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Approximation of Nonnegative Systems by Finite
Impulse Response Convolutions

Lorenzo Finesso and Peter Spreij

Abstract— We pose the deterministic, nonparametric,
approximation problem for scalar nonnegative input/output
systems via finite impulse response convolutions, based on
repeated observations of input/output signal pairs. The problem
is converted into a nonnegative matrix factorization with special
structure for which we use Csiszár’s I-divergence as the criterion
of optimality. Conditions are given, on the input/output data,
that guarantee the existence and uniqueness of the minimum. We
propose an algorithm of the alternating minimization type for
I-divergence minimization, and study its asymptotic behavior.
For the case of noisy observations, we give the large sample
properties of the statistical version of the minimization problem.
Numerical experiments confirm the asymptotic results and
exhibit the fast convergence of the proposed algorithm.

Index Terms— Positive systems, FIR approximation,
I-divergence, alternating minimization.

I. INTRODUCTION

INVERSE problems are at the core of system modeling
and identification. Since the publication of [21] they have

been the subject of a vast technical literature in applied
mathematics, engineering, and specialized applied fields. The
focus of this paper is on the subclass of problems for which the
models are linear and time (or space) invariant. Even within
this much narrower field the literature is very rich, with many
of the contributions leaning towards specific computational
aspects of interest for specialized applications.

The paper has three goals: to pose the problem of the
time-domain approximation of nonnegative input/output
systems by finite (nonnegative) impulse response convolutions
when input/output observations are available, to propose an
iterative algorithm to find the best approximation, and to study
the asymptotical behavior of the algorithm. The frequency
domain properties of nonnegative impulse response systems
have been treated in [14] and [15]. Contrary to previous contri-
butions our treatment allows for m > 1 input/output pairs. An
advantage of allowing multiple input/output pairs is that this
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setting leads easily to a statistical analysis. The algorithm for
the case m = 1 has been studied in [20] and [23]. Following
the choice made in those early contributions the criterion of
optimality will be Csiszár’s I-divergence, which as argued
in [5] (see also [20]), is the best choice for approximation
problems under nonnegativity constraints.

We emphasize that here we pursue a nonparametric
approach to the approximation of a given input/output system
by a linear time invariant system. The point of view is different
from the usual identification or realization of (nonnegative)
linear systems, see [2] for a survey, and for instance [1], [9],
[12], [16], [17], [19]. From the mathematical point of view the
techniques that have been used in [11] to analyse a nonnegative
matrix factorization algorithm are perfectly suited to deal
with the present approximation problem and provide several
benefits over the analyses contained in [20]. We provide
explicit conditions for the existence and uniqueness of the
minimizer of the criterion in terms of the data. The algorithm
that minimizes the informational divergence criterion is of the
alternating minimization type, and the optimality conditions
(the Pythagorean relations) are satisfied at each step.
Exploiting this, we are able to present a proof of convergence
which is more transparent than other proofs in the literature,
see [3], [20], and [23].

Although the contributions of the paper are theoretical,
possible applications of the algorithm are in the field of
image processing and emission tomography. For these we refer
for instance to [18], [20], [23], and the references therein.
Design of nonnegative impulse response systems for industrial
processes can be found in for instance [8]. Other fields
of applications are charge routing networks, compartmental
systems, storage systems, see [10].

A brief summary of the paper follows. In Section II we
state the problem and formulate conditions for strict convexity
of the objective function, and hence for the existence and
uniqueness of the solution. In Section III the original problem
is lifted into a higher dimensional setting, thus making
it amenable to alternating minimization. The optimality
properties (Pythagoras rules) of the ensuing partial
minimization problems are established here. In Section IV
we derive the iterative minimization algorithm combining the
solutions of the partial minimizations and we present its first
properties. Section V is devoted to the convergence analysis
of the algorithm. The Pythagoras rules facilitate compact
and transparent proofs. In Section VI, taking advantage of
the repeated input/output measurements setup, we give a
concise treatment of a statistical version of the approximation
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problem, focusing on its large sample properties. In the last
Section VII we present numerical experiments that confirm
the asymptotic results and exhibit the fast convergence
properties of the algorithm.

II. PROBLEM STATEMENT AND PRELIMINARY RESULTS

A discrete time, causal, convolutional system Sh maps input
sequences (ut )t∈N ∈ R

N into output sequences (yt )t∈N ∈ R
N,

and is completely characterized by an impulse response
sequence (ht )t∈N ∈ R

N, such that

yt = Shut =
t∑

k=0

hkut−k, t ∈ N. (II.1)

Rewriting equation (II.1), for t = 0, . . . , N , in matrix form,
one gets the system of equations

⎛

⎜⎜⎜⎜⎝

y0
...
...

yN

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

h0 0 · · · · · · 0
h1 h0 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
hN · · · · · · h1 h0

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

u0
...
...

uN

⎞

⎟⎟⎟⎟⎠
, (II.2)

compactly written as

y = T (h)u, (II.3)

having introduced the notations u = (u0, . . . , uN )�,
y = (y0, . . . , yN )� and T (h) for the matrix in (II.2).
For m input sequences u j , with corresponding output
sequences y j, where j = 1, . . . , m, equation (II.3) becomes

Y = T (h)U, (II.4)

where Y = (y1, . . . , ym) ∈ R
(N+1)×m and U =

(u1, . . . , um) ∈ R
(N+1)×m .

Convention 1: In expressions containing elements of U the
first index is allowed to run out of range, posing Uij := 0 for
all i < 0.

In many practical contexts the inputs and outputs U and Y
are directly measured data, while h is not known or, more
generally, a causal convolutional system Sh is not known
to exist such that Y = T (h)U . In either of these cases an
interesting problem is to find h such that the approximate
relation

Y ≈ T (h)U (II.5)

is the best possible with respect to a specified loss criterion.
In the paper we concentrate on this problem, under the

extra condition that (II.5) is the approximate representation
of the behavior of a positive system, i.e. all quantities in (II.5)
are nonnegative real numbers. The goal is the determination
of the best nonnegative sequence h = (h0, . . . , hN )�, where
the loss criterion, chosen to measure the discrepancy between
the left and the right hand side in (II.5), is the I-divergence
between nonnegative matrices. See [5] for a justification from
first principles.

