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a b s t r a c t

We pose the approximation problem for scalar nonnegative input/output systems via impulse response
convolutions of finite order, i.e. finite order moving averages, based on repeated observations of
input/output signal pairs. The problem is converted into a nonnegative matrix factorization with
special structure for which we use Csiszár’s I-divergence as the criterion of optimality. Conditions
are given, on the input/output data, that guarantee the existence and uniqueness of the minimum. We
propose an algorithm of the alternating minimization type for I-divergence minimization, and present
its asymptotic behaviour. For the case of noisy observations we give the large sample properties
of the statistical version of the minimization problem for different observation regimes. Numerical
experiments confirm the asymptotic results and exhibit fast convergence of the proposed algorithm.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Nonnegative systems (also known as positive systems) have
attracted a lot of attention in the engineering literature both from
the theoretical and the practical point of view. See Benvenuti and
Farina (2004) for a survey, and for instance Anderson, Deistler, Fa-
rina, and Benvenuti (1996), Farina and Benvenuti (1995), Gurvits,
Shorten, and Mason (2007) and Shu, Lam, Gao, Du, and Wu (2008)
for theoretical contributions. Possible applications of nonnega-
tive systems are e.g. in the fields of image processing, emis-
sion tomography, industrial processes, charge routing networks,
compartmental systems, storage systems. For these we refer for
instance to Dewasurendra, Bauer, and Premaratne (2007), Farina
and Rinaldi (2000), O’Sullivan and Benac (2007), Snyder, Schulz,
and O’Sullivan (1992), Vardi, Shepp, and Kaufman (1985) and
references therein.

In this paper we pose the problem of the time-domain approx-
imation of nonnegative input/output systems by finite (nonneg-
ative) impulse response convolutions of fixed order q (positive
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moving averages MA(q)), based on input/output observations.
We propose an iterative algorithm to find the best approxima-
tion, and study its asymptotical behaviour. The contributions of
the present paper are theoretical, possible applications of the
algorithm are in the afore mentioned applied fields. The paper
complements Finesso and Spreij (2015), where the order of the
convolution is not fixed, but varies with the sample size. Our
treatment allows for m > 1 input/output pairs. This setting leads
easily to a statistical analysis when the output is observed with
noise. We then study large sample properties of the resulting
parameter estimators when (1) the number of input/output pairs
m grows unboundedly but the time horizon is fixed, (2) the
number of observations, the time horizon, N , tends to infinity,
but m is fixed and (3) a mixture of the previous two cases. It
is noted that the last two cases are not meaningful when the
order of the convolution is not fixed, as in Finesso and Spreij
(2015). Indeed, fixing the order q is the main difference with
our earlier contributions. Algorithms similar to ours for the case
m = 1 have been studied in Snyder et al. (1992) and Vardi et al.
(1985). Following the choice made in those early contributions
our criterion of optimality will be Csiszár’s I-divergence, which
as argued in Csiszár (1991) (see also Snyder et al. (1992)), is
the best choice for approximation problems under nonnegativity
constraints.

We emphasize that our approach to the approximation of a
given input/output system by a linear time invariant system is
different from the usual identification or realization of (nonnega-
tive) linear systems, see Benvenuti and Farina (2004) for a survey,
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and for instance Nagy and Matolcsi (2005) and Nagy, Matolcsi,
and Szilvási (2007), and the earlier mentioned Anderson et al.
(1996), Farina and Benvenuti (1995), Gurvits et al. (2007) and Shu
et al. (2008). From the mathematical point of view, the techniques
that we have used in Finesso and Spreij (2006) to analyse a
nonnegative matrix factorization algorithm have been shown to
be very useful in the present context as well, as demonstrated
in Finesso and Spreij (2015), and provided several benefits over
the analyses contained in Snyder et al. (1992). We will provide
explicit conditions for the existence and uniqueness of the min-
imizer of the criterion in terms of the data. The algorithm that
minimizes the informational divergence criterion is of the same
alternating minimization type as in Finesso and Spreij (2015), and
the optimality conditions (the Pythagorean relations) are shown
satisfied at each step. As demonstrated in Finesso and Spreij
(2015), these are at the core of a proof of convergence which is
more transparent than other proofs in the literature, e.g. Cover
(1984), Snyder et al. (1992) and Vardi et al. (1985).

