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Abstract

In this paper, we study small noise asymptotics of Markov-modulated diffusion processes in the regime
that the modulating Markov chain is rapidly switching. We prove the joint sample-path large deviations
principle for the Markov-modulated diffusion process and the occupation measure of the Markov chain
(which evidently also yields the large deviations principle for each of them separately by applying the
contraction principle). The structure of the proof is such that we first prove exponential tightness, and then
establish a local large deviations principle (where the latter part is split into proving the corresponding upper
bound and lower bound).
c⃝ 2016 Published by Elsevier B.V.
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1. Introduction

The setting studied in this paper is the following. We consider a complete probability space
(Ω ,F ,P) with a filtration {Ft }t∈R+

, where R+ := [0,+∞). F0 contains all the P-null sets
of F , and {Ft }t∈R+

is right continuous. Let X t be a finite-state time-homogeneous Markov
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chain with transition intensity matrix Q and state space S := {1, . . . , d} for some d ∈ N. The
Markov-modulated diffusion process is defined as the unique solution to

Mt = M0 +

 t

0
b(Xs,Ms)ds +

 t

0
σ(Xs,Ms)dBs,

where Bt is a standard Brownian motion. We assume that there exist i, x such that σ(i, x) ≠ 0
throughout this paper. The concept of Markov modulation is also known as ‘regime switching’;
the Markov chain X t is often referred to as the ‘background process’, or the ‘modulating Markov
chain’.

The objective of this paper is to study the above stochastic differential equation under a partic-
ular parameter scaling. For a strictly positive (but typically small) ϵ, we scale Q to Q/ϵ =: Qϵ ,
and denote by X ϵt the Markov chain with this transition intensity matrix Qϵ . If the expected
number of jumps per unit time is y for X t , then the time-scaling entails that it is y/ϵ for X ϵt .
One could therefore say that the Markov chain has been sped up by a factor ϵ−1, and, as a conse-
quence, X ϵt switches rapidly among its states when ϵ is small. A classical topic in large deviations
theory, initiated by Freidlin and Wentzell [9], concerns small-noise large deviations. In this pa-
per, we investigate how rapid-switching behavior of X ϵt affects the small-noise asymptotics of
X ϵt -modulated diffusion processes on the interval [0, T ] (for any fixed strictly positive T ).

Let us make the scaling regime considered more concrete now. Importantly, it concerns a
scaling of the function σ(·, ·) to

√
ϵσ (·, ·) in the Markov-modulated diffusion, but at the same

time we speed up the Markovian background process in the way we described above. The
resulting process Mϵ

t is defined as the unique strong solution to

Mϵ
t = Mϵ

0 +

 t

0
b(X ϵs ,Mϵ

s )ds +
√
ϵ

 t

0
σ(X ϵs ,Mϵ

s )dBs, (1)

where we recall that X ϵt has transition intensity matrix Qϵ . Focusing on the regime that ϵ → 0,
we call in the sequel Mϵ

t the Markov-modulated diffusion process with rapid switching. For
simplicity, we will assume throughout this paper that Mϵ

0 ≡ 0, whereas X ϵ0 starts at an arbitrary
x ∈ S, for all ϵ. When we write e.g. E[Mϵ

t ], this is to be understood as the expectation of Mϵ
t

with the above initial conditions.
Since Mϵ

t evolves in the random environment of X ϵt , we need to separate the effects of the
vanishing of the diffusion term and the fast varying of the Markov chain, but at the same time to
keep track of both of them. Since the scaling Q to Q/ϵ is equivalent to speeding up time by a
factor ϵ−1, one could informally say that X ϵt relates to a faster time scale than Mϵ

t , and therefore
essentially exhibits stationary behavior ‘around’ this specific t . Then it is custom to consider the
occupation measure of X ϵt , which is defined on Ω × [0, T ] × S as

νϵ(ω; t, i) =

 t

0
1{Xϵs (ω)=i}ds. (2)

As its name suggests, νϵ(·; T, i) measures the time X ϵt spends in state i during the time interval
[0, T ]. Moreover, we can use the derivative of νϵ(t) to gauge the infinitesimal change of the
occupation measure of X ϵt , at any t ∈ [0, T ]. Henceforth we will thus investigate the joint process
(Mϵ, νϵ), the main object studied in this paper.

A celebrated result in Donsker and Varadhan [6] concerns the large deviations principle (LDP)
for ν1(ω; t, ·)/t as t → ∞ (i.e., the LDP of the fraction of time spent in the individual states
of the background process). The setting of the present paper, however, involves the sample-
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path LDP for νϵ on [0, T ] as ϵ → 0. More precisely, we define the image space MT of νϵ

restricted on [0, T ] as the space of functions ν on [0, T ] × S satisfying ν(t, i) =
 t

0 Kν(s, i)ds,

where
d

i=1 Kν(s, i) = 1, Kν(s, i) > 0 for every i ∈ S, s ∈ [0, T ], and Kν(s, i) being Borel
measurable with respect to s; Kν is referred to as the kernel of ν. The metric on MT is defined as

dT (µ, ν) = sup
06t6T,i∈S

 t

0
Kµ(s, i)ds −

 t

0
Kν(s, i)ds

 .
We can also view MT as a subset of C[0,T ](Rd) which is the space of Rd -valued continuous
functions on [0, T ]. In addition, the metric dT on MT is equivalent to the uniform metric on
C[0,T ](Rd).

We also define CT as the image space of Mϵ , which is the space of functions f ∈ C[0,T ](R)
and f (0) = 0 equipped with the uniform metric ρT ( f, g) := sup06t6T | f (t)−g(t)|. The product
metric ρT × dT on CT × MT is defined by

(ρT × dT )((ϕ, ν), (ϕ
′, ν′)) := ρT (ϕ, ϕ

′)+ dT (ν, ν
′), ∀(ϕ, ν), (ϕ′, ν′) ∈ CT × MT .

We denote by B(CT ×MT ) the Borel σ -algebra generated by the topology induced by ρT × dT .
The main result of this paper is the joint sample-path LDP for (Mϵ, νϵ) on CT × MT . The

associated (joint) large deviations rate function is obtained in quite an explicit form. It is actually
the sum of two expressions that we introduce later in this paper, viz. (6), i.e., the rate function
IT (ϕ, ν) corresponding to Mϵ , and (5), i.e., the rate function ĨT (ν) corresponding to νϵ . Informed
readers will recognize that these rate functions are variants of those for diffusion processes, as
given in e.g. Freidlin and Wentzell [9], and for occupation measures of Markov processes, as
given in e.g. Donsker and Varadhan [6] (where we remark again that the result in [6] relates to
ν1(ω; t, ·)/t for t large, whereas our statement concerns the sample paths of νϵ).

One method of proving the LDP for a family of probability measures on a metric space, as
was introduced in the seminal papers of Liptser and Pukhalskii [22] and Liptser [21], is to first
prove exponential tightness, and then the local LDP (precise definitions of these notions will be
given in the next section). Our work by and large follows this approach. Importantly, the model
considered in Liptser [21] is similar to ours, in that it also studies the stochastic differential equa-
tion (1), but in the setup of Liptser [21] the process X ϵt is another diffusion process (rather than
a finite-state Markov chain). It means that we can roughly follow the structure of the proof pre-
sented in [21] (we also rely on the method of stochastic exponentials, for instance), but there are
crucial differences at many places. For instance, as we point out below, there are several novelties
that have the potential of being used in other settings, too.

One of the methodological novelties is the following. We explore a nice connection between
regularity properties of the rate function ĨT (ν) in the LDP for (Mϵ, νϵ) and a dense subset of the
image space MT of νϵ . On this dense subset, the optimizer of the integrand of ĨT (ν) is infinitely
differentiable. This eliminates many difficulties in the computation and leads us to first prove
the local LDP on a dense subset of CT × MT . We then extend the local LDP to CT × MT by
continuity properties of the rate functions IT (ϕ, ν) and ĨT (ν).

As mentioned above, the main result of our paper is the joint sample-path LDP for (Mϵ, νϵ).
The LDPs for each component Mϵ and νϵ are then derived as corollaries from our main result
in the standard way, i.e., by an application of the contraction principle. The small noise LDP
for the Markov-modulated diffusion processes (which is Mϵ alone) is also studied in a newly
published paper by He and Yin [13] in a setting of multi-dimensional processes and time-
depending transition intensity matrices. In our corresponding result, which is Corollary 3.2, the
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rate function for Mϵ is decomposed into two parts that allow an appealing interpretation: the
first part corresponds to the rare behavior of the background process X ϵ , where the second part
corresponds to the rare behavior of Mϵ (conditional on the rare behavior of X ϵ). The rate function
in He and Yin [13] is less explicit, in that it is expressed in terms of an H-functional in which
the aforementioned two parts cannot be distinguished. The sample-path LDP for occupation
measures of rapid switching Markov chain (which is νϵ alone) is obtained in Theorem 5.1 in He
et al. [15]. The rate function, which is also expressed in terms of an H-functional, coincides with
the rate function in our LDP for νϵ (Corollary 3.3) when the transition intensity matrix is time-
homogeneous. However, focusing on obtaining the LDP for the Markov-modulated diffusion
process together with the background process, our aim and approach in this paper are entirely
different from theirs.

The large-deviations analysis for stochastic processes with Markov-modulation is a currently
active research field. Besides the previously mentioned papers of He et al. [15] and He and
Yin [13], we list a few more. Guillin [11] proved the averaging principle (moderate deviations)
of Eq. (1) where X ϵt is an exponentially ergodic Markov process and b, σ are bounded functions.
He and Yin [14] studied the moderate-deviations behavior of Mϵ

t in Eq. (1), where σ ≡ 0
and X ϵt is a non-homogeneous Markov chain with two time-scales. Lasry and Lions [20]
and Fournié et al. [8] considered large deviations for the hitting times of Markov-modulated
diffusion processes with rapid switching. Other recent applications of large deviations are to
transportation–information inequalities for Markov processes, see [12,10]. The latter two are
rather remote from the problems investigated in the present paper that, unlike the cited references,
originate with Markov-modulation.

Interestingly, the present paper relates to our previous work [17]. For ease ignoring the initial
position, we there considered the Markov-modulated diffusion M̌ϵ

t described by

M̌ϵ
t =

 t

0
b(X ϵs , M̌ϵ

s )ds +

 t

0
σ(X ϵs , M̌ϵ

s )dBs .

In the regime ϵ → 0 the solutions of the stochastic differential equation converge weakly to a
(non-modulated) diffusion M̌t satisfying, with π denoting the stationary distribution of X ϵt (and
hence also of X t ),

M̌t =

 t

0

d
i=1

b(i, M̌s)π(i)ds +

 t

0


d

i=1

σ 2(i, M̌s)π(i)

1/2

dBs .

This result shows that, when the background chain switches rapidly, it is hard to distinguish from
observed data a Markov-modulated diffusion process from an ‘ordinary’ diffusion. The work in
the present paper, in contrast, indicates that no such property carries over to the large deviations.
The impact of a fast switching background chain does appear in the small noise asymptotics, as
shown in the LDPs in this paper.

We now describe the organization of our paper. The structure of the paper is as follows. In
Section 2, we introduce some preliminary results, definitions, and notation. In Section 3, we state
the paper’s main result and explain the steps of its proof. In Section 4, exponential tightness of
(Mϵ, νϵ) is verified. We identify a dense subset of CT × MT in Section 5, and explore regularity
properties of the rate function on it. The upper bound and lower bound of the local LDP for
(Mϵ, νϵ) are proved in Sections 6 and 7, respectively. Section 8 is devoted to conclusions and
discusses a number of possible extensions and alternatives. We present a number of technical
lemmas in the Appendix.
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2. Preliminaries

In this section we first provide the definitions of the LDP, exponential tightness and the local
LDP, and state a set of related theorems that are relevant in the context of the paper. Let X
throughout denote a Polish space with Borel σ -algebra B(X) and a metric ρ.

Definition 2.1 (Varadhan [29]). A family of probability measures Pϵ on (X,B(X)) is said to
obey the LDP with a rate function I (·) if there exists a function I (·) : X → [0,∞] satisfying:

(1) There exists x ∈ X such that I (x) < ∞; I is lower semicontinuous; for every c < ∞ the set
{x : I (x) 6 c} is a compact set in X.

(2) For every closed set F ⊂ X, lim supϵ→0 ϵ log Pϵ(F) 6 − infx∈F I (x).
(3) For every open set O ⊂ X, lim infϵ→0 ϵ log Pϵ(O) > − infx∈O I (x).

Definition 2.2 (Den Hollander [5], Puhalskii [27]). A family of probability measures Pϵ on
(X,B(X)) is said to be exponentially tight, if for every L < ∞, there exists a compact set
KL ⊂ X such that

lim sup
ϵ→0

ϵ log Pϵ(X \ KL) 6 −L .

