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The Inverse Problem of Positive Autoconvolution
Lorenzo Finesso and Peter Spreij

Abstract— We pose the problem of approximating optimally
a given nonnegative signal with the scalar autoconvolution of a
nonnegative signal. The I-divergence is chosen as the optimality
criterion being well suited to incorporate nonnegativity con-
straints. After proving the existence of an optimal approximation,
we derive an iterative descent algorithm of the alternating
minimization type to find a minimizer. The algorithm is based
on the lifting technique developed by Csiszár and Tusnádi and
exploits the optimality properties of the related minimization
problems in the larger space. We study the asymptotic behavior
of the iterative algorithm and prove, among other results, that its
limit points are Kuhn-Tucker points of the original minimization
problem. Numerical experiments confirm the asymptotic results
and exhibit the fast convergence of the proposed algorithm.

Index Terms— Autoconvolution, inverse problem, positive sys-
tem, I-divergence, alternating minimization.

I. INTRODUCTION

INVERSE problems in system modeling and identification
have a long tradition and have been the subject of a vast

technical literature in applied mathematics, engineering, and
specialized applied fields. The focus of this paper is on the
subclass of inverse problems for which the models are of
autoconvolution type. In linear time-invariant systems, inputs
are transformed into outputs by convolution with a kernel
representing the system’s impulse response. Autoconvolution
systems produce the output by convolution of the input signal
with itself.

A lot of work has been dedicated to the inverse problem
of autoconvolution for functions on the real line, emphasizing
the functional analytic aspects and motivating its interest in
a variety of applications in physics and engineering. Most of
the contributions analyse special cases, where exact solutions
to the inverse problem exist, and propose different theoretical
approaches for their construction. For example, [9] focuses on
inversion of autoconvolution integrals using spline functions.
In [22], inversion is studied based on the application of the
FFT algorithm and digital signal processing concepts. Special
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cases arise when dealing with autoconvolution of probability
density functions, as in [16]. In [10], the autoconvolution
has been introduced for continuous-time processes as an
alternative to autocorrelation.

The purpose of this paper is threefold. First, we pose the
problem of time-domain approximation of a discrete-time
nonnegative input/output system by finite autoconvolutions,
when the output observations are available. Following the
choice made in other optimization problems for nonnegative
system, we opt for the I-divergence, which as argued in [7]
(see also [28]), is the natural choice under nonnegativity con-
straints. We provide a result on the existence of the minimizer
of the approximation criterion. Then we propose an iterative
algorithm to find the best approximation, and finally we study
the asymptotic behavior of the algorithm.

We employ techniques that have already been used in [12]
to analyse a nonnegative matrix factorization problem and the
approach is similar to the one in [13], [14], but differs from
the latter references as they treat linear convolutional prob-
lems, whereas the autoconvolution is inherently nonlinear. The
algorithm that we propose is of the alternating minimization
type, and the optimality conditions (the Pythagorean relations)
are satisfied at each step.

The inherent nonconvexity and nonlinearity of the problem
make the analysis of the asymptotic behavior challenging. The
main result in this respect is contained in Proposition IV.8,
which states that all limit points of the algorithm satisfy the
Kuhn-Tucker optimality conditions. This should be compared
with other known results on the convergence of alternating
minimization algorithms. In some cases, it is possible to show
convergence to a (unique) limit, which is also the minimizer
of the criterion. This happens, in particular, when dealing
with a convex criterion. Contributions in this direction are
e.g. [5], [28], and [13], [14], [30]. On the other hand, for
nonconvex, nonlinear problems, to the best of our knowledge,
there are no asymptotic results comparable with the present
Proposition IV.8.

The nonparametric approach to the inverse problem we
follow in this paper is different from the one followed in
identification or realization of nonnegative and linear systems;
see [2] for a survey, and for instance [1], [11].

The main differences between the cited literature and this
paper are that we consider approximation problems, rather than
looking for exact solutions which exist only exceptionally, and
that our (time) domain is discrete rather than the real line.
Moreover, the nonnegativity constraint, which we impose on
all signals, is a crucial feature of the present work. Some
earlier work shares, at least in part, our point of view, e.g.
the papers [3], [4] dealing with image processing and 2D
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systems contain an algorithm of the same type as ours and
an analysis of its behavior. In [26], an algorithm similar to
ours is setup to solve a problem of signal recovery using
auto and cross-correlations instead of autoconvolutions. A few
further remarks on the principal features of this paper and
how it deviates from earlier research follow. Although, as said
above, [3] already contains the algorithm studied in the present
paper, albeit in a different context, there are remarkable
differences. First, in that paper the specific form of the
algorithm lacks motivation, whereas we derive the algorithm
as the consequence of a lifting procedure, which forms the
raison d’être of the present paper. Optimality properties of
the algorithm, as well as many other ones, come almost for
free as a bonus from our setup, and do not have to be derived
by unnecessary complicated arguments. Second, we show that
the limit points of the algorithm are Kuhn-Tucker points of the
minimization problem. This result has been claimed in [3] too
(Theorem 2) but unfortunately their proof contains an essential
error, see Remark IV.9. The present paper thus sheds light on
the origin of the algorithm, contributes to the understanding of
its properties from a new perspective and gives original proofs
of the main results.

A brief summary of the paper follows. Section II states the
problem, shows the existence of a solution, and gives some
of its properties. In Section III, the original problem is lifted
into a higher dimensional setting, thus making it amenable to
alternating minimization. The optimality properties (Pythago-
ras rules) of the ensuing partial minimization problems are
discussed here. After that, we derive in Section IV the iterative
minimization algorithm combining the solutions of the partial
minimizations, and analyse the convergence properties. In par-
ticular, we show that limit points of the algorithm are Kuhn-
Tucker points of the original optimization problem. In the
concluding Section V, we present numerical experiments that
show the quick convergence of the algorithm and corroborate
the theoretical results on its asymptotic behaviour.

II. PROBLEM STATEMENT AND INITIAL RESULTS

We consider real valued signals x : Z → R, mapping
i 7→ xi, that vanish for i < 0, i.e., xi = 0 for i < 0.
The support of x is the discrete time interval [0, n], where
n = inf{ k : xi = 0, for i > k }, if the infimum is finite (and
then a minimum), and [0,∞) otherwise. The autoconvolution
of x is the signal x ∗ x, vanishing for i < 0, and satisfying,

(x ∗ x)i =
∞∑

j=−∞
xi−jxj =

i∑
j=0

xi−jxj , i ≥ 0. (1)

Notice that if the support of x is finite [0, n], the support of
x ∗ x is [0, 2n]. In this case, when computing (x ∗ x)i for
i > n, the summation in (1) has non zero addends only in the
range i− n ≤ j ≤ n, as xi−j = 0 and xj = 0 for i− j > n
and j > n respectively. If the signal x is nonnegative, i.e.
xi ≥ 0 for all i ∈ Z, the autoconvolution (1) is too. Given a
finite nonnegative data sequence

y = (y0, . . . , yn),

the problem is finding a nonnegative signal x whose autocon-
volution x ∗x best approximates y. Since the signals involved
are nonnegative, the approximation criterion is chosen to be
the I-divergence, see [6], [7], the natural criterion in such a
situation. Alternatively, one could opt for a different criterion,
like least squares. But then nonnegativity should be added
as a constraint, which could possibly lead to a range of
technical complications when combined with the lifting device
in Section III, that are absent with I-divergence optimization.
The analytic tractability of using I-divergence additionally
motivates to use this criterion. The I-divergence between two
nonnegative vectors u and v of equal length is

I(u, v) =
∑

i

ui log
ui

vi
− ui + vi ,

if ui = 0 whenever vi = 0, and I(u, v) = ∞ if there exist an
index i with ui > 0 and vi = 0. It is known that I(u, v) ≥ 0,
with equality iff u = v.

