ak

are taken as in (2.4). Our main theoretical result is on the convergence of the approx-
imation in (3.1). Before we state it, we need one more definition, for which we use
the convention that elements of Pk are considered as elements of P by the natural
embedding.

Definition 3.5 Consider a closed and invertible linear operator B : H → H and its
finite-section approximation Bk as in (2.4). The FSM is said to be

1) f -applicable to B if limk→∞ B−1
k f̄ k = B−1f̄ , with f ∈ P ;

2) applicable to B if the FSM is f -applicable for all f ∈ P .

We often need that the FSM is applicable (or f -applicable) to B = λI −A, which
is the inverse of the resolvent. In these cases, we implicitly assume that λ is chosen
in the resolvent set, as this is always possible for sufficiently large λ by the properties
of the resolvent. Note also that this definition hinges on the fact that finite sections
Ak of A trivially extend to finite sections (λI − A)k = λI − Ak of λI − A, and that
λI − A is closed since A is closed.

Remark 3.6 The applicability of the FSM exists with different notions of conver-
gence. Hagen et al. [15, Sect. 1.1.1.] consider strong convergence of operators,
whereas Lindner [21, Sect. 2.6.3] uses the weaker concept of strict convergence. We
opt for strong convergence. Recall that this means the following, in a more general
situation than ours: If Tn, T : X → X are operators on a Banach space X with a com-
mon domain D ⊆ X, then the Tn strongly converge to T if ‖Tnx − T x‖ → 0 for all
x ∈ X. For completeness, we also mention a characterisation of strict convergence of
un to u in ℓ2: This takes place if the norms ‖un‖2 are bounded and if the un converge
to u element-wise. It is evident that this is a weaker concept.
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We recall the following result. For a strongly continuous semigroup (St ) acting on
a Banach space P with generator A (having domain D(A)), there exist C ≥ 1 and
w ≥ 0 such that the operator norm satisfies

‖St‖ ≤ Cewt ; (3.2)

see Bobrowski [8, Eq. (7.14)].
In the main result in Theorem 3.7 below, we assume that the Ak are derived from

the given generator A by projections. Let Pk be projections of P onto subspaces Pk

with norm ‖Pk‖ ≤ 1. Let Ak be the finite-section approximation of A as in (2.4). The
Ak can also be seen as operators (with domains D(Ak)) on Pk by identifying Ak with
PkAPk . Similarly, for f k ∈ D(Ak), we consider R(λ,Ak)f̄

k ∈ Pk as an element
of P . For the proof of the theorem, it would be convenient that the same bound (3.2)
applies to the semigroups Sk uniformly in k. The condition that the (Sk

t ) all sat-
isfy (3.2) is at first glance reasonable. Indeed, for the easy case that A is a bounded op-
erator, it is almost trivially satisfied as then ‖Ak‖ ≤ ‖A‖ and ‖Sk

t ‖ ≤ e‖Ak‖t ≤ e‖A‖t .
However, in many relevant situations, boundedness of A appears to be too restrictive.
Therefore we make the weaker assumption that for a semigroup (St ) and all bounded
and continuous f , there exist nonnegative constants Cf and wf such that

‖Stf ‖ ≤ Cf ewf t for all k ≥ 1, t ≥ 0. (3.3)

Note that here we do not require the semigroup to be strongly continuous, as this
would lead to the stronger property (3.2). We impose this weaker assumption on the
semigroups (Sk

t ), but uniformly in k, in Theorem 3.7. In that result, we also need one
extra assumption on the projection f k of f , namely that for all relevant (depending
on the application at hand) functions f and all f k = Pkf , it holds that

Cu
f := sup

k

Cf k and wu
f := sup

k

wf k are finite. (3.4)

Note that both finite suprema in principle depend on the particular function f at hand.
A similar condition applies to f̄ k . Namely, if (3.3) and (3.4) hold, then we have

‖R(λ,Ak, f )‖ =
∥∥∥∥

∫ ∞

0
e−λt S̄k

t f dt

∥∥∥∥ ≤ Cu
f

λ − wu
f

for λ ≥ wu
f and

sup
k

‖R(λ,Ak, f
k)‖ ≤ Cu

f

λ − wu
f

< ∞

for λ ≥ wu
f . To avoid complications in its proof, we impose in Theorem 3.7 some re-

stricting assumptions like (3.6) below. These restricting assumptions are immediately
satisfied if

f̄ k = f̄ for all sufficiently large k. (3.5)
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Clearly, this last strong assumption does not hold in general, but is satisfied in impor-
tant applications like that with the CIR model in Sect. 4.1. But (3.6) below of course
holds if the sequence (Af̄ k) converges. Moreover, in that case, because A is a closed
operator, it holds that necessarily Af̄ k → Af̄ .

Theorem 3.7 Consider an f -sequential process for some f ∈ P . Assume (St ) sat-
isfies (3.2) and in addition that the generators Ak are such that the generated semi-
groups (Sk

t ) all satisfy the same norm bound (3.3), i.e., ‖Sk
t f ‖ ≤ Cf ewf t for all

k ≥ 1, t ≥ 0. Assume also (3.4). Let f be such that also

α := sup
k

‖Af̄ k‖ < ∞. (3.6)

If the FSM is f -applicable to R(λ,A)−1 = λI − A for all big enough λ, then
ḡk(t) → ḡ(t) (i.e., etAk f̄ k → etAf̄ ) as k → ∞, with convergence in the ℓ2-norm.

Proof Let t > 0 as the case t = 0 is trivial. Consider the Phragmén representation
of the semigroup (St ); see Neubrander [23] and Lemma A.1. For f ∈ D(A), it holds
that Stf = limλ→∞ St (λ,A, f ) with, see (A.2),

St (λ,A, f ) = λ

∞∑

n=1

(−1)n−1 1

(n − 1)!e
nλtR(nλ,A)f,

where R(λ,A) := (λI −A)−1 denotes the resolvent. Naturally, when switching from
P to H, we can write this in matrix form with g(t) = Stf and ḡ(t) = S̄t f̄ = eAt f̄ .
One has, see also Corollary A.2,

ḡ(t) = S̄t f̄ = lim
λ→∞ St (λ,A, f̄ )

with

St (λ,A, f̄ ) = λ

∞∑

n=1

(−1)n−1 1

(n − 1)!e
nλtR(nλ,A)f̄ .

Now the Ak are bounded operators and hence the etAk satisfy a condition of type (3.2)
for every k; so we can apply the same representation to ḡk(t) = etAk f̄ k to get

ḡk(t) = etAk f̄ k = lim
λ→∞ St (λ,Ak, f̄ ).