Definition 2.3 (Puhalskii [27], Liptser and Puhalskii [21]). A family of probability measures Pϵ
on (X,B(X)) is said to obey the local LDP with a rate function I (·) if for every x ∈ X

lim sup
δ→0

lim sup
ϵ→0

ϵ log Pϵ({y ∈ X : ρ(x, y) 6 δ}) 6 −I (x), (3)

lim inf
δ→0

lim inf
ϵ→0

ϵ log Pϵ({y ∈ X : ρ(x, y) 6 δ}) > −I (x). (4)

Since X is a Polish space, Definition 2.1(1) implies exponential tightness. Also,
Definition 2.1(2)–(3) guarantee that Pϵ satisfies the local LDP. Actually, the converse is also
valid and is the key to prove our main result.

Theorem 2.4 (Puhalskii [27], Liptser and Puhalskii [21]). If a family of probability measures
Pϵ on (X,B(X)) is exponentially tight and obeys the local LDP with a rate function I , then it
obeys the LDP with the rate function I .

The following lemma, which corresponds to Lemma 1.4 in Borovkov and Mogulskiı̆ [3],
shows that a local LDP on a dense subset of X is enough for the validation of the local LDP on
X, provided the rate function possesses a regularity property.

Lemma 2.5. (i) If (3) is fulfilled for all x̃ ∈ X̃, where X̃ is dense in X and function I (x) is
lower semi-continuous, then it holds for all x ∈ X.

(ii) If for every x ∈ X with I (x) < ∞ there exists a sequence x̃n ∈ X̃ converging to x and
I (x̃n) → I (x), then the fulfillment of (4) for x̃ ∈ X̃ implies the same for all x ∈ X.

Next we impose some assumptions on the stochastic differential equation (1), as was defined
in the introduction. It is noted that (A.1) (‘Lipschitz continuity’) implies (A.2) (‘linear growth’);
we chose to include (A.2) as well, however, for ease reference in later sections.
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(A.1) Lipschitz continuity: there is a positive constant K such that

|b(i, x)− b(i, y)| + |σ(i, x)− σ(i, y)| 6 K |x − y|, ∀i ∈ S, x, y ∈ R.

(A.2) Linear growth: there exists a positive constant K (which might be different from the K
used in (A.1)) such that

|b(i, x)| + |σ(i, x)| 6 K (1 + |x |), ∀i ∈ S, x ∈ R.

(A.3) Independence: the Markov chain X ϵt is independent of the Brownian motion Bt for all ϵ.
(A.4) Irreducibility: the off-diagonal entries of the transition intensity matrix Q are strictly

positive. Hence, the Markov chain X ϵt is irreducible for all ϵ and has an invariant
probability measure π = (π(1), . . . , π(d)).

Finally, we introduce some extra notation and function spaces. For an arbitrary stochastic
process or a function Yt , we denote the running maximum process by Y ∗

t := sups6t |Ys |. For a
semimartingale Yt such that Y0 = 0, its stochastic exponential is defined as a semimartingale
E (Y )t which is the unique strong solution to

E (Y )t = 1 +

 t

0
E (Y )s−dYs .

We denote HT the Cameron–Martin space of functions ϕ ∈ CT such that ϕ(t) =
 t

0 ϕ
′(s)ds and

ϕ′ is square-integrable on [0, T ]. We call ϕ′ the derivative of ϕ.

3. Main results

We first introduce the definitions of the rate functions involved in the main result. The rate
function corresponding to νϵ is defined as

ĨT (ν) :=

 T

0
sup
u∈U


−

d
i=1

(Qu)(i)

u(i)
Kν(s, i)


ds, ν ∈ MT , (5)

where we recall the notation (Qu)(i) =
d

j=1 Qi j u( j), for i ∈ S, and U denotes the set of

d-dimensional component-wise strictly positive vectors. Note that ĨT (ν) can be seen as a time
varying variation on the usual rate function (implicitly used in Lemma A.2) for large deviation
results for Markov chains, see [5, Theorem IV.14].

We now define the rate function corresponding to Mϵ . For any (ϕ, ν) ∈ CT × MT , we define

IT (ϕ, ν) :=


1
2

 T

0

[ϕ′
t − b̂t (ν, ϕt )]

2

σ̂ 2
t (ν, ϕt )

dt if ϕ ∈ HT ,

∞ otherwise

(6)

where

b̂t (ν, x) :=

d
i=1

b(i, x)Kν(t, i), σ̂t (ν, x) :=


d

i=1

σ 2(i, x)Kν(t, i)

1/2

.

In the above formulae, we follow the conventions that 0/0 = 0 and n/0 = ∞, for all
n > 0. When we fix a time T , (Mϵ, νϵ) is understood as a joint process restricted on [0, T ].
Let P ◦ (Mϵ, νϵ)−1 denote P((Mϵ, νϵ) ∈ ·), which is a family of probability measures on
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(CT ×MT ,B(CT ×MT )). Also, P◦(Mϵ)−1 and P◦(νϵ)−1 are families of probability measures
on (CT ,B(CT )) and (MT ,B(MT )) respectively. The following theorem is our main result
which states the joint sample-path LDP of (Mϵ, νϵ) on [0, T ], as ϵ → 0.

Theorem 3.1. For every T > 0, the family P◦(Mϵ, νϵ)−1 obeys the LDP in (CT ×MT , ρT ×dT )

with the rate function

LT (ϕ, ν) = IT (ϕ, ν)+ ĨT (ν).

Proof. The proof relies on applying Theorem 2.4. We first need to prove the exponential tightness
of P ◦ (Mϵ, νϵ)−1 on (CT × MT ,B(CT × MT )), i.e., for every L < ∞, there exists a compact
set KL ⊂ CT × MT such that

lim sup
ϵ→0

ϵ log P

(Mϵ, νϵ) ∈ CT × MT \ KL


6 −L .

It is obvious that P ◦ (Mϵ, νϵ)−1 is exponentially tight if so are P ◦ (Mϵ)−1 and P ◦ (νϵ)−1.
As we mentioned earlier, MT is a subset of C[0,T ](Rd). For any ν ∈ MT , its derivative
Kν(s, i) is bounded by 1. Then all ν ∈ MT have the same Lipschitz constant, and hence MT
is equicontinuous. It is easily seen that MT is bounded and closed. Then the Arzelà–Ascoli
theorem implies that MT is compact. The exponential tightness of P ◦ (νϵ)−1 is satisfied since
we can take KL = MT . Exponential tightness of P ◦ (Mϵ)−1 is verified in Proposition 4.3.

Secondly, we proceed to prove that P◦ (Mϵ, νϵ)−1 obeys the local LDP with the rate function
LT (ϕ, ν). That is, for every (ϕ, ν) ∈ CT × MT , we need to obtain the upper bound

lim sup
δ→0

lim sup
ϵ→0

ϵ log P(ρT (M
ϵ, ϕ)+ dT (ν

ϵ, ν) 6 δ) 6 −LT (ϕ, ν),

and the lower bound

lim inf
δ→0

lim inf
ϵ→0

ϵ log P(ρT (M
ϵ, ϕ)+ dT (ν

ϵ, ν) 6 δ) > −LT (ϕ, ν).

The core of the proof is proving the local LDP on a dense subset of CT × MT . The upper
bound is validated in Proposition 6.4. The lower bound is first proved in Proposition 7.3 given
the condition infi,x σ

2(i, x) > 0. Then the condition is lifted in Proposition 7.5 by a perturbation
argument. �

The LDP for P ◦ (Mϵ)−1 only (rather than for P ◦ (Mϵ, νϵ)−1) is then derived from
Theorem 3.1 by the contraction principle in Dembo and Zeitouni [4]. We follow the convention
that inf(∅) = ∞.

Corollary 3.2. The family P ◦ (Mϵ)−1 obeys the LDP with the rate function infν∈MT LT (ϕ, ν).

At an intuitive level, ĨT (ν) can be interpreted as the ‘cost’ of forcing νϵ to behave like ν on
[0, T ]. The other term IT (ϕ, ν), can be seen as the ‘cost’ of the sample paths of Mϵ being close
to ϕ conditional on νϵ behaving like ν on [0, T ]. Then infν∈M LT (ϕ, ν) indicates the minimal
‘cost’ of the sample paths of Mϵ being close to ϕ on [0, T ].

Suppose F is a closed or an open subset of CT . We can also interpret Corollary 3.2 as the
concentration of the probability P ◦ (Mϵ)−1(F), which is the set of sample paths of Mϵ , on the
‘most likely path’ arg infϕ∈F (infν∈MT [IT (ϕ, ν)+ ĨT (ν)]). So there are two sources contributing
to the large deviations behavior of Mϵ : IT (ϕ, ν) represents the contribution resulting from the



1792 G. Huang et al. / Stochastic Processes and their Applications 126 (2016) 1785–1818

small noise, and ĨT (ν) represents the one from the rapid switching of the modulating Markov
chain.

Again by the contraction principle, P ◦ (νϵ)−1 obeys the LDP in (MT , dT ) with the rate
function infϕ∈CT IT (ϕ, ν) + ĨT (ν). Since there exists a ϕ ∈ HT such that ϕ′

t = b̂t (ν, ϕt ) for all
t ∈ [0, T ] and all ν ∈ MT , it immediately follows that infϕ∈CT IT (ϕ, ν) = 0. Hence, we have
the following corollary.

Corollary 3.3. The family P ◦ (νϵ)−1 obeys the LDP in (MT , dT ) with the rate function ĨT (ν).

4. Exponential tightness

We show the exponential tightness of P ◦ (Mϵ)−1 by Aldous–Pukhalskii-type sufficient con-
ditions, as dealt with in e.g. Aldous [1], Liptser and Pukhalskii [22]. The following criterion for
exponential tightness in CT , as well as an auxiliary lemma, are adapted from Theorem 3.1 and
Lemma 3.1 in Liptser and Pukhalskii [22] (which consider càdlàg processes with jumps) to our
setting of continuous processes. Let ΓT (Ft ) denote the family of stopping times adapted to Ft
taking values in [0, T ].

Theorem 4.1. Let, for each ϵ > 0, Y ϵ : Ω × [0, T ] → R be an {Ft }t6T -adapted continuous
process, so with paths in CT . If

(i)

lim
K ′→∞

lim sup
ϵ→0

ϵ log P

Y ϵ∗T > K ′


= −∞,

(ii)

lim
δ→0

lim sup
ϵ→0

ϵ log sup
τ∈ΓT (Ft )

P


sup
t6δ

|Y ϵτ+t − Y ϵτ | > η


= −∞, ∀η > 0,

then P ◦ (Y ϵ)−1 is exponentially tight.

Lemma 4.2. Let Y = (Yt )t>0 be a continuous semimartingale with Y0 = 0. Let D denote
the part corresponding to a predictable process of locally bounded variation, and V the part
corresponding to the quadratic variation of the local martingale. Assume that for T > 0 there
exists a convex function H(λ), λ ∈ R with H(0) = 0 and such that for all λ ∈ R and t 6 T

λDt + λ2Vt/2 6 t H(λξ), a.s.,

where ξ is a nonnegative random variable defined on the same probability space as Y . Then, for
all c > 0 and η > 0,

P(Y ∗

T > η) 6 P(ξ > c)+ exp

− sup
λ∈R

[λη − T H(λc)]


.

We are now ready to prove the exponential tightness claim. The technique borrows elements
from Liptser [21].

Proposition 4.3. For every T > 0, the family P◦(Mϵ)−1 is exponentially tight on (CT ,B(CT )).
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Proof. Firstly, we verify the condition (i) of Theorem 4.1 for the process Mϵ∗
T . For any T > 0,

evidently,

Mϵ∗
T 6

 T

0
|b(X ϵs ,Mϵ

s )|ds + sup
t6T

√ϵ  t

0
σ(X ϵs ,Mϵ

s )dBs

 , a.s.

We denote Cϵ
t :=

√
ϵ
 t

0 σ(X
ϵ
s ,Mϵ

s )dBs . By (A.2),

Mϵ∗
T 6 K

 T

0
(1 + Mϵ∗

s )ds + Cϵ∗
T = K T + Cϵ∗

T + K
 T

0
Mϵ∗

s ds, a.s.

