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BAYESIAN WAVELET DE-NOISING WITH THE CARAVAN PRIOR∗

Shota Gugushvili1, Frank van der Meulen2, Moritz Schauer3,∗∗

and Peter Spreij4,5

Abstract. According to both domain expert knowledge and empirical evidence, wavelet coefficients of
real signals tend to exhibit clustering patterns, in that they contain connected regions of coefficients of
similar magnitude (large or small). A wavelet de-noising approach that takes into account such a feature
of the signal may in practice outperform other, more vanilla methods, both in terms of the estimation
error and visual appearance of the estimates. Motivated by this observation, we present a Bayesian
approach to wavelet de-noising, where dependencies between neighbouring wavelet coefficients are a
priori modelled via a Markov chain-based prior, that we term the caravan prior. Posterior computations
in our method are performed via the Gibbs sampler. Using representative synthetic and real data
examples, we conduct a detailed comparison of our approach with a benchmark empirical Bayes de-
noising method (due to Johnstone and Silverman). We show that the caravan prior fares well and is
therefore a useful addition to the wavelet de-noising toolbox.
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1. Introduction

1.1. Setup

Let f be an unknown function observed on a regularly spaced grid of N = 2J points {ti} in the regression
model

Xi = f(ti) + εi, (1.1)
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where εi
i.i.d.∼ N(0, σ2), and the noise level σ2 is unknown. A popular approach to inference in this model relies

on an application of the Discrete Wavelet Transform (DWT) to the data {Xi}, resulting in the normal means
model

Yj,k = βj,k + εj,k, (1.2)

where {Yj,k} are the empirical wavelet coefficients, {βj,k} is the parameter vector of interest formed of the

wavelet coefficients of {f(ti)}, and εj,k
i.i.d.∼ N(0, σ2) are unobservable stochastic disturbances (we provide more

details in Sect. 2). The observations {Yj,k} are then de-noised using one of the many possible techniques, yielding

upon inversion of the wavelet transform the estimates {f̂(ti)} of {f(ti)}.
A rationale for a wavelet approach to regression consists in the following (see, e.g., [11]): DWT typically

‘sparsifies’ the signal {f(ti)}, in that many wavelet coefficients βj,k’s are zero, or nearly so. Since the wavelet
decomposition preserves the L2-norm of the signal ([25], Eq. (95d)), this implies that the transformed signal
{βj,k} will contain some large coefficients, and a contrast with small coefficients will typically be sharper than in
the original signal {f(ti)} (cf. [25], Sect. 10.1). On the other hand, due to the orthogonality property of DWT,
the noise {εi} in the original observations {Xi} gets spread out ‘uniformly’ in the transformed observations

{Yj,k}, in that one still has εj,k
i.i.d.∼ N(0, σ2). Hence a small absolute magnitude of an observation Yj,k is likely

to be an indicator of the fact that the corresponding βj,k is zero (exactly, or nearly), whereas a large value
of Yj,k likely means that it predominantly consists of the signal βj,k. This forms the basis of various wavelet
thresholding or shrinkage methods, that produce estimates of βj,k’s by thresholding or shrinking small Yj,k’s
to zero as containing pure noise, and keeping large Yj,k’s (exactly or largely) unchanged ([25], Sect. 10.2). A
wavelet-based approach to non-parametric regression leads to excellent practical results due to spatial adaptation
properties of wavelets (see [11]). However, there are situations when other estimators are preferable. This can
happen for signals that are better representable in bases other than the wavelet basis, e.g., ‘frequency domain’
signals such as the sinusoid.

1.2. Related work

Within the Bayesian paradigm, the notion of sparsity can be naturally modelled through imposing a sparsity-
inducing prior distribution on the coefficients {βj,k}. There are two main possibilities to that end. The first
is based on discrete mixtures, that model the signal {βj,k} via a combination of a point mass at zero and an
absolutely continuous component elsewhere. The corresponding prior is often referred to as the spike-and-slab
prior (see, e.g., [23]). In the second approach, absolutely continuous shrinkage priors are used instead; these
put a mass around zero and also exhibit heavy tails (see, e.g., [28] or [4]). While the former approach leads to
a correct representation of sparse estimation problems by placing a point mass at zero, truly sparse solutions
are not possible with the latter; in case they are desired, they require a further device, e.g. some form of
thresholding. Nevertheless, with shrinkage priors the point estimates of zero coefficients are still strongly shrunk
to zero. Also, shrinkage priors are attractive computationally and have been demonstrated to perform well in
various circumstances. Whether the real life signals are truly sparse in the strict sense that their small wavelet
coefficients are exactly equal to zero, might be debatable.

Several Bayesian approaches to wavelet de-noising are discussed in [25], pp. 412–415 and 426–428. However,
the method that gained the greatest acclaim in the wavelet de-noising context is the empirical Bayes method
of [22], which we will refer to as EBayes. EBayes relies on the spike-and-slab prior, with its hyperparameters
optimised by maximising the marginal likelihood, see [21]. The simulation studies in [22] demonstrate overall
excellent performance of EBayes, and Bayesian point estimates resulting from it possess a natural shrinkage
property. In fact, the coefficients βj,k’s can even be estimated exactly as zero if the posterior median is used
as a point estimate, and in that case the solution to the estimation problem is truly sparse. We thus consider
EBayes as a benchmark in this article. This is in line with earlier works in the sparse normal means model, see,
e.g., [4, 27], who studied the horseshoe prior.
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1.3. Structured sparsity

It has been observed in the literature that with DWT the sparsification of the signal {f(ti)} occurs in a
structured manner. By this we mean that non-zero wavelet coefficients tend to cluster instead of being scattered
in a completely random fashion across the signal {βj,k}; see, e.g., Section 10.8 in [25], or Appendix A, where we
have collected several relevant quotes from the literature. Here we illustrate the phenomenon on a simple but
representative example (cf. [3]). Consider Figure 1, where we plotted the wavelet coefficients computed from
N = 512 values of the Bumps function (see [12]). It is seen from the plot that when arranged according to levels
of DWT, the wavelet coefficients with large absolute magnitudes occur in clusters, namely approximately at
those locations where the function undergoes abrupt changes. Additionally, many coefficients are quite small or
zero.

Given that wavelet coefficients typically exhibit structures beyond ‘mere sparsity’, it appears natural to
incorporate in inferential procedures some of their additional features. A closely related question that one may
ask is: Does ignoring possible local structures in the signal produce scientifically satisfactory answers? In that
respect, the domain expert knowledge in, e.g., audio signal processing indicates that a failure to account for
the structure of the signal in de-noising applications may result in unacceptable solutions for a human ear.
Likewise, [10] stresses importance of reducing the extent of undesirable noise-induced structures like ‘ripples’,
‘blips’ and oscillations in the inferred signal, citing geophysical and astronomical studies, where such effects may
lead to interpretational difficulties. Somewhat disappointingly, frequentist estimation methods that account for
clustering of non-zero wavelet coefficients via block thresholding, such as NeighBlock and NeighCoeff of [3], have
been shown to perform worse in practice than EBayes, that does not assume any additional structure beyond
sparsity.

In this paper, we propose a Bayesian wavelet de-noising method that accounts for existence of special struc-
tures in wavelet coefficients. We compare it to EBayes and show via simulation and real data examples that our
estimator, that we baptised the caravan estimator, measures up well to EBayes, often it substantially as far as
estimation accuracy is concerned (in terms of the square estimation error). Nevertheless, the caravan estimator
does not achieve a uniform improvement (i.e. over all simulation scenarios) upon EBayes.