Depending on the constraints imposed on the support of x,
the basic problem splits into two different cases. The first case
involves a full length signal x = (x0, . . . , xn) and produces
the approximation problem specified below, where we write
x ∗ x ∈ Rn+1 for the restriction to [0, n] of the convolution
x ∗ x defined in (1).

Problem II.1: Given y ∈ Rn+1
+ minimize, over x ∈

Rn+1
+ = [0,∞)n+1,

I = I(x) := I(y||x ∗ x) =

n∑
i=0

(
yi log

yi

(x ∗ x)i
− yi + (x ∗ x)i

)
.

(2)
As an alternative, recalling that, in the finite case, the

support of x ∗ x is twice the support of x, one can consider,
when n = 2m, the problem of approximating the given data
y = (y0, . . . , y2m) with the autoconvolution x ∗ x of a signal
of half length, x = (x0, . . . , xm). This leads to the following
approximation problem.

Problem II.2: Given y ∈ R2m+1
+ minimize, over x ∈

Rm+1
+ = [0,∞)m+1,

I = I(x) := I(y||x ∗ x) =

2m∑
i=0

(
yi log

yi

(x ∗ x)i
− yi + (x ∗ x)i

)
.

(3)
Notice that if the given data are y = (y0, . . . , yn) with n

odd, i.e. n = 2m − 1 for some integer m ≥ 1, one can still
pose Problem II.2 with x ∈ Rm+1

+ , simply by introducing the
fictitious data point y2m = 0. Hence in Problem II.2, without
loss of generality, the number of data points will always be
assumed odd, that is we assume n is even, n = 2m.

Note that Problem II.1, under the constraint that the support
of x is [0, m], where m = ⌊n+1

2 ⌋, reduces to Problem II.2.
Although the latter is a constrained version of the former
problem and the approaches to their solutions are similar, the
analysis and the results are very different. This paper concen-
trates on Problem II.2 which is easier to analyse and produces
an algorithm with a much simpler structure. Problem II.1 will
be investigated in a future publication.

The objective function (3) is nonconvex and nonlinear in
x; the existence of a minimizer is therefore not immediately
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clear. Our first result settles in the affirmative the question of
the existence. The issue of uniqueness remains open, but we
have evidence of the existence of multiple local minima of
I(x). See Section V for numerical examples.

Proposition II.3: Problem II.2 admits a solution.
Proof: Let x = x0 be an arbitrary vector in Rm+1

+ . Per-
forming one step of Algorithm IV.1, introduced below, yields
the iterate x1 satisfying I(x1) ≤ I(x) and (

∑m
i=0 x1

i )
2 =∑2m

i=0 yi, by virtue of Proposition IV.3. The search for a
minimizer can hence be limited to the compact subset K0 ⊂
Rm+1

+ of the x’s satisfying (
∑m

i=0 x1
i )

2 =
∑2m

i=0 yi. Noting
that I(x) =

∑
i:yi>0(yi log yi

(x∗x)i
− yi) +

∑
i(x ∗x)i, we can

restrict attention even further to those x’s for which (x∗x)i ≥
ε for all i such that yi > 0, by choosing ε sufficiently small
and positive. This implies that we restrict the finding of the
minimizers to an even smaller compact set K1 on which I is
continuous. This proves the existence of a minimizer. □

A basic ingredient for the minimization of the cost (3) is
its gradient, which is computed below. As a preliminary step,
note that

∂

∂xj
(x ∗ x)i =

{
2xi−j , for 0 ≤ j ≤ m, j ≤ i ≤ j + m
0, otherwise ,

therefore

∇jI(x) :=
∂I(x)
∂xj

=
∂

∂xj

( 2m∑
i=0

−yi log(x ∗ x)i + (x ∗ x)i

)
= 2

j+m∑
i=j

(
− xi−j

yi

(x ∗ x)i
+ xi−j

)
= 2

m∑
ℓ=0

(
− xℓ

yℓ+j

(x ∗ x)ℓ+j
+ xℓ

)
. (4)

Equations (4) are highly nonlinear in x and solving the first
order optimality conditions ∇I(x) = 0, where ∇ denotes
the gradient vector, to find the stationary points of (3), will
not result in analytic solutions except in trivial cases. This
observation calls for a numerical approach to the optimization,
which we will present in Section IV.

The following result shows a useful property of the mini-
mizers of I(x).

Proposition II.4: For any x ∈ Rm+1, it holds that
2m∑
i=0

(x ∗ x)i =
( 2m∑

i=0

xi

)2

. (5)

Moreover, if x⋆ ∈ Rm+1
+ is a minimizer of Problem II.2,

2m∑
i=0

(x⋆ ∗ x⋆)i =
( 2m∑

i=0

x⋆
i

)2

=
2m∑
i=0

yi . (6)

Proof: The identity (5) is a general property. Indeed, for
any x,

2m∑
i=0

(x ∗ x)i=
2m∑
i=0

i∑
j=0

xi−jxj =
2m∑
j=0

2m∑
i=j

xi−jxj

=
2m∑
j=0

xj

2m∑
i=j

xi−j =
( m∑

j=0

xj

)2

.

To prove identity (6), let x⋆ be a minimizer of I(x) and
define f(α) = I(αx⋆), for α > 0. It follows that f ′(1) = 0.
A direct computation of f ′(α) gives f ′(α) = − 2

α

∑2m
i=0 yi +

2α
∑

i=0(x
⋆ ∗ x⋆)i, hence f ′(1) = 0 yields the wanted

identity. □
Remark II.5: If y is strictly positive, the I-divergence in (3)

vanishes if and only if yi = (x ∗ x)i for all i ∈ [0, 2m].
That is the (special) case where an exact solution to the
deautoconvolution problem exists. Notice that this is a non
generic case as the 2m + 1 equations yi = (x ∗ x)i in the
m + 1 variables x specify an (at most) (m + 1)-dimensional
submanifold in the data space R2m+1

+ . See the example below
for an illustration.