Since K T + Cϵ∗
T is nonnegative and non-decreasing in T , Gronwall’s inequality implies

Mϵ∗
T 6 eK T K T + Cϵ∗

T


, a.s. (7)

Now define jK ′ := K ′ exp(−K T )− K T . Then (7) entails that for sufficiently large K ′ such that
jK ′ > 0,

P(Mϵ∗
T > K ′) 6 P(Cϵ∗

T > jK ′) 6 j−1/ϵ
K ′ E


(Cϵ∗

T )
1/ϵ

,

using Chebyshev’s inequality. We thus conclude

ϵ log P(Mϵ∗
T > K ′) 6 − log jK ′ + ϵ log E


(Cϵ∗

T )
1/ϵ

. (8)

We assume that 1/ϵ > 2 in the rest of the proof (justified by the fact that we consider the
limit ϵ → 0). Since Cϵ

t is a local martingale, the process |Cϵ
t |

1/ϵ has a unique Doob–Meyer
decomposition; let Čϵ

t denote the unique predictable increasing process in this decomposition.
Applying a local martingale maximal inequality (see e.g. Liptser and Shiryaev [24, Thm. 1.9.2])
to Cϵ

t , we have for the running maximum process that

E

(Cϵ∗

T )
1/ϵ


6


1

1 − ϵ

1/ϵ

E

Čϵ

T


. (9)

In order to obtain an explicit expression for Čϵ
t , we apply Itô’s formula to |Cϵ

t |
1/ϵ . This means

that, for any t ∈ [0, T ],

|Cϵ
t |

1/ϵ
=

1
√
ϵ

 t

0
|Cϵ

s |
1
ϵ
−1sign(Cϵ

s )σ (X
ϵ
s ,Mϵ

s )dBs +
1 − ϵ

2ϵ

 t

0
|Cϵ

s |
1
ϵ
−2σ 2(X ϵs ,Mϵ

s )ds.

We notice that the first part is a local martingale and the second part is a predictable increasing
process. As a consequence,

Čϵ
T =

1 − ϵ

2ϵ

 T

0
|Cϵ

s |
1
ϵ
−2σ 2(X ϵs ,Mϵ

s )ds. (10)

Invoking (A.2) again, we have that σ 2(X ϵs ,Mϵ
s ) 6 K 2(1 + Mϵ∗

s )
2. Since (7) remains valid when

replacing T by s, for any s 6 T , we find

|Cϵ
s |

1
ϵ
−2σ 2(X ϵs ,Mϵ

s ) 6 (Cϵ∗
s )

1
ϵ
−2 K 2


1 + eK s(K s + Cϵ∗

s )
2

6 (Cϵ∗
s )

1
ϵ
−2 K 2


1 + eK T (K T + Cϵ∗

s )
2

6 (Cϵ∗
s )

1
ϵ
−2 K 2

[2(1 + eK T K T )2 + 2e2K T (Cϵ∗
s )

2
].
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Let LT,K = 2K 2 max

(1 + eK T K T )2, e2K T


. Then

|Cϵ
s |

1
ϵ
−2σ 2(X ϵs ,Mϵ

s ) 6 (Cϵ∗
s )

1
ϵ
−2LT,K


1 + (Cϵ∗

s )
2


6 L ′

T,K


1 + (Cϵ∗

s )
1/ϵ

,

where L ≡ L ′

T,K is a positive constant not depending on K ′ (nor ϵ). We plug (10) and the above
estimate into (9), so as to obtain

E[(Cϵ∗
T )

1/ϵ
] 6


1

1 − ϵ

1/ϵ

E


1 − ϵ

2ϵ

 T

0
|Cϵ

s |
1
ϵ
−2σ 2(X ϵs ,Mϵ

s )ds


6


1

1 − ϵ

 1
ϵ
−1 L

2ϵ


T +

 T

0
E

(Cϵ∗

s )
1/ϵ


ds


6


1

1 − ϵ

 1
ϵ
−1 LT

2ϵ
exp


1

1 − ϵ

 1
ϵ
−1 LT

2ϵ


,

the last inequality following from Gronwall’s inequality. Now observe that (1 − ϵ)1−1/ϵ is
decreasing on ϵ ∈ [0, 1

2 ), with limiting value e as ϵ → 0. As a result, we have the following
upper bound on the exponential decay rate of E[(Cϵ∗

T )
1/ϵ

]:

lim sup
ϵ→0

ϵ log E

(Cϵ∗

T )
1/ϵ


6 lim sup
ϵ→0


ϵ log


1

1 − ϵ

 1
ϵ
−1

+ ϵ log
LT

2ϵ
+


1

1 − ϵ

 1
ϵ
−1 LT

2



6
eLT

2
< ∞.

Hence, by (8), for all T > 0, condition (i) of Theorem 4.1 follows for the process Mϵ∗
T :

lim
K ′→∞

lim sup
ϵ→0

ϵ log P

Mϵ∗

T > K ′


= −∞. (11)

Secondly, we verify condition (ii) of Theorem 4.1. To this end, note that for arbitrary T > 0,
δ 6 1, and stopping time τ ∈ ΓT (Ft ),

P


sup
t6δ

|Mϵ
τ+t − Mϵ

τ | > η


6 P


sup
t6δ
(Mϵ

τ+t − Mϵ
τ ) > η


+ P


sup
t6δ
(Mϵ

τ − Mϵ
τ+t ) > η


. (12)

We can see that Mϵ
τ+t − Mϵ

τ is a semimartingale with respect to the filtration {Fτ+t }t>0. For any
τ ∈ ΓT (Ft ), we denote

Dϵ
t :=

 τ+t

τ

b(X ϵs ,Mϵ
s )ds, V ϵ

t := ϵ

 τ+t

τ

σ 2(X ϵs ,Mϵ
s )ds.

By (A.2), we have, for all λ ∈ R, t 6 δ 6 1 and τ 6 T ,

λDϵ
t +

λ2

2
V ϵ

t 6 |λ|K (1 + Mϵ∗
T +1)t +

λ2ϵ

2
K 2(1 + Mϵ∗

T +1)
2t, a.s.

We define

H(λ) := |λ| +
λ2ϵ

2
, ξ := K (1 + Mϵ∗

T +1).

Then Mϵ
τ+t − Mϵ

τ satisfies the conditions of Lemma 4.2 and, for all c > 0, η > 0,

P


sup
t6δ
(Mϵ

τ+t − Mϵ
τ ) > η


6 P(ξ > c)+ exp


− sup
λ∈R

[λη − δH(λc)]


.
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Since P(ξ > c) = P(Mϵ∗
T +1 > c/K − 1), it follows that

P


sup
t6δ
(Mϵ

τ+t − Mϵ
τ ) > η


6 2 max


P


Mϵ∗
T +1 >

c

K
− 1


, exp


− sup
λ∈R

[λη − δH(λc)]


.

The supremum of λη − δH(λc) can be explicitly evaluated:

sup
λ∈R

[λη − δH(λc)] = sup
λ∈R


λη − δ|λ|c − δ

λ2c2ϵ

2


=

1
ϵ

sup
λ>0


(ηϵ − δcϵ)λ−

δc2ϵ2

2
λ2


=
(η − δc)2

2ϵδc2 .

As a consequence, for all positive c,

lim
δ→0

lim sup
ϵ→0

ϵ log exp

− sup
λ∈R

[λη − δH(λc)]


= lim
δ→0

−
(η − δc)2

2δc2 = −∞.

It is concluded that for any τ ∈ ΓT (Ft ) and c > 0,

lim
δ→0

lim sup
ϵ→0

ϵ log P


sup
t6δ
(Mϵ

τ+t − Mϵ
τ ) > η


6 lim sup

ϵ→0
ϵ log P


Mϵ∗

T +1 >
c

K
− 1


.

By (11), we know

lim
c→∞

lim sup
ϵ→0

ϵ log P


Mϵ∗
T +1 >

c

K
− 1


= −∞.

It implies

lim
δ→0

lim sup
ϵ→0

ϵ log sup
τ∈ΓT (Ft )

P


sup
t6δ
(Mϵ

τ+t − Mϵ
τ ) > η


6 inf

c>0
lim sup
ϵ→0

ϵ log P


Mϵ∗
T +1 >

c

K
− 1


= −∞.

Moreover, the claim

lim
δ→0

lim sup
ϵ→0

ϵ log sup
τ∈ΓT (Ft )

P


sup
t6δ
(Mϵ

τ − Mϵ
τ+t ) > η


= −∞

is proved in the same way. Thus the desired claim follows from (12). �

5. Auxiliary results

We first identify a dense subset of CT × MT which substantially simplifies the proof of the
local LDP in the next two sections. Let M+

T be the subset of MT such that Kν(s, i) > 0,∀s ∈

[0, T ], i ∈ S, and let M++

T be the subset of M+

T such that Kν(·, i) ∈ C∞

[0,T ]
,∀i ∈ S.

Lemma 5.1. M++

T is dense in MT .
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Proof. We prove the claim in two steps. Firstly, we show that M++

T is dense in M+

T . We begin
by introducing the standard mollifier J (x) on R, i.e.,

J (x) :=

k exp


1

|x |2 − 1


if |x | < 1,

0 if |x | > 1,

where k > 0 is selected so that


R J (x)dx = 1. For each η > 0, we define Jη(x) := η−1 J (x/η).
For any ν in M+

T , we extend the domain of Kν(·, i) to (−1, T + 1), as follows:

Kν(s, i) :=

Kν(s, i) if s ∈ [0, T ],

Kν(0, i) if s ∈ (−1, 0),
Kν(1, i) if s ∈ (T, T + 1).

Since Kν(·, i) is integrable on (−1, T + 1) for each i ∈ S, we can define its mollification as

K η
ν (s, i) =

 η

−η

Jη(y)Kν(s − y, i)dy, for s ∈ (−1 + η, T + 1 − η), η < 1.

By Theorem C.6 in Evans [7], K η
ν (·, i) is smooth on (−1+η, T +1−η) and K η

ν (·, i) → Kν(·, i)
almost everywhere as η → 0.

Next we proceed to show that νη with the kernel K η
ν (s, i) is an element of M++

T . It is clear
that K η

ν (·, i) ∈ C∞

[0,T ]
when restricted to [0, T ], and in addition we have K η

ν (s, i) > 0, for all

s ∈ [0, T ] and i ∈ S. As a consequence, we only need to prove that
d

i=1 K η
ν (s, i) = 1, for

all s ∈ [0, T ]. For any s ∈ [0, T ] and y ∈ [−η, η], it holds that
d

i=1 Kν(s − y, i) = 1 since
s − y ∈ (−1, T + 1). We thus have that

d
i=1

K η
ν (s, i) =

 η

−η

Jη(y)
d

i=1

Kν(s − y, i)dy =

 η

−η

Jη(y)dy = 1.

For any t 6 T, i ∈ S, due to the fact that K η
ν (·, i) → Kν(·, i) on (0, t) almost everywhere as

η → 0 and K η
ν (s, i) 6 1, it holds that t

0
K η
ν (s, i)ds →

 t

0
Kν(s, i)ds, as η → 0,

appealing to the dominated convergence theorem. Since
 t

0 K η
ν (s, i)ds is increasing in t , t

0 Kν(s, i)ds is continuous in t and d is finite, we obtain the following uniform convergence:

dT (ν
η, ν) = sup

t∈[0,T ],i∈S

 t

0
K η
ν (s, i)ds −

 t

0
Kν(s, i)ds

 → 0, as η → 0,

using Result 1.1.21 in Jacod [18].
Secondly, we prove that M+

T is dense in MT . Noticing that Kν(s, i) can be 0 for some i, s, we
define (for any ν ∈ M) an νη ∈ M+

T through

K η
ν (s, i) :=

Kν(s, i)+ η

1 + ηd
,

η > 0, for all i, s. As is directly verified, dT (ν
η, ν) 6 T (η + ηd)/(1 + ηd). Then the desired

result holds. Consequently, M++

T is dense in MT by the triangle inequality. �

We then present a regularity property of the rate function ĨT (ν) on M++

T .
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Lemma 5.2. Fix s ∈ [0, T ] and ν ∈ M++

T . Then there is an optimizer u∗(s, ·) of

inf
u∈U


d

i=1

(Qu)(i)

u(i)
Kν(s, i)


such that u∗(·, i) ∈ C∞

[0,T ]
, for all i ∈ S, and u∗

∈ U.

Proof. As obviously

d
i=1

(Qu)(i)

u(i)
Kν(s, i) =

d
i=1

Qi i Kν(s, i)+

d
i=1

d
j≠i

Qi j u( j)

u(i)
Kν(s, i),

the optimization problem essentially reduces to

inf
u∈U

 d
i=1

d
j≠i

Qi j u( j)

u(i)
Kν(s, i)

 .
We let r j i := u( j)/u(i), for i ≠ j . Since r j i = 1/ri j , the optimization problem can be written
as a minimization over d(d − 1)/2 variables:

inf
r j i>0

d
i=1

i−1
j=1


Qi jr j i Kν(s, i)+ Q j ir

−1
j i Kν(s, j)


.