For given nonnegative matrices M and N of the same size,
M is said to be absolutely continuous with respect to N ,
denoted M � N , if elementwise Mij = 0 for all (i, j)

such that Nij = 0. The I-divergence between the nonnegative
matrices of the same size M , and N is defined as

I(M||N) :=
∑

i j

(
Mij log

Mij

Ni j
− Mij + Nij

)
, (II.6)

if M � N , otherwise set I(M||N) := +∞.
In definition (II.6) we also adopt the usual conventions

0
0 = 0 and 0 log 0 = 0. This leads to

Problem 2: For given Y ≥ 0 and U ≥ 0, find a nonnegative
vector h = (h0, . . . , hN )� ∈ H := R

N+1+ such that

F(h) := I(Y ||T (h)U)

is minimized over H.
Remark 3: In Problem 2 one can assume, without loss

of generality, that S := ∑
i j Yi j = 1. Indeed, for any

S > 0, put Ỹi j = Yi j /S and Ũi j = Uij /S. It then holds
that I(Y ||T (h)U) = SI(Ỹ ||T (h)Ũ ), and since S does not
depend on h the two problems have the same minimizers.
This property will be useful in Section V.

Problem 2 is well posed if there exists at least one h ∈ R
N+1+

such that F(h) is finite. From definition (II.6) it follows that
F(h) is finite if and only if Y � T (h)U , or equivalently iff
(T (h)U)i j > 0 for all (i, j) such that Yi j > 0. Since

(T (h)U)i j =
i∑

k=0

hkUi−k, j , (II.7)

the following condition characterizes the data (U, Y ) that
produce a well posed Problem 2.

Condition 4: For all (i, j) such that Yi j > 0 there exists
� ≤ i such that U�j > 0.

Condition 4 is rather weak. In terms of the data sequences
it states that if y j

i > 0 then u j
� > 0 for some � ≤ i , i.e. if the

present output is strictly positive then the present or at least
one of the past inputs must be strictly positive. This condition
is always satisfied if the data (U, Y ) are produced by linear,
causal systems.

We prove below that, under a stronger condition on the
data (U, Y ), the loss F(h) is strictly convex, a property that
simplifies the study of the existence and uniqueness of the
solution of Problem 2.

Condition 5: For all i ∈ {0, . . . , N} there exists
j ∈ {1, . . . , m} such that U0 j > 0 and Yi j > 0.

Condition 5 is strictly stronger than Condition 4, but still
rather weak. Physically it states that for each time i there
exists at least one experiment j with strictly positive initial
input U0 j and strictly positive output Yi j at time i . This
condition holds e.g. under the (stronger) assumption that for
some experiment j , with initial input U0 j > 0, the output
trajectory Yi j is strictly positive for all i .

Lemma 6: Under Condition 5 the loss F(h) is strictly
convex on its effective domain, i.e. the set { h : F(h) < ∞ }.

Proof: The elements Hkl of the Hessian H of the loss
F(h) are

Hkl := ∂2 F

∂hk∂hl
(h) =

∑

i j

Yi j

(T (h)U)2
i j

Ui−k, j Ui−l, j .
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It is enough to show that H is strictly positive definite.
Let x ∈ R

N+1, then

x�H x =
∑

kl

Hkl xkxl =
∑

i j

Yi j

(T (h)U)2
i j

(U ∗ x)2
i j ,

where (U ∗ x)i j = ∑
l xlUi−l, j . Let x�H x = 0.

By nonnegativity of the summands, this only happens if
Yi j

(T (h)U )2
i j
(U ∗ x)2

i j = 0 for all i, j . Since F(h) < ∞ on its

effective domain, we must have T (h)Uij > 0 as soon as
Yi j > 0. Hence x�H x = 0 iff Yi j (U ∗ x)i j = 0 for
all i, j , which gives a system of linear equations in x . For
every i fixed and summing over j one explicitly obtains∑

k(
∑

j Yi j Ui−k, j )xk = 0. This gives a system of equations
in which the matrix of coefficients is lower triangular with∑

j Ykj U0 j as the k-th diagonal element. Hence this system
of equations has x = 0 as its only solution iff

∑
j Ykj U0 j > 0

for all k, but the latter constraint is guaranteed by Condition 5,
hence the Lemma is proved. �

We are now ready to state the existence and uniqueness
result. The proof is deferred to Section IV.

Proposition 7: Assume Condition 5 is satisfied, then
Problem 2 admits a unique solution.

Remark 8: Suppose that given the input sequences,
the outputs are obtained by true convolutional system
Y = T (h∗)U for some h∗ ∈ H. It follows from Proposition 7
that under Condition 5, the minimiser of h 
→ F(h) is h∗
and F(h∗) = 0. Note too that under the same Condition 5
the system of equations T (h)U = T (h∗)U has the unique
solution h = h∗.

We write below the standard Kuhn-Tucker necessary
conditions for a vector h to be a minimizer of F(h). Note that,
due to the convexity of the divergence F(·) and the concavity
of the nonnegativity constraint, the Kuhn-Tucker conditions
are sufficient for optimality (see [24, Th. 2.19]). Condition 5,
guarantees the strict convexity of F(·) and therefore the
uniqueness of the optimizer. We will follow the notational
convention that a dot in place of an index denotes summation
with respect to the dotted index, e.g. Mi� := ∑

j Mi j .

Denoting ∇F(h)k := ∂F(h)
∂hk

, for k = 0, . . . , N , the Kuhn
Tucker conditions assert that, if the vector h minimizes F(h)
subject to the constraints hk ≥ 0, then

∇F(h)k = 0 if hk > 0, (II.8)
∇F(h)k ≥ 0 if hk = 0, (II.9)

where the partial derivatives ∇F(h)k are explicitly given by

∇F(h)k = −
m∑

j=1

N∑

i=k

Yi j Ui−k, j∑
p h pUi−p, j

+
N−k∑

l=0

Ul�. (II.10)

Example 9: To illustrate that the minimizers h may be
interior points (all hk > 0) or boundary points (some hk = 0),
we consider the following toy example. Let m = 1 and N = 1,
then T (h)U is a two dimensional vector with components
h0u0 and h0u1 + h1u0. The function F is given by

F(h) = y0 log
y0

u0h0
− y0 + u0h0 + y1 log

y1

h0u1 + h1u0
− y1 + h0u1 + h1u0.

Condition 4 for well-posedness reads: if y0 > 0, then u0 > 0,
and if y1 > 0 then u0 > 0 or u1 > 0. The Condition 5 for
strict convexity reads: y0y1u0 > 0. One checks by immediate
inspection of F(h) that strict convexity does not hold if y0 = 0
or y1 = 0.