Next we embed the finite-dimensional vector ḡk(t), as any element of Hk , in H sim-
ply by appending an infinite sequence of zeros and thus consider ḡk(t) as an element
of H. Likewise, we can also consider R(nλ,Ak)f̄

k as an element of H. Hence we
can consider convergence of the ḡk(t) as elements in H.

Let λ0 be large enough such that the resolvent R(λ,A) is defined for all λ > λ0.
By Definition 3.5 and the assumed f -applicability,

lim
k→∞ R(nλ,Ak)f̄

k = R(nλ,A)f̄
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for all n ≥ 1 and λ > λ0, where the limit is taken in H. Having established this
convergence, we invoke Lemma A.3 which states that then also

λ

∞∑

n=1

(−1)n−1 enλt

(n − 1)!R(nλ,Ak)f̄
k −→ λ

∞∑

n=1

(−1)n−1 enλt

(n − 1)!R(nλ,A)f̄ .

Recall that our aim is to show that the S̄k
t f̄ k (considered as elements of H) converge

to S̄t f̄ , where S̄k
t = eAkt . Therefore, let ε > 0 and consider

‖S̄k
t f̄ k − S̄t f̄ ‖ ≤ ‖S̄k

t f̄ k − St (λ,Ak, f̄
k)‖

+ ‖St (λ,Ak, f̄
k) − St (λ,A, f̄ )‖

+ ‖St (λ,A, f̄ ) − S̄t f̄ ‖. (3.7)

Since the St satisfy (3.2) and the Sk
t satisfy (3.3), we apply Corollary A.2 to both

semigroups. So for all large λ, say λ > λ0, the last term on the right-hand side
in (3.7) is less than

D‖Af̄ ‖ewtλ−1/2 + exp(−eλt )‖f̄ ‖.
For the first term in (3.7), we have the upper bound

‖S̄k
t f̄ k − St (λ,Ak, f̄

k)‖ ≤ Df̄ k‖Akf̄
k‖ew

f̄ k t
λ−1/2 + exp(−eλt )‖f̄ k‖.

Consider ‖Akf̄
k‖. Since Akf̄

k = PkAPkPkf̄ = PkAPkf̄ = PkAf̄ k , one finds
‖Akf̄

k‖ ≤ ‖Pk‖‖Af̄ k‖ ≤ ‖Af̄ k‖. Note also that ‖f̄ k‖ ≤ ‖f̄ ‖. Hence the right-hand
side of the last inequality has the first upper bound

Df̄ k‖Af̄ k‖ew
f̄ k t

λ−1/2 + exp(−eλt )‖f̄ ‖. (3.8)

Under the assumptions (3.4) on wu
f and (3.6) on α, we get for (3.8) an upper bound of

the type encountered above, with D = supk Df̄ k < ∞ under (3.4) as follows from the
proof of (A.1). To be precise, (3.8) and thus also the first term in (3.7) is bounded by

Dαe
wu

f t
λ−1/2 + exp(−eλt )‖f̄ ‖.

It follows that the sum of the first and last term in (3.7) have an upper bound that tends
to zero for λ → ∞, uniformly in k. Choose then λ > λ0 such that this sum is less than
some ε > 0. For the chosen λ, the middle term in (3.7) can be made smaller than ε by
choosing k larger than some k0 = k0(λ0) by Lemma A.3. Hence the total expression
on the right of (3.7) is less than 2ε for all k > k0. This concludes the proof. �

Theorem 3.7 dictates what steps should be followed to apply the approximation
theory outlined in this section to a Feller process X on a state space D with genera-
tor A. The first is to fix an appropriate basis b(x) for the state space D of the process.
Typically, Hermite (or other orthogonal) polynomials are instrumental here. The next
step is to verify that the process is f -sequential for the f ∈ P that is of interest.
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Obviously, bounded functions pose no difficulties. The examples in the remaining
sections all deal with bounded functions f . Then one has to derive A column by
column, based on c(i) = Abi . Section 3.2 derives some useful results for Hermite
polynomial bases. As a final step, one has to show that the applicability condition in
Theorem 3.7 holds. We outline several strategies in the results below.

3.1 Results on FSM applicability to the inverse of resolvents

This section outlines some sufficient conditions on A and f that allow us to conclude
that the FSM is f -applicable.

Applicability of the finite-section approximation has been extensively studied in
the literature and sufficient conditions in a variety of settings have been estab-
lished; we list a number of them. A well-known result is Polski’s theorem, see e.g.
Hagen et al. [15, Theorem 1.4], which states that applicability holds if the approxima-
tion BkPk → B (strongly) is stable, i.e., the norms of the inverses ‖B−1

k ‖ are bounded,
and if B is invertible. Refinements are given in Rabinovich et al. [25, Theorem 2.3]
for banded and band-dominated operators, where stability is characterised by in-
vertibility of some associated operators. Another important case where applicabil-
ity holds (under conditions) is when dealing with infinite upper Hessenberg matri-
ces; see for instance Robert and Santiago [26, Theorem 4]. A special case of this
arises when dealing with (tri-diagonal) Jacobi matrices. More results can be found in
Lindner [21, Sect. 5.2] where different (weaker) topologies are considered, like that
induced by strict convergence.

Note that the stability condition on the norms of the resolvents R(λ,Ak) is satis-
fied as soon as the Ak are such that their norms satisfy a bound as in (3.2), uniformly
in k. Indeed, we then have

‖R(λ,Ak)‖ ≤
∫ ∞

0
e−λt‖Sk

t ‖dt ≤
∫ ∞

0
e−λtCewtdt = C

λ − w

for λ > w, independently of k.
The following result helps to establish strong convergence in specific cases that

are of interest, for example an upper Hessenberg matrix (a matrix with all elements
below its first sub-diagonal zero) with a bounded first sub-diagonal. This structure
appears in the case of CIR bond pricing.

Proposition 3.8 Consider an infinite-dimensional matrix B, also seen as an oper-
ator B from a domain D(B) ⊆ ℓ2 to ℓ2. If B is closed and, viewed as a matrix,
has a strictly lower triangle which is banded with uniformly bounded elements, then
BkPk → B strongly. Recall that a banded matrix B with bandwidth k has Bij = 0
for |i − j | > k.

Proof Our aim is to show BkPk → B strongly, i.e., the convergence in ℓ2 of BkPkx

to Bx, for arbitrary x ∈ D(B). For the arguments that follow, we can without loss of
generality assume that D(B) = ℓ2, and so we assume that x is an arbitrary element
of ℓ2. Important is only that Bx is a well-defined element of ℓ2.
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Let x ∈ ℓ2 and xk = Pkx; so x = xk + xǩ with the projection error xǩ . Consider

Bx − BkPkx = B(xk + xǩ) − Bkx
k = (B − Bk)x

k + Bxǩ.