1.4. Organisation

The rest of the paper is organised as follows: in Section 2 we introduce in detail the statistical problem and
our Bayesian methodology to tackle it. Section 3 studies the performance of our method on synthetic data
examples and compares it to the main alternative: EBayes. Section 4 deals with real data examples. Section 5
summarises our findings and outlines directions for future research. In Appendix A a small compendium of
quotes from the literature, illustrating some of the points we made in this paper, is presented. Appendix B gives
details of the Gibbs sampler we use to evaluate the posterior, while Appendices C through F contain further
details on our simulation study.

1.5. Notation

N(µ, σ2) denotes the normal distribution with mean µ ∈ R and variance σ2 > 0. Exp(λ) is the exponential
distribution with rate parameter λ > 0, whose density is x 7→ λe−λx, for x > 0. Gamma(a, b) is the gamma
distribution with shape parameter a and rate parameter b > 0, whose density is

x 7→ ba

Γ(a)
xa−1e−bx, x > 0,

where Γ is the gamma function. The inverse gamma distribution with shape parameter a > 0 and scale parameter
b > 0 is denoted by IG(a, b). Its density is

x 7→ ba

Γ(a)
x−a−1e−b/x, x > 0.
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Figure 1. DWT coefficients of N = 512 values of the Bumps function arranged by levels of
the transform. Periodic boundary conditions and the LA(8) filter corresponding to Daubechies’
least asymmetric wavelet with 4 vanishing moments (Symmlet 4) are used to compute DWT.
The number of computed levels of the transform is J0 = 4. The scaling coefficients at level 4
are displayed at the top (and can be ignored at present), followed by wavelet coefficients (from
levels 4 to 1) and the original data. In each level, the coefficients are aligned via circular shifting
so as to correspond to the events in the original signal (precise description of their arrangement
is given in Sects. 4.8 and 4.11 in [25]); furthermore, the heights of vertical lines emanating from
a horizontal zero line give relative sizes of coefficients, with zero coefficients not displayed. See
Section 2.1 below for some additional details on DWT. For a better visibility and economy of
space, the individual panels are made of the same size, so that their vertical scales are in fact
different.

In conformance with standard Bayesian notation, we often denote random variables with lowercase letters, such
as x, and write the corresponding density as p(x). Conditioning of x on y is denoted by x | y, with p(x | y)
standing for the conditional density of x given y.

2. Methodology

In this section we provide a detailed description of our Bayesian methodology for wavelet de-noising.
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2.1. Discrete wavelet transform

DWT is an orthogonal transformation applied on a finite dyadic sequence of numbers (that the data length N
is a dyadic number, N = 2J , say, is a restriction, although there are some ad hoc ways to deal with it; see, e.g.,
pp. 141–145 in [25]). Starting with the data x = (x0, . . . , xN−1), DWT can be conveniently described through
successive applications of special low- and high-pass filters H = {hk} and G = {gk} (referred to as quadrature
mirror filters) in combination with dyadic decimation or downsampling steps; jointly, these constitute the so-
called pyramid algorithm. Care has to be exercised when computing DWT coefficients at the boundaries; we use
periodic boundary conditions throughout. Define v0 to be the original data x, and let (↓ 2) be the downsampling
operator. Reference [25] use odd decimation, retaining odd-indexed entries of a given sequence; thus for y =
(. . . , y−2, y−1, y0, y1, y2, . . .), say, (↓ 2)y = (. . . , y−3, y−1, y1, y3, . . .). This is a matter of convention, and the even
decimation would have been an equally valid choice. The scaling coefficients at level 1 are v1 = (↓ 2)Hv0,
whereas the wavelet or detail coefficients are given by w1 = (↓ 2)Gv0. Here the notation Hv0 stands for circular
convolution of v0 with H, and similarly for G. Then one proceeds inductively: with vj and wj being already
defined, one sets vj+1 = (↓ 2)Hvj and wj+1 = (↓ 2)Gvj . The process can be either brought to completion, the
final processed level being j = J , or stopped at level j = J0 < J ; in this last case one talks about a partial
DWT (a partial DWT does not require N to be a dyadic number: it is enough to have that N is an integer
multiple of 2J0). For a fixed j, the vectors vj and wj have length N/2j , and their elements can be enumerated
as vj,k and wj,k, respectively, for k = 0, 1, . . . , N/2j − 1. The scaling coefficients vJ0 can be thought of as
corresponding to a low-frequency component of the signal x, whereas the wavelet coefficients w1, . . . , wJ0 to the
high-frequency components. When stacked together, vJ0 and wJ0 , . . . , w1 constitute an orthogonal transform of
the data x; the latter can be easily recovered via the inverse pyramid algorithm. Both DWT and its inverse
can be evaluated efficiently in O(N) multiplications. Conceptually, the wavelet detail coefficients wj can be
associated with changes in x at the scale 2j−1, i.e., loosely speaking, with differences of averages formed of 2j−1

successive values in x. On the other hand, vJ0 is associated with changes in x at scale 2J0 and higher; in fact,
if J0 = J , vJ0 is a (rescaled) sample mean of x.

Let W be a matrix corresponding to DWT applied on data x. Then the vector w = (w1, . . . , wJ0 , vJ0) of
wavelet and scaling coefficients can be obtained as w = Wx (analysis equation), and furthermore, due to
orthogonality of W , x = WTw (synthesis equation). It holds that

x =

J0∑
j=1

WT
j wj + V TJ0vJ0 =

J0∑
j=1

Dj + SJ0 , (2.1)

where the matrices Wj , j = 1, . . . , J0, and VJ0 are obtained by partitioning W into submatrices with the
number of rows commensurate with w1, . . . , wJ0 , vJ0 ; cf. [25], Sections 4.1 and 4.7. The N -dimensional vectors
Dj = WT

j wj are called wavelet details, whereas SJ0 = V TJ0vJ0 is referred to as the J0th level wavelet smooth.
Together, D1, . . . , DJ0 and SJ0 define a multiresolution analysis (MRA) of x, which can be synthesised back
from these components by a simple addition, see equation (2.1). The detail Dj corresponds to the portion of
synthesis x = WTw attributable to scale 2j−1, whereas the smooth SJ0 can be viewed as a smoothed version of
x and is associated with changes at scale 2J0 and higher. See Figure 2 for an illustration of MRA for the Bumps
function.

For a detailed exposition of wavelet transforms, the reader may consult any of the numerous reference works
on the topic, e.g. [25]. Furthermore, we implicitly assume that the wavelet coefficients have been realigned so
as to approximately correspond to the output of a zero-phase filter. Admittedly, though, the statistical impact
of the latter adjustment was not particularly noticeable in the simulation examples we considered. A filter is
called zero-phase, if its transfer function is real-valued at Fourier frequencies. This allows to associate with Yi’s
the physically meaningful time scale of the original data {Xi} (see pp. 108–110 in [25]). For Daubechies’ filters
(which are the ones used in the present work), a proper alignment can be achieved by circularly shifting the
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Figure 2. MRA of the Bumps function discretely sampled on a uniform grid of N = 512
points. DWT with the LA(8) filter and periodic boundary conditions was used, and J0 = 4
levels of the transform were computed. The smooth S4 and details Dj ’s are stacked on top of
each other, and the bottom plot gives the original data X. For a better visibility, the vertical
scales of the plots are made different, so that each panel is of equal height. Note that S4 indeed
has an appearance of a (rescaled) smooth of the data.

output of a filtering step by a specified amount, depending on the filter and the transform level, as discussed
on pp. 146–147 in [25].