In this simple case the minimizing h∗ = (h∗
0, h∗

1)
� can be

written explicitly by inspection. Since F(h) ≥ 0, with equality
if and only if Y = T (h)U , one gets that, if y1u0 − y0u1 ≥ 0,
then h∗

0 = y0
u0

and h∗
1 = y1u0−y0u1

u2
0

satisfies the constraints

h∗ ≥ 0 and attains the minimum F(h∗) = 0. On the other
hand, if y1u0−y0u1 < 0, then the boundary point h∗

0 = y0+y1
u0+u1

,
and h∗

1 = 0 satisfies the constraints h∗ ≥ 0. Checking that
h∗ satisfies the Kuhn Tucker conditions guarantees that it is
a minimizer. From equation (II.10) one gets ∂F

∂h0
(h∗) = 0,

and ∂F
∂h1

(h∗) = u0
u1(y0+y1)

(u1 y0 − u0 y1) ≥ 0, in agreement

with (II.8) and (II.9). See also Remark 10 below for more
general considerations.

In solving Problem 2, minimizers h∗ at the boundary of
H = R

N+1+ , i.e. with some zero components, are the rule
rather than an exception. This is illustrated in the following
remark.

Remark 10: We analyse here the conditions that produce
interior and boundary solutions of Problem 2, limiting the
discussion to the case m = 1 which is more transparent. If the
minimizer h belongs to the interior of the domain H, then it
can be found imposing that ∇F(h)k = 0 for all k = 0, . . . , N ,
i.e. from equation (II.10),

∇F(h)k = −
N∑

i=k

yi ui−k∑
p h pui−p

+
N−k∑

l=0

ul = 0. (II.11)

Assume that u0 > 0. Denoting ti := ∑
p h pui−p , the above

constraints become

∇F(h)k = −
N∑

i=k

yi ui−k

ti
+

N∑

i=k

ui−k = 0. (II.12)

For k = N this reduces to

− yN u0

tN
+ u0 = 0,

and one gets tN = yN . Substitution into equation (II.12) for
k = N − 1 gives,

− yN−1u0

tN−1
+ u0 − yN u1

tN
+ u1 = 0,

and one gets tN−1 = yN−1. Completing the recursion one gets
the system of equations satisfied by the optimal h,

yi = ti =
i∑

p=0

h pui−p, for i = 0, . . . , N. (II.13)

In other words the only interior solution, if it exists,
corresponds to perfect modeling, Y = T (h)U . Note that,
to find the unknown h, system (II.13) can be rewritten as
follows

⎛

⎜⎜⎜⎜⎝

y0
...
...

yN

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

u0 0 · · · · · · 0
u1 u0 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
uN · · · · · · u1 u0

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

h0
...
...

hN

⎞

⎟⎟⎟⎟⎠
,
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which is an alternative way of writing (II.2). The computation
of the solution by Cramer’s rule gives necessary and sufficient
conditions on the data (u, y), in terms of a number of
determinants, for the existence of a feasible solution, h ∈ H.
If at least one of these conditions is violated, a feasible solution
of Problem 2 will necessarily be a boundary point. In this sense
for m = 1 boundary point solutions are the rule rather than
the exception. But also for m > 1 boundary solutions often
occur, as hinted by the numerical experiments of Section VI.

III. LIFTED VERSION OF PROBLEM 2

To solve Problem 2 we propose an alternating minimization
algorithm, following the approach adopted for the derivation
of the algorithm for nonnegative matrix factorization
in [11]. In particular, we use a variation on the lifting
technique pioneered by [7] and followed in [11], recasting
Problem 2 as a double minimization in a larger space. Here
and in the following sections bold capitals, e.g. M, will
denote matrices (tensors actually) with three indices. The
ambient space in which the lifted problem objects live is

H3 := R
(N+1)×(N+1)×m
+ , and specifically on Y , and W ,

two subsets of H3 defined below in terms of the given
data (Y, U),

Y = {
Y ∈ H3 : Yi� j = Yi j

}
,

W = {
W ∈ H3 : Wil j = hlUi−l, j , for some h ∈ H }

.

Remark 11: As a consequence of Convention 1,
all W ∈ W have elements Wil j = hlUi−l, j = 0 for
i < l.

Remark 12: For any W ∈ H3 let W ∈ R
(N+1)×m
+ be its

marginal, with elements Wij := Wi� j . Note that

W ∈ W ⇒ Wij =
∑

l

hlUi−l, j . (III.1)

It follows that, if Y ∈ Y∩W , the data (Y, U) can be described
with a perfect model Y = T (h)U , since equation (III.1) and
the definition of Y , imply that Yi j = ∑

l hlUi−l, j .
We consider below two divergence minimization problems

in the ambient space H3.
Problem 13: Given W ∈ H3, minimize the divergence

I(Y||W) over Y ∈ Y .
Problem 14: Given Y ∈ H3, minimize the divergence

I(Y||W) over W ∈ W .
Both problems have explicit solutions. Problem 13, the

first, has already been solved in [11]. For ease of reference,
we adapt the result below.

Proposition 15: The solution of Problem 13, denoted Y∗
or Y∗(W), satisfies

Y∗
il j = Yi j

Wij
Wil j ,

moreover

I(Y∗(W)||W) = I(Y ||W ), (III.2)

which, if W ∈ W , reads

I(Y∗(W)||W) = I(Y ||T (h)U). (III.3)

The solution of Problem 14, the second, is detailed in the
next proposition. Here and elsewhere in the paper we use the
notation

αk =
k∑

l=0

Ul�, k = 0, . . . , N.

Proposition 16: Assume that U0� > 0. The solution of
Problem 14, denoted W∗ or W∗(Y), satisfies

W∗
il j = h∗

l Ui−l, j , where h∗
l = Y�l�

αN−l
,

moreover, if Y ∈ Y , the vector h∗ ∈ S := {h ∈ H :∑N
k=0 hkαN−k = ∑

i j Yi j }.
Proof: Since W ∈ W , we in fact optimize over

h ∈ H. Trivial manipulations of the objective function reduce
the problem to the explicit minimization of

−
N∑

l=0

Y�l� log hl +
N∑

l=0

hlαN−l ,

which is attained at h∗. Finally, if Y ∈ Y , checking that h∗ ∈ S
is immediate,

N∑

k=0

h∗
kαN−k = Y��� =

∑

i j

Yi j .

�
Now we can make the connection between the original

minimization Problem 2 and the two partial minimization
Problems 13 and 14.