To show that BkPk → B strongly, we have to prove the convergence in ℓ2 of the

right-hand side of the above display. Consider first Bxǩ . Suppose Bxǩ → y (possibly

along a subsequence) for k → ∞. As xǩ → 0 in ℓ2 for k → ∞, the closedness of B

implies y = 0.
It remains to check that (B −Bk)x

k → 0 for k → ∞. To that end, it is convenient
to switch to coordinate representations of vectors and to a matrix representation of B.
Let us write, with a little abuse of notation, xk as

(
xk

0

)
,

where the xk in the display is to be interpreted as a k-dimensional vector in R
k . Put

B =
(

Bkk Bkǩ

Bǩk Bǩǩ

)
,

where Bkk ∈ R
k×k . Then we can represent (B − Bk)x

k as

((
Bkk Bkǩ

Bǩk Bǩǩ

)
−

(
Bkk 0

0 0

) ) (
xk

0

)
=

(
0

Bǩkxk

)
.

So it remains to check that Bǩkxk → 0 for k → ∞. Suppose that the lower triangle
of B is banded in the sense that Bij = 0 for i−j > d for some nonnegative integer d .

Note that for d = 0, one finds that B is diagonal and hence the matrix Bǩk consists
entirely of zeros, as this matrix has as first row the elements (Bk+1,1, . . . , Bk+1,k),
which are all zero when d = 0.

Therefore, we assume from here on d > 0 and additionally k > d as k → ∞.

It follows that only the first d rows of Bǩk are possibly nonzero; all other rows are

necessarily zero. The first d elements of yk,d := Bǩkxk are given by

Bk,dxk,d :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Bk+1,k+1−d . . . . . . . . . Bk+1,k

0 Bk+2,k+2−d . . . . . . Bk+2,k
...

. . .
. . .

...

... 0 Bk+d−1,k−1 Bk+d−1,k

0 . . . . . . 0 Bk+d,k

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎝

xk+1−d
...

xk

⎞

⎟
⎠,

whereas the remaining elements are all zero. The matrices Bk,d in the above display
have the fixed size d×d , and all their entries are bounded by a constant not depending
on k by assumption. So the Bk,d have uniformly bounded operator norms, and hence
the ℓ2-norm of yk,d is upper bounded by a constant times the ℓ2-norm of xk,d , which
is (

∑d
j=1 x2

k−d+j )
1/2 and smaller than the root of

∑∞
j=1 x2

k−d+j . Since x ∈ ℓ2, the
latter quantity is the tail of a convergent series and hence vanishes for k → ∞. �
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The simplest case for applicability follows directly from Proposition 3.8 and
occurs when we are dealing with a univariate polynomial process. For univariate
polynomial processes, the corresponding matrix A is upper triangular.

Corollary 3.9 Let A be as defined for Theorem 3.7. If A is upper triangular and f̄

has a finite number of nonzero elements, then the FSM is f -applicable to the inverse
R(λ,A)−1 = λI − A.

Proof We can take k and λ sufficiently large such that by assumption f̄ = f̄ k and
that the inverse R(λ,Ak) exists, since Ak is finite-dimensional.

Next, we write λI − A in block form as

λI − A =
(

λI − Ak −A′
0 λI − A∞

)
.

Then by the properties of block inversion,

R(λ, A)f̄ =
(

(λI − Ak)
−1 (λI − Ak)

−1A′(λI − A∞)−1

0 (λI − A∞)−1

) (
f̄ k

0

)
= R(λ, Ak)f̄

k,

which concludes the proof. �

Beyond this simple case, we can show applicability for the Cox–Ingersoll–Ross
bond price in Sect. 4.1. We defer the application of results to that section. For other
examples, we show only numerical convergence.

3.2 Results on Hermite polynomials

As subsequent sections rely heavily on Hermite polynomials, we introduce some
notation and properties. To denote the Hermite polynomial of order k, we use the
notation Hek(x). We have (up to order four)

He0(x) = 1,

He1(x) = x,

He2(x) = x2 − 1,

He3(x) = x3 − 3x,

He4(x) = x4 − 6x2 + 3.

Per previous notation, these polynomials are extended to zero at �. Hermite poly-
nomials are based on projection with a Gaussian weighting function with zero mean
and unit variance. It is in our case more accurate to align the mean and variance with
the unconditional mean and variance of the process. We allow two parameters, α for
the variance (scaling) and β for the mean (location), and define

Heα,β
k (x) = α

n
2 Hek

(
x − β√

α

)
.
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The relationships in the following result are useful in applying an infinitesimal
generator to Hermite polynomials of this kind.

Lemma 3.10 Let k, ℓ ≥ 0 and t > 0. Then

d

dx
Heα,β

k (x) = kHeα,β
k−1(x),

dℓ

dxℓ
Heα,β

k (x) = k!
(k − ℓ)!Heα,β

k−ℓ(x),

xHeα,β
k (x) = αkHeα,β

k−1(x) + βHeα,β
k (x) + Heα,β

k+1(x),

exHeα,β
k (x) =

∞∑

ℓ=0

eβ+ α
2

k∧ℓ∑

i=0

(
k

i

)
αk−i

(ℓ − i)!Heα,β
ℓ (x).

Proof See Appendix B. �

3.3 Numerical considerations

In all applications in the sections to follow, we use a standard implementation of the
algorithm by Al-Mohy and Higham [2] to compute the action of the matrix exponen-
tial etAk f̄ k directly for a grid of times, since it is much faster and numerically more
stable than computing etAk separately for several values of t before multiplying by
f̄ k . In cases where the interest is in multiple moments f̄ k,1, . . . , f̄ k,m, we use the
same algorithm on etAk F̄ k with F̄ k := (f̄ k,1, . . . , f̄ k,m).

Table 1 compares the speed of this calculation for different matrix sizes and
numbers of time steps. Even for very large matrices, the computation runs in sub-
second time. Note that only one of these computations has to be executed for a given
parametrisation. If the state x of the process changes, we only have to calculate bk(x)

Table 1 Computation time (in
milliseconds) of etAk F k for
various practically relevant sizes
of Ak and Fk and a grid of
times of size 1, 10 and 100, on
four Intel(R) Xeon(R) CPU @
2.20 GHz cores. Entries are
generated randomly and scaled
to prevent explosion. Numbers
reported are medians of 10 runs

size A size B time steps

1 10 100

10 × 10 10 × 1 1.4 5.6 49.8

10 × 10 1.0 6.0 56.0

20 × 20 20 × 1 1.0 5.3 51.6

20 × 10 1.1 6.8 62.6

50 × 50 50 × 1 1.0 5.8 55.3

50 × 10 1.3 8.5 77.1

100 × 100 100 × 1 2.4 13.3 121.6

100 × 10 3.4 10.9 106.0

200 × 200 200 × 1 2.8 15.3 137.5

200 × 10 4.3 28.1 271.9

500 × 500 500 × 1 4.7 24.5 173.7

500 × 10 13.1 77.9 717.3
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and get bk(x)�etAk F̄ k through multiplication (both negligible in speed compared to
the matrix exponential). In the case of MLE, this means that the matrix exponen-
tial has to be computed only once per likelihood evaluation, even if we have a very
long time series. In the case of scenario simulation, we can pre-compute the matrix
exponential offline as part of the calibration.