2.2. Statistical model

In our regression context, upon applying DWT on the observations {Xi}, one obtains empirical wavelet
coefficients {Yj,k} arranged according to levels j = 1, . . . , J0. Recall from equation (1.2) that the signal wavelet
coefficients are denoted by {βj,k}. The statistical model for level j wavelet coefficients of the data is a Gaussian
sequence model,

Yi | βi ∼ N(βi, σ
2), i = 1, . . . , n,
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where in order to ease our notation, we have replaced the double index j, k in (1.2) with a single index i (since
j stays fixed), and have also set n = N/2j .

Following a standard wavelet de-noising approach, originally proposed in [11], we will estimate the error
standard deviation σ by the median absolute deviation (MAD) computed from the finest (j = 1) level of DWT
of the data, i.e. the empirical wavelet coefficients {Y1,k}. Intuition underlying this estimate is that the majority
of wavelet coefficients of the signal {f(ti)} at level 1 will be zero, so that Y1,k’s are mostly pure noise; a few
outlier non-zero entries β1,k will not affect adversely a robust estimate of the error standard deviation such as the
MAD. The estimate will be denoted by σ̂. In principle, upon equipping σ with a prior, it is also possible to take
a fully Bayesian approach to estimate this parameter. However, as can be seen below, our proposal is simpler,
since it allows to infer our primary objects of interest, the wavelet coefficients {βj,k}, level by level in DWT. This
is convenient, e.g. because different levels of DWT are expected to have different sparsity degrees, or because
such a subdivision of the inference problem into smaller subtasks may speed up the algorithm we propose below.
Once we have estimated the wavelet coefficients, we also need the scaling coefficients at level J0 in order to
invert DWT and obtain an estimate of the original signal {f(ti)}. Following [11], to that end it is common to
use empirical scaling coefficients computed from the data {Xi}. Thereby the portion in {Xi} attributable to a
‘coarse’ scale J0 is automatically classified as signal ([25], p. 418). Estimation of scaling coefficients via empirical
scaling coefficients admits a Bayesian interpretation: assuming scaling coefficients are a priori independent and
equipped with a vague N(0, γ) prior, γ → ∞, their posteriors are again normal (conditional on the data and
the error variance σ2), with means equal to empirical scaling coefficients.

The likelihood of the data {Yi} in parameters {βi} (with an estimate σ̂ plugged in instead of σ) is

Ln({βi}) = (2π)−n/2σ̂−ne
−

n∑
i=1

(Yi−βi)
2/(2σ̂2)

.

2.3. Prior

Fix hyperparameters {θi : i = 1, . . . , n}, {τi : i = 1, . . . , n}, and assume that a priori

βi | τi, θi ∼ N (0, θiτi) . (2.2)

The hyperparameters {θi} will form an inverse gamma Markov chain, defined as follows (see [5]): fix hyper-
parameters a0, b0, a > 0, let {λi : i = 0, . . . , n − 1} be a sequence of latent variables, and consider a Markov
chain

λ0, θ1, λ1, θ2, λ2, . . . , λn−1, θn (2.3)

with the initial and transition distributions

λ0 ∼ IG(a0, b0),

θi | λi−1 ∼ IG

(
a,

a

λi−1

)
, i = 1, . . . , n,

λi | θi ∼ IG

(
a,
a

θi

)
, i = 1, . . . , n− 1.

This definition induces a dependence structure in {βi}, and ensures a degree of continuity in the absolute
magnitudes of βi’s. In fact, as explained in [5], the variables {θi} are positively correlated. Thus, e.g., a large
value of θi is likely to go paired with a large value of θi+1, which by (2.2) increases the likelihood of a similar
pairing between the absolute magnitudes of βi and βi+1 (the latent variables {λi} are used to achieve positive
correlation between θi’s, while retaining computational tractability of the approach; see [5]). In Figure 3 we
display one realisation of the sequence {βi} from (2.3). We do not imply that real life signals follow an inverse
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Figure 3. A realisation of the sequence {βi} of length n = 100, using a = 5, λ0 = 0.5 and
{τi = 1, i = 1, . . . , n}.

gamma chain, but simply that the latter provides a computationally convenient means for encoding possible
dependencies present in the wavelet coefficients. The hyperparameter a controls the amount of smoothing in
the gamma chain, with small values corresponding to less smoothing; we assume a ∼ Gamma(aa, ba). For a
statistical use of inverse gamma chains outside the sparsity context see, e.g., [17–19].

Remark 2.1. Note that our construction proceeds via creating dependence between absolute magnitudes of
the coefficients {βi}. A glance at Figure 1 shows that for stylised real-like signals, large positive coefficients may
very well cluster with large negative coefficients, and in that sense our approach is natural. In fact, a similar
pattern can be observed in real signals as well, such as the electrocardiogram data in Figure 127 in [25], but
there it would have been a stretch of imagination to pretend the observations are noise-free.

The parameters {τi} are local shrinkage parameters: each τi acts individually on βi, and a small value of τi
encourages shrinkage of βi towards zero. A different perspective is that this entails modelling the scale parameters
with a t-distribution which has heavier tails than the normal distribution. By linking {τi} via a global shrinkage
parameter τgl, we introduce a global control on the sparsity level of the sequence {βi}. Specifically, we assume

τi | τgl
i.i.d.∼ IG(τgl, τgl), i = 1, . . . , n,

with {τi} conditionally independent of other parameters in the model, given τgl. In turn, the hyperparameter
τgl is equipped with an independent Gamma (agl, bgl) prior.
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Figure 4. Passage de caravane à Smyrne, by Jean-Émile Laboureur, 1911–1912. Bibliothèque
nationale de France, département Estampes et photographie, FOL-EF-465 (3). Source:
http://gallica.bnf.fr/ BnF. Public domain.

By the Markov property and the various independence assumptions we made, the joint prior on {βi}, {λi},
{θi}, {τi}, τgl and a factorises as

p(τgl)

{
n∏
i=1

p(τi | τgl)

}{
n∏
i=1

p(βi | θi, τi)

}
p(λ0)p(a)

{
n−1∏
i=1

p(θi | λi−1, a)p(λi | θi, a)

}
p(θn | λn−1, a).

Given the sequential nature of the definition of our prior, we term it the caravan prior, see Figure 4 for a
visualisation.

Remark 2.2. Our construction of the Markov chain prior is inspired by the inverse gamma Markov chain in
[5]. However, it is different from the approach there, in that we also employ local shrinkage parameters {τi}
linked through the global shrinkage hyperparameter τgl. The two sequences {θi} and {τi} moderate or enhance
each other’s effects, and in a way our approach stands halfway between [5] and the more conventional Bayesian
approaches to wavelet de-noising proposed in the statistical literature. The parameter a of the Markov chain
prior fulfils a double role: on one hand it governs strength of dependence between realisations of the coefficients
βi’s; on the other hand, it affects their absolute magnitudes. A large a results in a priori strongly dependent
βi’s, but also encourages them to take large values. The parameters {τi} give an additional handle to control
absolute magnitudes of βi’s, by being decoupled from the dependence structure.