Proposition 17: It holds that

min
Y∈Y min

W∈W I(Y||W) = min
h∈H

I(Y ||T (h)U),

moreover, if h∗ is the minimizer on the right and W∗ its
correspondent in W ,

I(Y∗(W∗)||W∗) = I(Y ||T (h∗)U).

Proof: Fix Y ∈ Y and W ∈ W , and let Y∗ = Y∗(W)
be the solution of Problem 13 with W as input. From
equation (III.3), one has

I(Y|W) ≥ I(Y∗(W)||W)

= I(Y ||T (h)U)

≥ inf
h∈H

I(Y ||T (h)U).

It follows that

min
Y∈Y min

W∈W I(Y||W) ≥ inf
h∈H

I(Y ||T (h)U).

Conversely, fix h ∈ H and let W be the corresponding
element in W , i.e. with Wil j = hlUi−l, j then, again from
equation (III.3),

I(Y |T (h)U) = I(Y∗(W)||W)

≥ min
Y∈Y min

W∈W I(Y||W),

which yields

inf
h∈H

I(Y ||T (h)U) ≥ min
Y∈Y min

W∈W I(Y||W).

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on August 07,2024 at 16:16:22 UTC from IEEE Xplore.  Restrictions apply. 



FINESSO AND SPREIJ: APPROXIMATION OF NONNEGATIVE SYSTEMS BY FINITE IMPULSE RESPONSE CONVOLUTIONS 4403

Next we check the value of the minimum. Proposition 7
guarantees the existence of a minimizer of the right hand side,
call it h∗ ∈ H, and let W∗ be the corresponding element of W .
Then, using (III.3) once more, one gets I(Y ||T (h∗)U) =
I(Y∗(W∗)||W∗), which shows that (Y∗(W∗), W∗) is a
minimizing pair. �

The solutions of the two partial minimization problems
share the essential Pythagorean property (see [4] and [6])
which, in the present context, is derived below.

Lemma 18: In Problem 13, with W fixed, for all Y ∈ Y ,

I(Y||W) = I(Y||Y∗(W)) + I(Y∗(W)||W). (III.4)

In Problem 14, with Y fixed, for all W ∈ W ,

I(Y||W) = I(Y||W∗(Y)) + I(W∗(Y)||W). (III.5)

Proof: Equation (III.4) follows by a straightforward
computation. We proceed to the proof of equation (III.5).
We first compute

I(Y||W) − I(Y||W∗(Y))

=
∑

il j

Yil j log
W∗

il j

Wil j
+

∑

il j

Wil j −
∑

il j

W∗
il j

=
∑

l

Y�l� log
h∗

l

hl
+

∑

il j

(
Wil j − W∗

il j

)
. (III.6)

Next we compute

I(W∗(Y)||W) =
∑

il j

W∗
il j log

W∗
il j

Wil j
+

∑

il j

Wil j −
∑

il j

W∗
il j

=
∑

il

Y�l�
αN−l

Ui−l,� log
h∗

l

hl
+

∑

il j

(
Wil j − W∗

il j

)

=
∑

l

Y�l� log
h∗

l

hl
+

∑

il j

(
Wil j − W∗

il j

)
, (III.7)

which coincides with (III.6). �

IV. ALGORITHM

We propose here an iterative algorithm for the solution of
the minimization Problem 2. The algorithm is of the classic
alternating minimization type, and is derived using the results
of the previous section. Abstractly, one starts at an initial
W0 ∈ W , and implements the alternating minimization
scheme

. . . Wt 1−→ Yt 2−→ Wt+1 1−→ Yt+1 . . . ,

where the superscript t denotes the value at the t-th iteration.

The arrow
1−→ denotes an instance of the first partial

minimization, Problem 13, the matrix at the tail of the arrow
is the given input, and the matrix at the head is the optimal

solution. The symbols Wt 1−→ Yt mean that Yt = Y∗(Wt ).

The meaning of
2−→ is analogous, and represents an instance

of the second partial minimization, Problem 14. The symbols

Yt 2−→ Wt+1 mean that Wt+1 = W∗(Yt ). The hope
is that the alternating minimizations produce a sequence
of iterates (Wt , Yt ) converging to the pair (W∗, Y∗(W∗))

of Proposition 17, thus solving Problem 2. This is indeed
the case, as proved in Section V. Here we concentrate on
producing a computational version of the algorithm sketched
above in abstract terms.

Note that, at each iteration, Wt is completely specified by
the fixed data U and by the vector ht ∈ H. Computationally
it is more efficient to work only with the vectors ht ∈ H,
one therefore has to shunt the Yt steps of the alternating
minimization, and move directly from Wt to Wt+1. This
leads to the following scheme. For given ht ∈ H, define the
corresponding Wt

il j = ht
l Ui−l, j and use it as input in the

first partial minimization. The solution, computed according
to Proposition 15, is

Yt
il j = Yi j

ht
l Ui−l, j

∑i
p=0 ht

pUi−p, j
. (IV.1)

Use now Yt
il j as input in the second partial minimization. The

solution, computed according to Proposition 16, is

ht+1
k = Yt

�k�∑N−k
l=0 Ul�

, (IV.2)

with

Yt
�k� =

N∑

i=k

m∑

j=1

Yi j Ui−k, j∑
p ht

pUi−p, j
ht

k . (IV.3)

To shunt the Yt step it is enough to combine equations (IV.1),
(IV.2), and (IV.3) to obtain the following iterative algorithm,
solely in terms of ht vectors and original data (U, Y ).

Algorithm 19: Initialize at a strictly positive vector h0 and
define recursively for t ≥ 0

ht+1 = I (ht ),

where the map I acts on the components of ht as follows

ht+1
k = Ik(h

t ) := ht
k∑N−k

l=0 Ul�

m∑

j=1

N∑

i=k

Yi j Ui−k, j∑
p ht

pUi−p, j
. (IV.4)

If the data satisfy U0� > 0, as is the case under Condition 5,
any h0 > 0 componentwise is sufficient for F(h0) < ∞.

For further reference it is convenient to introduce the
functions Gk defined implicitly as (see equation (IV.4))

Ik(h
t ) := ht

k Gk(h
t ). (IV.5)

Remark 20: Note that, under the assumption U0� > 0,
the functions Gk(h) are continuous at all points h such that
Y � T (h)U .

Properties of Algorithm 19:
1) The ht+1

k are convex combinations of the Yi j for k ≥ 1,
with weights depending in the data Uij and the previous
vector ht.