Observe that for any i, j, k the equality ri jr jk = rik needs to hold, which corresponds to
ψ(d) := (d − 1)(d − 2)/2 constraints. We then perform the change of variables x j i := log r j i ,
and denote by X = (x21, . . . , xd(d−1))

T the d(d − 1)/2 variables. Letting Kν(s) = (Kν(s, 1),
. . . , Kν(s, d))T, we transform the above optimization problem into

inf
X

f (Kν(s),X), where f (Kν(s),X) :=

d
i=1

i−1
j=1


Qi j e

x j i Kν(s, i)+ Q j i e
−x j i Kν(s, j)


,

with (d − 1)(d − 2)/2 additional constraints to be imposed.
The gradient vector of f with respect to X is

DX f =


∂ f

∂x21
, . . . ,

∂ f

∂xd(d−1)


,

and the corresponding Hessian matrix D2
X f is the diagonal matrix which has entries of the

form Qi j ex j i Kν(s, i) + Q j i e−x j i Kν(s, j) on its diagonal. The idea is now to split the vector
X into X0 = (x21, . . . , xd1)

T and X1 (where the latter vector corresponds with the remaining
ψ(d) variables). Due to the constraints, we have X1 = LX0 where L is a matrix of dimension
ψ(d) × (d − 1). The next step is to include the constraints into the optimization equation f . It
yields the following new optimization problem, on which no additional constraints need to be
imposed anymore:

inf
X0

f̂ (Kν(s),X0), where f̂ (Kν(s),X0) = f (Kν(s), (X0,LX0)).
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Observe that f is a globally strictly convex function of X on a convex domain, and conse-
quently f̂ is a strictly convex function of X0. Hence, there is a unique minimizer X∗

0(s) =

(x∗

21(s), . . . , x∗

d1(s))
T for any s ∈ [0, T ]. Since we have that both Kν(s, i) > 0 and Qi j > 0

for i ≠ j , any entry of X∗

0(s) cannot be −∞ or ∞. We thus conclude that X∗

0(s) ∈ Rd−1.
Let I be the (d − 1)-dimensional identity matrix. Then we define

f̃ (Kν(s),X0) := DX0 f̂ (Kν(s),X0) = DX f (Kν(s), (X0,LX0))


I
L


,

which is a smooth function on Rd
× Rd−1 such that f̃ (Kν(s),X∗

0(s)) = 0. The gradient matrix
of f̃ with respect to X0 evaluated in X∗

0(s) is

G := D2
X0

f̃ (Kν(s),X∗

0(s)) = (ILT)D2
X f (Kν(s), (X∗

0(s),LX∗

0(s)))


I
L


.

Let |G| denote the determinant of G. Since H is a positive-definite diagonal matrix and L is of
full rank, we conclude that |G| ≠ 0, for all s ∈ (0, T ).

Hence, the implicit function theorem (cf. Theorem C.8 in Evans [7]) implies that X∗

0(s)
is a smooth function of Kν(s): since Kν(·, i) ∈ C∞

[0,T ]
for all i ∈ S, we conclude that

X∗

0(s) ∈ C∞

[0,T ]
(Rd−1). It also follows that the corresponding minimizer in terms of the variables

ri j , say (r∗

21(s), . . . , r
∗

d1(s)), is in C∞

[0,T ]
((0,∞)d−1). Recalling that r j i = u( j)/u(i), we set

(u∗(s, 1), u∗(s, 2), . . . , u∗(s, d)) ≡ (1, r∗

21(s), . . . , r
∗

d1(s))

on [0, T ]. Then (u∗(s, 1), . . . , u∗(s, d)) is an optimizer corresponding to

inf
u∈U


d

i=1

(Qu)(i)

u(i)
Kν(s, i)


,

and u∗(·, i) ∈ C∞

[0,T ]
for all i ∈ S. It is easily seen that u∗(s, i) > 0. Then infs∈[0,T ],i∈S u∗(s, i) >

0 by continuity of u∗ on [0, T ]. Hence, u∗
∈ U. �

The following continuity property of the rate functions will be used in proving the upper and
lower bounds.

Lemma 5.3. Let νη, ν ∈ MT with kernels K η
ν and Kν such that K η

ν (·, i) → Kν(·, i) a.e. as
η → 0 on [0, T ] for each i ∈ S. Then

(i) ĨT (ν
η) → ĨT (ν) as η → 0;

(ii) IT (ϕ, ν
η) → IT (ϕ, ν) as η → 0, ∀ϕ ∈ HT , if infi,x σ

2(i, x) > 0.

Proof. (i) Let ρ be a d-dimensional vector such that
d

i=1 ρ(i) = 1 and ρ(i) > 0. By Lemma
4.22 in den Hollander [5], the map ℓ defined by

ℓ(ρ) := − inf
u∈U


d

i=1

(Qu)(i)

u(i)
ρ(i)


is continuous in ρ and positive. Moreover, for all ρ, realizing that the Qi j are nonnegative for
i ≠ j ,

− inf
u∈U


d

i=1

(Qu)(i)

u(i)
ρ(i)


6 −

d
i=1

Qi i
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as a consequence of

− inf
u∈U


d

i=1

(Qu)(i)

u(i)
ρ(i)


= −

d
i=1

Qi iρ(i)− inf
u∈U

 d
i=1

d
j≠i

Qi j u( j)

u(i)
ρ(i)

 .
By continuity of the map ℓ above,

sup
u∈U


−

d
i=1

(Qu)(i)

u(i)
K η
ν (s, i)


→ sup

u∈U


−

d
i=1

(Qu)(i)

u(i)
Kν(s, i)


,

as η → 0, almost everywhere on [0, T ]. Also,

− inf
u∈U


d

i=1

(Qu)(i)

u(i)
K η
ν (s, i)


6 −

d
i=1

Qi i

for all s. Then the desired result follows directly by applying the dominated convergence theorem.
(ii) When infi,x σ

2(i, x) > 0, it is easily seen by continuity that

[ϕ′
t − b̂t (ν

η, ϕt )]
2

σ̂ 2
t (ν

η, ϕt )
→

[ϕ′
t − b̂t (ν, ϕt )]

2

σ̂ 2
t (ν, ϕt )

a.e. as η → 0. Let σ 2 denote infi,x σ
2(i, x). For every ν ∈ MT , we have

[ϕ′
t − b̂t (ν, ϕt )]

2

σ̂ 2
t (ν, ϕt )

6

|ϕ′
t |

2
+


d

i=1
|b(i, ϕt )|

2

+ 2|ϕ′
t |


d

i=1
|b(i, ϕt )|


σ 2 .

Since ϕ is absolutely continuous and b(i, x) is Lipschitz continuous in x ,
d

i=1 |b(i, ϕt )| < b <
∞ on [0, T ]. Hence, [ϕ′

t − b̂t (ν, ϕt )]
2/σ̂ 2

t (ν, ϕt ) 6 (|ϕ′
t | + b)2/σ 2. Since ϕ′ is square-integrable

on [0, T ], IT (ϕ, ν
η) → IT (ϕ, ν) as η → 0 by again applying the dominated convergence

theorem. �

6. Upper bound for the local LDP

This section considers the upper bound in the local LDP, whereas the next section concentrates
on the corresponding lower bound. Recall that our aim is to establish

lim sup
δ→0

lim sup
ϵ→0

ϵ log P(ρT (M
ϵ, ϕ)+ dT (ν

ϵ, ν) 6 δ) 6 −LT (ϕ, ν),

with LT (ϕ, ν) as defined in Section 2. Our approach, which has a similar structure as the one
used in Liptser in [21], finds an exponential (in ϵ, that is) upper bound on the probability
P(ρT (Mϵ, ϕ) + dT (ν

ϵ, ν) 6 δ) relying on the method of stochastic exponentials. As it turns
out, this bound should contain the rate function LT (ϕ, ν), as desired.

We start by introducing some additional notation. Let ST denote the space of all step functions
on [0, T ] of the form, for k ∈ N and real numbers λ0, . . . , λk ,

λ(t) = λ01{t=0}(t)+

k
i=0

λi 1(ti ,ti+1](t), 0 = t0 < · · · < tk+1 = T .
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For any ϕ ∈ CT , we introduce the following notation T

0
λ(s)dϕs :=

k
i=0

λi [ϕT ∧ti+1 − ϕT ∧ti ].

In the sequel we frequently use the process

N ϵ
t :=

1
√
ϵ

 t

0
λ(s)σ (X ϵs ,Mϵ

s )dBs, λ ∈ ST ,

which has the stochastic exponential

E (N ϵ)t = exp


N ϵ
t −

1
2
⟨N ϵ

⟩t


, where ⟨N ϵ

⟩t =
1
ϵ

 t

0
λ2(s)σ 2(X ϵs ,Mϵ

s )ds.

Next we introduce a stochastic exponential associated with the occupation measure νϵ .
Let U denote the space of functions on [0, T ] × S being continuously differentiable on
[0, T ] and infs∈[0,T ],i∈S u(s, i) > 0. We will follow the notational convention (Qϵu)(s, i) =d

j=1 Qϵ
i j u(s, j), for i ∈ S and u ∈ U.

For any u(·, ·) ∈ U,

N̂ ϵ
t = u(t, X ϵt )− u(0, X ϵ0)−

 t

0

∂

∂s
u(s, X ϵs )ds −

 t

0
(Qϵu)(s, X ϵs )ds

is a local martingale on [0, T ] due to Itô’s formula for finite state Markov chains. We define

Ñ ϵ
t :=

 t

0

1
u(s−, X ϵs−)

dN̂ ϵ
s .

Then

E (Ñ ϵ)t =
u(t, X ϵt )

u(0, X ϵ0)
exp


−

 t

0

∂
∂s u(s, X ϵs )+ (Qϵu)(s, X ϵs )

u(s, X ϵs )
ds


(13)

is the stochastic exponential of Ñ ϵ
t . Indeed,

dE (Ñ ϵ)t =
u(t, X ϵt )

u(0, X ϵ0)
exp


−

 t

0

∂
∂s u(s, X ϵs )+ (Qϵu)(s, X ϵs )

u(s, X ϵs )
ds



×


−

∂
∂t u(t, X ϵt )+ (Qϵu)(t, X ϵt )

u(t, X ϵt )
dt



+ exp


−

 t

0

∂
∂s u(s, X ϵs )+ (Qϵu)(s, X ϵs )

u(s, X ϵs )
ds


du(t, X ϵt )

u(0, X ϵ0)

=
E (Ñ ϵ)t−

u(t−, X ϵt−)


du(t, X ϵt )−

∂

∂t
u(t, X ϵt )dt − (Qϵu)(t, X t )dt


=

E (Ñ ϵ)t−

u(t−, X ϵt−)
dN̂ ϵ

t .

Since inft∈[0,T ],i∈S u(t, i) > 0, Ñ ϵ
t is a local martingale and its stochastic exponential E (Ñ ϵ)t

is also a local martingale by Theorem 1.4.61 in Jacod and Shiryaev [19]. Then E (Ñ ϵ)t is a
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martingale since it is bounded. We will use this martingale property when applying a change of
measure in the next section. The martingale E (Ñ ϵ)t is an extension of the exponential martingale
studied by Palmowski and Rolski in [25].

Lemma 6.1. E (Ñ ϵ)tE (N ϵ)t is a local martingale, and E[E (Ñ ϵ)tE (N ϵ)t ] 6 1.

Proof. By Protter [26, Thm. 2.38],

E (Ñ ϵ)tE (N
ϵ)t = E (Ñ ϵ

+ N ϵ
+ [Ñ ϵ, N ϵ

])t ,

where [Ñ ϵ, N ϵ
] denotes the quadratic covariation process. Since Ñ ϵ

t is a pure jump local
martingale and N ϵ

t is a continuous local martingale, [Ñ ϵ, N ϵ
] = 0. Then E (Ñ ϵ)tE (N ϵ)t is the

stochastic exponential of the local martingale Ñ ϵ
t +N ϵ

t and a local martingale too. Since a positive
local martingale is a supermartingale, E[E (Ñ ϵ)tE (N ϵ)t ] 6 E[E (Ñ ϵ)0E (N ϵ)0] = 1. �

The above lemma evidently implies that

E

1{ρT (Mϵ ,ϕ)+dT (ν

ϵ ,ν)6δ}E (Ñ
ϵ)T E (N ϵ)T


6 1.

In order to find an exponential upper bound on P(ρT (Mϵ, ϕ) + dT (ν
ϵ, ν) 6 δ), we derive non-

random exponential lower bounds on E (Ñ ϵ)T and E (N ϵ)T in case that both Mϵ is close to ϕ
and νϵ close to ν (i.e., on the set {ρT (Mϵ, ϕ) + dT (ν

ϵ, ν) 6 δ}). The next two lemmas present
the results; Lemma 6.2 focuses on E (N ϵ)T , whereas Lemma 6.3 covers E (Ñ ϵ)T .

Lemma 6.2. For every (ϕ, ν) ∈ CT × MT and every λ ∈ ST , δ > 0, there exists a positive
constant Kλ,ϕ,T not depending on ϵ or δ such that

E (N ϵ)T > exp


1
ϵ

 T

0
λ(s)dϕs −

 T

0
λ(s)b̂s(ν, ϕs)ds

−

 T

0

λ2(s)

2
σ̂ 2

s (ν, ϕs)ds


−
δ

ϵ
Kλ,ϕ,T


on the set {ρT (Mϵ, ϕ)+ dT (ν

ϵ, ν) 6 δ}.