A further important difference of our work from the line of research in [5, 9] consists in the fact that ours
concentrates on the one-dimensional wavelet transform, whereas theirs deals with transforms relevant in audio
signal processing, e.g., the modified discrete cosine transform, or the Gabor transform. We provide a detailed
simulation study of our approach in Section 3, the results and conclusions of which cannot be directly read off
[5, 9]. Importantly, we benchmark de-noising results against the EBayes method.

http://gallica.bnf.fr
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Remark 2.3. The idea of postulating an a priori dependence between coefficients {βi} of a sparse signal has
already appeared in the statistical literature. Thus, e.g., in the audio signal processing context, [33] model their
parameters {βi} with the spike-and-slab prior

p(βi | σβi
, γi) = (1− γi)δ0(βi) + γiφ(βi; 0, σ2

βi
), γi ∈ {0, 1},

and impose a Markovian structure on the binary sequence {γi}; independent inverse gamma priors are assigned
to the variances {σ2

βi
}. This is different from our approach inasmuch as the spike-and-slab prior is different from

the shrinkage prior.
We also mention the fact that there is a substantial body of the signal and image processing and compression

literature, where dependence among wavelet coefficients is exploited in some way. See, e.g., [8] and references
therein (this paper a priori models wavelet coefficients as discrete mixtures with a hidden state variable, and
assumes the hidden states form a Markov chain).

2.4. Gibbs sampler

The posterior for our approach is obtained from the likelihood in Section 2.2 and the prior in Section 2.3. The
posterior inference can be performed via the Gibbs sampler. In fact, as stated in Lemma B.1 in Appendix B,
all the full conditional distributions in our model, except those of the shrinkage parameters τgl and a, belong
to standard unimodal families and are easy to sample from. The parameters τgl and a can be sampled using
Metropolis-within-Gibbs steps, as explained in Appendix B. Further details on this algorithm can be found,
e.g., in [14].

3. Synthetic data examples

In this section we investigate performance of the caravan prior via representative simulation examples. Results
for the DWT and MODWT de-noising are given in Sections 3.3 and 3.4. Furthermore, for readability purposes,
some additional details and simulation results are deferred to Appendix F.

3.1. Generalities

We implemented the caravan method in Julia (see [2]). The code is available under [16]. For wavelet trans-
forms we used the wavelets package in R, see [1] (at the moment of writing this paper, the native Julia package
for the wavelet transform is still under development), while the plots were produced with the ggplot2 package,
see [32]. Simulations were performed on a Macbook Air with 1.8 GHz Intel Core i5 processor and 4 GB 1600
MHz DDR3 memory, running macOS High Sierra (version 10.13.5), and on a Lenovo with 1.7 GHz Intel Core
i5-8350U processor and 8 GB RAM, running Windows 10 Enterprise.

Given its excellent behaviour and overall superiority over various competitors, EBayes was employed for

benchmarking the caravan estimator. In short, EBayes a priori postulates that the coefficients βi
i.i.d.∼ (1 −

λ)δ0(βi) + λp(βi), where p is a heavy tailed density. A Laplace density with scale parameter a compares well to
other possible choices of p. The method proceeds by estimating hyperparameters, here λ and a, by maximising the
marginal likelihood, and then computing empirical Bayes estimates of βi (using the estimated hyperparameters).
This constitutes a straightforward and numerically stable procedure.

EBayes is implemented in the EbayesThresh package in R, see [20]. We used it with settings similar to
those in [20, 22]; in particular, an absolutely continuous part of the spike-and-slab prior assigned to wavelet
coefficients {βj,k} was the Laplace prior with a scale parameter estimated by the empirical Bayes method, and
the posterior mean and median were employed as point estimates. The wavelet transform fed to EBayes was
computed via the waveslim package, see [31] (DWT computed by both the wavelets and waveslim packages
is identical, since both packages rely on the algorithms in [25]. However, EbayesThresh does not support the
wavelets package; on the other hand, the latter has some functionalities we found useful). Point estimates for
the caravan method were the posterior mean and median. Markov chains for the caravan method were ran for
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30 000 iterations (100 000 iterations for the Blocks and HeaviSine signals, see below), with the first third of
the samples discarded as a burn-in. No thinning was used, but this is of course a possibility. The Metropolis-
within-Gibbs steps of the caravan method were scaled to ensure acceptance rates in the range of 25−55%.
Hyperparameters used for the caravan prior are given in Appendix C.

Our strategy for generating noisy signals was: Sample a given function f on a uniform dyadic grid of N = 512
points {ti = i/512 : i = 1, . . . , 512}, and add i.i.d. N(0, σ2) noise to the resulting values. Next, DWT was per-
formed on the noisy data to yield the model (1.2). The noise standard deviation was set to σ = SD({f(ti)})/ SNR,
with SD standing for the sample standard deviation. We used two values for the signal-to-noise ratio: low
SNR = 3 and high SNR = 7. Finally, for DWT we used the LA(8) filter; this choice is often reasonable in prac-
tice, see p. 136 in [25]. The number of levels of the DWT decomposition was J0 = 6. The quality of estimation
results with DWT in fact depends on an appropriate choice of the filter, as well as the number of de-noised
levels of the transform; some practical guidelines for such choices are given in Section 4.11 in [25]. A mechanical
approach to choices such as these cannot be recommended.

As the criterion to assess performance of various wavelet de-noising methods, we employed the squared error

n∑
i=1

(f̂(ti)− f(ti))
2, (3.1)

for f̂ an estimate of f , that we averaged over replicate simulation runs.

3.2. Test functions

The test functions f we considered were the classical test functions named Bumps, Blocks, Doppler and
HeaviSine (see [12]), that reproduce stylised features of signals encountered in various applications; all the
expressions are collected in Appendix D. In comparison to the original definitions, we rescaled the test functions,
so that the signal in each case had the standard deviation 1. We plot the (rescaled) functions in Figure 5.

3.3. Standard discrete wavelet transform

We report estimation errors for the DWT (averaged over 50 independent simulation runs) in Table 1, the
names of the test functions there have the obvious abbreviations. While standard deviations are not displayed
in these and subsequent tables, they were circa 10−20% of the estimated values. It is seen from the tables that
the caravan method does substantially better than EBayes for the Bumps and Doppler signals. The results are
indecisive for the HeaviSine signal and equally split for the Blocks, with one of the estimators being better than
another in one of the noise settings. Overall performance of the caravan method is arguably superior to that of
EBayes, with the former achieving a 10−30% reduction in the estimation error over the latter. Even in those
cases when EBayes has a smaller estimation error, it never manages to beat the caravan estimator by too wide
a margin. In terms of computational time, de-noising a single data set with the caravan method takes ca. 1.5
minutes (when the Gibbs sampler is run for 30 000 iterations), which is reasonable on its own terms; EBayes is
substantially faster, though, with its computational time being on the order of seconds instead of minutes.

It is instructive to display estimation results in one simulation run for the Doppler signal (SNR = 7). See
Figure 6 for the noisy signal and de-noising results. The caravan estimate manages to pick up the high frequency
oscillations of the signal in a neighbourhood of zero noticeably better than EBayes does. This is especially
apparent from the plot of absolute deviations of both estimates from the Doppler function, and constitutes a
remarkable achievement.

To highlight one advantage of the caravan estimator over EBayes, we considered the following simulation
experiment: in the SNR = 7 setting, we artificially increased measurement errors for two data points of the
Bumps function in places where it is flat, in fact zero; the indices of the points were i = 280 and 470. De-noising
results are reported in Figure 7. It is seen from the plots that among the two methods, caravan visually fares
the best, in that it is the least affected by spurious peaks in the reconstructed curve due to unusually large noise
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Figure 5. Top row: Bumps and Blocks functions. Bottom row: Doppler and HeaviSine
functions.