2) The algorithm decreases the divergence I(Y ||T (ht )U)
at each step. Indeed, by construction and
Propositions 15 and 16, we have

I(Y |T (ht+1)U) = I(Yt+1||Wt+1)

≤ I(Yt ||Wt+1)

≤ I(Yt ||Wt ) = I(Y |T (ht )U). (IV.6)

Proposition 22 will quantify the decrease.
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3) If for some t the vector ht is a perfect model,
i.e. Y = T (ht )U, then

m∑

j=1

N∑

i=k

Yi j Ui−k, j∑
p ht

pUi−p, j
=

m∑

j=1

N∑

i=k

∑
p ht

pUi−p, j Ui−k, j∑
p ht

pUi−p, j

=
N−k∑

l=0

Ul�,

hence, from equation (IV.4), ht+1 = ht , i.e. perfect
models are fixed points of the algorithm.

4) If for some t the gradient ∇F(ht ) = 0, i.e. ht is a
stationary point of F(h), then, using equation (II.10) to
rewrite the recursion (IV.4),

ht+1
k = ht

k

(
1 − ∇F(ht )k∑N−k

l=0 Ul�

)
= ht

k , (IV.7)

i.e. stationary points of F(h) are fixed points of the
algorithm. Moreover, we recognize a stability property
of the recursion. If ht is such that F is increasing
(decreasing) in the k-th coordinate of ht , then ht+1

k < ht
k

(ht+1
k > ht

k).
5) The vectors ht belong to the simplex S, as it follows

from Proposition 16.
6) Assume the condition of Lemma 6. If a starting value

h0
k > 0, then ht

k > 0 for all t > 0.
7) We omit the details of the following trivial consis-

tency check. If N = 0, the solution of Problem 2 is
h∗ = h∗

0 = Y0�
U0� , the algorithm produces h1 = h∗, and

stays there.
Remark 21: Algorithm 19 has multiplicative update rules

for the ht
k and as stated above, see 6), all iterates remain

positive. In principle the algorithm risks to get trapped if some
component ht

k is (nearly) zero. But this can only happen if the
iterates are close to a point where the divergence is minimized.
In fact the (strict) convexity of the objective function excludes
the existence of local minima. See further Theorem 25 below,
which guarantees that the algorithm converges to the
minimizing h, and hence will not get trapped elsewhere.

This is in contrast with algorithms for nonnegative matrix
factorization, where given a matrix V one attempts to find a
best possible factorisation V ≈ W H , for instance in the sense
of minimal divergence, or minimal least squares. In this case
the objective function is not convex, there are local minima,
and undesired traps may occur. For further discussion on this
issue see [13].

We are now in the position to prove Proposition 7.
Proof of Proposition 7: The impulse response h = 1,

i.e. hk ≡ 1, gives Y = T (1)U strictly positive, hence
Condition 5 is satisfied and by Lemma 6 the I -divergence
F(1) = I(Y ||T (1)U) is finite. Take then h0 = 1 as a starting
value of Algorithm 19, which at the first step produces h1

with F(h1) ≤ F(h0) according to Equation (IV.6). Moreover,
since h1 is (partly) computed according to the second min-
imization problem, we have in view of Proposition 16 that
h1 ∈ S, a compact set. Hence we can confine our search for
a minimum of F to S.

The functions di j : x → Yi j log
Yi j
x − Yi j + x (for x ≥ 0)

have a minimum at x = Yi j , also if Yi j = 0. Choose a
sufficiently small positive ε < min{Yi j : Yi j > 0}. Then a
minimizer of F has to belong to F = {h ∈H : (T (h)U)i j ≥ ε,
for all i, j such that Yi j > 0}, and thus finding a minimizer of
F can be confined to the compact set S∩F . We next show that
this set is nonempty, for a judiciously chosen ε > 0. Let λ > 0
and consider λ1. Since U0� > 0, we can choose λ such that
λ

∑N
k=0 = S, hence for this λ we have λ1 ∈ S. Redefine,

if necessary, ε > 0 such that also ε < min j (T (λ1)U)0 j ,
then λ1 ∈ F , showing that S ∩ F is non-void. Since F is
continuous on this set, a minimizer indeed exists and, by the
strict convexity of F , it is unique. �

Next we quantify the update gain of Algorithm 19 at each
step.

Proposition 22: It holds that

I(Y ||T (ht )U) − I(Y ||T (ht+1)U)

= I(Yt ||Yt+1) + I(Wt+1||Wt ).

Proof: Recall that Wt+1 is the result of the second min-
imization problem with Yt given. Invoking Equation (III.5),
we have

I(Yt ||Wt) = I(Yt ||Wt+1) + I(Wt+1||Wt ). (IV.8)

On the other hand, Yt+1 is the result of the first minimization
problem with Wt+1 given. Hence Equation (III.4) yields

I(Yt ||Wt+1) = I(Yt ||Yt+1) + I(Yt+1||Wt+1). (IV.9)

Substitution of (IV.9) into (IV.8) yields

I(Yt ||Wt ) = I(Yt ||Yt+1) +I(Yt+1||Wt+1) + I(Wt+1||Wt ).

To finish the proof apply (III.3) to both I(Yt ||Wt ) and
I(Yt+1||Wt+1). �

Notice that the update gain is the sum of two non-negative
contributions, one from the first minimization and one from
the second. The latter term can be given in an alternative
expression, which will be useful later (see proof
of Lemma 23). We have

I(Wt+1||Wt ) =
N∑

l=0

Ul�
N−l∑

k=0

(ht+1
k log

ht+1
k

ht
k

− ht+1
k + ht

k)

=
N∑

k=0

(

N−k∑

l=0

Ul�)I(ht+1
k ||ht

k)

=
N∑

k=0

αN−kI(ht+1
k ||ht

k).

Recall that each ht belongs to S, since
∑N

k=0 ht
kαN−k =∑N

i j Yi j =: S. Let

pt
k := αN−k ht

k/S, k = 0, 1 . . . N,
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then pt := (pt
0, . . . , pt

N ) is a probability vector and

SI(pt+1||pt) = S
∑

k

pt+1
k log

pt+1
k

pt
k

=
∑

k

αN−k ht+1
k log

ht+1
k

ht
k

=
∑

k

(αN−kI(ht+1
k ||ht

k) + pt+1
k − pt

k)

=
∑

k

αN−kI(ht+1
k ||ht

k).