Proof. It is first realized that, by (1), N ϵ
t can be rearranged as

N ϵ
t =

1
ϵ

 t

0
λ(s)dMϵ

s −

 t

0
λ(s)b(X ϵs ,Mϵ

s )ds


.

Then a straightforward computation yields that

N ϵ
T −

1
2
⟨N ϵ

⟩T =
1
ϵ

 T

0
λ(s)dMϵ

s −

 T

0
λ(s)b(X ϵs ,Mϵ

s )ds −

 T

0

λ2(s)

2
σ 2(X ϵs ,Mϵ

s )ds


=

1
ϵ

 T

0
λ(s)dMϵ

s −

 T

0
λ(s)dϕs


−

1
ϵ

 T

0
λ(s)b(X ϵs ,Mϵ

s )ds

−

 T

0
λ(s)b̂s(ν, ϕs)ds


−

1
ϵ

 T

0

λ2(s)

2
σ 2(X ϵs ,Mϵ

s )ds −

 T

0

λ2(s)

2
σ̂ 2

s (ν, ϕs)ds


+

1
ϵ

 T

0
λ(s)dϕs −

 T

0
λ(s)b̂s(ν, ϕs)ds −

 T

0

λ2(s)

2
σ̂ 2

s (ν, ϕs)ds


.
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As a consequence, we evidently have

N ϵ
T −

1
2
⟨N ϵ

⟩T >
1
ϵ

 T

0
λ(s)dϕs −

 T

0
λ(s)b̂s(ν, ϕs)ds −

 T

0

λ2(s)

2
σ̂ 2

s (ν, ϕs)ds


−

1
ϵ

 T

0
λ(s)dMϵ

s −

 T

0
λ(s)dϕs

− 1
ϵ

 T

0
λ(s)b(X ϵs ,Mϵ

s )ds

−

 T

0
λ(s)b̂s(ν, ϕs)ds


−

1
ϵ

 T

0

λ2(s)

2
σ 2(X ϵs ,Mϵ

s )ds −

 T

0

λ2(s)

2
σ̂ 2

s (ν, ϕs)ds

 a.s.

Hence, by repeated use of the triangle inequality, we find that N ϵ
T −

1
2 ⟨N ϵ

⟩T > ϵ−1Gϵ
T a.s.,

where Gϵ
T is given by T

0
λ(s)dϕs −

 T

0
λ(s)b̂s(ν, ϕs)ds −

 T

0

λ2(s)

2
σ̂ 2

s (ν, ϕs)ds


−

 T

0
λ(s)dMϵ

s −

 T

0
λ(s)dϕs


−

 T

0
λ(s)b(X ϵs ,Mϵ

s )− λ(s)b(X ϵs , ϕs)ds

−  T

0
λ(s)b(X ϵs , ϕs)− λ(s)b̂s(ν, ϕs)ds


−

 T

0

λ2(s)

2
σ 2(X ϵs ,Mϵ

s )−
λ2(s)

2
σ 2(X ϵs , ϕs)ds


−

 T

0

λ2(s)

2
σ 2(X ϵs , ϕs)−

λ2(s)

2
σ̂ 2

s (ν, ϕs)ds

 .
In the rest of the proof, all objects are considered on the set {ρT (Mϵ, ϕ)+dT (ν

ϵ, ν) 6 δ}; we
analyze all absolute values in the previous display separately. Let us start with considering the
first absolute value; we thus find that T

0
λ(s)dMϵ

s −

 T

0
λ(s)dϕs

 =

 k
j=1

λ j


Mϵ

T ∧t j+1
− ϕT ∧t j+1 − (Mϵ

T ∧t j
− ϕT ∧t j )


6 2kλ∗

T δ.

Now consider the second absolute value. The Lipschitz condition (A.1) implies that T

0
λ(s)b(X ϵs ,Mϵ

s )− λ(s)b(X ϵs , ϕs)ds

 6
 T

0
|λ(s)|K |Mϵ

s − ϕs |ds 6 λ∗

T δK T .

For the fourth one, (A.1) also entails that T

0

λ2(s)

2


σ 2(X ϵs ,Mϵ

s )− σ 2(X ϵs , ϕs)


ds

 6
λ2∗

T

2

 T

0
K δ|σ(X ϵs ,Mϵ

s )+ σ(X ϵs , ϕs)|ds.

Since ϕ is continuous on [0, T ], there exists a positive constant r such that ϕ∗

T 6 r − δ. It yields
that Mϵ∗

T 6 r on the set {ρT (Mϵ, ϕ)+ dT (ν
ϵ, ν) 6 δ}. By the linear growth condition (A.2) and

the above reasoning

|σ(X ϵs ,Mϵ
s )+ σ(X ϵs , ϕs)| 6 K (1 + |Mϵ

s |)+ K (1 + |ϕs |) 6 2K (1 + r).
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We conclude that T

0

λ2(s)

2


σ 2(X ϵs ,Mϵ

s )− σ 2(X ϵs , ϕs)


ds

 6 λ2∗

T δK 2(1 + r)T .

Then, concerning the third absolute value, T

0
λ(s)b(X ϵs , ϕs)− λ(s)b̂s(ν, ϕs)ds

 =

 k
j=0

 t j+1

t j

λ j [b(X
ϵ
s , ϕs)− b̂s(ν, ϕs)]ds


6

k
j=0


 t j+1

t j

λ j

d
i=1

b(i, ϕs)[1{Xϵs =i} − Kν(s, i)]ds


=

k
j=0


 t j+1

t j

d
i=1

f j (i, s)[1{Xϵs =i} − Kν(s, i)]ds


6

k
j=0

d
i=1


 t j+1

t j

f j (i, s)[1{Xϵs =i} − Kν(s, i)]ds


where f j (i, s) := λ j b(i, ϕs). Since b(i, ·) is Lipschitz continuous and ϕs is absolutely
continuous, f j (i, s) is of bounded variation. Then, by Lemma A.1,

sup
i∈S


 t j+1

t j

f j (i, s)[1{Xϵs =i} − Kν(s, i)]ds

 6 C jδ,

where C j is a constant. We thus conclude that T

0
λ(s)b(X ϵs , ϕs)− λ(s)b̂s(ν, ϕs)ds

 6
k

j=0

C jδd 6 Cδ.

A similar procedure yields for the last absolute value T

0

λ2(s)

2
σ 2(X ϵs , ϕs)−

λ2(s)

2
σ̂ 2

s (ν, ϕs)ds

 6 C ′δ.

Upon collecting these inequalities, we find

E (N ϵ)T > exp


1
ϵ

 T

0
λ(s)dϕs −

 T

0
λ(s)b̂s(ν, ϕs)ds

−

 T

0

λ2(s)

2
σ̂ 2

s (ν, ϕs)ds


−
δ

ϵ
Kλ,ϕ,T


,

where we denote

Kλ,ϕ,T := 2kλ∗

T + λ∗

T K T + λ2∗

T K 2(1 + r)T + C + C ′,

which is a positive constant not depending on δ or ϵ. �

Lemma 6.3. For every ν ∈ MT , every u ∈ U and every γ, δ > 0, there exist positive constants
Cu , C ′

u , Ku and K Q,u not depending on ϵ or δ such that

E (Ñ ϵ)T > Ku exp


−


Cuδ + γ + C ′

u T +
1
ϵ
(K Q,uδ + γ )


d
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−
1
ϵ

 T

0

d
i=1

Qu(s, i)

u(s, i)
Kν(s, i)ds


on the set {ρT (Mϵ, ϕ)+ dT (ν

ϵ, ν) 6 δ}.

Proof. First observe that

E (Ñ ϵ)T =
u(T, X ϵT )

u(0, X ϵ0)
exp


−

 T

0

d
i=1

∂
∂s u(s, i)+ (Qϵu)(s, i)

u(s, i)
1{Xϵs =i}ds



=
u(T, X ϵT )

u(0, X ϵ0)
exp


−

d
i=1

 T

0

∂
∂s u(s, i)

u(s, i)
[1{Xϵs =i} − Kν(s, i)]ds

−

d
i=1

 T

0

∂
∂s u(s, i)

u(s, i)
Kν(s, i)ds



× exp


−

1
ϵ

d
i=1

 T

0

Qu(s, i)

u(s, i)
[1{Xϵs =i} − Kν(s, i)]ds

−
1
ϵ

d
i=1

 T

0

Qu(s, i)

u(s, i)
Kν(s, i)ds


.

By the definition of u and X ϵ0 = x , we have that Ku := mini,x u(T, i)/u(0, x) is a positive
constant. Hence E (Ñ ϵ)T majorizes

Ku exp


−

d
i=1


 T

0

∂
∂s u(s, i)

u(s, i)
[1{Xϵs =i} − Kν(s, i)]ds

− d
i=1


 T

0

∂
∂s u(s, i)

u(s, i)
Kν(s, i)ds




× exp


−

1
ϵ

d
i=1

 T

0

Qu(s, i)

u(s, i)
[1{Xϵs =i} − Kν(s, i)]ds

− 1
ϵ

d
i=1

 T

0

Qu(s, i)

u(s, i)
Kν(s, i)ds


.

On the set {ρT (Mϵ, ϕ)+ dT (ν
ϵ, ν) 6 δ}, Lemma A.1 implies that, for any γ > 0, i ∈ S,

 T

0

∂
∂s u(s, i)

u(s, i)
[1{Xϵs =i} − Kν(s, i)]ds

 6 Cuδ + γ, T

0

Qu(s, i)

u(s, i)
[1{Xϵs =i} − Kν(s, i)]ds

 6 K Q,uδ + γ, ∀i ∈ S.

Since ∂
∂s u(s, i)/u(s, i) is continuous on [0, T ],
 T

0

∂
∂s u(s, i)

u(s, i)
Kν(s, i)ds

 6 C ′
u T .

Hence,

E (Ñ ϵ)T > Ku exp


−Cuδd − γ d − C ′
u T d −

1
ϵ
(K Q,uδ + γ )d

−
1
ϵ

 T

0

d
i=1

Qu(s, i)

u(s, i)
Kν(s, i)ds


.

We have thus proven our claim. �
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Now we are ready to prove the upper bound in the local LDP.

Proposition 6.4. For every (ϕ, ν) ∈ CT × MT ,

lim sup
δ→0

lim sup
ϵ→0

ϵ log P(ρT (M
ϵ, ϕ)+ dT (ν

ϵ, ν) 6 δ) 6 −LT (ϕ, ν).

Proof. Due to Lemma 5.1, CT ×M++

T is dense in CT ×MT . We first prove that the upper bound
holds on CT × M++

T . For every ν ∈ M++

T , it is an immediate implication of Lemma 5.2 that
there is an optimizer u∗(·, ·) of

inf
u∈U


d

i=1

(Qu)(i)

u(i)
Kν(s, i)


such that u∗

∈ U. We denote

E u∗

t =
u∗(t, X ϵt )

u∗(0, X ϵ0)
exp


−

 t

0

∂
∂s u∗(s, X ϵs )+ (Qϵu∗)(s, X ϵs )

u∗(s, X ϵs )
ds


.

Lemma 6.1 implies that

E

1{ρT (Mϵ ,ϕ)+dT (ν

ϵ ,ν)6δ}E
u∗

T E (N ϵ)T


6 1 (14)

for every λ ∈ ST . By virtue of Lemmas 6.2 and 6.3, we have a non-random lower bound for
E u∗

T E (N ϵ)T on the set {ρT (Mϵ, ϕ)+ dT (ν
ϵ, ν) 6 δ}. Hence, (14) implies that, for all λ ∈ ST ,

P(ρT (M
ϵ, ϕ)+ dT (ν

ϵ, ν) 6 δ)

6
1

Ku∗

exp


Cu∗δd + C ′

u∗ T d +
1
ϵ

K Q,u∗δd +
1
ϵ

 T

0

d
i=1

Qu∗(s, i)

u∗(s, i)
Kν(s, i)ds



× exp

−

1
ϵ

 T

0
λ(s)dϕs −

 T

0
λ(s)b̂s(ν, ϕs)ds −

 T

0

λ2(s)

2
σ̂ 2

s (ν, ϕs)ds


+
δ

ϵ
Kλ,ϕ,T


.

We observe that T

0

d
i=1

Qu∗(s, i)

u∗(s, i)
Kν(s, i)ds = −

 T

0
sup
u∈U


−

d
i=1

(Qu)(i)

u(i)
Kν(s, i)


ds = − ĨT (ν).