A brief summary of the paper follows. In Section 2 we state
the problem and formulate conditions for strict convexity of the
objective function, and hence for the existence and uniqueness
of the solution. In Section 3 the original problem is lifted into
a higher dimensional setting, thus making it amenable to alter-
nating minimization. The optimality properties (Pythagoras rules)
of the ensuing partial minimization problems are recalled here.
Then we derive the iterative minimization algorithm combining
the solutions of the partial minimizations, we present its first
properties and the important result on the convergence of the
algorithm. In Section 4, taking advantage of the repeated in-
put/output measurements setup or the possibility of a growing
time horizon, we give a concise treatment of a statistical version
of the approximation problem, focusing on its large sample prop-
erties. In the last Section 5 we present numerical experiments
that confirm the asymptotic results and exhibit fast convergence
properties of the algorithm.

As mentioned above, the present paper is a follow up to Fi-
nesso and Spreij (2015), although it treats a different problem.
Accordingly, to avoid unnecessary repetitions, in several places
we only highlight differences and for proofs, unless extra or
different arguments are needed, we refer to Finesso and Spreij
(2015). The main differences with Finesso and Spreij (2015) are
the following. First, the order q of the moving average is now
fixed, which results in a different optimization algorithm. Sec-
ondly, the fixed order allows for an asymptotic analysis of the
properties of the estimators under observation regimes, including
those where the time horizon tends to infinity, that cannot be
treated in the setup of Finesso and Spreij (2015).

2. Problem statement and preliminary results

A discrete time, causal, convolutional moving average system
Sh of order q maps input sequences (ut )t∈N ∈ RN into output
sequences (yt )t∈N ∈ RN, and is completely characterized by an
impulse response vector h = (ht )t∈{0,...,q}, such that

yt = Shut =

t∑
k=0

hkut−k, t ∈ N,

where hk is set to zero for k > q. Alternatively, one can also write

yt = Shut =

t∧q∑
k=0

hkut−k, t ∈ N, (1)

where we write t ∧ q for min{t, q}.

Throughout the paper we consider a time horizon N for which
we assume N ≥ q, a standing assumption. Hence we have to
replace (1) by

yt = Shut =

t∧q∑
k=0

hkut−k, 0 ≤ t ≤ N. (2)

The special case where q = N has been treated in Finesso and
Spreij (2015) and N < q yields a redundancy, as the parameters
hN+1, . . . , hq do not play a role in (2). Rewriting Eq. (2) in matrix
form, one gets the system of equations

⎡⎢⎢⎢⎢⎣
y0
...
...

yN

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 0 · · · · · · · · · 0
...

. . .
. . .

...

hq
. . .

. . .

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 hq · · · h0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
u0
...
...

uN

⎤⎥⎥⎥⎥⎦ , (3)

compactly written as

y = T (h)u, (4)

having introduced the notations u = (u0, . . . , uN )⊤, y =

(y0, . . . , yN )⊤ and T (h) ∈ R(N+1)×(N+1) for the matrix in (3). For
m input sequences uj, with corresponding output sequences yj,
where j = 1, . . . ,m, Eq. (4) becomes

Y = T (h)U, (5)

where Y = (y1, . . . , ym) ∈ R(N+1)×m and U = (u1, . . . , um) ∈

R(N+1)×m. Elements of Y and U are denoted Yij and Uij, instead of
yji and uj

i.
In many practical contexts the inputs and outputs U and Y are

directly measured data, while h is not known or, more generally,
a causal convolutional system Sh is not known to exist such that
Y = T (h)U . In either of these cases a problem of interest is to find
an h that solves the best approximation problem

Y ≈ T (h)U , (6)

according to a specified loss criterion. In this paper we con-
centrate on this problem, under the extra condition that (6) is
the approximate representation of the behaviour of a positive
system, i.e. all quantities in (6) are nonnegative real numbers.
The goal is the determination of the best nonnegative vector
h = (h0, . . . , hq)⊤, where the loss criterion, chosen to measure the
discrepancy between the left and the right hand side in (6), is the
I-divergence between nonnegative matrices. See Csiszár (1991) for
a justification from first principles.

For given nonnegative vectors, matrices, tensors M and N
of the same size, indexed by some variable α, the I-divergence
between them is defined as

I(M ∥ N) :=

∑
α

(
Mα log

Mα

Nα

− Mα + Nα

)
≤ ∞. (7)

In definition (7) we also adopt the usual conventions 0
0 = 0,

0 log 0 = 0 and p
0 = ∞ for p > 0.

Problem 1. For given Y ≥ 0 and U ≥ 0, find a nonnegative vector
h = (h0, . . . , hq)⊤ ∈ H := Rq+1

+ such that F : H → [0, ∞],

F (h) := I(Y ∥ T (h)U)

is minimized over H.
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Problem 1 is well posed if there exists at least one h ∈ Rq+1
+

such that F (h) is finite. Under a rather weak condition on the data
(U, Y ), the loss F (h) is strictly convex (and hence Problem 1 is well
posed), a property that simplifies the study of the existence and
uniqueness of the solution of Problem 1.