It follows that

I(Wt+1||Wt) = SI(pt+1||pt). (IV.10)

V. ASYMPTOTICS

We turn to the asymptotic behaviour of Algorithm 19. The
main result of the section is Theorem 25. The preparatory
lemmas, much in the spirit of [3], [20], and [23], are typical
of this class of problems. See also [18] for a recent example.
Our proofs, contrary to the cited references, rely heavily
on the optimality results for the partial minimizations (the
Pythagoras rules of Lemma 18). As a consequence proofs are
short and transparent.

First we use the Pythagoras rules for the updates
Yt and Wt+1. Since Yt = Y∗(Wt ) and Wt+1 = W∗(Yt),
from Lemma 18 we get the following identities, valid for any
Y ∈ Y and W ∈ W ,

I(Y||Wt ) = I(Y||Yt) + I(Yt ||Wt ) (V.11)

I(Yt ||W) = I(Yt ||Wt+1) + I(Wt+1||W). (V.12)

Moreover, from Proposition 15 we also have

I(Yt ||Wt) = I(Y ||T (ht )U). (V.13)

Suppose that h∞ is a fixed point of Algorithm 19, with
corresponding W∞ ∈ W and let Y∞ = Y∗(W∞). Then we
also have

I(Y∞||W∞) = I(Y ||T (h∞)U). (V.14)

For simplicity throughout this section we assume, without loss
of generality, that S = ∑

i j Yi j = 1, see Remark 3. Then
we have that pt

k = αN−k ht
k . The update equation (IV.2) is

equivalent to

pt+1
k = Yt

�k�. (V.15)

In correspondence to the fixed point h∞, let us define p∞ as
p∞

k = αN−k h∞
k , then

p∞
k = Y∞

�k�. (V.16)

Since pt and p∞ are probability vectors, by the lumping
property of the I-divergence, see [6, Lemma 4.1], it holds that

I(p∞||pt+1) ≤ I(Y∞||Yt). (V.17)

We will also need the following
Lemma 23: Limit points of the sequence (ht ) are fixed

points of Algorithm 19.

Proof: Since the divergence I(Y |T (ht )U) is decreasing
in t , it has a limit. Hence we obtain from Proposition 22
that I(Wt+1||Wt )→ 0. From (IV.10) it follows that
I(pt+1||pt) → 0. Suppose that h∞ is a limit point of (ht ),
then p∞ is a limit point of (pt ). Let h̃ be the iteration of the
algorithm if ht is replaced with h∞ and p̃ be its counterpart,
so h̃ = I (h∞). By continuity of I (·), which follows from the
continuity of the Gk , we then get I( p̃||p∞) = 0 and hence
p̃ = p∞, which entails h̃ = h∞, so h∞ is a fixed point of the
algorithm. �

We are now ready to prove
Lemma 24: Let h∞ be a limit point of Algorithm 19,

then I(p∞||pt ) is decreasing in t.
Proof: From (V.17) and (V.11) with Y = Y∞ we have

I(p∞||pt+1) ≤ I(Y∞||Yt)

= I(Y∞||Wt) − I(Yt ||Wt ).

Applying the second Pythagorean rule (III.5) to the first term
in the right hand side, with Y = Y∞ and hence W∗ = W∞,
we get

I(Y ∞||Wt ) = I(Y∞||W∞) + I(W∞||Wt ).

By Lemma 23 a limit point of the sequence (ht ) is also a
fixed point of the algorithm. Hence we have Y∞ = Y∗(W∞)
and we deduce from Proposition 15 that I(Y∞||W∞) =
I(Y ||T (h∞)U). A direct computation, similar to that lead-
ing to (IV.10), yields I(W∞||Wt ) = I(p∞||pt). By also
using (V.13), we finally obtain

I(p∞||pt+1) ≤ I(p∞||pt ) − I(Y ||T (ht )U)

+ I(Y ||T (h∞)U)

≤ I(p∞||pt ),

since Proposition 22 implies that I(Y ||T (ht )U) is decreasing
in t and hence I(Y ||T (h∞)U) ≤ I(Y ||T (ht )U). �

The main result on the asymptotic behavior of Algorithm 19
is given in the next theorem.

Theorem 25: The sequence of iterates ht converges to a
limit h∞ which minimizes h → I(Y ||T (h)U).

Proof: Since all ht belong to the simplex, see
property 5 in the list above, which is compact, the
sequence (ht ) has a convergent subsequence, htn → h∞, for
some h∞. For the corresponding sequence (pt ) it holds that
ptn → p∞. By continuity of the I-divergence in the second
argument, I(p∞||ptn) = ∑

k:p∞
k >0 p∞

k log
p∞

k

ptn
k

, we then have

I(p∞||ptn) → 0. The monotonicity result of Lemma 24 then
yields I(p∞||pt) → 0, which implies pt → p∞, equivalently
ht → h∞. Recall from Lemma 23 that the limit h∞ is a fixed
point of the algorithm. Hence we have from (IV.7)

h∞
k = h∞

k

(
1 − ∇F(h∞)k∑N−k

l=0 Ul�

)
.

If h∞
k > 0, then ∇F(h∞)k = 0. We now consider the case

where some h∞
k = 0. Consider (IV.4) and (IV.5), and write it

as the product

ht+1
k = ht

k Gk(h
t ).
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It follows that ht+1
k = h0

k

∏t
j=0 Gk(h j ). Since we have

convergence of the ht
k , we must have Gk(h∞) ≤ 1, otherwise

the product would explode. Indeed, suppose Gk(h∞) > 1,
hence Gk(h∞) > 1 + ε for some ε > 0. Continuity
of Gk(·) at h∞, which holds since F(h∞) < ∞, yields
limt→∞ Gk(ht ) ≥ 1 + ε, hence eventually Gk(ht ) > 1 + ε/2,
which contradicts that the ht convergence. We conclude
∇F(h∞)k ≥ 0. Altogether, we obtain that for the limit h∞ the
Kuhn-Tucker conditions (II.8), (II.9) for F are satisfied. Since
these conditions are also sufficient in view of the convexity
of F , [24, Th. 2.9], h∞ minimizes F . �

Although Theorem 25 establishes convergence of the
algorithm, it does not give any information on the rate of
convergence. In fact, it is possibly a hard grind to get results
in this direction. The following example shows that even in a
simple case, depending on the exact circumstances, different
rates may occur.

Example 26: Here we continue the toy Example 9. The
update equation (IV.4) for ht

1 becomes

ht+1
1 = ht

1
y1

ht
0u1 + ht

1u0
.