Example II.6: For m = 1, let y = (y0, y1, y2) be the given
data. Setting the gradient ∇I(x) = 0, one gets the unique
minimizer x⋆ = (x⋆

0, x
⋆
1) as

x⋆
0 =

2y0 + y1

2
√

y0 + y1 + y2

, x⋆
1 =

2y2 + y1

2
√

y0 + y1 + y2

.

One easily verifies that x⋆ satisfies property (6). Note that
this solution, in general, does not give a perfect match; e.g.
it should hold that (x⋆ ∗ x⋆)0 = (x⋆

0)
2 = y0. In fact,

a necessary and sufficient condition on y that insures the
existence of the exact solution, i.e. I(y||x⋆ ∗ x⋆) = 0,
is y2

1 = 4y0y2.
Remark II.7: Problem II.2 has an interesting probabilistic

interpretation when
∑2m

i=0 yi = 1. The yi can then be con-
sidered as the distribution of a random variable Y taking
on 2m + 1 different values. The problem is then to find the
optimal distribution of independent and identically distributed
random variables X1 and X2 (assuming m + 1 values) such
that Y = X1 + X2. Note that Proposition II.4 guarantees
that the optimal vector x⋆ indeed has the interpretation of
a distribution. In Example II.6, with y0 + y1 + y2 = 1, the
optimal distribution is then (x0, x1) = (y0 + 1

2y1, y2 + 1
2y1).

As now one has y1 = 1− y0 − y2, it follows that (x0, x1) =
1
2 (y0 − y2 + 1, y2 − y0 + 1) and the perfect match condition
reduces to

√
y0 +

√
y2 = 1, in which case of course X1 and

X2 can be thought of having a Bernoulli distribution and Y a
binomial distribution.

III. LIFTING AND PARTIAL MINIMIZATIONS

In this section, Problem II.2 is recast as a double minimiza-
tion problem by lifting it into a larger space. The ambient
spaces for the lifted problem are the subsets Y and W , defined
below, of the set of matrices R(2m+1)×(m+1)

+ ,

Y :=
{
Y : Yij = 0, 0≤ i<j, i>j+m, and

∑
jYij = yi

}
,

with y = (y0, . . . , y2m) ∈ R2m+1
+ , the given data vector, and

W :=
{
W : Wij = xi−jxj , if 0 ≤ j ≤ m, j ≤ i ≤ j + m

Wij = 0, otherwise
}

.

The structure of the matrices in Y and W is shown below for
m = 3,
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Y=



Y00 0 0 0
Y10 Y11 0 0
Y20 Y21 Y22 0
Y30 Y31 Y32 Y33

0 Y41 Y42 Y43

0 0 Y52 Y53

0 0 0 Y63


, W=



x0x0 0 0 0
x1x0 x0x1 0 0
x2x0 x1x1 x0x2 0
x3x0 x2x1 x1x2 x0x3

0 x3x1 x2x2 x1x3

0 0 x3x2 x2x3

0 0 0 x3x3


.

The interpretation is as follows. The matrices Y ∈ Y and
W ∈ W have common support on the diagonal and first m

subdiagonals of R(2m+1)×(m+1)
+ . The row marginal (i.e. the

column vector of row sums) of any Y ∈ Y coincides with the
given data vector y. The elements of the W matrices factorize,
equivalently their row marginal is the autoconvolution of the
column marginal rescaled by 1/

∑
i xi.

We introduce two partial minimization problems over the
subsets Y and W . Recall that the I-divergence between two
nonnegative matrices of the same sizes M,N ∈ Rp×q

+ is
defined as

I(M ||N) :=
∑
i,j

(
Mij log

Mij

Nij
−Mij + Nij

)
.

Problem III.1: For W ∈ W , minimize I(Y||W) over
Y∈Y .

Problem III.2: For Y ∈ Y , minimize I(Y||W) over
W∈W .

The solutions to both problems can be given in closed form.
Lemma III.3: Problem III.1 has the explicit minimizer

Y⋆ =Y⋆(W) given by

Y⋆
ij =

Wij∑
j Wij

yi =


xi−jxj

(x∗x)i
yi if 0≤j≤ i≤j+m

0 otherwise.
(7)

Moreover the Pythagorean identity

I(Y||W) = I(Y||Y⋆) + I(Y⋆||W) , (8)

holds for any Y ∈ Y , and

I(Y⋆||W) = I(y||x ∗ x) . (9)

Proof: Proceed by direct computation. The Lagrangian is

L =
∑
i,j

(
Yij log Yij −Yij log Wij −Yij + Wij

)
−

∑
i

λi

( ∑
j

Yij − yi

)
,

therefore

∂L

∂Yij
= log Yij − log Wij − λi = 0 ,

yields Yij = Wije
λi , and imposing the marginal constraint∑

j Yij = yi, one gets the asserted minimizer (7). Next,
introducing the notation Wi · =

∑
j Wij substitution of (7)

into the RHS of (8) gives

I(Y||Y⋆) + I(Y⋆||W)

=
∑
i,j

Yij log
Yij

Y⋆
ij

−Yij + Y⋆
ij + Y⋆

ij log
Y⋆

ij

Wij
−Y⋆

ij + Wij

=
∑
i,j

(
Yij log

Yij

Wij
−Yij log

yi

Wi ·
−Yij

)
+

( yi

Wi ·
Wij log

yi

Wi ·
+ Wij

)
= I(Y||W) ,

thus proving (8). As a byproduct of the Pythagorean identity,
one finds that Y⋆ is indeed a minimizer for Problem III.1.
Finally, using Wij = xi−jxj and Wi · = (x ∗ x)i , one finds
that the optimal value of Problem III.1 coincides with (9).
Indeed,

I(Y⋆||W)=
∑
i,j

(
Wij

yi

Wi ·
log

yi

Wi ·
−Wij

yi

Wi ·
+ Wij

)
=

∑
i

(
yi log

yi

Wi ·
− yi + Wi ·

)
=

∑
i

(
yi log

yi

(x ∗ x)i
− yi + (x ∗ x)i

)
= I(y||x ∗ x) .

□
Remark III.4: Note that the minimizer Y⋆ in (7) always

exhibits the following symmetry

Y⋆
j+ℓ,ℓ = Y⋆

j+ℓ,j , for all ℓ, j = 0, . . . ,m , (10)

i.e., for all j = 0, . . . ,m, the j-th subdiagonal of Y⋆ and the
(Yj,j , . . . ,Yj+m,j)⊤ subvector of its j-th column coincide.