Condition 1. For all i ∈ {0, . . . ,N} there exists j ∈ {1, . . . ,m} such
that U0j > 0 and Yij > 0.

This condition holds e.g. under the (stronger) assumption that
for some experiment j, with initial input U0j > 0, the output
trajectory Yij is strictly positive for all i. Lemma 2 below is sim-
ilar to Finesso and Spreij (2015, Lemma II.6), but its proof uses
different arguments.

Lemma 2. Under Condition 1 the loss F (h) is strictly convex on its
effective domain { h ∈ H : F (h) < ∞ }.

Proof. We exploit strict concavity of the logarithm. It is sufficient
to prove strict concavity of h ↦→

∑
ij Yij log(T (h)U)ij. Note that all

mappings h ↦→ Yij log(T (h)U)ij are concave. Hence it is sufficient
to show that at least on of them is strictly concave. Fix i and
choose j = j(i) such that Yij > 0 and U0j > 0. We show that for
at least on pair (i, j) one has strict concavity of h ↦→ log(T (h)U)ij.
Choose different vectors h0, h1

∈ Rq+1
+ and let h̄ = (1− t)h0

+ th1

for t ∈ (0, 1). We have to show that there is an i such that
(T (h̄)U)ij is not equal to one of the (T (h0)U)ij and (T (h1)U)ij.
Suppose on the contrary that (T (h̄)U)ij = (T (h0)U)ij for all i. It
is sufficient to restrict our attention to i ≤ q, since we assumed
N ≥ q. This is then equivalent to

∑q
l=0 vlUi−l,j = 0 for all i, where

vl = h1
l − h0

l . This gives a linear system of q + 1 equations in
the vl in which the coefficient matrix is lower triangular with the
U0,j(i) on the diagonal. But these diagonal elements are all strictly
positive, hence the vl are all zero, which contradicts h0

̸= h1. □

Remark 3. In solving Problem 1, minimizers h∗ at the boundary
of H = Rq+1

+ , i.e. with some zero components, are the rule
rather than an exception when q = N , see Finesso and Spreij
(2015, Remark 10). But, if N is much larger than q, it has been
observed that one often has interior solutions. See Section 5 for
an illustration of this remark.

We now state the existence and uniqueness result. The state-
ment and its proof are verbatim the same as for Proposition 7
in Finesso and Spreij (2015). An important ingredient of the proof
is that the search for a minimizer can be confined to a suitable
compact set, on which the divergence is finite.

Proposition 4. Assume Condition 1 is satisfied, then Problem 1
admits a unique solution.

Remark 5. Suppose that given the input sequences, the outputs
are obtained by a true convolutional system Y = T (h∗)U for some
h∗

∈ H. It follows from Proposition 4 that under Condition 1, the
minimizer of h ↦→ F (h) is h∗ and F (h∗) = 0. Note too that under
the same Condition 1 the system of equations T (h)U = T (h∗)U
has the unique solution h = h∗. If for the general case one wants
to check whether a proposed vector h∗ is a minimizer, it is by the
convexity result of Lemma 2 sufficient to check the Kuhn–Tucker
conditions (see e.g. Zangwill & Mond, 1969, Theorem 2.19).

3. The algorithm

To solve Problem 1 we propose an alternating minimization
algorithm, based on a variation of the lifting technique pioneered
by Csiszár and Tusnády (1984). The same approach was previ-
ously adopted in Finesso and Spreij (2015) for the solution of

Problem 1 under the condition q = N . The results of this section
are in spirit the same as the corresponding ones in Finesso and
Spreij (2015, Section III) and can be derived in an analogous way.
Proofs are therefore omitted.

This leads to the following algorithm, almost identical to Al-
gorithm 19 in Finesso and Spreij (2015), with minor differences
only, see also Remark 6.

Algorithm 1. Initialize at a strictly positive vector h0 and define
recursively for t ≥ 0

ht+1
= I(ht ),

where the map I acts on the components of ht as follows. For
k = 0, . . . , q,

ht+1
k = Ik(ht ) :=

ht
k∑N−k

l=0 Ul·

m∑
j=1

N∑
i=k

YijUi−k,j∑i∧q
p=0 ht

pUi−p,j
. (8)

If the data satisfy U0· > 0, as is the case under Condition 1,
any h0 > 0 componentwise is sufficient for F (h0) < ∞.