Assume again the second case, y1u0 − y0u1 < 0, and y1 > 0
to avoid a trivial recursion. Choose ε ∈ (0, y0u1−y1u0

u0+u1
).

We know from Theorem 25 that ht
0 → y0+y1

u0+u1
and ht

1 → 0.
Hence ht

0u1 +ht
1u0 → y0+y1

u0+u1
u1, and thus for some t0 > 0 and

t ≤ t0 one has ht
0u1 + ht

1u0 > y0+y1
u0+u1

u1 − ε and therefore

ht+1
1 ≤ ht

1
y1(u0 + u1)

(y0 + y1)u1 − ε(u0 + u1)
=: ht

k gε.

Hence we have, at least asymptotically, convergence
of ht

1 → 0 at an exponential rate, since gε < 1 by the choice
of ε. Note that, in the notation of the proof of Theorem 25,
we have G1(h∞) = y1(u0+u1)

(y0+y1)u1
= g0 < 1.

The convergence of the ht
0 could possibly be slower than

exponential, since G0(h∞) = 1. This will be investigated now.
The update equation for h1

0 reads

ht+1
0 = y0

u0 + u1
+ ht

0
y1u1

(u0 + u1)(ht
0u1 + ht

1u0)
.

Let v t
0 := ht

0 − h∞
0 = ht

0 − y0+y1
u0+u1

. Tedious computations lead
to the recursion for v t

0,

v t+1
0 = − y1u0

(u0 + u1)(ht
0u1 + ht

1u0)
ht

1.

Since the factor in front of ht
1 stabilizes around its limit value

− y1u0
u1(y0+y1)

and ht
1 converges exponentially fast to zero, the

latter property is shared by v t
0.

Next we investigate the case where an exact solution exists,
y1u0 − y0u1 ≥ 0. Let v t

k = ht
k − h∞

k and yt
1 = ht

0u1 + ht
1u0.

Putting the v t
k in a vector V t = (v t

0, v
t
1)

�, one arrives after
more tedious computations at the recursion

V t+1 = u1

yt
1

( u0
u0+u1−1

) (
h∞

1 −h∞
0

)
Vt

≈ u1

y1

( u0
u0+u1−1

) (
h∞

1 −h∞
0

)
Vt =: AV t .

Clearly the matrix A in front of Vt at the right hand side
is singular. Its eigenvalues are 0 and u1(y0+y1)

(u0+u1)y1
, where the

latter one is smaller than 1 if we assume the strict inequality
y1u0 − y0u1 > 0. Hence, also here one has exponential
stability.

What is left is the case y1u0 − y0u1 = 0. Now the matrix A
has an eigenvalue equal to 1. We investigate the exact equation
for V t in this case,

V t+1 = u1

yt
1

⎛
⎜⎜⎝

0 − y0

u0 + u1

0
y0

u0

⎞
⎟⎟⎠ V t .

It follows that for t ≥ 1

v t
0 = − u0

u0 + u1
v t

1,

and hence yt
1 = y1 + u2

0
u0+u1

v t
1. This leads to the recursion

v t+1
1 = y1

y1 + wv t
1
v t

1,

with w = u2
0

u0+u1
. This recursion has the solution

v t
1 = v0

1 y1

wv0
1 t + y1

.

We conclude that now v t
1 and hence also v t

0 tend to zero at
rate 1/t instead of exponentially.

VI. STATISTICS

In the previous sections we focused on the minimization
of I(Y ||T (h)U), where Y and U were given matrices and
we presented an algorithm that asymptotically yields the
minimizer. In the present section we concentrate on a statistical
version of the minimization problem and its large sample
properties. Recall that Y, U ∈ R

(N+1)×m . We will give limit
results for the optimizing h = hm , when m → ∞ and the
pair of columns (Y i , Ui ) of Y, U (i = 1, . . . , m) form an
i.i.d. sample. For each fixed m, Algorithm 19 can be used to
find hm, which now becomes a random vector as well.

Write I(Y ||T (h)U) = ∑m
i=1 I(Y i ||T (h)Ui ), with the

Y i and Ui the columns of the matrices Y and U respectively.
We assume that the pairs (Y i , Ui ) are i.i.d. In what follows,
we let, contrary to the previously employed notation, (Y, U)
be a random vector that has the same distribution as each of
the (Y i , Ui ). Moreover we assume for the entries Y j of Y and
(T (h)U) j of T (h)U the ‘true’ relationship

Y j = (T (h∗)U) j δ j , (VI.1)

where h∗ is an interior point and the δ j ≥ 0 are assumed to be
independent of U . In the present context it is more appropriate
to have a multiplicative disturbance δ j , than an additive one
as in e.g. least squares estimation.

The displayed relationship can be summarized as

Y = �T (h∗)U,

where � is diagonal with entries δ j , and U and � independent.
We impose E � = I , the identity matrix, so E δ j = 1.
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Lemma 27: Assume the model (VI.1), E U j < ∞, E δ j = 1,
and E δ j log δ j < ∞. Then it holds that

E I(Y ||T (h)U)

= E I(T (h∗)||T (h)U) +
∑

j

(E (T (h∗)U) j E (δ j log δ j ).

Proof: Let us first compute E I(Y j ||(T (h)U) j ). We get,
using the definition of divergence and Equation (VI.1),

E I(Y j ||(T (h)U) j )

= E {Y j log
Y j

(T (h)U) j
− Y j + (T (h)U) j }

= E {(T (h∗)U) jδ j log
(T (h∗)U) jδ j

(T (h)U) j

− (T (h∗)U) jδ j + (T (h)U) j }
= E {(T (h∗)U) jδ j (log

(T (h∗)U) j

(T (h)U) j
+ log δ j )

− (T (h∗)U) jδ j + (T (h)U) j }.
Using the independence of U and δ j , we proceed by rewriting
the last expression as

E (T (h∗)U) j log
(T (h∗)U) j

(T (h)U) j
E δ j + E (T (h∗)U) j E (δ j log δ j )

− E (T (h∗)U) j E δ j + E (T (h)U) j .

Recalling E δ j = 1, we obtain that this equals

E (T (h∗)U) j log
(T (h∗)U) j

(T (h)U) j
+ E (T (h∗)U) j E (δ j log δ j )

− E (T (h∗)U) j + E (T (h)U) j

Rearranging terms, we obtain for this, using again the
definition of divergence,

E I((T (h∗)U) j ||(T (h)U) j ) + E (T (h∗)U) j E (δ j log δ j ).