Lemma III.5: Problem III.2 has explicit minimizer W⋆ =
W⋆(Y) corresponding to x⋆

j as follows,

x⋆
j =

Ŷj

2
√∑2m

i=0 yi

, j = 0, . . . ,m , (11)

where

Ŷj :=
m∑

i=0

Yi+j,i +
j+m∑
i=j

Yij , j = 0, . . . ,m . (12)

Moreover the Pythagorean identity

I(Y||W) = I(Y||W⋆) + I(W⋆||W) , (13)

holds for any W ∈ W .
Proof: Minimizing the I-divergence

I(Y||W) =
m∑

j=0

j+m∑
i=j

(
Yij log

Yij

Wij
−Yij + Wij

)
,

with respect to W ∈ W , is equivalent, since Wij = xi−jxj ,
to minimizing

F (x) :=
m∑

j=0

j+m∑
i=j

(
−Yij log(xi−jxj) + xi−jxj

)

=
m∑

j=0

j+m∑
i=j

(
−Yij log xi−j −Yij log xj + xi−jxj

)
.

(14)
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Applying to the first and third double sums in (14) the identity
m∑

j=0

j+m∑
i=j

a(i, j) =
m∑

j=0

m∑
ℓ=0

a(ℓ + j, ℓ) , (15)

and recalling the definition (12), one easily finds

F (x) = −
m∑

j=0

Ŷj log xj +
( m∑

j=0

xj

)2

. (16)

The partial derivatives of F immediately follow from (16) as

∂F

∂xj
= −Ŷj

xj
+ 2

m∑
ℓ=0

xℓ , j = 0, . . . ,m .

Setting ∂F
∂xj

= 0 gives

x⋆
j =

Ŷj

2
∑m

ℓ=0 x⋆
ℓ

, j = 0, . . . ,m ,

and hence by summation( m∑
j=0

x⋆
j

)2

=
1
2

m∑
j=0

Ŷj =
2m∑
i=0

yi . (17)

To prove the last identity, it is sufficient to observe that (12)
defines Ŷj as the sum of the j-th subdiagonal and j-th column
of the matrix Y ∈ Y . This completes the proof of (11).
To prove the Pythagorean identity (13), it is convenient to
prove that I(Y||W) − I(Y||W⋆) = I(W⋆||W), which is
equivalent to

m∑
j=0

j+m∑
i=j

Yij log
x⋆

i−jx
⋆
j

xi−jxj
=

m∑
j=0

j+m∑
i=j

x⋆
i−jx

⋆
j log

x⋆
i−jx

⋆
j

xi−jxj

.

The last identity is easily verified by direct substitution of (11)
and (12) to express x⋆

j , and using the identity (15). Again, as a
byproduct of the Pythagorean identity, one finds that W⋆ is
indeed a minimizer for Problem III.2. □

Remark III.6: Problem III.2 admits an interesting interpre-
tation as a symmetric (constrained) rank one approximation of
a given nonnegative matrix. We introduce the square matrices
Y , W ∈ R(m+1)×(m+1), as ‘rectifications’ of the Y and W
matrices, defined as

Y ij = Yi+j,j , W ij = Wi+j,j = xixj .

Problem III.2 can be rephrased as

min
x∈Rm+1

+

D(Y || xx⊤) ,

whose solution is attained at

x⋆
i =

1
2

Y · i + Y i ·√∑
i,j Y ij

.

In the probabilistic case (
∑

i,j Y ij = 1), the interpretation is
that the best approximation of a two-dimensional distribution
(Y ) by an i.i.d. product distribution (xx⊤) is attained at x⋆

equal to the average of the row and column marginals of Y .
Remark III.7: In the next section, when considering

Problem III.2, the given Y ∈ Y will always exhibit symme-
try (10). When this is the case, Equation (11) for the optimal

x⋆ simplifies considerably. Indeed, under symmetry (10), (12)
becomes

Ŷj =
m∑

ℓ=0

Yℓ+j,ℓ +
j+m∑
i=j

Yij = 2
j+m∑
i=j

Yij , j = 0, . . . ,m ,

Equation (11) then reduces to

x⋆
j =

1
c

j+m∑
i=j

Yij =
1
c

m∑
ℓ=0

Yℓ+j,j , (18)

where

c :=
√∑2m

i=0 yi =
m∑

j=0

x⋆
j . (19)

The connection between the original Problem II.2 and the
two lifted minimization problems is explained in the next
proposition.

Proposition III.8: The minimum value of the origi-
nal Problem II.2 coincides with the double minimization
Problems III.1 and III.2, i.e.

min
x∈Rm+1

+

I(y||x ∗ x) = min
Y∈Y ,W∈W

I(Y||W) .

Proof: For given x ∈ Rm+1
+ , with corresponding W ∈

W , and Y ∈ Y consider the optimizers Y⋆ and W⋆

from Lemmas III.3 and III.5 and recall Equation (9). Then
I(Y||W) ≥ I(Y⋆||W) = I(y|x ∗ x) ≥ minx I(y||x ∗ x),
where the use of the minimum is justified by Proposi-
tion II.3. Taking the joint minimum on the left hand side
over Y and W, justified by the just cited lemmas, leads to
minY,W I(Y||W) ≥ minx I(y||x ∗ x). Conversely, for given
x ∈ Rm+1

+ with corresponding W ∈ W , recalling again (9),
one obtains

I(y||x ∗ x)= I(Y⋆||W)
= min

Y
I(Y||W) ≥ min

W
min
Y
I(Y||W) ,

which, taking the minimum x, shows that minx I(y||x ∗x) ≥
minY,W I(Y||W), thus concluding the proof. □

IV. THE ALGORITHM

This section is the core of the paper. It contains an algorithm
aiming at finding a minimizer of Problem II.2, which we know
to exist in view of Proposition II.3, and an analysis of its
behavior.

A. Construction of the Algorithm and Basic Properties

Starting at an initial W0 ∈ W and combining the two par-
tial minimization problems, one produces a classic alternating
minimization sequence,

· · · Wt 1−→ Yt 2−→ Wt+1 1−→ Yt+1 · · · , (20)

where the superscript t ∈ N denotes the iteration step. The
arrow 1−→ denotes the partial minimization Problem III.1, the
matrix at the tail of the arrow is the given input, and the
matrix at the head Yt = Y⋆(Wt), is the optimal solution.
The meaning of 2−→ is analogous, and represents the partial
minimization Problem III.2, and Wt+1 = W⋆(Yt). Note
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that, at each iteration, Wt is completely specified by the
fixed data y and by the vector xt = (xt

0, . . . , x
t
m) ∈ Rm+1

+ .
An iterative algorithm for the minimization Problem II.2,
solely in terms of xt, can be extracted from the sequence (20)
as it immediately follows combining Lemmas III.3 and III.5.
The update equation, say xt+1 = I(xt), is given below.

Algorithm IV.1. Starting from an arbitrary vector x0 ∈
Rm+1

+ the update equation xt+1 = I(xt) is given compo-
nentwise by

xt+1
j = xt

j

1
c

m∑
ℓ=0

xt
ℓ yℓ+j

(xt ∗ xt)ℓ+j
, j = 0, . . . ,m . (21)

To verify (21), it is enough to shunt the Yt step in the
chain (20) and directly concatenate Wt to Wt+1. Starting
with (18) and recalling the expression of Yt given by (7), one
has

xt+1
j =

1
c

m∑
ℓ=0

Yt
ℓ+j,j =

1
c

m∑
ℓ=0

xt
ℓx

t
j

(xt ∗ xt)ℓ+j
yℓ+j , (22)

which coincides with (21).
Remark IV.2: Application of Algorithm IV.1 to

Example II.6 gives the exact solution in one step, starting
from any initial x0

j > 0, as is easily verified. This is an
exceptional case.