Table 1. Average square errors (over 50 simulation runs) for various test functions and meth-
ods. The sample size is N = 512, the LA(8) filter is used, and periodic boundary conditions
are imposed. The number of DWT levels equals J0 = 6. The minimal average squared error in
each setting is highlighted in italics and blue. The values are rounded off to one decimal after
zero.

Method Low noise High noise

bmp blk dpl hvs bmp blk dpl hvs

Caravan (mean) 3.9 3.5 1.8 1.2 21.0 19.4 8.4 4.0
Caravan (median) 3.9 3.6 1.8 1.3 21.3 20.3 8.7 4.2
EBayes (mean) 4.9 3.8 2.9 1.2 22.8 18.8 12.0 4.3
EBayes (median) 5.6 4.3 3.3 1.2 25.9 20.6 13.0 4.0

on two observations. In that respect it is instructive to compare, e.g., the level j = 1 wavelet coefficients for
EBayes, caravan estimate, Bumps function, and noisy data; see Figure 8. As seen from that figure, two purely
noise-affected empirical wavelet coefficients pass the EBayes shrinkage virtually unscathed, while they are dealt
a serious blow by the caravan method.

Remark 3.1. In relative terms, in comparison to EBayes, the Blocks and HeaviSine functions are the most
difficult to de-noise with the caravan prior. Both functions are characterised by presence of discontinuities. This
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Figure 6. Top row (from left to right): Noisy observations on the Doppler function (sample
size N = 512 and SNR = 7), and the caravan estimate (posterior mean) superimposed on the
Doppler function. The Doppler function is in red, the estimate is in blue. Bottom row (from left
to right): EBayes (posterior mean) superimposed on the Doppler function (the colours are as
in the case of the caravan estimate plot), and absolute deviations of the caravan and EBayes
estimates from the Doppler function (in green and in brown, respectively). De-noising is via
DWT with J0 = 6 levels and the LA(8) filter.

may be a reason for a somewhat worse performance of the caravan prior in these examples, although ascertain-
ing a precise cause is a difficult task. In our experience, within-level dependence of wavelet coefficients, that
characterises the caravan prior, appears to work less successfully when estimating the signal in a neighbourhood
of a discontinuity point; conversely, in some simulation runs the caravan method was able to pick up discon-
tinuities in a signal better than EBayes, but was then unable to perform de-noising as well as EBayes did in
those regions where the signal was smooth. A better handling of signals with discontinuities via the caravan
prior would require additional modelling of intra-scale dependence of wavelet coefficients. This refers to the fact
that large or small values of wavelet coefficients tend to propagate across different levels of the transform, see
Section 10.8 in [25]; for a visualisation, see, e.g., Figure 1. That, however, lies outside the scope of the present
paper.

Remark 3.2. In our experience, it is advisable to use longer Markov chain runs with the caravan prior in order
to avoid visually unpleasant squiggles in de-noised curves, which in reality are solely due to the fact that the
chains have not reached stationarity. Hence our decision to run the chains for 30 000 or even 100 000 iterations
(the latter is likely to be excessive in many scenarios). Giving concrete recommendations in the present context
is a difficult task, as convergence of the chains depends on factors like the nature of the underlying signal, the
number of observations and the signal-to-noise ratio. As one natural check, however, one can produce trace and
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Figure 7. Top row (from left to right): Noisy observations on the Bumps function (sample
size is N = 512 and SNR = 7. The ‘special’ points with indices i = 280 and 470 that are
affected by unusually large measurement errors are highlighted via large black points) and the
caravan estimate (posterior mean) superimposed on the Bumps function (the true function
is in red, the estimate is in blue). Bottom row (from left to right): EBayes (posterior mean)
superimposed on the Bumps function (the colours are as for the caravan estimate plot), and
absolute deviations of the caravan and EBayes estimates from the Bumps function (in green
and in brown, respectively). De-noising is via DWT with J0 = 6 levels and the LA(8) filter.

autocorrelation plots for the hyperparameters a, τgl, as well as for some of the coefficients βi’s. See Appendix E
for such plots for the Doppler signal de-noising that we considered above in Figure 6.

An advantage of the caravan prior is the relative simplicity of the update formulae in the Gibbs sampler (see
Appendix B). However, this simplicity comes at a price: at each step of the sampler, only one parameter can be
updated at a time, which slows down the mixing of the Markov chain for the full posterior, that is defined on a
rather high-dimensional parameter space. Potentially, this may have repercussions on scalability of the method
when applied on large data. See also the relevant remarks in [6] on a related Markov chain prior.

3.4. Maximal overlap discrete wavelet transform

It has been demonstrated in, among others, [7], that using the translation-invariant discrete wavelet trans-
form for signal de-noising instead of the standard DWT often leads to better practical results, either in terms
of the squared error, or visually. Unlike the standard DWT, for a data sequence of length N , each level of the
translation-invariant transform contains N wavelet coefficients, since it does not use downsampling. We specif-
ically restrict our attention to the maximal overlap discrete wavelet transform (MODWT), see, e.g., Chapter 5
in [25].
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Figure 8. From top to bottom: Level j = 1 wavelet coefficients for EBayes, caravan estimate,
Bumps function, and noisy observations, respectively. In each plot (excluding the one for the
Bumps function itself), the pair of coefficients that is seriously affected by artificially introduced
large measurement errors on top of the zero signal is highlighted in green. For details on
alignment of coefficients see the caption of Figure 1.

MODWT is highly redundant and non-orthogonal. When the data size N is a dyadic number, coefficients
of DWT can be extracted from those of MODWT by a suitable scaling and downsampling. Furthermore, one
can extract from MODWT the coefficients of DWTs of all possible cyclic shifts of the data; see Comments
and Extensions to Section 5.4 in [25], p. 174. Computational complexity of MODWT and its inverse (due to
its redundancy, MODWT has no unique inverse; the one we have in mind is given in [25], and on an abstract
level can be described in terms of the Moore-Penrose inverse, cf. p. 167 there), when evaluated via the pyramid
algorithm, is O(N log2N) multiplications, which is somewhat slower than that for DWT, but still fast (in
fact as fast as the Fast Fourier Transform). Unlike DWT, that requires the number of observations N be a
dyadic number, no such assumption is needed for MODWT. In theory, the number of MODWT levels J0 can be
arbitrarily large (unlike DWT); however, if N is a dyadic integer, MODWT yields no extra information beyond
the level J = log2N , which hence can be taken as a maximal decomposition level for MODWT. See Figure 9
for a visualisation of MODWT for the Bumps function.

Because of a lack of orthogonality, for the noisy data the MODWT wavelet coefficients will be statistically
dependent. On the other hand, MODWT allows one to mitigate sensitive dependence of the standard DWT
on the starting position of the data sequence (which is entirely due to downsampling used in DWT). In fact,
the MODWT-based de-noising essentially performs averaging of results over all possible cyclic shifts of the
data (here ‘all possible’ means shifts by m = 0, 1, . . . , N − 1 units), that may allow a better reconstruction of
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Figure 9. MODWT coefficients of N = 512 values of the Bumps function arranged by levels
of the transform. The LA(8) filter is used. The number of computed levels of the transform is
J0 = 4, with scaling coefficients displayed at the top, and the original data at the bottom. In
each level, the coefficients are aligned via circular shifting so as to correspond to the events in
the original data; for precise details on the arrangement, see pp. 179–180 in [25].

the essential features of the signal and reduce noise-induced artefacts. See [25], Comments and Extensions to
Section 5 (pp. 429–431), for a succinct description of statistical applications of MODWT.