Summation over j yields the result. �
Minimizing the function h 
→ E I(Y ||T (h)U) (referred

to below as the limit criterion) is therefore equivalent to
minimizing h 
→ E I(T (h∗)U ||T (h)U).

Proposition 28: Let P(U0 > 0) > 0 and E U2
j < ∞ for

all j . The limit criterion h 
→ E I(Y ||T (h)U) is strictly
convex on the set where it is finite (and hence on a neigh-
bourhood of h∗) and has a unique minimum for h = h∗.

Proof: The proof of strict convexity is similar to the proof
of Lemma 6. We show that the Hessian H (h) at h of the limit
criterion is strictly positive definite on the set where the limit
criterion is finite. A computation shows that the kl-element of
this matrix is equal to

H (h)kl = E

∑

j

(T (h∗)U) j

(T (h)U)2
j

U j−kU j−l .

Clearly, H (h) is finite in a neighborhood of h∗. Hence

x�H (h)x = E

∑

j

(T (h∗)U) j

(T (h)U)2
j

(U ∗ x)2
j .

Hence the expression inside the expectation can only be zero
if U ∗ x = 0 a.s. Using P(U0 > 0) > 0, we argue as in the

proof of Lemma 6 to deduce that x = 0 iff x�H (h)x = 0.
Clearly, the limit criterion has a minimum equal to
zero at h = h∗. Conversely, E I(T (h∗)U ||T (h)U) = 0
iff I(T (h∗)U ||T (h)U) = 0 a.s., which happens iff
T (h∗)U = T (h)U a.s. Writing this equality elementwise,
(T (h∗)U) j = (T (h)U) j = 0, we obtain h = h∗ under the
condition that P(U0 > 0) > 0. We conclude that h = h∗ is
the unique minimizer if P(U0 > 0) > 0. �

Proposition 29: Let P(U0 > 0) > 0 and E U2
j < ∞ for

all j , moreover assume that h∗ is an interior point. The
estimators ĥm, defined as the minimizers of the objective
function

∑m
i=1 I(Y i ||T (h)Ui ) are consistent. Moreover, this

sequence is asymptotically normal, for some positive definite

	 ∈ R
(N+1)×(N+1) we have

√
m(ĥm − h∗) d→ N(0,	).

Proof: The limit criterion h 
→ E I(Y ||T (h)U) is strictly
convex, therefore from [22, Problem 5.27] we conclude that
the conditions of [22, Th. 5.7] are satisfied and consistency
follows. To show that the estimators ĥm are asymptotically
normal with covariance function as given in [22, Th. 5.23],
we have to show that the Hessian H (h∗) at h∗ of the limit
criterion is strictly positive definite. But this follows from the
proof of Proposition 28 taking h = h∗. �

VII. NUMERICAL EXPERIMENTS

In this section we provide the results of three numerical
experiments that illustrate the behaviour of Algorithm 19. The
first two examples investigate whether the algorithm is capable
of retrieving the true parameter vector h∗, when the output
data are actually generated by h∗. The two examples refer
to perfect and noisy observations respectively. In the third
example the input/output relation generating the outputs is that
of an arbitrary positive system. In this case the h generated by
the algorithm is the impulse response of the best convolutional
system approximation to the given system.

We have observed experimentally that the iterative algorithm
converges very fast, which led us to cut to 50 the number of
iterations in all examples. For the sake of graph readability
in the examples reproduced here the length N + 1 of the
individual time series is limited to 6, leading to FIR impulse
responses h of length 6. Each of the three graphs shows the
iterates ht

k (k = 0, . . . , 5) with the iteration number t on the
horizontal axis, and the 6 values of the impulse response ht

k on
the vertical axis, different colors representing the different k’s.
In Figures 1 and 2 the diamonds at the right end of the
graph indicate the true h∗ target values. The precise features
underlying the experiments are further detailed below.

A. True Convolutional System With Perfect Observations

In this example we set m = 10, N = 5. The elements
of the true vector h∗ (the target values of the algorithm)
and of the input matrix U have been randomly generated
from a uniform distribution on the interval [0.1, 10], and the
output computed as Y = T (h)U , see (II.2). The algorithm
has been initialized at a randomly chosen h0 > 0 and run
for 50 iterations. We observe from Figure 1 fast convergence
of the iterates ht

k to their target values, as should be expected
from Remark 8 and Theorem 25. The SCILAB implementation
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Fig. 1. Perfect observations, m = 10, N = 5.

Fig. 2. Noisy observations, m = 100, N = 5.

of the algorithm on a laptop produced this figure almost
instantly.

B. Noisy Observations of True Convolutional System

In the second example we consider data generated by the
statistical model of Section VI, i.e. noisy observations of a
true convolutional system. We set N = 5 and m = 100.
Recall that here m represents the sample size, and that we
want to assess the consistency of the estimates produced by the
algorithm. The true h∗ and the inputs U have been generated
as in the previous example. The disturbances δ, present in
every element of Y , see (VI.1), have been generated from a
uniform distribution on [0.6, 1.4]. Note that this distribution
has mean 1, in agreement with the modelling assumptions
of Section VI. We observe from Figure 2 that the estimates are
converging towards the true h∗, as predicted by Proposition 29.
The SCILAB implementation of the algorithm on a laptop
produced Figure 2 within a few seconds.

C. Bold Approximation

In this example there is no true underlying system, i.e. no
true impulse response h∗, therefore we only deal with an
approximation problem. We set N = 5 and m = 10.

Fig. 3. Arbitrary system, m = 10, N = 5.

The matrices of the inputs and of the outputs U, Y ∈ R
6×10

were randomly generated from the same uniform distribution
as in the first example. The aim is to find the vector h
which yields the best convolutional approximation to Y .
We conclude from Figure 3 that the algorithm quickly
stabilises. In agreement with Remark 10 we note that two of
the components of h converge to zero.

VIII. CONCLUSIONS

We posed the nonparametric approximation problem for
scalar nonnegative input/output systems via finite impulse
response convolutions, based on repeated observations of
input/output signal pairs. The problem is converted into a
nonnegative matrix factorization with special structure for
which we used Csiszár’s I-divergence as the criterion of
optimality. Conditions have been given that guarantee the
existence and uniqueness of the minimum. An algorithm
whose iterates converge to the unique minimizer has been
presented. For the case of noisy observations of a true system
we also proved the consistency of the parameter estimators.
Numerical experiments confirm the asymptotic results and
exhibit fast convergence to the minimizer of the objective
function.
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