In calibration and estimation exercises, the interest may be in the derivative of ḡ(t)

with respect to the parameters θ of the process which are encoded in Ak . That is, we
are interested in ∂

∂θi
ḡ(t), with ∂

∂θi
Ak easy to derive from its definition. Using standard

properties of the Fréchet derivative, we have

eÃk =
(

eAk ∂
∂θi

eAk

0 eAk

)
, Ãk =

(
Ak

∂
∂θi

Ak

0 Ak

)
,

and therefore

etÃk

(
0
f̄ k

)
=

(
etAk ∂

∂θi
etAk

0 etAk

) (
0
f̄ k

)
=

(
∂

∂θi
ḡ(t)

ḡ(t)

)
.

Note how this computes both the value and the derivative in a single expanded matrix
exponential.

4 Applications to short-rate models

The next two sections analyse several possible applications of polynomial moment
approximation. We start with the bond price approximations of two popular short-rate
models, before considering more complex credit-spread models in the next section.

Many popular short-rate models have the following structure: a Feller process X is
specified as well as a function r : D → R+ such that the short rate at time t is given
by r(Xt ). In this context, the zero-coupon-bond price is given by the expectation

P(x, t, T ) = E
[
e− ∫ T

t r(Xs)ds
∣∣Xt = x

]
. (4.1)

As shown by Duffie et al. [14], this price is equivalent to the zeroth moment of a
modified process with a generator Af (x) := Axf (x) − r(x)f (x), with Ax being
the infinitesimal generator of the process X and r(x) the killing rate at which the
process jumps to the cemetery state �. Nonnegativity of r on D is required to ensure
that the semigroup (St ) is Feller, since Feller semigroups are contraction operators.
When there is a constant lower bound, i.e., when the discount rate can be written as
r(x) = r + r ′(x) with r ′ nonnegative on D, then we can bring e−r(T −t) outside the
expectation in (4.1). However, we have seen that the approximation may also work
for negative discounting directly. With the semigroup (St ) corresponding to A, the
bond price with respect to the basis b(x) = (Heα,β

0 (x), Heα,β
1 (x), . . .)� is given by

P(x, t, T ) = ST −t f (x), f̄ = e1 = (1, 0, . . .)�.

Both the Cox–Ingersoll–Ross (CIR) and the Black–Karasinski model fall in this
class. In the CIR case, a closed-form solution exists, making it an excellent reference
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case for testing the approximation. In the Black–Karasinski case, we compare with
numerical methods since an analytical solution does not exist.

4.1 The Cox–Ingersoll–Ross bond price

The CIR one factor short-rate model in [12] is a popular model to price interest-rate
derivatives. Its state space is the positive real line D = R+ so that negative rates
are avoided. A closed-form solution exists for the price of a (zero-coupon) bond to
benchmark our approximation.

The CIR short-rate dynamics follow the SDE

dXt = θ(μ − Xt)dt + σ
√

Xt dWt, r(Xt ) = Xt . (4.2)

In (4.2), the initial state X0 is positive, and so are the parameters μ, σ and θ . Fur-
thermore, 2θμ > σ 2 to ensure that the process remains positive. The infinitesimal
generator of the modified process is

Af (x) = θ(μ − x)
∂f

∂x
(x) + 1

2
σ 2x

∂2f

∂x2
(x) − xf (x),

where the last term is the adjustment that allows us to compute the bond price as
the first moment of the process. Applying this infinitesimal generator to the basis
elements bi+1(x) = Heα,β

i (x), 0 ≤ i ≤ k − 1, gives

AHeα,β
i (x) = −Heα,β

i+1(x)

−(θi + β)Heα,β
i (x)

+
(

1

2
σ 2i(i − 1) + (θμ − θβ − α)i

)
Heα,β

i−1(x)

+
(

1

2
σ 2β − θα

)
i(i − 1)Heα,β

i−2(x)

+1

2
σ 2αi(i − 1)(i − 2)Heα,β

i−3(x).

From this expression, we can columnwise identify the matrix A and then Ak by
considering the k × k finite section. For example, for k = 4, we have

A4 =

⎛

⎜⎜
⎝

−β θμ − θβ − α βσ 2 − 2θα 3σ 2α

−1 −(θ + β) σ 2 + 2(θμ − θβ − α) 3βσ 2 − 6θα

0 −1 −2θ − β 3σ 2 + 3(θμ − θβ − α)

0 0 −1 −3θ − β

⎞

⎟⎟
⎠ .

Choosing α = μσ 2

2θ
and β = μ gives the alignment of the Hermite weighting function

with the unconditional mean and variance of the process.
First, the (killed) process X is f -sequential because the contingent claim f ≡ 1

in this context is bounded. Second, we note that f̄ = e1 so that (3.5) is automatically
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Fig. 2 Absolute approximation error of zero-coupon-bond price yield. Different lines represent tenors.
The horizontal lines indicate machine precision

satisfied and thus also (3.6). We assume that (3.3) holds, but were not able to prove
this formally. In numerical experiments, we were not able to find a violation. Second,
A exists and is upper Hessenberg with bounded lower diagonal; so it has a banded
and bounded strict lower triangle and Proposition 3.8 can be applied to show strong
convergence. Next, λI − Ak is invertible for all k > k0 for some k0 (see the proof of
Corollary 3.9). For Polski’s theorem, we also require that ‖(λI −Ak)

−1‖ are bounded
uniformly in k, except for banded matrices where this requirement can be dropped;
see Rabinovich et al. [25, Theorem 2.3]. Therefore the f -applicability condition in
Theorem 3.7 is also satisfied.

In all subsequent examples that we consider, the f -applicability of the FSM to
λI −A could not be established with the tools developed in Sect. 3. Instead, we show
convergence numerically.

To show the accuracy of the proposed approximation, we compare it with the ana-
lytical solution for eight sets of different but typical parameters. Figure 2 shows that
the error decreases exponentially as the approximation order k increases. For most
sets of parameters, it converges to one or two orders of magnitude above machine
precision, and remains stable as the order increases.

4.2 The Black–Karasinski bond price

The Black–Karasinski short-rate model is similar in structure to the CIR model, but
assumes that short rates follow an exponential OU process. No analytical solution
is available; hence finding an efficient and accurate approximation has received con-
siderable academic attention. This section shows that our approximation is accurate
against a PDE benchmark.