The portmanteau proposition below summarizes some use-
ful properties of the algorithm.

Proposition IV.3: The iterates xt, t ≥ 0, of Algorithm IV.1
satisfy the following properties.

(i) If x0 > 0 componentwise, then xt > 0 componentwise,
for all t > 0.

(ii) xt belongs to the simplex S = {x ∈ Rm+1
+ :

∑m
i=0 xi =

c} for all t > 0.
(iii) I(y||xt ∗xt) decreases at each iteration, in fact one has

I(y||xt ∗ xt)− I(y||xt+1 ∗ xt+1)

= I(Yt||Yt+1) + I(Wt+1||Wt) ≥ 0 , (23)

and, as a corollary, I(Wt+1||Wt) vanishes
asymptotically.

(iv) If y = xt ∗ xt then xt+1 = xt, i.e. perfect matches are
fixed points of the algorithm.

(v) The update equation (21) can be written in the form

xt+1
j = xt

j

(
1− 1

2c
∇jI(xt)

)
. (24)

(vi) If ∇jI(xt) = 0 then xt+1
j = xt

j , and if ∇I(x) = 0 then
xt+1 = xt, i.e. stationary points of I(x) are fixed points
of the algorithm.

(vii) If I(xt) is increasing (decreasing) in xt
j , then xt+1

j < xt
j

(xt+1
j > xt

j).
Proof:

(i) Obvious from (21).
(ii) Consider the first equality in (22). Summing over j gives

m∑
j=0

xt+1
j =

1
c

m∑
j=0

m∑
ℓ=0

Yt
ℓ+j,j = c ,

in view of the two equalities in (18) and (19).

(iii) Combining the Pythagorean identities (8), (13) for the
chain (20) one finds

I(Yt||Wt) = I(Yt||Yt+1) + I(Yt+1||Wt+1) + I(Wt+1||Wt),

from which (23) follows applying (9). The corollary is proved
noting that the decreasing sequence I(y||xt ∗ xt) certainly
has a limit, therefore the LHS of the equation vanishes
asymptotically and so do the terms on the RHS which are
nonnegative for all t > 0.
(iv) In view of (ii), under the assumption (21) reduces to

xt+1
j = xt

j

1
c

m∑
ℓ=0

xt
ℓ = xt

j .

(v) From (4) one gets

∇jI(x) = −2
m∑

ℓ=0

xℓ yℓ+j

(x ∗ x)ℓ+j
+ 2

m∑
ℓ=0

xℓ ,

and recalling that xt ∈ S it follows that ∇jI(xt) =
−2

∑m
ℓ=0

xt
ℓ yℓ+j

(xt∗xt)ℓ+j
+ 2 c. Hence, the update equation (21)

can be written as in (24).
(vi), (vii) follow immediately from (v). □

The decrease of the divergence, as follows from
Proposition IV.3(iii) is shared by many algorithms of alter-
nating minimization type, also known as majorization-
minimization (MM) algorithms. A very important instance is
the classical EM algorithm, see [8] for the orginal, [24], or [15]
for a more recent exposition. The descent property follows as
soon as one can use what is a so-called auxiliary function. This
concept has been used in a different context, in e.g. [27] and in
[12] in nonnegative matrix factorization. Other, more general,
references for MM-type problems are [17], [18], [25], [29]
and the survey [21].

Let us now explain the concept of auxiliary function and
see how to use it in the present context. Suppose one wants
to minimize f(x) over x in a certain domain. A function g of
two variables x, x′ satisfying the conditions f(x) = g(x, x)
for all x (tangency condition) and f(x′) ≤ g(x, x′) for all
x, x′ (dominance condition) is called an auxiliary function.
It turns out that for f(x) = I(y||x∗x) the function g(x, x′) =
I(Y∗(W)||W′) is an auxiliary function when W is related
to x as in the definition of the set W in Section III, as we
shall show now. Indeed, in view of (9) one has I(y||x ∗ x) =
g(x, x) = I(Y∗(W)||W). And by the optimizing property of
Y∗(W) one has I(Y∗(W)||W′) ≤ I(W′||W′). Then the
structure of the alternating minimization as presented in (20)
at the beginning of Section IV-A gives

I(y||xt+1 ∗ xt+1)= I(Y∗(Wt+1)||Wt+1)
≤ I(Y∗(Wt)||Wt+1)
= I(Yt||W∗(Yt+1))
≤ I(Yt||Wt) = I(Y ||xt ∗ xt).

The first and last equalities in the above display follow
from (9), the inequalities follow from the properties of the
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optimizers Y∗ and W∗. Now we rewrite in terms of f and g.

f(xt+1)= g(xt+1, xt+1)
≤ g(xt, xt+1)
≤ g(xt, xt) = f(xt),

The added value of Proposition IV.3(iii) is that it gives, in addi-
tion to merely a decrease of the criterion, a quantification of
how big this decrease is.

B. Convergence Analysis

The aim of this section is to investigate the behaviour
of Algorithm IV.1 for large values of the iteration index t.
We start with a technical lemma.

Lemma IV.4: For the iterates xt and their corresponding
Wt, it holds that

(i) I(Wt+1||Wt) = 2c I(xt+1||xt),
(ii)

∑
i |x

t+1
i − xt

i| ≤
(
I(Wt+1||Wt)

)1/2
,

(iii) limt→∞ I(xt+1||xt) = 0, and hence
∑

i |x
t+1
i − xt

i| →
0.

Proof: To prove (i), a direct computation gives

I( Wt+1||Wt) =

m∑
j=0

j+m∑
i=j

(
Wt+1

ij log
Wt+1

ij

Wt
ij

−Wt+1
ij + Wt

ij

)

=
m∑

j=0

j+m∑
i=j

xt+1
i−jx

t+1
j log

xt+1
i−jx

t+1
j

xt
i−jx

t
j

=
m∑

j=0

m∑
ℓ=0

xt+1
ℓ xt+1

j log
xt+1

ℓ xt+1
j

xt
ℓx

t
j

= 2
( m∑

ℓ=0

xt+1
ℓ

) m∑
j=0

xt+1
j log

xt+1
j

xt
j

= 2 c I(xt+1||xt) , (25)

where the last identity follows from (17).
To prove (ii), recall Pinsker’s inequality which states, for

probability vectors p, q, that
∑

i |pi−qi| ≤ (2I(p||q))1/2. The
iterates xt and xt+1 are not probability vectors in general, but
both belong to the simplex S. Therefore, by an easy corollary
to Pinsker’s inequality,

∑
i |x

t+1
i −xt

i| ≤
(
2c I(xt+1||xt)

)1/2
,

from which, by direct application of (i), one gets (ii).
Finally, (iii) descends from the fact that I(Wt+1||Wt)

vanishes asymptotically, as proved by the corollary to (23),
and therefore, applying (i) again, so does I(xt+1||xt) and by
Pinsker’s inequality also

∑
i |x

t+1
i − xt

i|. □
The existence of limit points of the sequence (xt) of the

iterates of the algorithm is obvious, as all xt belong to the
simplex S; see Proposition IV.3, which is a compact set.
Note that the sequence (xt) depends on the initial point x0.
Changing x0, the sequence (xt) changes, and so do, in general,
its limit points. To avoid cluttered notation, the dependence of
the limit points on x0 will not be evidenced. We continue with
establishing some properties of the limit points of xt.