Remark 6. If q = N , Algorithm 1 is exactly the same as
Algorithm 19 in Finesso and Spreij (2015). If q < N , one can
add artificial parameters hk = 0 for k = q + 1, . . . ,N . Starting
the algorithm in h0

k = 0 for those k, we see that all iterated
values ht

k are zero as well. The extension of the algorithm with
these iterates then also yields the algorithm of Finesso and Spreij
(2015), with the modification of the zero initial values for k =

q+1, . . . ,N . Note that, although Algorithm 1 can thus be viewed
as a special case of Finesso and Spreij (2015, Algorithm 19), it
requires separate derivation being a consequence of the partial
minimization problems, the second one of which is a constrained
version of analogue problem in Finesso and Spreij (2015). The
constraints in effect are hk = 0 for k = q + 1, . . . ,N . Curiously
enough the solution of the second minimization problem coin-
cides with the h∗

k in the non-constrained problem in Finesso and
Spreij (2015).

Here are a few properties, paralleling those in Finesso and
Spreij (2015). Positivity of the initial values is preserved by the
iterations; the algorithm decreases the divergence I(Y ∥ T (ht )U)
at each step; the recursion enjoys a stability property, if ht is such
that F is increasing (decreasing) in the kth coordinate of ht , then
ht+1
k < ht

k (ht+1
k > ht

k); the vectors ht belong to a certain compact
set, in fact a simplex.

Remark 7. Algorithm 1 has multiplicative update rules for the ht
k

and all iterates remain positive. In principle the algorithm risks to
get trapped if some component ht

k is (nearly) zero. But Theorem 8
below guarantees that the algorithm converges to the minimizing
h, and hence will not get trapped elsewhere. This is in contrast
with many other algorithms with a multiplicative update rule. For
further discussion on this issue see Lin (2007).

The next result, Theorem 8, concerns the asymptotic behaviour
of Algorithm 1. The proof is omitted being much like that of
Theorem 25 in Finesso and Spreij (2015), relying heavily on the
optimality results for the partial minimizations. A very simple
example closes the section.

Theorem 8. The sequence of iterates ht converges to a limit h∞

which minimizes h → I(Y ∥ T (h)U).

Example 9. Suppose q = 0 and N ≥ 0. This is an instance in
which Problem 1 has an explicit solution, h∗

0 =

∑
ij Yij∑
ij Uij

. Starting

with h0
0 > 0, Algorithm 1 produces h1

0 = h∗

0, so it reaches
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the minimizing value in one step. When q > 0 there is no
termination of the algorithm in finitely many steps that achieves
the minimizing vector h∗, but an explicit solution for q = 1,
N = 1 is available, see Finesso and Spreij (2015, Example II.9).
Depending on the data, there are boundary solutions in the latter
case.

4. Statistics

In the previous sections we focused on the minimization of
F (h) = I(Y ∥ T (h)U) over h ∈ Rq+1

+ , where Y and U were
given matrices and we presented an algorithm that asymptot-
ically yields the minimizer. In the present section we concen-
trate on a statistical version of the minimization problem and
its large sample properties under different observation regimes.
Specifically we study the asymptotics when the number of input
sequences grows and/or the time horizon tends to infinity. The
latter is possible in the present context, unlike in Finesso and
Spreij (2015), because of the fixed dimension of the parameter.

Recall that Y ,U ∈ R(N+1)×m, but are now random quantities.
For each fixed m,N , Algorithm 1 can be used to find the opti-
mizing ĥN,m, which now becomes a random vector in Rq+1

+ . We
will give limit results on consistency and asymptotic normality
for the ĥN,m in three cases. First for m → ∞, and the columns U j

of U (j = 1, . . . ,m) form an i.i.d. sample. Then for N → ∞, and
the rows Ui of U (i = 0, . . . ,N) form an i.i.d. sample. Finally for
N,m → ∞, and all Uij (i = 0, . . . ,N , j = 1, . . . ,m) form an i.i.d.
sample.

Assumption 10. We assume throughout this section that, for
i = 0, . . . ,N , and j = 1, . . . ,m, the following true relationships
hold

Yij = (T (h∗)U j)iδij, (9)

where h∗ is an interior point of Rq+1
+ , and δij (multiplicative noise)

are nonnegative, i.i.d. random variables, independent of all Uij,
and with E δij = 1.

Further assumptions will be detailed in the subsections below.

4.1. Asymptotics for m → ∞, N fixed

For matrices Y ,U one can write I(Y ∥ T (h)U) =
∑m

j=1 I(Y
j
∥

T (h)U j), with the Y j and U j the columns of the matrices Y and U
respectively. In this section we assume, next to Assumption 10,
that the pairs (Y j,U j) are i.i.d. Let (y, u) be a pair of random
vectors that has the same distribution as each of the (Y j,U j).
Elements of y (and u) are denoted yi (and ui). Here is the first
result, basically the same as Finesso and Spreij (2015, Lemma 27).