Black and Karasinski [7] assume the short rate (rt ) has dynamics

d ln rt = θ(μ − ln rt )dt + σdWt.
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In our setup, this translates to

dXt = θ(μ − Xt)dt + σdWt, r(Xt ) = eXt .

The process has unconditional mean zero to align with the Hermite polynomial
approximation density. The infinitesimal generator of the modified process is

Af (x) = θ(μ − x)
∂f

∂x
(x) + 1

2
σ 2 ∂2f

∂x2
(x) − exf (x).

Applying this infinitesimal generator to the basis elements bi+1(x) = Heα,β
i (x) with

0 ≤ i ≤ k − 1 gives

AHeα,β
i (x) = −θiHeα,β

i (x)

+θi(μ − β)Heα,β
i−1(x)

+
(

1

2
σ 2 + θα

)
i(i − 1)Heα,β

i−2(x)

+
∞∑

j=0

eβ+ α
2

i∧j∑

ℓ=0

(
j

ℓ

)
αj−ℓ

(i − ℓ)!Heα,β
j (x).

From this expression, we can again columnwise identify the matrix generator A and

its k × k finite sections Ak . We may assume that α = σ 2

2θ
and β = μ, in line with the

unconditional mean and variance of the OU process.
We calculate a set of zero-coupon-bond yields with different parameters and use a

PDE solver to benchmark the approximation quality. The unconditional distribution

Fig. 3 Absolute approximation error of zero-coupon-bond price yield against the PDE solution. Different
lines represent tenors. For different parameters, the unconditional mean μ̄ is kept constant at 0.03
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of Xt is Gaussian, with unconditional mean μ and variance σ 2

2θ
. Thus the steady-state

distribution of the short rate r(Xt ) = eXt has mean μ̄ = exp(μ + σ 2

4θ
) and variance

σ̄ 2 = (exp( σ 2

2θ
) − 1) exp(2μ + σ 2

2θ
). We fix μ̄ = 0.03 and vary the other parameters

to obtain realistic alternative sets of parameters:

1) values of x = ln r0: ln 0.01, ln 0.03 and ln 0.06;
2) values of θ : 0.02 and 0.1;
3) values of σ̄ : 6% and 12%.

Figure 3 outlines the approximation error for maturities 1, 5, 10 and 20 years,
as a function of the approximation order. The approximation error versus the PDE
solution decreases with the order. For order k = 20, the error is no greater than 1 bps.
We do note that we cannot separate the accuracy of the PDE solver from that of the
polynomial approximation. The accuracy of the polynomial approximation may very
well be close to machine precision for higher orders.

5 Applications to credit derivatives

We follow the setup of the generalised Markovian model of credit rating migrations
introduced by Lando [19]. This model assumes that companies migrate independently
within a set of m ratings, e.g. {AAA, AA, . . . , CCC, D}, where AAA is the highest
quality rating and D represents default, or {IG, HY, D} for investment grade and high-
yield bonds. A company’s rating follows a continuous-time Markov chain (Rt ) with
the ratings as states, and with an m × m generator matrix Q(Yt ) that depends on a
latent driving process (Yt ) of state variables.

Consider the m × m rating migration probability matrix conditionally on the full
history of state variables, i.e.,

P Y
ij (t) := P[Rt = j |R0 = i,FY

t ],

where FY
t := σ(Ys, 0 ≤ s ≤ t), t ≥ 0, is the natural filtration of the stochastic

process (Yt ). Then P Y (t) satisfies the Kolmogorov forward equation

∂tP
Y (t) = P Y (t)Q(Yt ), P Y (0) = Im.

In order to derive credit spreads and rating migration probabilities, the interest is in
the rating migration matrix

Pij (t, y) := Py[Rt = j |R0 = i] = Ey[P Y
ij (t)].

As shown by Lando [19], in the specific case that the Q(Yt ) commute and are
diagonalisable, we can solve the Kolmogorov forward equation and write

P Y (t) = e
∫ t

0 Q(Ys)ds = Be
∫ t

0 D(Ys)dsB−1 = Bdiagi

(
e
∫ t

0 Dii (Ys)ds
)
B−1,
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with diagonalisation Q(y) = BD(y)B−1, where D(y) is a diagonal matrix of (non-
positive) eigenvalues. This strategy uses the fact that commuting diagonalisable ma-
trices are simultaneously diagonalisable, i.e., share the matrix B. Taking the expec-
tation results in a set of bond-price-like formulas that can be solved analytically in
certain cases, i.e.,

P(t, y) = Ey

[
e
∫ t

0 Q(Ys)ds
] = Bdiagi

(
Ey

[
e
∫ t

0 Dii (Ys)ds
])

B−1. (5.1)

In this section, we do not assume a commuting property of the generators and use
the proposed approximation strategy to calculate the rating migration matrix. To this
end, we define the basis vector-valued process Z with Zt = eRt with the state space
E = {e1, . . . , em} of m-dimensional basis vectors. We assume that (Yt ) follows an
n-dimensional time-homogeneous Itô diffusion with state space D′. The SDE for the
joint process X := (Y, Z) is

dYt = μ(Yt )dt + σ(Yt )dWt,

dZt =
m∑

i=1

Zi,t−
∑

j =i

(ej − ei)dN
ij
t ,

where the (N
ij
t ) are Poisson processes with intensity E[dN

ij
t |Ft ] = Q(Yt )dt , where

the filtration (Ft ) is generated by the processes (Rt ) and (Yt ). Intuitively, if the
Markov chain (Rt ) is in state i at time t , then Zi,t− = 1 and it migrates to state j = i

with intensity Qij (Yt ). A jump to state j modifies Zt by subtracting the current state
ei and adding the new state ej . It follows from basic manipulation that

dZt = Q(Yt )
�Zt−dt + dMt

with a martingale (Mt) for the filtration (Ft ). To see this, use Q(Yt )1 = 0 to get

E[dZt |Ft ] =
m∑

i=1

Zi,t−
∑

j =i

(ej − ei)E[dN
ij
t |Ft ]

=
m∑

i=1

Zi,t−
m∑

j=1

(ej − ei)Qij (Yt )dt

=
m∑

i=1

Zi,t−
m∑

j=1

ejQij (Yt )dt −
m∑

i=1

Zi,t−
m∑

j=1

eiQij (Yt )dt

=
m∑

j=1

( m∑

i=1

Zi,t−Qij (Yt )

)
ej dt −

m∑

i=1

Zi,t−ei

(
Q(Yt )1

)
i

dt

=
m∑

j=1

(
Z�

t−Q(Yt )ej

)
ej dt

=
m∑

j=1

(
Q(Yt )

�Zt−
)
j
ej dt

= Q(Yt )
�Zt−dt .
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In this setting, we can express the rating migration matrix as an expectation that
conforms to our approximation approach because

Pij (t, y) = Py[Zt = ej |Z0 = ei] = Ey,ei
[〈ej , Zt 〉] = Stf (y, ei),

where f (y, z) = zj . In order to apply the approximation, we need the generator of
the process X. If Y has generator Ay , then by standard arguments, the generator of
the process X is

Af (y, z) = Ayf (y, z) + Azf (y, z), Azf (y, z) := z�Q(y)

⎛

⎜
⎝

f (y, e1)
...

f (y, em)

⎞

⎟
⎠ .