When performing comparison of EBayes and caravan estimates, we used the settings similar to those in
Section 3. In particular, the sample size was N = 512. We employed the LA(8) filter and the periodic boundary
conditions. The number of levels of MODWT was J0 = 4. Some guidelines on practicalities such as these are
given in Section 5.11 in [25]. Finally, separately for each level j of MODWT, we estimated the error standard
deviation σj by the MAD estimate computed from the empirical wavelet coefficients of that level. It should be
clear that such estimates of σj cannot be expected to lead to necessarily good results in all cases, if only because
the sparsity degree of MODWT (or DWT) coefficients typically decreases for coarser levels of the transform,
whereas the non-zero coefficients tend to become larger (cf. also the remarks on p. 450 in [25]). Hence our
decision to de-noise only 4 levels of MODWT.
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Table 2. Average square errors (over 50 simulation runs) for various test functions and
methods. The sample size is N = 512, the LA(8) filter is used, and periodic boundary conditions
are imposed. The number of MODWT levels equals J0 = 4.

Method Low noise High noise

bmp blk dpl hvs bmp blk dpl hvs

Caravan (mean) 3.2 2.9 1.5 1.2 15.6 16.2 7.5 5.1
Caravan (median) 3.2 2.9 1.5 1.1 15.3 16.9 7.3 4.9
EBayes (mean) 3.6 3.0 2.0 1.2 17.3 17.7 9.3 4.5
EBayes (median) 3.9 3.2 2.1 1.2 18.5 19.4 9.5 4.4

Remark 3.3. In the case the sample size N is a dyadic number, by simple algebra that relies on the fact that
DWT coefficients are rescaled and downsampled MODWT coefficients (see [25], Eqs. (96d) and (169a), and
page 152), an estimate of the error variance σ2

j can be derived as σ̂2
j = 21−j σ̂2

1 . Here σ̂2
1 can be obtained via

MAD applied on the first level of MODWT. However, at the moment of writing this paper such an option is
not envisioned for EBayes in the EBayesThresh package, which is a primary reason why we did not employ
it in our comparison.

Estimation results on the same synthetic data as in Section 2.1 are reported in Table 2. A comparison with
Table 1 (that displayed the results for DWT) shows that MODWT substantially improves estimation accuracy
of both the caravan and EBayes methods, except for the HeaviSine signal. The caravan method does better
than EBayes for the Bumps, Blocks and Doppler signals. The results are indecisive for the HeaviSine function,
with either method better than another in different noise settings. Overall performance of the caravan method is
superior to that of EBayes, the margin being a 10−20% reduction in the square error. In terms of computational
time, de-noising a single data set with caravan method takes ca. 6.5 minutes, which is an order of magnitude
slower than for EBayes.

Remark 3.4. The fact that in some scenarios MODWT de-noising performs worse than DWT de-noising does
not contradict earlier simulation studies in [7, 22]: DWT and translation-invariant DWT there differ in details
from the implementations used by us (that are based on [25]). Most importantly, we use a different error variance
estimator in the MODWT case.

4. Nuclear magnetic resonance data

In this section we apply our de-noising methodology on the nuclear magnetic resonance (NMR) spectrum,
that constitutes a standard test data set for wavelet de-noising algorithms.1 There are N = 1024 observations
in total, that we display in the top panel of Figure 10. We followed Section 10.5 in [25], and used the LA(8)
filter to compute DWT. Percival and Walden de-noise J0 = 6 levels of the transform; an MRA plot of the data
set, see Figure 11, suggests that de-noising J0 = 4 levels of the transform might be enough. A plot of the DWT
coefficients, see Figure 12, indicates that there are some small wavelet coefficients present at level j = 5 too,
but we opted to leave the levels j = 5, 6 as such.

In visualising de-noising results, we used posterior medians as our point estimates (we produced larger plots
to clearly highlight differences between the estimates). The Markov chain for the caravan prior was run for
120 000 iterations, with the first third of samples dropped as a burn-in. Both caravan and EBayes estimates
remove a substantial amount of noise from the data, see Figure 10. However, visually the caravan reconstruction
appears to be more regular than EBayes. One established way to measure efficacy of a de-noising procedure in
this context is to determine which of the methods better maintains the peaks of the curve; these peaks contain

1We downloaded the data from Donald B. Percival’s website at http://faculty.washington.edu/dbp/s530/ (accessed on 28 June
2018).

http://faculty.washington.edu/dbp/s530/
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Figure 10. Top panel: NMR data (1024 observations). Middle panel: Caravan estimate. Bottom
panel: EBayes. De-noising via DWT. The LA(8) filter was used, with J0 = 4 levels of the
transform computed.
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Figure 11. MRA of the NMR data. DWT with LA(8) filter was used, and J0 = 6 levels of
the transform were computed. The top plot gives the smooth S6, followed by the details Dj

stacked on top of each other, and the original data X at the bottom.
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Figure 12. DWT coefficients of the NMR data arranged by levels of the transform. Periodic
boundary conditions and LA(8) filter are used to compute DWT. The number of computed
levels of the transform is J0 = 6. The scaling coefficients at level 6 are displayed at the top,
followed by wavelet coefficients (from levels 6 to 1) and the original data. See Figure 1 for
additional information on the arrangement of the coefficients.



BAYESIAN WAVELET DE-NOISING WITH THE CARAVAN PRIOR 967

Figure 13. Top panel: Caravan estimate for the NMR data. Middle panel: EBayes. Bottom
panel: Hard thresholding estimate (with universal threshold). De-noising via MODWT. The
LA(8) filter was used, with J0 = 4 levels of the transform computed.
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important information on the tissue from which the sample arose. We can compare the heights of the highest
peak, cf. [22], p. 1719, and [25], p. 430. In that respect, the caravan estimate yielded the peak height 57.78,
while EBayes the peak height 56.78. The latter method was hence worse than its competitor (to put things in
perspective, the original noisy data had the peak height 58.02).

We also applied the MODWT de-noising (with J0 = 4 levels), cf. [25], Comments and Extensions to Section
10.5. The results are reported in Figure 13. Both methods are even more successful in removing the noise.
Concerning the highest peak, with the peak height 55.77, the caravan estimate marginally outperformed EBayes,
that yielded the peak height 55.41. Note also how the second sharp peak to the left of the highest peak is much
lower in the EBayes estimate, unlike in the caravan estimate. On the other hand, the caravan estimate shows
some small squiggles near t = 200 and 800, that are absent in the EBayes estimate; this is similar to the hard
thresholding estimate in Figure 430 of [25]. We reproduce that plot in the bottom panel of Figure 13; note the
appearance of an additional squiggle near t = 650 there. Finally, a wave-like behaviour of both estimates over
the time interval [0, 300] is due to our decision to de-noise only 4 levels of the transform. These waves can be
largely flattened out by de-noising a J0 = 6 level MODWT, but that would have diminished even further the
heights of the sharp peaks.

Summarising, each method appears to have its own advantages on this challenging real data set.

5. Discussion

In this paper we studied a Bayesian approach to wavelet de-noising via a prior relying on the inverse gamma
Markov chain (cf. [5]). Various types of Markov chain priors have been used for de-noising purposes in several
references, but to the best of our knowledge, our paper is the first thorough comparative study of the performance
of this kind of a prior. In particular, we benchmarked our method against a popular empirical Bayes procedure
of [22].