Lemma 11. Assume the model (9), independence of ui and δi,
E ui < ∞, E δi = 1, and E δi|log δi| < ∞. Then it holds for all
h ∈ H that

E I(y ∥ T (h)u)

= E I(T (h∗)u ∥ T (h)u) +

∑
i

E (T (h∗)u)iE δi log δi.

Minimizing the function h ↦→ E I(y ∥ T (h)u) (referred to below
as the limit criterion) is therefore equivalent to minimizing h ↦→

E I(T (h∗)u ∥ T (h)u).

The following proposition parallels (Finesso & Spreij, 2015,
Proposition 28) with some minor differences in the statement and
the proof.

Proposition 12. Let P(u0 > 0) = 1 and E u2
j < ∞ for all j. The

limit criterion h ↦→ E I(y ∥ T (h)u) is strictly convex on the set where
it is finite (and hence on a neighbourhood of h∗) and has a unique
minimum for h = h∗.

Proof. We show that the Hessian H(h) ∈ R(q+1)×(q+1) at h of the
limit criterion is strictly positive definite on the set where the
limit criterion is finite. A computation shows that the kl-element
of this matrix is equal to (recall the convention ui = 0 for i < 0)

H(h)kl = E
N∑
j=0

(T (h∗)u)j
(T (h)u)2j

uj−kuj−l.

Hence, for any vector x = (x0, . . . , xN )⊤ one has, using the
convolution notation (u ∗ x)j :=

∑
k xkuj−k,

x⊤H(h)x = E
N∑
j=0

(T (h∗)u)j
(T (h)u)2j

(u ∗ x)2j .

Suppose that x⊤H(h)x = 0 for some x ∈ Rq+1. Then E (T (h∗)u)j
(T (h)u)2j

(u ∗

x)2j has to be zero for all j, in particular for j ∈ {0, . . . , q}. Hence
(T (h∗)u)j
(T (h)u)2j

(u ∗ x)2j = 0 a.s. for j ∈ {0, . . . , q}. Since (T (h∗)u)j ≥ h∗

j u0,

which is strictly positive by the assumptions, one can only have
(T (h∗)u)j
(T (h)u)2j

(u ∗ x)2j = 0 a.s. if (u ∗ x)j = 0 a.s. for all j = 0, . . . , q. This

gives a system of linear equations Ūx = 0, where Ū ∈ R(q+1)×(q+1)

is lower triangular with all diagonal elements equal to u0. Using
P(u0 > 0) = 1, we deduce that x = 0 iff x⊤H(h)x = 0. From
Lemma 11 it follows that the limit criterion has a minimum at h =

h∗, and by strict convexity this must be the unique minimizer. □

As in the present case N is fixed, we simply write ĥm for the es-
timators, i.e. the minimizers of Fm(h) =

∑m
j=1 I(Y

j
∥ T (h)U j). The

following proposition, basically the same as Finesso and Spreij
(2015, Proposition 29), describes the large sample behaviour of
the ĥm for the number of input sequences m → ∞ and the
observation horizon N fixed. We include the proof for the sake
of completeness.

Proposition 13. Let Assumption 10 be in force, in particular (9),
and assume that the random vectors U j form an i.i.d. sequence. Let
P(U0j > 0) > 0 and EU2

ij < ∞ for all i, j, moreover assume that h∗

is an interior point. The estimators ĥm, defined as the minimizers of
the objective function

∑m
j=1 I(Y

j
∥ T (h)U j) are consistent. Moreover,

this sequence is asymptotically normal, for some positive definite
Σ ∈ R(q+1)×(q+1) we have

√
m(ĥm

− h∗)
d

→ N(0, Σ).

Proof. The limit criterion h ↦→ E I(Y ∥ T (h)U) is strictly convex,
continuous on the set where it is finite. Therefore from van der
Vaart (1998, Problem 5.27) we conclude that the conditions
of van der Vaart (1998, Theorem 5.7) are satisfied and consis-
tency follows. To show that the estimators ĥm are asymptotically
normal with covariance function as given in van der Vaart (1998,
Theorem 5.23), we have to show that the Hessian H(h∗) at h∗

of the limit criterion is strictly positive definite. But this follows
from the proof of Proposition 12 taking h = h∗. □

4.2. Asymptotics for N → ∞, m fixed

The standing assumption is again Assumption 10. Let, as be-
fore, Y and U be matrices. Write I(Y ∥ T (h)U) =

∑N
i=0 I(Yi ∥

(T (h)U)i), with the Yi and (T (h)U)i the rows of the matrices Y and
T (h)U .