It directly entails that, again for all λ ∈ ST ,

ϵ log P(ρT (M
ϵ, ϕ)+ dT (ν

ϵ, ν) 6 δ)

6 −

 T

0
λ(s)dϕs −

 T

0
λ(s)b̂s(ν, ϕs)ds −

 T

0

λ2(s)

2
σ̂ 2

s (ν, ϕs)ds


+ Kλ,ϕ,T δ

− ϵ log Ku∗ + ϵ

Cu∗δd + C ′

u∗ T d

+ K Q,u∗δd − ĨT (ν). (15)

It is easily seen that all the terms with δ or ϵ vanish as δ → 0, ϵ → 0. As a consequence we
conclude, by minimizing the right hand-side over λ, that the decay rate

lim sup
δ→0

lim sup
ϵ→0

ϵ log P(ρT (M
ϵ, ϕ)+ dT (ν

ϵ, ν) 6 δ)

is majorized by

− sup
λ∈ST

 T

0
λ(s)dϕs −

 T

0
λ(s)b̂s(ν, ϕs)ds −

 T

0

λ2(s)

2
σ̂ 2

s (ν, ϕs)ds


− ĨT (ν).
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Since b(i, x) and σ(i, x) satisfy the linear growth condition (A.2), b̂t (ν, x) and σ̂ (ν, x) are of
linear growth as well. Then Liptser and Pukhalskii [22, Lemma 6.1] implies that

sup
λ∈ST

 T

0
λ(s)dϕs −

 T

0
λ(s)b̂s(ν, ϕs)ds −

 T

0

λ2(s)

2
σ̂ 2

s (ν, ϕs)ds



=


 T

0
sup
λ∈R


λϕ′

s − λb̂s(ν, ϕs)−
λ2

2
σ̂ 2

s (ν, ϕs)


ds if ϕ ∈ HT ,

∞ otherwise.

For s ∈ [0, T ] such that σ̂ 2
s (ν, ϕs) ≠ 0 and ϕ ∈ HT , elementary calculus yields

sup
λ∈R


λϕ′

s − λb̂s(ν, ϕs)−
λ2

2
σ̂ 2

s (ν, ϕs)


=

[ϕ′
s − b̂s(ν, ϕs)]

2

2σ̂ 2
s (ν, ϕs)

.

For s ∈ [0, T ] such that σ̂ 2
s (ν, ϕs) = 0 and ϕ ∈ HT ,

sup
λ∈R


λϕ′

s − λb̂s(ν, ϕs)−
λ2

2
σ̂ 2

s (ν, ϕs)


=


0 if ϕ′

s = b̂s(ν, ϕs),

∞ otherwise.

Hence, with the conventions 0/0 = 0 and n/0 = ∞ (for all n > 0) being in force, T

0
sup
λ∈R


λϕ′

s − λb̂s(ν, ϕs)−
λ2

2
σ̂ 2

s (ν, ϕs)


ds =

1
2

 T

0

[ϕ′
t − b̂t (ν, ϕt )]

2

σ̂ 2
t (ν, ϕt )

dt

if ϕ ∈ HT .
Hence the lower bound for the dense subset CT × M++

T is established. In consideration of
Lemma 2.5, the upper bound is proved for CT × MT if we can show IT (ϕ, ν) and ĨT (ν) are
lower semi-continuous on ν. We denote

Fλ(ϕ, ν) =

 T

0
λ(s)dϕs −

 T

0
λ(s)b̂s(ν, ϕs)ds −

 T

0

λ2(s)

2
σ̂ 2

s (ν, ϕs)ds.

By the above computation, we know for every (ϕ, ν) ∈ CT ×MT , IT (ϕ, ν) = supλ∈ST
Fλ(ϕ, ν).

For every λ ∈ ST , Fλ(ν, ϕ) is continuous on ν due to Lemma A.1. Then IT (ϕ, ν) is lower semi-
continuous on ν since it is the pointwise supremum of continuous functions. By Lemma 5.3,
ĨT (ν) also satisfies the requirement. The claim is established. �

7. Lower bound for the local LDP

This section studies the lower bound of the local LDP. To this end, it is realized that only finite
rate functions need to be investigated. The rate function ĨT (ν) is finite for every ν ∈ MT since
0 6 ĨT (ν) 6 −T

d
i=1 Qi i . We further observe that the rate function IT (ϕ, ν) is finite for every

(ϕ, ν) ∈ HT × MT if infi,x σ
2(i, x) > 0. Hence we consider the case of infi,x σ

2(i, x) > 0 first.
Let (ϕ, ν) ∈ HT × MT . We define

N̄ ϵ
t :=

1
√
ϵ

 t

0

ϕ′
s − b̂s(ϕs, ν)

σ̂ (ϕs, ν)
dBs . (16)

Then its stochastic exponential is

E (N̄ ϵ)t = exp


N̄ ϵ
t −

1
2
⟨N̄ ϵ

⟩t


, where ⟨N̄ ϵ

⟩t =
1
ϵ

 t

0


ϕ′

s − b̂s(ϕs, ν)

σ̂ (ϕs, ν)

2

ds.
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For simplicity, we denote

hs :=
ϕ′

s − b̂s(ϕs, ν)

σ̂ (ϕs, ν)

throughout this section. Recall from (13) that, for a given u(·, ·) ∈ U,

E (Ñ ϵ)t =
u(t, X ϵt )

u(0, X ϵ0)
exp


−

 t

0

∂
∂s u(s, X ϵs )+ (Qϵu)(s, X ϵs )

u(s, X ϵs )
ds


.

In order to perform a change of measure in Proposition 7.3, we show that {E (Ñ ϵ)t
E (N̄ ϵ)t }t∈[0,T ] is a true martingale. It is noted that in the first results of this section, we impose
the condition infi,x σ

2(i, x) > 0, which will be lifted later on.

Lemma 7.1. For every (ϕ, ν) ∈ HT × MT and u(·, ·) ∈ U, {E (Ñ ϵ)tE (N̄ ϵ)t }t∈[0,T ] is a
martingale if infi,x σ

2(i, x) > 0.

Proof. We have shown in last section that E (Ñ ϵ)t is a martingale. Since ϕ ∈ HT and recalling
that we assumed infi,x σ

2(i, x) > 0, it follows that ⟨N̄ ϵ
⟩T =

1
ϵ

 T
0 h2

s ds < ∞. Then Novikov’s
condition implies that E (N̄ ϵ)t is also a martingale. Since X ϵt is independent of the Brownian
motion Bt , E (Ñ ϵ)t is also independent of E (N̄ ϵ)t . So,

E[E (Ñ ϵ)T E (N̄ ϵ)T ] = E[E (Ñ ϵ)T ]E[E (N̄ ϵ)T ] = E[E (Ñ ϵ)0]E[E (N̄ ϵ)0]

= E[E (Ñ ϵ)0E (N̄
ϵ)0].

By the same reasoning as in the proof of Lemma 6.1, we know that E (Ñ ϵ)tE (N̄ ϵ)t is a
supermartingale. Hence, it is a martingale by Liptser and Shiryaev [23, Lemma 6.4]. �

Lemma 7.2. For every ν ∈ MT , every u ∈ U and every γ, δ > 0, there exist positive constants
Cu , C ′

u , K ′
u and K Q,u not depending on ϵ or δ such that

[E (Ñ ϵ)T ]
−1 > K ′

u exp


−


Cuδ + γ + C ′

u T +
1
ϵ
(K Q,uδ + γ )


d

+
1
ϵ

 T

0

d
i=1

Qu(s, i)

u(s, i)
Kν(s, i)ds


on the set {ρT (Mϵ, ϕ)+ dT (ν

ϵ, ν) 6 δ}.

Proof. Omitted, as it is very similar to the one of Lemma 6.3. �

We proceed to prove the lower bound of the local LDP under the condition infi,x σ
2(i, x) > 0.

Proposition 7.3. For every (ϕ, ν) ∈ HT × MT , if infi,x σ
2(i, x) > 0,

lim inf
δ→0

lim inf
ϵ→0

ϵ log P(ρT (M
ϵ, ϕ)+ dT (ν

ϵ, ν) 6 δ) > −LT (ϕ, ν).

Proof. For any ν ∈ MT , there is a sequence νη ∈ M++

T such that νη → ν by Lemma 5.1.
Actually, the convergence happens in the way that K η

ν (·, i) → Kν(·, i) a.e. Then by Lemma 5.3,
the rate function LT (ϕ, ν) satisfies the continuity property required in Lemma 2.5. Hence we only
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need to prove the lower bound on the dense subset HT × M++

T . Recall that for every ν ∈ M++

T ,
Lemma 5.2 implies that there is an optimizer u∗(·, ·) of

inf
u∈U


d

i=1

(Qu)(i)

u(i)
Kν(s, i)


such that u∗

∈ U and

E u∗

t =
u∗(t, X ϵt )

u∗(0, X ϵ0)
exp


−

 t

0

∂
∂s u∗(s, X ϵs )+ (Qϵu∗)(s, X ϵs )

u∗(s, X ϵs )
ds


.

By Lemma 7.1, we know E[E u∗

T E (N̄ ϵ)T ] = 1. On (Ω ,FT ), we define a new probability measure
Pu∗ through dPu∗ = E u∗

T E (N̄ ϵ)T dP. Since E u∗

T E (N̄ ϵ)T is strictly positive, Pu∗ is equivalent to

P and dP =


E u∗

T E (N̄ ϵ)T

−1
dPu∗ . So that we can translate the probability of our interest under

the original measure P into the mean of a certain random quantity under the alternative measure
Pu∗ :

P(ρT (M
ϵ, ϕ)+ dT (ν

ϵ, ν) 6 δ) =


{ρT (Mϵ ,ϕ)+dT (ν

ϵ ,ν)6δ}


E u∗

T E (N̄ ϵ)T

−1
dPu∗ . (17)

By Girsanov’s theorem, B̃t := Bt −
1

√
ϵ

 t
0 hsds is a Pu∗ -Brownian motion on (Ω , (Ft )t6T ).

We substitute the above equation in (16), and obtain

N̄ ϵ
T −

1
2
⟨N̄ ϵ

⟩T =
1

√
ϵ

 T

0
hsdB̃s +

1
2ϵ

 T

0
h2

s ds.

It thus follows that [E u∗

T E (N̄ ϵ)T ]
−1 is equal to

u∗(0, X ϵ0)

u∗(t, X ϵt )
exp

 t

0

∂
∂s u∗(s, X ϵs )+ (Qϵu∗)(s, X ϵs )

u∗(s, X ϵs )
ds −

1
√
ϵ

 T

0
hsdB̃s −

1
2ϵ

 T

0
h2

s ds


.

Now let L be a positive constant. We define Θϵ
:=

ρT (Mϵ, ϕ) + dT (ν

ϵ, ν) 6 δ,

 T
0 hsdB̃s


6 L


. Then (17) implies

P(ρT (M
ϵ, ϕ)+ dT (ν

ϵ, ν) 6 δ) >

Θϵ


E u∗

T E (N̄ ϵ)T

−1
dPu∗ .

By Lemma 7.2, we obtain the following non-random lower bound of [E u∗

T E (N̄ ϵ)T ]
−1, valid

on the set Θϵ :

K ′
u∗ exp


−Cu∗δd − γ d − C ′

u∗ T d −
1
ϵ
(K Q,u∗δ + γ )d −

ĨT (ν)

ϵ
−

IT (ϕ, ν)

ϵ
−

L
√
ϵ


.

As a consequence, we have the following lower bound of the probability P(ρT (Mϵ, ϕ) + dT
(νϵ, ν) 6 δ):

K ′
u∗ exp


−Cu∗δd − γ d − C ′

u∗ T d −
1
ϵ
(K Q,u∗δ + γ )d −

ĨT (ν)

ϵ
−

IT (ϕ, ν)

ϵ
−

L
√
ϵ


× Pu∗(Θϵ).
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This, in turn, leads to the following lower bound on the corresponding exponential decay rate:

ϵ log P(ρT (M
ϵ, ϕ)+ dT (ν

ϵ, ν) 6 δ)

> ϵ log K ′
u∗ − ϵ(Cu∗δd + γ d + C ′

u∗ T d)− (K Q,u∗δ + γ )d

− ĨT (ν)− IT (ϕ, ν)−
√
ϵL + ϵ log Pu∗(Θϵ). (18)

Then a sufficient condition for desired result to hold is limϵ→0 Pu∗(Θϵ) > 0, since γ is
arbitrary. It is evident that

Pu∗(Θϵ)

> 1 − Pu∗

 T

0
hsdB̃s

 > L


− Pu∗(dT (ν

ϵ, ν) > δ)− Pu∗(ρT (M
ϵ, ϕ) > δ). (19)

We proceed by consecutively proving that the three probabilities in the right-hand side of (19)
vanish as ϵ → 0. We start by analyzing the first probability. By Chebyshev’s inequality,

P̃u∗

 T

0
hsdB̃s

 > L


6

Ẽu∗

 T
0 hsdB̃s

2
L2 =

 T
0 h2

s ds

L2 .