Our method, which we call the caravan, strikes a good balance between conceptual simplicity and compu-
tational feasibility. Specifically, the posterior inference can be performed via a straightforward version of the
Gibbs sampler. In the synthetic data examples that we considered, the method measures up well to EBayes,
often substantially outperforming it in terms of the squared estimation error. The improvement brought by the
caravan method comes thanks to the fact that it takes into account some of the local structures empirically
observed in wavelet coefficients of real life signals. However, the caravan method does not achieve a uniform
improvement (i.e. over all simulation scenarios) upon EBayes, which can be taken as indication of a general
excellence of the latter, rather than of a failure of the former. In particular, in our simulations the caravan prior
seemed to be somewhat worse than EBayes at handling signals with jump discontinuities.

On purely visual grounds, the caravan estimator appeared to be less prone to display artefacts in its recon-
structions that are due to unusually large noise peaks. As far as the computational time is concerned, since the
caravan estimator is evaluated via an MCMC algorithm (Gibbs sampler), its computation is considerably slower
than that of EBayes, although the method is still reasonably fast.

We believe that our paper adds a valuable Bayesian technique to the wavelet, or more generally the
non-parametric regression toolbox. Furthermore, our hope is that the present contribution provides sufficient
motivation for further study of the caravan method, a task that we ourselves plan to address in subsequent
research. A natural question in this context, that we do not address in the present work, is: what about asymp-
totic statistical theory for the caravan prior? Such work in the spirit of [15] has been done for the horseshoe
prior in [30] and [29]. This is a problem we would very much like to study in another work.

Appendix A

In this appendix we present quotes from the image and signal processing and statistics literature, evidencing
awareness of the need to model explicitly the structure of the signal in wavelet de-noising applications.
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– “Wavelets are known for their excellent compression and localization properties. In very many cases of interest,
information about a function is essentially contained in a relatively small number of large coefficients. Figure 1
displays the wavelet coefficients of the well-known test function Bumps [11]. It shows that large coefficients
come as groups; they cluster around the areas where the function changes significantly.

This example illustrates the motivation for our methods – a coefficient is more likely to contain signal if
neighbouring coefficients do also. Therefore when the observations are contaminated with noise, estimation
accuracy might be improved by incorporating information on neighbouring coefficients.” [3].

– “The use of priors that can capture the dependence between the coefficients of the representation is a more
delicate problem which involves expert a priori knowledge. . . . Many empirical studies have concluded that
the wavelet coefficients (even if the transformation is maximally decimated) of natural images are strongly
dependent.” [24].

– “It turns out that term-by-term sparsity is usually not enough to obtain state-of-the-art results both for
de-noising and inverse problems involving natural images. Indeed, wavelet coefficients of images are not only
sparse, they typically exhibit local dependencies among neighboring coefficients. Geometric features (edges,
textures) are poorly sparsified by isotropic multiscale decompositions and create such dependencies.” [26].

Appendix B

B.1 Full conditionals

Lemma B.1. Define

ξ1 = ξ1(θi, τi, σ̂
2) =

1

1/(θiτi) + 1/σ̂2
, ξ2 = ξ2(ξ1, σ̂

2, Yi) =
Yi
σ̂2ξ1

.

The following facts hold:

– The full conditionals for βi, i = 1, . . . , n, are

βi | θi, τi, Yi ∼ N(ξ2, ξ1).

– The full conditionals for θi, i = 1, . . . , n− 1, are

θi | a, βi, λi−1, λi, τi ∼ IG

(
2a+

1

2
,
a

λi−1
+

a

λi
+
β2
i

2τi

)
.

– The full conditional for θn is

θn | a, βn, λn−1, τn ∼ IG

(
a+

1

2
,

a

λn−1
+

β2
n

2τn

)
.

– The full conditional for λ0 is

λ0 | a, θ1 ∼ IG

(
a0 + a, b0 +

a

θ1

)
.



970 S. GUGUSHVILI ET AL.

– The full conditionals for λi, i = 1, . . . , n− 1, are

λi | a, θi, θi+1 ∼ IG

(
2a,

a

θi
+

a

θi+1

)
.

– The full conditional for τi is

τi | βi, θi, τgl ∼ IG

(
τgl +

1

2
, τgl +

β2
i

2θi

)
.

– The full conditional for τgl is

τgl | {τi} ∝ Γ(τgl)
−nτ

nτgl+agl−1
gl

(
n∏
i=1

τi

)−τgl

exp

(
−τgl

{
bgl +

n∑
i=1

1

τi

})
.

Hence, up to an additive constant independent of τgl, the logarithm of the full conditional is proportional to

−n log Γ(τgl) + (nτgl + agl − 1) log τgl − τgl

{
bgl +

n∑
i=1

(
log τi +

1

τi

)}
.

– The full conditional for a is

a | {θi}, {λi} ∝ aaa−1+(2n−1)aΓ(a)−(2n−1)
n−1∏
i=1

(θ2i λi−1λi)
−a

× (λn−1θn)−a exp

(
−a

{
ba +

n−1∑
i=1

(
1

λi−1θi
+

1

λiθi

)
+

1

λn−1θn

})
.

Hence, up to an additive constant independent of a, the logarithm of the full conditional is proportional to

(aa − 1 + (2n− 1)a) log a− (2n− 1) log Γ(a)

− a

{
n−1∑
i=1

log(θ2i λi−1λi) + log(λn−1θn) + ba +

n−1∑
i=1

(
1

λi−1θi
+

1

λiθi

)
+

1

λn−1θn

}
.

The proof of the lemma is lengthy but elementary, and is omitted. The Gibbs sampler cycles through the
above update formulae to generate approximate samples from the posterior.

B.2 Metropolis-within-Gibbs for updating τgl and a

Here we outline the Metropolis-within-Gibbs step to update the hyperparameters τgl and a within the Gibbs
sampler described in the previous subsection. We consider the case of τgl, and note that a can be treated in
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the same manner. Reparametrise τgl as τ̃gl = log τgl, and observe that if π is the full conditional of τgl, the full
conditional of τ̃gl is π̃(τ̃gl) = eτ̃glπ(eτ̃gl). It is enough to sample τ̃gl: samples τgl can then be obtained by simple
exponentiation. Given a current value τ̃gl, we propose a move

τ̃◦gl = τ̃gl + hZ,

where h > 0 is a tuning parameter and Z ∼ N(0, 1); this is a Gaussian random walk proposal. The acceptance
probability is computed as

A(τ̃◦gl | τ̃gl) = min

(
π̃(τ̃◦gl)

π̃(τ̃gl)
, 1

)
.

The move is accepted, if logU < logA(τ̃◦gl | τ̃gl), where U ∼ Uniform(0, 1) is independent of Z; otherwise the
chain stays in τ̃gl. The acceptance rate is controlled by the parameter h.

Appendix C

Here we give the hyperparameters for the caravan prior used in our synthetic data examples:

aa = 0.1, ba = 0.1, a0 = 0.1, b0 = 0.1, agl = 0.1, bgl = 0.1.

These can be viewed as non-informative. We note that different choices may be appropriate in settings other
than those considered by us. On the other hand, our specific choice appears to be quite robust, since it yielded
reasonable de-noising results on different test functions, different signal-to-noise ratios, different numbers of
processed levels J0, different sample sizes N , and different individual levels of the wavelet transform.

The scaling parameters for the Metropolis-Hastings steps within our Gibbs sampler were set to ha = ca/ log2 n
and hgl = cgl/ log2 n, where n was the number of coefficients in a given level of the wavelet transform (ha
corresponds to the hyperparameter a, while hgl to the hyperparameter τgl). The constants ca and cgl can vary
per case of the underlying signal: we used the values ca = 1.5 and cgl = 2.5.