We would like to have all rows Yi mutually independent, but
row Yi partly uses the same inputs as Yi+1, namely the rows
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Ui+1, . . . ,Ui−q+1 (for i ≥ q). Consider the rows Ui and Ui+q+1.
The elements of these rows that are needed to compute the con-
volutions (T (h)U)ij are Uij, . . . ,Ui−q,j, whereas for (T (h)U)i+q+1,j
one needs Ui+q+1,j, . . . ,Ui+1,j. We see that these sets of elements
have empty intersection. To have independence of rows (T (h)U)i
and (T (h)U)i+q+1 we will assume that the rows Ui are indepen-
dent. The interpretation is that in the collective experiments, at
different times independent row vectors are used as inputs.

Lemma 14. Assume that the rows Ui form an i.i.d. sequence,
and that all necessary expectations are finite. Consider the random
criterion function

IN (h) =
1
N

N∑
i=0

I(Yi ∥ (T (h)U)i).

Then one has, for N → ∞ the a.s. convergence

IN (h) → E I(Yq ∥ (T (h)U)q).

Proof. We split the sum
∑N

i=0 I(Yi ∥ (T (h)U)i) into the q+1 sums

⌊
N

q+1 ⌋∑
i=0

I(Yi(q+1)+l ∥ (T (h)U)i(q+1)+l)

and a remainder term of at most q terms I(Yi ∥ (T (h)U)i). The
remainder term divided by N tends to zero a.s. For each l the
strong law applies because of the independence properties and
we have the a.s. convergence

1
N

⌊
N

q+1 ⌋∑
i=0

I(Yi(q+1)+l ∥ (T (h)U)i(q+1)+l) →

1
q + 1

E I(Yq+1+l ∥ (T (h)U)q+1+l).

Since the rows (Yi, (T (h))Ui) have the same distribution for all
i ≥ q, one has the identity

E I(Yq+1+l ∥ (T (h)U)q+1+l) = E I(Yq ∥ (T (h)U)q).

The result follows. □

Proposition 15. Assume the model (9), the rows Ui form an i.i.d.
sequence, and for all i, j, EUij < ∞, E δij = 1, and E δij|log δij| < ∞.
Then it holds that

E I(Yq ∥ (T (h)U)q) = E I((T (h∗)U)q ∥ (T (h)U)q)

+

∑
j

(E (T (h∗)U)qjE (δqj log δqj)).

Moreover, the divergences E I((T (h∗)U)i ∥ (T (h)U)i) are identical for
all i ≥ q and the limit criterion h ↦→ E I(Yq ∥ (T (h)U)q) is strictly
convex, and hence continuous, on the set where it is finite (and hence
on a neighbourhood of h∗). It has a unique minimum for h = h∗, if
P(U0j > 0) > 0 for at least one j and EU2

0j < ∞ for all j.

Proof. The proof of the first assertion is like the one of Lemma 11.
The second assertion follows from the observation that for i ≥

q in the computation of the divergence, one needs q + 1 in-
puts Ui, . . . ,Ui−q and these have identical distributions. Strict
convexity and uniqueness are proved in the same way as for
Proposition 12. □

Minimizing the function h ↦→ E I(Yq ∥ (T (h)U)q) (referred
to below as the limit criterion) is thus equivalent to minimizing
h ↦→ E I((T (h∗)U)q ∥ (T (h)U)q).

As in the present case m is fixed, we write ĥN for the es-
timators. The following proposition describes the large sample
behaviour of the ĥN for N → ∞.

Proposition 16. Let Assumption 10 be in force, in particular (9),
and assume the rows Ui form an i.i.d. sequence. Let P(U0j > 0) > 0
for at least one j and EU2

0j < ∞ for all j, moreover assume that h∗ is
an interior point. The estimators ĥN , defined as the minimizers of the
objective function

∑N
i=0 I(Yi ∥ (T (h)U)i) are consistent. Moreover,

this sequence is asymptotically normal, for some positive definite
Σ ∈ R(q+1)×(q+1) we have

√
N(ĥN

− h∗)
d

→ N(0, Σ).

Proof. As the convolutions are not independent anymore, we
cannot immediately follow the same path as in the proof of
Proposition 13. Still, the key to prove the result in the present
case is the independence of the rows Ui and that the δij are
independent.