Lemma IV.5: If x∞ is a limit point of the sequence (xt),
then it is a fixed point of the algorithm, i.e.

x∞ = I(x∞) .
Proof: Let x∞ be a limit point of the sequence (xt). The

map xt+1 = I(xt), given componentwise in (21), is contin-
uous. Likewise, the I-divergence I(u||v) is jointly continuous

in (u, v) for all v > 0. It follows that I(I(x∞)||x∞) is
a limit point of I(xt+1||xt) which, by Lemma IV.4 (iii),
vanishes asymptotically, implying that I(I(x∞)||x∞) = 0,
which yields x∞ = I(x∞), i.e. x∞ is a fixed point of the
algorithm. □

Proposition IV.6: The I-divergence I(y||x∞ ∗ x∞) is con-
stant over the set of all limit points x∞ of (xt).

Proof: Iteration of (23) gives, for t ≤ T ,

I(y||xt ∗xt)− I(y||xT ∗ xT )

=
T−1∑
k=t

(
I(Yk+1||Yk) + I(Wk+1||Wk)

)
. (26)

Suppose that the xT converge along a subsequence to x∞.
Then, we also have

I(y||xt ∗xt)− I(y||x∞ ∗ x∞)

=
∞∑

k=t

(
I(Yk+1||Yk) + I(Wk+1||Wk)

)
. (27)

Suppose x′ is another limit point and xt converges to x′ along
a suitable subsequence indexed by t′. Taking the limit for t =
t′ → ∞ in (27), one sees that the RHS vanishes, whereas
the LHS gives I(y||x′ ∗ x′) − I(y||x∞ ∗ x∞), which is thus
zero. □

Remark IV.7: Proposition IV.6 makes it clear that all limit
points of xt are equivalent, in the sense that their autoconvo-
lutions have the same informational distance to the target y in
Problem II.2. In particular, if one limit point is a minimizer,
so are all other limit points.

One can show that the set of limit points of the sequence
(xt) is compact and connected. Compactness follows from
Proposition IV.6 (the set of limit points is closed and contained
in the simplex S, hence bounded), whereas connectedness is
essentially a consequence of Lemma IV.4. A similar statement
can be found in [5].

Proposition IV.8: Limit points of the sequence (xt) are
Kuhn-Tucker points of the minimization Problem II.2.

Proof: Recall the version of the update equation of the
algorithm as in (24). By Lemma IV.5, if x∞ is a limit point
of the xt, then it is a fixed point of the algorithm, and (24)
reduces to

x∞j = x∞j

(
1− 1

2c
∇jI(x∞)

)
,

showing that, if x∞j > 0, then ∇jI(x∞) = 0. To complete the
verification that x∞ satisfies the Kuhn-Tucker conditions for
I(x), one has to check that if x∞j = 0, then∇jI(x∞) ≥ 0. So,
we proceed with investigating limit points on the boundary. For
a given initial condition x0, let (xt) be the sequence of iterates
of the algorithm and define O = {x ∈ Rm+1

+ : ∇jI(x) < 0}.
Put L0 = 0 and let U0 = inf{t > 0 : xt ∈ Oc}. If U0 = ∞,
then all xt belong to O and the xt

j form an increasing sequence
in view of (24), so certainly all xt

j > x0
j > 0 and a limit

point with x∞j = 0 cannot occur. If U0 is finite, we put
L1 = inf{t > U0 : xt ∈ O}. If L1 = ∞, then xt ∈ Oc

for all t ≥ U0, so the xt
j form a decreasing sequence,

converging to some x∞j ≥ 0. With ∇jI(xt) ≥ 0 for all
t, then necessarily also ∇jI(x∞) ≥ 0, hence x∞ satisfies
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the Kuhn-Tucker conditions. In case L1 < ∞ continue by
alternating definitions, U1 = inf{t > L1 : xt ∈ Oc},
L2 = inf{t > U1 : xt ∈ O}, etc. As soon as some Lk or
Uk is infinite, we are in either of the situations just described
and in a limit point one necessarily has x∞j > 0 or x∞j ≥ 0 and
∇jI(x∞) ≥ 0, satisfying the Kuhn-Tucker conditions.

As a last case, we investigate what happens if all Lk and
Uk are finite and the interest is in possible boundary limit
points x∞ with x∞j = 0. Observe that for t between the Lk

and Uk, the xt
j are increasing, and for t between the Uk and

Lk+1, the xt
j are decreasing. More precisely, for Lk ≤ t < Uk,

it holds that xt+1
j ≤ xt

j , and for Uk ≤ t < Lk+1, it holds that
xt+1

j > xt
j . In particular, xLk

j ≤ xLk−1
j and xLk

j < xLk+1
j ,

hence xLk
j is a local minimum of the xt

j . Suppose that x∞ is a
limit point, with x∞j = 0. Then we have to consider the liminf
of the xt

j , which coincides with the liminf of the xLk
j . But,

by Lemma IV.4, xLk−1
j also converges along a subsequence

to the same liminf, and in these points one has ∇jI(xLk−1) ≥
0. Hence, along any convergent subsequence of the xt with
lim inf xt

j = 0, one necessarily has ∇jI(x∞) ≥ 0. As a side
remark, in this last case, since ∇jI(xLk) < 0 for all k, one
finds in fact ∇jI(x∞) = 0. □

Remark IV.9: The assertion of Proposition IV.8 has also
been claimed in [3, Theorem 2]. Unfortunately, their proof
contains an essential flaw in the reasoning. It assumes in their
Equation (39) that x̂∗ is a true limit of the algorithm, not
merely a limit point. This assumption is needed in their proof
to conclude that, in their notation, r∗ ≤ 1 if x̂∗ = 0. The
reasoning leading to that conclusion is only correct if indeed
x̂∗ is a limit, but not if it is only known that x̂∗ is a limit point
(a limit along a subsequence).

C. Convergence Properties, Further Considerations

All empirical examples suggest that the iterates of
Algorithm IV.1 converge to a limit. Although a full proof
cannot be given, a number of considerations make this result
plausible, also from a theoretical point of view.