It is easy to see that with b(y) an appropriate basis for Y , b(x) := b(y)⊗z is appropri-
ate for X. In what follows, we assume b(y) = (Heα,β

0 (y), Heα,β
1 (y), Heα,β

2 (y), . . .)

so that b(x) = (Heα,β

0 (y)⊗z, Heα,β

1 (y)⊗z, Heα,β

2 (y)⊗z, . . .). With ℓ being the high-
est power of y included, this basis has for n = 1 dimension ℓm, for n = 2 dimension
ℓ(ℓ + 1)m/2, and for general n > 1, the dimension is

∑ℓ−1
i=0

(
n+i−1
n−1

)
m.

The steps in approximating P(t, y) are based on choosing moments. With the basis
in place, we can derive A and Ak in the usual way. Note that Pij (t, y) = Stf (y, ei)

with f (y, z) = zj = 〈(ej , 0, . . .), b(y, z)〉. Again f is bounded so that the process is
f -sequential. Therefore, we can approximate

Pij (t, y) ≈ 〈etAk (ej , 0)�, bk(y, ei)〉,
P (t, y) ≈ (

bk/m(y)� ⊗ Im

)
etAk (Im, 0)�.

5.1 Migrations driven by multivariate CIR processes

Consider the process X = (Y, Z) specified on the domain D = R
n+ × E, where

E = {e1, . . . , em} so that d = n + m, through its SDE

dYt = K(μ − Yt )dt + diagi (σi

√
Yi,t )dWt,

dZt = Q(Yt )
�Ztdt + dMt,

where (Yt ) follows a multivariate CIR process with n × n mean reversion speed
K to means μ. In case K is diagonal, the (Yi,t ) are n independent CIR processes.
We choose the generator matrix Q(y) := ∑n

i=1 yiQi , where the Qi are generator
matrices of continuous-time Markov chains. Since (Yt ) is nonnegative, Q(Yt ) is a
well-defined generator matrix.

In this specific case, the generator of the process X is

Af (y, z) =
n∑

i=1

(
1

2
σ 2

i yi

∂2f (y, z)

∂y2
i

+ e�
i K(μ − y)

∂f (y, z)

∂yi

)

+
n∑

i=1

yiz
�Qi

⎛

⎜
⎝

f (y, e1)
...

f (y, em)

⎞

⎟
⎠
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Applying Ay to elements of bk(y) always returns an order of at most k; hence A1
y is

(block) upper triangular. However, Az is not upper triangular.

5.1.1 Migrations driven by a univariate CIR process

Arvanitis et al. [5] apply the model above to the univariate case n = 1. With the
diagonalisation Q1 = BDB−1, we use (5.1) to obtain

P(t, y) = Bdiagi

(
Ey

[
e
∫ t

0 DiiYsds
])

B−1.

Since Y follows a CIR process and Dii are the nonpositive eigenvalues of Q1, the
term −YDii is either 0 or follows a CIR process. Thus each diagonal element is
either 1 or a CIR bond price, which has an analytical solution. Then P(t, y) has an
analytical solution that we can use as a benchmark for our approximation.

To test the accuracy of the proposed approximation, we choose the same Markov
chain generator matrix Q1 as Jarrow et al. [18, Example 1], namely

Q1 =
⎛

⎝
−0.11 0.1 0.01
0.05 −0.15 0.1

0 0 0

⎞

⎠ .

Figure 4 plots the mean absolute approximation error across all matrix entries against
the order ℓ = k/m of the approximation, for various parameters of the CIR process
and maturities. We can see that the error is decreasing exponentially as the order in-
creases. The convergence appears to be faster for shorter horizons. All errors converge
to one or two orders above machine precision.

Fig. 4 Dimension one, migration probability elementwise mean absolute error against different orders,
compared with analytical solution, in log scale. Different panels stand for different parameters. Different
lines stand for different time horizons. Horizontal lines stand for machine precision
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5.1.2 Migrations driven by a bivariate CIR process, commuting case

Hurd and Kuznetsov [16] apply the same credit model to the bivariate case n = 2. In
order to ensure tractability, they specify Q2 to reflect an additional default migration
that is the same for all ratings. This second generator matrix can also be interpreted
as a liquidity premium. The specific structure of this second matrix ensures that Q1

and Q2 commute. With the additional assumption that K is diagonal, i.e., the two
driving CIR processes are independent, we can write

P(t, y) = Ey

[
e
∫ t

0 (Y1,sQ1+Y2,sQ2)ds
] = Ey1

[
e
∫ t

0 Y1,sQ1ds
]
Ey2

[
e
∫ t

0 Y2,sQ2ds
]

and apply the univariate pricing strategies.
We keep Q1 the same as in the previous example and follow [16, Sect. 7] to define

Q2, i.e.,

Q1 =
⎛

⎝
−0.11 0.1 0.01
0.05 −0.15 0.1

0 0 0

⎞

⎠ , Q2 =
⎛

⎝
−0.01 0 0.01

0 −0.01 0.01
0 0 0

⎞

⎠ .

We define the other parameters as Kbig = diag(1.5, 1.5), Ksmall = diag(0.8, 0.8),
σbig = (1.0, 1.0), σsmall = (0.5, 0.5), xbig = (1.2, 1.2)� and xsmall = (0.8, 0.8)�.
The parenthesis lists the parameters of the two independent CIR processes. Figure 5
shows the same pattern of approximation quality as in the univariate case.

Fig. 5 Dimension two when analytical solution exists, migration probability elementwise mean absolute
error against different orders, compared with analytical solution, in log scale. Different panels stand for
different parameters. Different lines stand for different time horizons. Horizontal lines stand for machine
precision
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5.1.3 Migrations driven by a bivariate CIR process, non-commuting case

We now consider a case for which no analytical solution exists, namely when both
the independence and commutativity requirements fail. Let Q1 and Q2 be upper and
lower triangular, respectively. This means that Y1 and Y2 represent the scaling pro-
cesses that accelerate the speed of upgrades and downgrades separately. This model
can capture the important stylised fact that with the business cycle, upgrades tend to
slow down when downgrades speed up, and vice versa. The details of this model are
discussed in an accompanying empirical paper [6].