Appendix D

Here we supply definitions of the test functions that we used, upon rescaling, in our synthetic data examples.

D.1 Bumps

The Bumps function, also introduced as a motivating example in Section 1.3, is given by

f(t) =
1

7

11∑
j=1

hjK

(
t− tj
wj

)
, t ∈ [0, 1],

where K(t) = (1 + |t|)−4 and

{tj} = (0.1, 0.13, 0.15, 0.23, 0.25, 0.4, 0.44, 0.65, 0.76, 0.78, 0.81),

{hj} = (4, 5, 3, 4, 5, 4.2, 2.1, 4.3, 3.1, 5.1, 4.2),

{wj} = {0.005, 0.005, 0.006, 0.01, 0.01, 0.03, 0.01, 0.01, 0.005, 0.008, 0.005}.

Donoho and Johnstone view the Bumps function as a stylised example of a spectrum arising, e.g., in nuclear
magnetic resonance (NMR) spectroscopy; see [12].
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D.2 Blocks

The Blocks function is defined as

f(t) =

11∑
j=1

hjK(t− tj), t ∈ [0, 1],

where K(t) = (1 + sgn(t))/2, where

sgn(t) =


+1 if t > 0,

−1 if t < 0,

0 if t = 0,

and where the {tj} are as for the Bumps function, and

{hj} = (4, −5, 3, −4, 5, −4.2, 2.1, 4.3, −3.1, 2.1, −4.2).

According to [12], the Blocks function caricatures the acoustic impedance of layered medium in geophysics, as
well as one-dimensional profiles along images in certain image processing applications.

D.3 Doppler

The Doppler function is a sinusoid with a changing amplitude and frequency,

f(t) =
√
t(1− t) sin

(
2π(1 + 0.05

t+ 0.05

)
, t ∈ [0, 1].

D.4 HeaviSine

The HeaviSine function is a sinusoid with two jumps,

f(t) = 4 sin(πt)− sgn(t− 0.3)− sgn(0.72− t), t ∈ [0, 1].

Appendix E

Here we present several trace, autocorrelation and density plots of posterior samples for de-noising the Doppler
signal, that we studied in Section 3 (see in particular Fig. 6 there).

We display these plots in Figures E.1 and E.2 for wavelet coefficients β1, . . . , β4 from level j = 3 of DWT
(this choice is arbitrary). Plots were produced with the ggmcmc package in R, see [13]. The figures suggest
that the chains are rather well-behaved and mixing.

On the other hand, the chains for the global hyperparameters a and τgl (again corresponding to level j = 3
of DWT) are mixing somewhat slower, see Figures E.3 and E.4. Large amounts of data and long chain runs
are required for precise learning of the hyperparameters a and τgl. To improve mixing of these chains, one
might consider updating a and τgl via the Metropolis-adjusted Langevin algorithm rather than the random
walk Metropolis-Hastings algorithm. However, it appears that even with somewhat less accurate knowledge of
a and τgl, wavelet coefficients can still be inferred efficiently. Finally, we note that mixing of Markov chains for
coarser levels of DWT is in general faster than for finer levels (plots not shown).
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Figure E.1. Graphical convergence diagnostics for de-noising the Doppler function in Figure 6.
Top: Density plots and pairwise density contour plots for coefficients β1, . . . , β4 from level j = 3
of DWT. Numbers in the upper triangle of the plot matrix give correlations between various
chains. Bottom: Autocorrelation plots.
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Figure E.2. Graphical convergence diagnostics for de-noising the Doppler function in Figure 6.
Displayed are trace plots for coefficients β1, . . . , β4 from level j = 3 of DWT.

Table F.1. Average square errors (over 50 simulation runs) for various test functions and
methods. The sample size is N = 256, the LA(8) filter is used, and periodic boundary conditions
are imposed. The number of DWT levels equals J0 = 4.

Method Low noise High noise

bmp blk dpl hvs bmp blk dpl hvs

Caravan (mean) 2.8 2.7 1.5 1.1 16.2 15.3 6.9 3.1
Caravan (median) 2.8 2.8 1.5 1.1 18.0 16.4 7.2 3.1
EBayes (mean) 3.4 2.8 2.2 1.0 17.4 13.8 9.3 3.3
EBayes (median) 4.2 3.1 2.4 1.0 21.5 15.4 10.3 3.1

Table F.2. Average square errors (over 50 simulation runs) for various test functions and
methods. The sample size is N = 256, the LA(8) filter is used, and periodic boundary conditions
are imposed. The number of MODWT levels equals J0 = 3.

Method Low noise High noise

bmp blk dpl hvs bmp blk dpl hvs

Caravan (mean) 2.3 2.3 1.3 1.0 12.2 13.8 6.3 4.2
Caravan (median) 2.3 2.3 1.3 1.0 12.7 14.6 6.2 4.0
EBayes (mean) 2.6 2.4 1.6 1.0 13.0 14.2 8.8 3.9
EBayes (median) 3.0 2.6 1.6 1.1 14.5 16.1 9.3 3.8
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Figure E.3. Graphical convergence diagnostics for de-noising the Doppler function in Figure 6.
Top: Density plots and pairwise density contour plots for logarithms of hyperparameters a and
τgl. Number in the upper triangle of the plot matrix gives correlation between the two chains.
Bottom: Autocorrelation plots.
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Figure E.4. Graphical convergence diagnostics for de-noising the Doppler function in Figure 6.
Top: Trace plots for logarithms of hyperparameters a and τgl. Bottom: running means.
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Appendix F

In this appendix we present results of some additional simulations complementing those from Section 3. Here
the sample size was N = 256. This is a challenging setting for the caravan method, since in general detection
of structures in wavelet coefficients is easier with large sample sizes. We used two values for the signal-to-noise
ratio: low SNR = 3 and high SNR = 7. We employed the LA(8) filter. The number of processed levels of the
DWT decomposition was J0 = 4, while that of the MODWT was J0 = 3; these choices might be suboptimal,
but nevertheless give an insight into relative performance of the de-noising methods. The hyperparameters of
the caravan prior were set as in Sections 3 and 4; see Appendix C for specific values. Markov chains for all
signals were run for 30 000 iterations (100 000 iterations for the HeaviSine signals), with the first third of the
samples discarded as a burn-in. No thinning was used.

We report estimation errors for the DWT de-noising (averaged over 50 independent simulation runs) in
Table F.1. Results for the MODWT de-noising (using the same synthetic data as in the DWT case) are given in
Table F.2. While standard deviations are not displayed in the tables, they were circa 15− 20% of the estimated
values. General conclusions that follow from these simulation results are similar to those already reached in
Section 3. Note that in some cases the results of the DWT de-noising are somewhat better than those for the
MODWT de-noising. This may be attributable to the choice of the decomposition level J0 and performance of
the estimator σ̂j of the standard deviation σj . See Remark 3.4 in the main body of the paper. Furthermore,
there is no contradiction between the fact that the estimation errors in the tables in Section 3 are larger than
the corresponding ones in the tables of the present appendix: a larger sample size in Section 3 automatically
implies that a larger number of parameters needs to be estimated, hence a possibility for a growth in the square
error (3.1). Moreover, as in both settings the underlying ‘true’ signals are scaled to have standard deviations
equal to 1 (see Sect. 3.2), the smaller sample size case cannot be viewed as a mere sub-sampling of the larger
sample case.
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