Recall that a sequence of random variables or vectors Xi is q-
dependent if for every possible time index t the (possibly infinite)
sequences (. . . , Xt−1, Xt ) and (Xt+1+q, Xt+2+q, . . .) are indepen-
dent, and that a q-dependent sequence is automatically strong
mixing. It follows from the assumptions that the (Yk, (T (U))k) are
q-dependent and so are the I(Yk ∥ (T (h)U)k), which then trivially
become a strong mixing sequence. Hence, one can apply Ibragi-
mov’s central limit theorem (Ibragimov, 1975) for strongly mixing
stationary sequences to have

√
N(IN (h)−E IN (h)) converging to a

zero mean normal distribution. The asymptotic normality result
for the estimators follows by a Taylor argument for M-estimators
combined with the laws of large numbers and the CLT result for
the IN (h) above (see van der Vaart (1998, pages 51 and 72)), or
by application of the delta-method. See also van der Vaart (1998,
Chapters 5 and 19), in particular the proofs of the general The-
orems 5.21 and 5.23, and van der Vaart (1998, Section 5.6) with
results on the ‘classical case’. To verify the consistency condition
in these theorems, one needs strict convexity and continuity of
the limit criterion h ↦→ E I(Yq ∥ (T (h)U)q) and uniqueness of its
minimizer, similar to Proposition 12. From van der Vaart (1998,
Problem 5.27) one concludes that the conditions of van der Vaart
(1998, Theorem 5.7) are satisfied and consistency follows. □

4.3. Asymptotics for N,m → ∞

In this section we study the large sample behaviour of the
estimators hN,m when both the time horizon N and the number
of experiments m may tend to infinity. The model is again (9) and
next to Assumption 10 in this section it is additionally assumed
that both the Uij and the δij are i.i.d. arrays with the relevant
expectations finite.

We look again at the limit criteria of Lemmas 11 and 14.
The first limit criterion becomes

∑N
i=0 E I(Yij ∥ (T (h)U)ij), with

j arbitrary, which equals

L1N :=

q−1∑
i=0

E I(Yij ∥ (T (h)U)ij)

+ (N + 1 − q)E I(Yqj ∥ (T (h)U)qj)

by the assumed identity in distribution. The second limit criterion
we can write as

∑m
j=1 E I(Yqj ∥ (T (h)U)qj), equal to

L2m := mE I(Yqj ∥ (T (h)U)qj)

by the assumed independence for this case. We see that limN→∞
1
N

L1N = limm→∞
1
m L2m = E I(Yqj ∥ (T (h)U)qj), j arbitrary, for instance

j = 1. This motivates the next result.

Lemma 17. Consider the random criterion function

IN,m(h) =
1
Nm

N∑
i=0

m∑
j=1

I(Yij ∥ (T (h)U)ij).
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Then one has, for N,m → ∞ the convergence in probability

IN,m(h) → E I(Yq1 ∥ (T (h)U)q1), (10)

which has h∗ as its unique minimizer.

Proof. For each j the random variables I(Yij ∥ (T (h)U)ij) are
q-dependent and hence the variance of the sum

∑N
i=0 I(Yij ∥

(T (h)U)ij) can be shown to be (finite and) of order N . As the latter
sums are i.i.d. for different j the result is that the variance of the
double sum

∑N
i=0

∑m
j=1 I(Yij ∥ (T (h)U)ij) is of order Nm. Hence,

Chebyshev’s inequality gives the result on the convergence. The
minimizing property of h∗ follows as in the proof of Proposi-
tion 12, using the additive decomposition of the limit in (10) into
I((T (h∗)U)q1 ∥ (T (h)U)q1) and a remainder term not involving
h. □

Remark 18. Let ρN,m =
N
m and ρ = limN,m→∞ ρN,m (assumed to

exist). If ρ = 0, the limit in Lemma 17 coincides with the result
for fixed N , if ρ = ∞ one retrieves the result of Lemma 14, since
under the present independence assumptions I(Yq ∥ (T (h)U)q) =

mI(Yq1 ∥ (T (h)U)q1).

Proposition 19. Let Assumption 10 be in force, in particular (9),
and assume all Uij form an i.i.d. double array. Let P(Uij > 0) > 0 and
EU2

ij < ∞ for all i, j, moreover assume that h∗ is an interior point.
Let N,m → ∞. The estimators ĥN,m, defined as the minimizers of
the objective function IN,m(h) are consistent. Moreover, this sequence
is asymptotically normal, for some positive definite Σ ∈ R(q+1)×(q+1)

we have
√
Nm(ĥN,m

− h∗)
d

→ N(0, Σ).

Proof. For consistency one needs Lemma 17 and uniqueness of
the minimizer of the expectation in (10). The remainder follows
as in the proof of Proposition 16, using for any fixed j the q-
dependence of the Yij, i ≥ 0 and the independence, for fixed i
of the Yij, j ≥ 1. □

4.4. Misspecified models

The standing assumption in this section until now was As-
sumption 10 that postulated the existence of a ‘true’ parameter
h∗. In absence of this assumption we have the following counter-
part of Proposition 12 under the conditions of Section 4.1. Similar
results hold for the situations of Sections 4.2 and 4.3.