Since no analytical solution exists, we benchmark the approximation against a bi-
nomial tree. We choose Q1 and Q2 to be an upper and lower triangular decomposition
of the transition matrix in Jarrow et al. [18, Example 1], i.e.,

Q1 =
⎛

⎝
−0.11 0.1 0.01

0 −0.1 0.1
0 0 0

⎞

⎠ , Q2 =
⎛

⎝
0 0 0

0.05 −0.05 0
0 0 0

⎞

⎠ .

These matrices do not commute. In fact, using Böttcher and Wenzel[9, Conjecture 1.2],
we get the Frobenius norm inequality ‖Q1Q2 − Q2Q1‖F ≤√

2‖Q1‖F ‖Q2‖F . This
inequality gives rise to a measure of non-commutativity with values in [0, 1] for non-
trivial matrices, namely

‖Q1Q2 − Q2Q1‖F√
2‖Q1‖F ‖Q2‖F

= 0.48.

This value allows us to conclude that these matrices are strongly non-commuting.

Fig. 6 Dimension two when analytical solution does not exist, migration probability elementwise mean
absolute error against different orders, compared with MC simulation, in log scale. Different panels stand
for different parameters. Different lines stand for different time horizons
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The other parameters are given by Kbig =
(

1.5 0.4
0.4 1.5

)
, Ksmall =

(
0.8 0.2
0.2 0.8

)
,

σbig = (1.0, 1.0), σsmall = (0.5, 0.5), xbig = (1.2, 1.2)� and xsmall = (0.8, 0.8)�.
Note that the matrix K is no longer diagonal and can induce correlation between the
upgrade and downgrade speed processes.

Figure 6 shows the mean absolute approximation error against the approximation
order ℓ = k/m. It is worth noting that the errors converge to bounds within the margin
of error expected from the Monte Carlo simulation. Overall, we see the same pattern
of exponential decline in the error, although as expected, a Monte Carlo-induced
lower bound is hit sooner than when comparing against an analytical benchmark.

Appendix A: Supporting lemmas

The proof of Theorem 3.7 relies on two lemmas that are presented below.
The first lemma combines an inversion result à la Phragmén–Doetsch for Laplace

transforms (see Arendt et al. [4, Theorem 2.3.2]) with Phragmén’s approximation re-
sult for semigroups of operators (see Neubrander [23]). The general setting is that
(St ) is a strongly continuous semigroup acting on a Banach space P with genera-
tor A having domain D(A). Let R(λ,A) denote the resolvent, which exists for all
sufficiently large λ. Recall that (3.2) says that there exist C ≥ 1 and w ≥ 0 with
‖St‖ ≤ Cewt .

In the proof of Lemma A.1 below, we need the quantity

S̃t (λ,A, f ) :=
∞∑

n=1

(−1)n−1 1

n!e
nλtR(nλ,A)f.

A first result, adapted from Neubrander [23] and Arendt et al. [4, Theorem 2.3.2], is
that for f ∈ P and λ > w, one has

∥∥∥∥

∫ t

0
Suf du − S̃t (λ,A, f )

∥∥∥∥ ≤ D‖f ‖ewtλ−1/2, (A.1)

where D is a constant possibly depending on t , and w is as in (3.2). To see that (A.1)
is valid, we follow [23] with slightly different arguments. First we recall that [23,
p. 106] shows that with eλ(x) = exp(−eλx) for x > 0, one has

S̃t (λ,A, f ) =
∫ ∞

0

(
1 − eλ(t − u)

)
Suf du.

Note the inequalities 0 < eλ(x) < 1 and 0 < 1 − eλ(x) < 1 and 1 − eλ(x) < eλx .
They are used in the chain of norm inequalities below. But first we consider

S̃t (λ,A, f ) −
∫ t

0
Suf du =

∫ ∞
0

(
1 − eλ(t − u)

)
Suf du −

∫ t

0
Suf du

= −
∫ t−δ

0
eλ(t − u)Suf du −

∫ t

t−δ
eλ(t − u)Suf du

+
∫ ∞
t

(
1 − eλ(t − u)

)
Suf du.
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Taking norms, we deduce for 0 < δ < t and λ > w that

∥∥∥∥S̃t (λ,A, f ) −
∫ t

0
Suf du

∥∥∥∥ ≤
∫ t−δ

0
eλ(t − u)‖Su‖‖f ‖du

+
∫ t

t−δ

eλ(t − u)‖Su‖‖f ‖du

+
∫ ∞

t

(
1 − eλ(t − u)

)‖Su‖‖f ‖du

≤ Ceλ(δ)

∫ t−δ

0
ewu‖f ‖du + C

∫ t

t−δ

ewu‖f ‖du

+ C

∫ ∞

t

eλ(t−u)ewu‖f ‖du

≤ C‖f ‖
(

eλ(δ)te
wt + δewt + ewt 1

λ − w

)

= C‖f ‖ewt

(
eλ(δ)t + δ + 1

λ − w

)
.

Next we take δ ↓ 0 such that δλ → ∞. Specifically, we choose δ = λ−1/2. As then
eλ(δ) and 1

λ−w
tend to zero much faster than δ, we can bound the last term in the above

display by D‖f ‖ewtλ−1/2 for some constant D (which may depend on t and w).

Lemma A.1 Recall (3.2). Let t > 0 and

St (λ,A, f ) := λ

∞∑

n=1

(−1)n−1 1

(n − 1)!e
nλtR(nλ,A)f. (A.2)

Then for some w ≥ 0 and D ≥ 1, we have for all λ big enough and all f ∈ D(A) that

‖Stf − St (λ,A, f )‖ ≤ D‖Af ‖ewtλ−1/2 + exp(−eλt )‖f ‖.

Consequently, ‖Stf − St (λ,A, f )‖ → 0 for λ → ∞.

Proof First we note that the sum in (A.2) is finite. This follows from Neubrander [23]
and Arendt et al. [4, Theorem 2.3.2]. Following the line of argument in [23], we have
for f ∈ D(A) the equality R(nλ,A)Af = nλR(nλ,A)f − f and hence

S̃t (λ,A,Af ) = St (λ,A, f ) −
∞∑

n=1

(−1)n−1 1

n!e
nλtf

= St (λ,A, f ) + (
exp(−eλt ) − 1

)
f.
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Using Stf = f + ∫ t

0 SuAf du for f ∈ D(A), we develop, using (A.1) in the last
inequality,

‖Stf − St (λ,A, f )‖

=
∥∥∥∥f +

∫ t

0
SuAf du − S̃t (λ,A,Af ) + S̃t (λ,A,Af ) − St (λ,A, f )

∥∥∥∥

=
∥∥∥∥f +

∫ t

0
SuAf du − S̃t (λ,A,Af ) + (

exp(−eλt ) − 1
)
f

∥∥∥∥

=
∥∥∥∥

∫ t

0
SuAf du − S̃t (λ,A,Af ) + exp(−eλt )f

∥∥∥∥

≤
∥∥∥∥

∫ t

0
SuAf du − S̃t (λ,A,Af )

∥∥∥∥ + exp(−eλt )‖f ‖

≤ D‖Af ‖ewtλ−1/2 + exp(−eλt )‖f ‖. �

If the space P is the Hilbert space as in Sects. 2 and 3, we can write the counterpart
of Lemma A.1 for sequences in H. If the St form the strongly continuous transition
semigroup on P of a Feller process, they are all expectations and we can take C = 1
and w = 0 in (3.2). The same is true for the induced semigroup of operators S̄t on H.
This leads to the following variation on Lemma A.1.