On a technical note, in order to prove that the algorithm
converges, one would need to show that I(x∞||xt) is decreas-
ing in t, for any limit point x∞. The proof of this property
would go along the arguments of Lemma A.1 of [30] or
Lemma 24 in [13], if one could prove that, in our notation,
I(W∞||Wt) ≤ c I(x∞||xt). Unfortunately it is only possible
to prove the looser inequality I(W∞||Wt) ≤ 2c I(x∞||xt).
The factor 2 essentially appears as a consequence of the
‘quadratic nature in x’ of the autoconvolution terms (x ∗ x)i

whereas terms of type (u ∗ x)i, appearing in the context of
e.g. [13] or [14], are linear in x. Consequently, one cannot
conclude that the xt converge to a global minimizer. For com-
pleteness we present, in Proposition IV.10, the proof of conver-
gence of the algorithm under the proviso, empirically satisfied
in all cases, that I(x∞||xt) decreases in t. In the simulations
in Section V we shall see an example where convergence of
the xt occurs, but not to a global minimizer of I(x).

Proposition IV.10: Let x∞ be a limit point of the sequence
(xt) and assume that I(x∞||xt) is decreasing in t. Then xt

converges to x∞, which is the unique limit point of xt.

Proof: By Proposition IV.3(ii), the xt belong to S and
therefore, along some subsequence, xtk → x∞, for some limit
point x∞ ∈ S. By continuity, I(x∞||xtk) → 0. On the other
hand, as the divergences I(x∞||xt) are decreasing, it must
hold that I(x∞||xt) → 0. Using Pinsker’s inequality as in
the proof of Lemma IV.4,

∑
i |x∞i −xt

i| ≤ (2c I(x∞||xt))1/2,
one concludes that xt → x∞, and hence that x∞ is the unique
limit point. □

Next to the empirically observed behavior in Proposi-
tion IV.10, we present another argument for convergence based
on an element of Morse theory, for which we need the Hessian
of the criterion I(x). Differentiate ∂I(x)

∂xj
as given by (4) w.r.t.

xi to get

Hij(x) := −2
yi+j

(x ∗ x)i+j
+ 4

2m∑
l=0

yl+j

(x ∗ x)2l+j

xlxl+j−i + 2.

Note that effectively the index l in the summation runs from
max{i−j, 0} to m+min{i−j, 0}, because of our convention
xℓ = 0 for ℓ < 0 or ℓ > m. The expression for Hij(x) can
be rewritten as

Hij(x) := −2
yi+j

(x ∗ x)i+j
+ 4

2m∑
k=0

yk

(x ∗ x)2k
xk−jxk−i + 2,

with the same conventions as for the previous display. Effec-
tively, the index k in the summation runs from max{i, j} to
m + min{i, j}.

Let S(k)∈R(m+1)×(m+1), for k∈{0, . . . , 2m}, be defined
by S

(k)
ij = δk,i+j for i, j ∈ {0, . . . ,m}, where the δ’s are

Kronecker δ’s. Let furthermore x = (x0, . . . , xm)⊤ and
ξk = S(k)x. Define P (x) ∈ R(m+1)×(m+1) with elements
Pij(x) = 4

∑2m
k=0

yk

(x∗x)2k
xk−jxk−i, then one can write

P (x) = 4
2m∑
k=0

yk

(x ∗ x)2k
ξkξ⊤k .

Note that, if x0 > 0, the {ξk}m
k=0 form a basis of Rm+1,

therefore if yk > 0 for k ∈ [0, m], the matrix P (x) is strictly
positive definite. Alternatively, if xm > 0, the {ξk}2m

k=m also
form a basis of Rm+1 and again, if yk > 0 for k ∈ [m, 2m],
the matrix P (x) is strictly positive definite. Furthermore,
let Q(x) ∈ R(m+1)×(m+1), with elements Qij(x) = 2 −
2 yi+j

(x∗x)i+j
. Hence, the Hessian H(x) satisfies

H(x) = P (x) + Q(x).

Note that Q(x) vanishes if yi = (x∗x)i, for all i ∈ [0, 2m], i.e.
in the exact model case, making H(x) strictly positive definite.
To find a useful expression of the Hessian in the general case,
introduce the matrix R(x) ∈ R(m+1)×(m+1) with elements
Rij(x) = yi+j

(x∗x)i+j
, and note that Q(x) = 2

(
11⊤ −R(x)

)
,

then
H(x) = P (x) + 2

(
11⊤ −R(x)

)
,

moreover the gradient ∇I(x), written as a row vector, is

∇I(x) = x⊤Q(x) = 2x⊤
(
11⊤−R(x)

)
.

Except in the special case of an exact model, it is not
obvious that in an interior limit point x∞ of the algorithm the

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on August 07,2024 at 15:08:21 UTC from IEEE Xplore.  Restrictions apply. 



FINESSO AND SPREIJ: INVERSE PROBLEM OF POSITIVE AUTOCONVOLUTION 4089

Hessian H(x∞) is strictly positive definite. Even the weaker
statement that H(x∞) is non-singular is hard to prove, in spite
of the rather explicit form of H(x∞) and the fact that the
gradient ∇I(x∞) vanishes. The relevance of non singularity
stems from the Morse lemma, Corollary 2.3 in [23], which
states that the interior critical points of a function where the
Hessian in is non singular are isolated.

Let us now look at a boundary (local) optimizer x⋆ of I(x).
By the Kuhn-Tucker conditions, if x⋆

j = 0, then ∇jI(x⋆) ≥ 0,
while if x⋆

j > 0, then ∇jI(x⋆) = 0. Write the boundary
optimizer x⋆ as x⋆ = (x⋆, 0), possibly after a permutation
of the coordinates, with all elements of x⋆ strictly positive.
We now look at optimization of I(x) under the constraint
that x = (x, 0), so of I(x) := I(x, 0). The optimizing x⋆

is now an interior point of the restricted domain, hence the
gradient vanishes, ∇I(x⋆) = 0. The Hessian H(x⋆) of I(x) is
strictly positive definite and certainly non-singular, and likely
the same is true for H(x∞) for any limit point (x∞, 0) of
xt. The arguments underlying this are similar to the above,
although it is hard to give a proof. Again by the Morse lemma,
the critical points of I(x), which are now interior points of
the restricted domain, will then be isolated.

Proposition IV.11: Let x0 be a strictly positive starting
point of the algorithm and let L(x0) be the set of interior limit
points produced by the algorithm and assume that H(x) is
non-singular for all x ∈ L(x0). Then L(x0) is a singleton and
thus the algorithm converges to a limit (possibly depending on
the starting value x0). The situation is analogous for boundary
limit points. In both cases the limit is a Kuhn-Tucker point.