Since
 T

0 h2
s ds < ∞, we can make this upper bound arbitrarily small by picking L sufficiently

large.
Next we consider the second probability in the right-hand sider of (19). We notice that the

part

exp


1
√
ϵ

 T

0
hsdB̃s +

1
2ϵ

 T

0
h2

s ds


in the change of measure procedure is not related to the Markov chain. Then by Proposition
11.2.3 in Bielecki and Rutkowski [2], a Markov chain X t with transition intensity matrix Q
under P becomes a Markov chain under Pu∗ with transition intensity matrix Q(u∗)(t) where

Q(u∗)(t)i j = Qi j
u∗(t, j)

u∗(t, i)
for i ≠ j; Q(u∗)(t)i i = −


j≠i

Qi j
u∗(t, j)

u∗(t, i)
.

Hence, Q(u∗)(t)/ϵ is the transition intensity matrix of X ϵt under Pu∗ . By Lemma A.2, for every
t ∈ [0, T ], Kν(t) = (Kν(t, 1), . . . , Kν(t, d)) is the unique solution of

µ(t)Q(u∗)(t) = 0,
d

i=1

µ(t, i) = 1, µ(t, i) > 0.

Also, all entries of the matrix Q(u∗)(t) are smooth on [0, T ] by Lemma 5.2. Then by Corollary
5.8 in Yin and Zhang [30],

Pu∗


sup

t6T,i∈S

 t

0
1{Xϵs =i}ds −

 t

0
Kν(i, s)ds

 > ϵ1/4


6 K exp


−

CT

ϵ1/4(T + 1)3/2


,

where CT is a strictly positive constant. Hence we have, as eventually ϵ1/4 < δ,

Pu∗


sup

t6T,i∈S

 t

0
1{Xϵs =i}ds −

 t

0
Kν(i, s)ds

 > δ


→ 0 as ϵ → 0.

That is, Pu∗(dT (ν
ϵ, ν) > δ) → 0, as ϵ → 0.
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Now we proceed by showing the third probability in the right-hand side of (19) vanishes as
ϵ → 0. We substitute B̃t for Bt in (1), yielding

Mϵ
t =

 t

0
b(X ϵs ,Mϵ

s )+ hsσ(X
ϵ
s ,Mϵ

s )ds +
√
ϵ

 t

0
σ(X ϵs ,Mϵ

s )dB̃s .

By setting M̃ϵ
t := Mϵ

t − ϕt , we obtain

M̃ϵ
t =

√
ϵ

 t

0
σ(X ϵs ,Mϵ

s )dB̃s +

 t

0
[b(X ϵs ,Mϵ

s )− b(X ϵs , ϕs)]ds

+

 t

0
[b(X ϵs , ϕs)− b̂s(ν, ϕs)]ds

+

 t

0
hs[σ(X

ϵ
s ,Mϵ

s )− σ(X ϵs , ϕs)]ds +

 t

0
hs[σ(X

ϵ
s , ϕs)− σ̂ (ν, ϕs)]ds.

Using the Lipschitz continuity featuring in (A1), we find that both

sup
t6T

 t

0
[b(X ϵs ,Mϵ

s )− b(X ϵs , ϕs)]ds

 6
 T

0
K M̃ϵ∗

s ds,

and

sup
t6T

 t

0
hs[σ(X

ϵ
s ,Mϵ

s )− σ(X ϵs , ϕs)]ds

 6
 T

0
|hs |K M̃ϵ∗

s ds.

Recalling that we denote throughout this paper running maximum processes by adding an
asterisk (‘∗’), it is now immediate that

M̃ϵ∗
T 6 I 1∗

T + I 2∗

T + I 3∗

T +

 T

0
K (1 + |hs |)M̃

ϵ∗
s ds,

where

I 1
t :=

√
ϵ

 t

0
σ(X ϵs ,Mϵ

s )dB̃s, I 2
t :=

 t

0
[b(X ϵs , ϕs)− b̂s(ν, ϕs)]ds,

I 3
t :=

 t

0
hs[σ(X

ϵ
s , ϕs)− σ̂ (ν, ϕs)]ds.

Then Gronwall’s inequality implies

M̃ϵ∗
T 6 [I 1∗

T + I 2∗

T + I 3∗

T ] exp
 T

0
K (1 + |hs |)ds


. (20)

The next step is to study the impact of I 1∗

T , I 2∗

T , and I 3∗

T separately. For any δ > 0, it is an
immediate consequence of Chebyshev’s inequality that Pu∗(I 1∗

T > δ) 6 δ−3Ẽu∗ [(I 1∗

T )3]. We
notice the close similarity between I 1

t and Cϵ
t in the proof of Proposition 4.3. The quantity

Eu∗ [(I 1∗

T )3] can be dealt with using essentially the same procedure that was used to bound
E[(Cϵ∗

T )
1/ϵ

]: we derive an inequality similar to (9), i.e.,

Eu∗ [(I 1∗

T )3] 6
27
8

Eu∗


3ϵ
 T

0
|I 1

s |σ 2(X ϵs ,Mϵ
s )ds


.
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We thus obtain

Eu∗ [(I 1∗

T )3] 6
81ϵkT

8
exp


81ϵkT

8


,

where k is a positive constant. As a consequence, limϵ→0 Pu∗(I 1∗

T > δ) = 0.

The claim limϵ→0 Pu∗(I 2∗

T > δ) = 0 can be established as follows. As a first step we observe
that since

sup
t6T

 t

0
[b(X ϵs , ϕs)− b̂s(ν, ϕs)]ds

 = sup
t6T

 d
i=1

 t

0
b(i, ϕs)[1{Xϵs =i} − Kν(s, i)]ds


6 d sup

t6T,i∈S

 t

0
b(i, ϕs)[1{Xϵs =i} − Kν(s, i)]ds

 ,
the following upper bound applies:

Pu∗(I 2∗

T > δ) = Pu∗


sup
t6T

 t

0
[b(X ϵs , ϕs)− b̂s(ν, ϕs)]ds

 > δ



6 Pu∗


sup

t6T,i∈S

 t

0
b(i, ϕs)[1{Xϵs =i} − Kν(s, i)]ds

 > δ/d


.

Since b(i, x) is Lipschitz continuous in x and ϕt is absolutely continuous, b(i, ϕt ) is bounded on
[0, T ]. Then by Corollary 5.8 in Yin and Zhang [30] again, Pu∗(I 2∗

T > δ) → 0, as ϵ → 0.
Similar to the above computation, we can obtain that

Pu∗(I 3∗

T > δ) 6 Pu∗


sup

t6T,i∈S

 t

0
hsσ(i, ϕs)[1{Xϵs =i} − Kν(s, i)]ds

 > δ/d


.

We know that hsσ(i, ϕs) is square-integrable for every i ∈ S. Then by the method of mollification
in Theorem C.6 in Evans [7], there exists a sequence of smooth functions hη(i, s) such that
hη(i, s) → hsσ(i, ϕs) as η → 0 in L2

[0, T ]. By the Cauchy–Schwarz inequality, t

0
[hsσ(i, ϕs)− hη(i, s)][1{Xϵs =i} − Kν(s, i)]ds


6

√
2t

 t

0
[hsσ(i, ϕs)− hη(i, s)]2ds

1/2

.

Then,

sup
t6T,i∈S

 t

0
hsσ(i, ϕs)[1{Xϵs =i} − Kν(s, i)]ds


6 sup

t6T,i∈S

 t

0
hη(i, s)[1{Xϵs =i} − Kν(s, i)]ds


+ sup

i∈S

√
2T

 T

0
[hsσ(i, ϕs)− hη(i, s)]2ds

1/2

.
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We let H(η) := supi∈S
√

2T
 T

0 [hsσ(i, ϕs)− hη(i, s)]2ds
1/2

. It is clear that H(η) → 0 as

η → 0. Hence,

Pu∗(I 3∗

T > δ) 6 Pu∗


sup

t6T,i∈S

 t

0
hη(i, s)[1{Xϵs =i} − Kν(s, i)]ds

+ H(η) > δ/d


.

For any δ > 0, we can choose all η > 0 small enough such that H(η) < δ/2d. It yields

Pu∗(I 3∗

T > δ) 6 Pu∗


sup

t6T,i∈S

 t

0
hη(i, s)[1{Xϵs =i} − Kν(s, i)]ds

 > δ/2d


.

Since hη(i, s) is bounded on [0, T ], the probability in the right-hand of above inequality vanishes
as ϵ → 0 for any small enough η by Corollary 5.8 in Yin and Zhang [30]. Hence we conclude
that limϵ→0 Pu∗(I 3∗

T > δ) = 0.
We have thus shown that Pu∗(Θϵ) remains bounded away from 0 as ϵ → 0. Upon combining

all the above, the proof of the lemma is now complete. �

So far we have focused on the case infi,x σ
2(i, x) > 0; to complete the analysis, we next

consider the situation that this condition is lifted, in which case σ̂ (ϕs, ν) can be singular. Our
proof uses arguments used in the method presented by Liptser [21, Lemma A.6]. Given γ > 0,
we study the stochastic differential equation

Mϵ,γ
t =

 t

0
b(X ϵs ,Mϵ,γ

s )ds +
√
ϵ

 t

0
σ(X ϵs ,Mϵ,γ

s )dBs +
√
ϵγWt , (21)

where Mϵ,γ

0 ≡ 0 and Wt is another standard P-Brownian motion, independent of Bt and X ϵt . We
provide an auxiliary lemma which is to be used when proving the lower bound; informally, it
states that Mϵ,γ and Mϵ are ‘superexponentially close’.

Lemma 7.4. For every T > 0 and η > 0,

lim
γ→0

lim sup
ϵ→0

ϵ log P

ρT (M

ϵ,γ ,Mϵ) > η


= −∞. (22)

Proof. We define Aϵ,γt := Mϵ,γ
t − Mϵ

t , and

αϵt :=
b(X ϵt ,Mϵ,γ

t )− b(X ϵt ,Mϵ
t )

Mϵ,γ
t − Mϵ

t
, βϵt :=

σ(X ϵt ,Mϵ,γ
t )− σ(X ϵt ,Mϵ

t )

Mϵ,γ
t − Mϵ

t
.

By (A.1), i.e., the Lipschitz condition, we conclude

|αϵt | 6 K , |βϵt | 6 K , ∀t ∈ [0, T ]. (23)

As an immediate consequence of (1) and (21), we have

dAϵ,γt = αϵt Aϵ,γt dt +
√
ϵβϵt Aϵ,γt dBt +

√
ϵγ dWt .

We define

Eϵt := exp
 t

0


αϵs −

ϵ

2
(βϵs )

2


ds +
√
ϵ

 t

0
βϵs dBs


.

We apply Itô’s formula to (Eϵt )
−1, so as to obtain

d(Eϵt )
−1

= (Eϵt )
−1

ϵ(βϵt )

2dt − αϵt dt −
√
ϵβϵt dBt


.
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Since Wt is independent of Bt , we have

d⟨Aϵ,γt , (Eϵt )
−1

⟩ = −ϵ(βϵt )
2(Eϵt )

−1 Aϵ,γt dt.

By applying the integration-by-parts formula,

dAϵ,γt (Eϵt )
−1

= Aϵ,γt d(Eϵt )
−1

+ (Eϵt )
−1dAϵ,γt + d⟨Aϵ,γt , (Eϵt )

−1
⟩ =

√
ϵγ (Eϵt )

−1dWt ,

and hence

Aϵ,γt =
√
ϵ γ Eϵt

 t

0
(Eϵs )

−1dWs .

We define the set ΓN := {1/N 6 inft6T Eϵt 6 supt6T Eϵt 6 N }, for N ∈ N. Observe that it
holds that ρT (Mϵ,γ ,Mϵ) = (Aϵ,γ )∗T , and therefore

P(ρT (M
ϵ,γ ,Mϵ) > η) 6 P((Aϵ,γ )∗T > η,ΓN )+ P(Ω \ ΓN )

6 2 max

P((Aϵ,γ )∗T > η,ΓN ),P(Ω \ ΓN )


.

We now consider each of the probabilities P((Aϵ,γ )∗T > η,ΓN ) and P(Ω \ ΓN ) separately. On
the set ΓN ,

(Aϵ,γ )∗T 6
√
ϵγ Eϵ∗T sup

t6T

 t

0
(Eϵs )

−1dWs

 6
√
ϵγ N sup

t6T

 t

0
(Eϵs )

−1dWs

 .
Since αϵt and βϵt are bounded as ϵ → 0, it follows that

 t
0 [αϵs −

ϵ
2 (β

ϵ
s )

2
]ds is bounded as well,

and therefore we omit it for brevity when analyzing Eϵt . Based on the above, the stated holds if
we can prove that (A) for all N ∈ N, covering the contribution of P((Aϵ,γ )∗T > η,ΓN ),

lim
γ→0

lim sup
ϵ→0

ϵ log P


√
ϵγ N sup

t6T

 t

0
(Eϵs )

−1dWs

 > η,ΓN


= −∞, (24)

and (B), covering the contribution of P(Ω \ ΓN ),

lim
N→∞

lim sup
ϵ→0

ϵ log P


√
ϵ sup

t6T

 t

0
βϵs dBs

 > log N


= −∞. (25)

Let us first consider contribution (A). To this end, define

τ := T ∧ inf


t 6 T :

 t

0
(Eϵs )

−1dWs

 > η
√
ϵγ N


.