Corollary A.2 Let t > 0 and

St (λ,A, f̄ ) := λ

∞∑

n=1

(−1)n−1 1

(n − 1)!e
nλtR(nλ,A)f̄ .

Then for some w ≥ 0 and D ≥ 1, we have for all λ big enough and all f̄ ∈ D(A) that

‖S̄t f̄ − St (λ,A, f̄ )‖ ≤ D‖Af̄ ‖ewtλ−1/2 + exp(−eλt )‖f̄ ‖.
Moreover, if the St form the strongly continuous transition semigroup of a Feller
process, then

‖S̄t f̄ − St (λ,A, f̄ )‖ ≤ D‖Af̄ ‖λ−1/2 + exp(−eλt )‖f̄ ‖.
In the next result, we specialise to the situation where the semigroup acts on el-

ements of a Hilbert space. So we assume that (St ) is a Feller semigroup defined
on a Hilbert space H with generator A. Let Pk be projections of H onto Hk with
norm ‖Pk‖ = 1, typically orthogonal projections. Let Ak be as in (2.4), and let
R(λ,A) and R(λ,Ak) be the corresponding resolvents. For f k ∈ D(Ak), we consider
R(λ,Ak)f̄

k ∈ Hk as an element of H.

Lemma A.3 In the setting just described, assume that the operators Ak : Hk → Hk

are such that with f̄ k = Pkf̄ , f̄ ∈ D(A) and f̄ k ∈ D(Ak), we have

lim
k→∞ R(nλ,Ak)f̄

k = R(nλ,A)f̄
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for all n ≥ 1 and where the limit is taken in H. Assume, too, that the norms of the
semigroups (Sk

t ) generated by the Ak as well as the norms of the (St ) satisfy the
bound in (3.2). Then St (λ,Ak, f̄

k) → St (λ,A, f̄ ) for k → ∞.

Proof From (3.2), it follows that ‖R(λ,A)‖ ≤ C
λ−w

, which is at most equal to 2C
λ

for

all λ ≥ 2w. It follows that then ‖R(nλ,A)f̄ ‖ ≤ 2C
nλ

‖f̄ ‖ whenever nλ ≥ 2w. But
by the same token, we also have that ‖R(nλ,Ak)f̄

k‖ ≤ 2C
nλ

‖f̄ k‖ ≤ 2C
nλ

‖f̄ ‖ since
‖f̄ k‖ ≤ ‖f̄ ‖.

Consider the norm of the summands in St (λ,Ak, f̄k). For each n, this norm is
at most

λ
enλt

(n − 1)! ‖R(nλ,Ak)f̄
k‖ ≤ λ

enλt

(n − 1)!
2C

nλ
‖f̄ ‖ = enλt

n!
2C

λ
‖f̄ ‖,

which has a finite sum over n ≥ 1. Hence, considering the infinite sum

St (λ,Ak, f̄k) = λ

∞∑

n=1

(−1)n−1 1

(n − 1)!e
nλtR(nλ,Ak)f̄

k (A.3)

as a Bochner integral, we can apply dominated convergence for Bochner integrals
(see Hytönen et al. [17, Proposition 1.2.5]) to (A.3) to arrive at the convergence

λ

∞∑

n=1

(−1)n−1 enλt

(n − 1)!R(nλ,Ak)f̄
k −→ λ

∞∑

n=1

(−1)n−1 enλt

(n − 1)!R(nλ,A)f̄ ,

which was our aim. �

Appendix B: Results on Hermite polynomials

This section proves the last equality in Lemma 3.10. The other results are standard.

Proof We compute the Fourier coefficient of exHeα,β
m (x) and develop its orthogonal

expansion with the Hermite polynomials as

exHeα,β
m (x) =

∞∑

n=0

∫ ∞
−∞ exHeα,β

n (x)Heα,β
m (x)e− (x−β)2

2α dx

∫ ∞
−∞ Heα,β

n (x)2e− (x−β)2
2α dx

Heα,β
n (x).

We start by simplifying the numerator. The product of two Hermite polynomials can
be written as the sum of Hermite polynomials via

Hen(x)Hem(x) =
m∧n∑

k=0

k!
(

m

k

)(
n

k

)
Hem+n−2k(x).
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Furthermore, by applying the Hermite transform to etx , we have for any k, t > 0 that
∫ ∞

−∞
etxHek(x)e− x2

2 dx = tke
t2
2
√

2π.

By substitution, we can calculate

∫ ∞

−∞
etxHen(x)Hem(x)e− x2

2 dx =
m∧n∑

k=0

k!
(

m

k

)(
n

k

) ∫ ∞

−∞
etxHem+n−2k(x)e− x2

2 dx

=
m∧n∑

k=0

k!
(

m

k

)(
n

k

)
tm+n−2ke

t2
2
√

2π.

Using integration by substitution, we get
∫ ∞

−∞
exHeα,β

n (x)Heα,β
m (x)e− (x−β)2

2α dx

=
∫ ∞

−∞
exα

n
2 Hen

(
x − β√

α

)
α

m
2 Hem

(
x − β√

α

)
e− (x−β)2

2α dx

=
∫ ∞

−∞
e
√

αy+βα
n+m+1

2 Hen(y)Hem(y)e− y2

2 dy

= eβ+ α
2
√

2πα

m∧n∑

k=0

k!
(

m

k

)(
n

k

)
αm+n−k.

In simplifying the denominator, we start from
∫ ∞

−∞
Hen(x)2e− x2

2 dx = √
2πn!.

By the same substitution argument, we get
∫ ∞

−∞
Heα,β

n (x)2e− (x−β)2

2α dx = αn
√

2απn!.

Finally, substituting the solved integrals in the numerator and denominator into the
original equation gives

exHeα,β
m (x) =

∞∑

n=0

eβ+ α
2
√

2πα
∑m∧n

k=0 k!(m
k

)(
n
k

)
αm+n−k

αn
√

2απn! Heα,β
n (x)

=
∞∑

n=0

eβ+ α
2

m∧n∑

k=0

(
m

k

)
αm−k

(n − k)!Heα,β
n (x).
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