Proof: By Remark IV.7, the set L(x0) is connected.
By the above discussion the interior limit points are isolated
and the same holds for the limit points on the boundary.
The combination of these two properties yields that L(x0)
has to be a singleton, and hence there is convergence of xt

to the (unique) limit. Its Kuhn-Tucker property follows from
Proposition IV.8. □

Remark IV.12: In the literature, it is not uncommon to see
situations where the limit points are isolated. For instance,
along different lines, in [19] and [20] it is shown that in
their setting the set of limit points of the iterates is finite,
which is a consequence of the maximization of a concave
objective function. As the objective function in our minimiza-
tion problem is not convex, their arguments cannot be used
here.

Remark IV.13: In principle, the algorithm produces limit
points that depend on the initial values x0. This has been
observed in several numerical experiments. In fact, different
x0’s may either result in a limit point in the interior or on the
boundary (i.e. some of its coordinates are zero). The Kuhn-
Tucker property was seen to be verified in these experiments.

To summarize the discussion of this section, it is plausible
that Algorithm IV.1, given a starting value, converges to a
limit. This conjecture is motivated by two considerations, for
both of them there is ample numerical evidence. The first is a
decreasing criterion, which Proposition IV.10 handles, and the
second is non-singularity of the Hessian in limit points. Yet,
a formal proof of the conjecture is lacking and we currently

Fig. 1. True model, m = 25 and T = 1000. Top panel: m+1 components
xt

i against iteration t; the diamonds at T = 1000 are the true values xi to
which the xt

i converge. Second panel: xT
i (plusses) and true values xi (circles)

against i. Third panel: I(y||xt ∗ xt) against t. Fourth panel: yi (circles) and
(xT ∗ xT )i (plusses) against i.

have to content ourselves with the Kuhn-Tucker property of
limit points as in Proposition IV.8.

V. NUMERICAL EXPERIMENTS

This section reviews the results of numerical experiments
for three different data sets to illustrate the behaviour of
Algorithm IV.1. For the first two data sets, with m = 25 and
m = 10 respectively, we investigated whether the algorithm
is capable of retrieving the true parameter vector x, when the
data y are actually generated by the autoconvolution y = x∗x.
In the third data set the y are randomly generated, with
m = 10.

To evaluate the performance of the algorithm we have
generated, for each data set, one figure comprising three or
four graphs. In all of the figures the top graph shows, in distinct
colors, the trajectories of the iterates of the components, xt

i,
plotted against the iteration number t ∈ [1, T ].

In the exact model case, Figures 1, 2, 3, the diamonds at the
right end of the top graph show the true xi values. The second
graph shows the superimposed plots of the data generating
signal x, and of the reconstructed signal xT , at the last
iteration, both plotted against their component number (in the
figure labelled i = 1, 2, . . . ,m+1 instead of i = 0, 1, . . . ,m).
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Fig. 2. The same data as in Figure 1, with different initial conditions x0.

The third graph shows the decreasing sequence I(y||xt ∗ xt).
The fourth and last graph shows the superimposed plots of the
data vector y and of the reconstructed convolution xT ∗ xT ,
at the last iteration, both against the component number
(labeled i = 1, . . . 2m + 1).

Figures 4 and 5, relative to the randomly generated data set,
contain only three graphs, as the graph of the data generating
signal is meaningless in this case.

We have observed experimentally that the iterative algorithm
always converges very fast. The precise features underlying the
experiments are further detailed below.

A. True Autoconvolution Systems

For the first data set we have taken m = 25. The compo-
nents of the true vector x (the target values of the algorithm)
have been randomly generated from a uniform distribution on
the interval [1, 11], and the data computed as true autoconvo-
lutions y = x ∗ x. The algorithm has been initialized at a ran-
domly chosen strictly positive x0, with components generated
from a uniform distribution in the interval [0.1, 0.2] and run
for T = 1000 iterations. Figures 1 and 2 show the results for
two different runs (i.e. with the same true vector but different
initial conditions) of the algorithm. In Figure 1, we see the
desired behavior of the algorithm; the iterates converge to the
true values and the divergence decreases to zero (because of
the perfect match of y = x ∗ x). This is the behavior that has

Fig. 3. A true model with m = 10 and T = 100. The panels are as in
Figure 1 and the same conclusions can be drawn.

been observed in a vast majority of numerical experiments of
this kind. In Figure 2 we observe a different behavior. The
iterates do not converge to the true values (see the second
graph) and the divergence does not decrease to zero. On the
other hand the convolution xT ∗xT is always close to y (see the
fourth graphs of both figures). In fact, the instance of running
the algorithm that produced Figure 2 produced iterates that
converged to a non-optimal local minimum of the objective
function I(x). Indeed, we have verified that the gradient of
I(x) at the final iteration vanished, whereas the Hessian turned
out to be strictly positive definite. The conclusion of these
two experiments is that it is wise to run the algorithm for
the same data y, and same x, with different initial conditions
and select the outcome with the lowest divergence. For the
present example, the lowest divergence is of course zero, but
the conclusion is also valid for any instance with any data
vector y. The data set used to generate Figure 3 is again of the
exact type, y = x ∗ x, with m = 10 and consequently a lower
number of iterations, T = 100. We see quick convergence of
the algorithm; stabilization has already occurred at t = 30.
The general behavior is identical to that observed in Figure 1.

As a closing remark to this section we emphasize that
in the chosen examples the true autoconvolutional data have
been observed without errors. In a more realistic situation it
is conceivable that data are observed subject to noise. This
would lead to a statistical analysis, possibly also pointing at
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Fig. 4. Randomly generated y, with m = 10 and T = 100. Top
panel: components xt

i against iteration index t. Second panel: I(y||xt ∗ xt)
against t. Third panel: yi (circles) and final autoconvolutions (xT ∗ xT )i

(plusses) against i. Third panel: The values of the yi (circles) and the final
autoconvolutions (xT ∗ xT )i (plusses).

Fig. 5. The same data as in Figure 4, with different initial conditions x0.

robustness issues. Investigations in these directions will be
deferred to future research.

B. Approximation of Arbitrary Data

For the third data set there is no true input signal x such
that y = x ∗ x, rather the components of the data vector y,
with m = 10, have been randomly generated from a uniform

distribution on the interval [0.1, 2]. Thus, here we deal with a
genuine approximation problem. Figures 4 and Figure 5 show
the results of two runs of the algorithm, for T = 100 iterations,
and are relative to the same y vector and different initial con-
ditions x0, both with components randomly generated from a
uniform distribution in [0.1, 0.2]. The aim is to find the vector
x which yields the best autoconvolutional approximation to y.
Inspecting the figures we conclude that the algorithm quickly
stabilises in both runs. The final values xT of the iterates
and the final divergences I(y||x∗xT ) differ in the two runs,
indicating that (at least) in the second case (with divergence
slightly higher than in the first case) the algorithm is trapped
in a non-optimal local minimum. For the same y several other
runs have produced results that were nearly identical to those
in Figure 4, so we infer that this figure represents the optimal
approximation of y. The observed behavior suggests again to
run the algorithm with different initial conditions, possibly in
parallel, and to select the best final approximation as the one
with smallest divergence I(y||xT ∗ xT ).
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