Proposition 20. Let P(u0 > 0) = 1 and E u2
j < ∞ for all j.

The limit criterion h ↦→ E I(y ∥ T (h)u) is strictly convex on the set
where it is finite and has a unique minimum. The unique minimizer
coincides with h∗ when Assumption 10 holds.

Proof. The proof follows the lines of the proof of Proposition 12,
but in the computation of the Hessian one has to replace the
quantities (T (h∗)u)j with Yj. The Hessian is then again seen to be
positive definite, and the existence of a unique minimum follows.
That this minimizer coincides with h∗ under Assumption 10,
follows from Lemma 11. □

Calling the unique minimizer h∗, one obtains that all previ-
ous results on consistency – under the presented conditions –
continue to hold with the ‘true’ parameter replaced with this h∗.
The same is true for the results for asymptotic normality. See
Example 5.25 in van der Vaart (1998) for a similar discussion on
maximum likelihood estimation for misspecified models. In that
situation the ‘true’ parameter is replaced by the one that mini-
mizes the Kullback–Leibler information between the distribution
of the data and the distribution given by the misspecified model.
The analogy with our setting is obvious.

Fig. 1. Noiseless observations, m = 5, N = 10.

5. Numerical experiments

In this section we provide the results of a number of numerical
experiments that illustrate the behaviour of Algorithm 1. All
figures can be found at the end of the paper. We have observed
experimentally that usually the iterative algorithm converges
very fast in many instances, which is illustrated by the examples.
In many cases 50 iterations would have sufficed. For the sake of
graph readability in the examples reproduced here the order q
has been limited to 5, leading to a parameter vector h of length
6. Each of the graphs shows the iterates ht

k (k = 0, . . . , 5) with
the iteration number t on the horizontal axis, and the 6 values
of the impulse response ht

k on the vertical axis, different colours
representing the different k’s. As another simplification in the
graphs we sometimes omit the first iterates. In Figs. 1–6 the
diamonds at the right end of the graph indicate the true h∗ target
values. In all cases the Uij are generated as independent uniform
U(0.1, 10) random variables. The precise features underlying the
different experiments are further detailed below. The different
experiments highlight the role of the parameters m and N , es-
pecially when the system is observed with noise. Relatively small
values of m compared to high values of N give satisfactory results.
For the asymptotics of Proposition 19 it is important that only the
product Nm is large.

In the first two examples, Figs. 1 and 2, we investigate whether
the algorithm is capable of retrieving the true parameter vector
h∗, when the output data are actually generated by h∗. After that
we investigate the behaviour of the algorithm when we have
noisy observations of the output. Here we are in the statistical
setting of Section 4. The δij are taken as exp(Zij/10 − 1/200),
where the Zij are independent standard normal random variables.
Note that indeed E δij = 1. Figs. 3–6 illustrate the large sample
behaviour of the estimators. We see that for not too large val-
ues of N , already moderate values of m give good results, this
illustrates Proposition 19. For small values of m, e.g. m = 1, one
needs a relatively large value of N to have satisfactory results.
This is probably partly due to the dependence between rows of
Y . In the last examples the input/output relation generating the
outputs is that of an arbitrary positive system. In this case the h
generated by the algorithm is the impulse response of the best
convolutional system approximation to the given system. Figs. 7
and 8 also illustrate Remark 3 on boundary solutions.
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Fig. 2. Noiseless observations, m = 10, N = 5.

Fig. 3. Noisy observations, m = 30, N = 20.

Fig. 4. Noisy observations, m = 1, N = 100.

Fig. 5. Noisy observations, m = 30, N = 5.

Fig. 6. Noisy observations, m = 5, N = 30.

Fig. 7. Arbitrary system, m = 10, N = 8.
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Fig. 8. Arbitrary system, m = 10, N = 50.

6. Conclusions

We posed the nonparametric approximation problem for
scalar nonnegative input/output systems via impulse response
convolutions of finite order, based on multiple observations of
input/output signal pairs. The problem is converted into a non-
negative matrix factorization with special structure for which
we used Csiszár’s I-divergence as the criterion of optimality.
Conditions have been given that guarantee the existence and
uniqueness of the minimum. An algorithm whose iterates con-
verge to the unique minimizer has been presented. For the case
of noisy observations of a true system we also proved the consis-
tency of the parameter estimators under different large sample
regimes (many observation times, many inputs, or a mix of these).
Numerical experiments confirm the asymptotic results and of-
ten exhibit fast convergence to the minimizer of the objective
function.
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