Then (24) is equivalent to, for all N ∈ N,

lim
γ→0

lim sup
ϵ→0

ϵ log P


√
ϵγ N

 τ

0
(Eϵs )

−1dWs > η (or 6 −η),ΓN


= −∞. (26)

For N ∈ N and η > 0, we define the process Ẽϵt and its stochastic exponential E (Ẽϵ)t :

Ẽϵt :=
η

√
ϵγ N 3T

 t

0
(Eϵs )

−1dWs, E (Ẽϵ)t = exp


Ẽϵt −
1
2
⟨Ẽϵ⟩t


.

Since E (Ẽϵ)t is a supermartingale, we have

E

1
{
√
ϵγ N

 τ
0 (E

ϵ
s )

−1dWs > η,ΓN }
E (Ẽϵ)τ


6 1.
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On the set {
√
ϵγ N

 τ
0 (E

ϵ
s )

−1dWs > η,ΓN }, we have

E (Ẽϵ)τ > exp


η

√
ϵγ N 3T

η
√
ϵγ N

−
1
2


η

√
ϵγ N 3T

2

N 2T


= exp


η2

2ϵγ 2 N 4T


,

and consequently

exp


η2

2ϵγ 2 N 4T


P


√
ϵγ N

 τ

0
(Eϵs )

−1dWs > η,ΓN


6 1.

We conclude that the part corresponding to “> η” in (26) is valid, but it is immediately verified
that the part corresponding to “6 −η” in (26) can be addressed in the same way.

We now turn to contribution (B). The validity of (25) can be proved in a similar way by
defining the stopping time

τ ′
:= inf


t 6 T :

 t

0
βϵs dBs

 > log N
√
ϵ


and the process β̃ϵt and its stochastic exponential E (β̃ϵ)t :

β̃ϵt :=
log N

√
ϵK 2T

 t

0
βϵs dBs, E (β̃ϵ)t = exp


β̃ϵt −

1
2
⟨β̃ϵ⟩t


,

where K is the constant in (23). �

The following result establishes the lower bound of the local LDP.

Proposition 7.5. For every (ϕ, ν) ∈ CT × M,

lim inf
δ→0

lim inf
ϵ→0

ϵ log P(ρT (M
ϵ, ϕ)+ dT (ν

ϵ, ν) 6 δ) > −LT (ϕ, ν).

Proof. As mentioned in the beginning of this section, only the case (ϕ, ν) ∈ HT × MT such that T

0

[ϕ′
t − b̂t (ν, ϕt )]

2

σ̂ 2
t (ν, ϕt )

dt < ∞

needs to be considered. If infi,x σ
2(i, x) > 0, then the result is valid due to Proposition 7.3. If

infi,x σ
2(i, x) = 0, then we consider Mϵ,γ

t as defined in (21). The idea is that we decompose the
probability P


ρT (Mϵ,γ , ϕ)+ dT (ν

ϵ, ν) 6 δ
2


into the sum of

P

ρT (M

ϵ,γ , ϕ)+ dT (ν
ϵ, ν) 6

δ

2
, ρT (M

ϵ, ϕ)+ dT (ν
ϵ, ν) 6 δ


(27)

and

P

ρT (M

ϵ,γ , ϕ)+ dT (ν
ϵ, ν) 6

δ

2
, ρT (M

ϵ, ϕ)+ dT (ν
ϵ, ν) > δ


. (28)

Obviously, (27) is majorized by P(ρT (Mϵ, ϕ) + dT (ν
ϵ, ν) 6 δ). Using the triangle inequality,

we find that ρT (Mϵ, ϕ) 6 ρT (Mϵ,Mϵ,γ ) + ρT (Mϵ,γ , ϕ). So that (28) is majorized by
P

ρT (Mϵ,Mϵ,γ ) > δ

2


. Hence, P


ρT (Mϵ,γ , ϕ)+ dT (ν

ϵ, ν) 6 δ
2


is not greater than

2 max

P(ρT (M

ϵ, ϕ)+ dT (ν
ϵ, ν) 6 δ),P


ρT (M

ϵ,Mϵ,γ ) >
δ

2


.
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By Lemma 7.4,

lim
γ→0

lim sup
ϵ→0

ϵ log P

ρT (M

ϵ,γ ,Mϵ) >
δ

2


= −∞,

and, as a result,

lim inf
δ→0

lim
γ→0

lim inf
ϵ→0

ϵ log P

ρT (M

ϵ,γ , ϕ)+ dT (ν
ϵ, ν) 6

δ

2


6 lim inf

δ→0
lim inf
ϵ→0

ϵ log P(ρT (M
ϵ, ϕ)+ dT (ν

ϵ, ν) 6 δ).

Next we compute the term on the left-hand side of the above inequality. Since Mϵ,γ meets the
conditions in Proposition 7.3, (Mϵ,γ , νϵ) satisfies the inequality (18). Then for every γ > 0, we
obtain

lim inf
ϵ→0

ϵ log P

ρT (M

ϵ,γ , ϕ)+ dT (ν
ϵ, ν) 6

δ

2


> −K Q,u∗

δ

2
d − ĨT (ν)−

1
2

 T

0

[ϕ′
s − b̂s(ϕs, ν)]

2

σ̂ 2
s (ϕs, ν)+ γ 2 ds.

By the monotone convergence theorem (recall the convention 0/0 = 0),

1
2

 T

0

[ϕ′
s − b̂s(ϕs, ν)]

2

σ̂ 2
s (ϕs, ν)+ γ 2 ds →

1
2

 T

0

[ϕ′
s − b̂s(ϕs, ν)]

2

σ̂ 2
s (ϕs, ν)

ds = IT (ϕ, ν), as γ → 0

which implies that

lim inf
δ→0

lim
γ→0

lim inf
ϵ→0

ϵ log P

ρT (M

ϵ,γ , ϕ)+ dT (ν
ϵ, ν) 6

δ

2


> − ĨT (ν)− IT (ϕ, ν).

We have proven the claim. �

8. Discussion and concluding remarks

This paper has established the small noise asymptotics of Markov-modulated diffusion
processes, focusing on the regime that the modulating Markov chain is rapidly switching. The
key result is a sample-path large deviations principle for the Markov-modulated diffusion process
joint with the occupation measure of the Markov chain. Our model constitutes, in a certain sense,
a base model, with many possible extensions and ramifications in various directions. These are,
however, typically not immediate and could be pursued as next steps.

(i) One of those concerns the multi-dimensional variant of the Markov-modulated diffusion, in
which the components of the multidimensional diffusion react to a common background
process X t —cf. the model considered for Markov-modulated Ornstein–Uhlenbeck
processes in [16, Section 6]. Regarding such a N -dimensional variant of the Markov-
modulated diffusion it is anticipated that ĨT (ν) (obviously) remains unaltered, whereas the
following rate function applies for the diffusion part, in self-evident notation,

IT (ϕ, ν) =
1
2

 T

0
[ϕ′

t − b̂(ν, ϕt )]
T
[Σ̂ (ν, ϕt )]

−1
[ϕ′

t − b̂(ν, ϕt )],

for ϕ in the N -dimensional version of HT ; here ϕt is an N -dimensional path, b(ν, x) now
attains values in RN , and Σ̂ (ν, ϕt ) is a N × N matrix. As is readily checked, at many places



1816 G. Huang et al. / Stochastic Processes and their Applications 126 (2016) 1785–1818

proofs need to be changed to accommodate this multi-dimensional setting. An example is
that Lemma 4.2, and its application in the proof of Proposition 4.3 have to be adapted to a
multivariate setting, and this seems not to be straightforward.

(ii) In a second extension the background process could be defined on a (countable or uncount-
able) infinite state space, rather than {1, . . . , d}. This extension requires a generalization of
many intermediate results, such as Lemmas 5.2 and 5.3.

(iii) A third type of extensions concerns other scalings then Q → Q/ϵ and σ(·, ·) →
√
ϵ σ (·, ·).

Imposing for instance the scaling Q → Q/ϵ f with f > 1
2 it is anticipated that we have

LT (ϕ, ν) = ∞ for νt ≠ π for all t ∈ [0, T ], as the ‘natural time scale’ of the background
process is faster than that of the diffusions, such that the diffusions effectively behave as the
non-modulated diffusion

Mϵ
t = Mϵ

0 +

 t

0


d

i=1

b(i,Mϵ
s )πi


ds +

√
ϵ

 t

0


d

i=1

σ(i,Mϵ
s )πi


dBs .

Appendix

Lemma A.1. Let f (t, i) be a continuous function on [0, T ] for every i ∈ S. Let µ, ν ∈ M such
that dT (µ, ν) 6 δ. For any γ > 0 and [t1, t2] ⊂ [0, T ], there exists a constant C > 0 such that

sup
i∈S

 t2

t1
f (s, i)[Kµ(s, i)− Kν(s, i)]ds

 6 Cδ + γ. (29)

Proof. We first look at functions f (t, i) that are of bounded variation. By integration by parts,
we have t2

t1
f (s, i)[Kµ(s, i)− Kν(s, i)]ds

= [µ(s, i)− ν(s, i)] f (s, i)|t2t1 −

 t2

t1
[µ(s, i)− ν(s, i)]d f (s, i).

Then  t2

t1
f (s, i)[Kµ(s, i)− Kν(s, i)]ds


6 |µ(t2, i)− ν(t2, i)| | f (t2, i)| + |µ(t1, i)− ν(t1, i)| | f (t1, i)|

+

 t2

t1
|µ(s, i)− ν(s, i)| |d f (s, i)|

6 C1δ + C2δ + T V f [t1, t2]δ,

where T V f [t1, t2] denotes the total variation of f on [t1, t2] and C1,C2 are two positive
constants. Since S has finite elements, we can find a constant C such that the claim holds. If
f (t, i) is only continuous, it can be uniformly approximated by a continuously differentiable
function (see [28]), that is, for any γ > 0, there exists a continuously differentiable function
f γ (t, i) such that

sup
t∈[t1,t2],i∈S

| f (t, i)− f γ (t, i)| < γ/2 (t2 − t1).
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Then

sup
i∈S

 t2

t1
f (s, i)[Kµ(s, i)− Kν(s, i)]ds


6 sup

i∈S

 t2

t1


f (s, i)− f γ (s, i)


[Kµ(s, i)− Kν(s, i)]ds


+ sup

i∈S

 t2

t1
f γ (s, i)[Kµ(s, i)− Kν(s, i)]ds


6 γ + Cδ.

This finishes our proof. �

For any u ∈ U, let Q(u)(t) be the transition matrix resulting from the measure change
induced by the stochastic exponential E (Ñ ϵ). It is known, see Proposition 11.2.3 in Bielecki
and Rutkowski [2], that

Q(u)(t)i j = Qi j
u(t, j)

u(t, i)
if i ≠ j; Q(u)(t)i i = −


j≠i

Qi j
u(t, j)

u(t, i)
.

For a fixed t , we suppress this t , so as to make the notation more compact. In matrix notation,
(where we throughout write diag(u) to denote the diagonal matrix with entries uiδi j ) we have

Q(u) = diag(u)−1 Qdiag(u)− diag(u)−1diag(Qu). (30)

Lemma A.2. Let ν be a d-dimensional vector such that
d

i=1 ν(i) = 1 and ν(i) > 0. Let
u∗

∈ U be an optimizer of

inf
u∈U


i

(Qu)i
ui

νi = inf
u∈U

νTdiag(u)−1 Qu.

Then ν is the unique invariant vector of the transition matrix Q(u∗).

Proof. To find a minimizing u∗
= u(ν) (where it observed that minimizers are not necessarily

unique) for the above problem, we first note that all u∗

i > 0. Hence the minimizer solves the
system of first order conditions. Differentiation with respect to uk yields (ek denoting the kth
basis vector)

−νTdiag(u)−1ekeT
k diag(u)−1 Qu + νTdiag(u)−1 Qek = 0.

In vector notation these equations can be conveniently summarized as

νTdiag(u)−1

−diag(u)−1diag(Qu)+ Q


= 0. (31)

From (30) we deduce by commutation of diagonal matrices the relation

Q(u) = diag(u)−1(Q − diag(u)−1diag(Qu))diag(u),

and hence

diag(u)Q(u)diag(u)−1
= Q − diag(u)−1diag(Qu).

We can therefore rewrite (31) as

νT Q(u)diag(u)−1
= 0.
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It follows that νT Q(u∗) = 0. Since ν(i) > 0, ν is the unique invariant vector of Q(u∗). �
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