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Abstract. We consider nonparametric Bayesian estimation of the drift coefficient of a multidimensional stochastic dif-
ferential equation from discrete-time observations on the solution of this equation. Under suitable regularity conditions,
we establish posterior consistency in this context.
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1 Introduction

Consider the d-dimensional stochastic differential equation

dXt = b(Xt) dt+ dWt (1.1)

driven by a d-dimensional Brownian motionW and assume that it has a unique (in the sense of the probability
law) nonexploding weak solution. One can start with a coordinate mapping processX (that is,Xt(ω) = ω(t))
on the canonical space (C(R+),B(C(R+))) of continuous functions ω : R+ → R

d, a flow of sigma-fields
{FX

t }, and the d-dimensional Wiener measure Q on (C(R+),B(C(R+))). Then, as is well known (see, e.g.,
Proposition 3.6 and Remark 3.7 in [13, p. 303]), under suitable conditions on the drift coefficient b, for any
fixed initial distribution μ, one can obtain a weak solution (X,W ), (C(R+),F , Pμ

b ), {Ft} to (1.1) through the
Girsanov theorem. The filtration {Ft} can be made to satisfy the usual conditions by suitably augmenting and
completing the filtration {FX

t } (see Remark 3.7 in [13, p. 303]). Henceforth, we will assume that we are in
this canonical setup. We will also assume that X is ergodic with a unique ergodic distribution μb and is, in
fact, initialized at μb, so that μ = μb. Furthermore, we will abbreviate Pμb

b as Pb.
Suppose that the drift coefficient b = (b1, . . . , bd) belongs to some nonparametric class. Denote by

b0 = (b0,1, . . . , b0,d)
tr (here tr denotes transposition) the true drift coefficient and assume that a correspond-
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ing sample X0, XΔ, X2Δ, . . . , XnΔ is given. The goal is to estimate b0 nonparametrically. The problem of
nonparametric estimation of b0 from discrete-time observations has received considerable attention in the lit-
erature. For frequentist approaches to the problem, see, for instance, [2, 10, 12] in the one-dimensional case
(d = 1) and [3, 21] in the general multidimensional case (d � 1). However, a nonparametric Bayesian ap-
proach to estimation of b0 is also possible; see, e.g., [14, 16, 26]. In particular, under appropriate assumptions
on the drift coefficient b, the weak solution to (1.1) admits transition densities pb(t, x, y), and employing the
Markov property, the likelihood corresponding to the observations XiΔ can be written as

πb(X0)

n∏
i=1

pb(Δ, X(i−1)Δ, XiΔ), (1.2)

where πb denotes a density of the distribution μb ofX0 (under our conditions, πb and pb will be strictly positive
and finite; see Section 2 for details). A Bayesian would put a prior Π on the class of drift coefficients, say X ,
and obtain a posterior measure of any measurable set B ⊂ X through Bayes’ formula

Π(B|X0, . . . , XnΔ) =

∫
B πb(X0)

∏n
i=1 pb(Δ, X(i−1)Δ, XiΔ)Π(db)∫

X πb(X0)
∏n

i=1 pb(Δ, X(i−1)Δ, XiΔ)Π(db)
. (1.3)

Here we tacitly assume a suitable measurability of the integrands, so that the integrals in (1.3) are well defined.
In the Bayesian paradigm, the posterior encapsulates all the information required for inferential purposes.
Once the posterior is available, one can proceed with computation of Bayes point estimates, credible sets, and
other quantities of interest in Bayesian statistics.

It has been argued convincingly in [4] and elsewhere that a desirable property of a Bayes procedure is
posterior consistency. In our context this will mean that for every neighborhood (in a suitable topology)
Ub0 of b0,

Π
(
U c
b0

∣∣X0, . . . , XnΔ

)
→ 0, Pb0-a.s.

as n → ∞ (see Section 2 for details). That is, roughly speaking, a consistent Bayesian procedure asymp-
totically puts posterior mass equal to one on every fixed neighborhood of the true parameter: the posterior
concentrates around the true parameter. In an infinite-dimensional setting, such as the one we are dealing with,
posterior consistency is a subtle property that depends in an essential way on a specification of the prior; see,
e.g., [4]. Note also that the notion of posterior consistency depends on the topology on X . Ideally, one would
like to establish posterior consistency in strong topologies. An implication of posterior consistency is that even
though two Bayesians might start with two different priors, the role of the prior in their inferential conclusions
will asymptotically, with the sample size growing indefinitely, wash out, and the two will eventually agree.
Furthermore, posterior consistency also implies that the center (in an appropriate sense) of the posterior distri-
bution is a consistent (in the frequentist sense) estimator of the true parameter. For an introductory treatment
of posterior consistency, see [25].

In the context of discretely observed scalar diffusion processes given as solutions to stochastic differential
equations (of type (1.1) with d = 1), posterior consistency has been recently addressed in [16], whereas the
case where a continuous record of observations from a scalar diffusion process is available was covered under
various setups in [15, 17, 19], where, in particular, the contraction rates of the posterior were derived. The
techniques used in the latter three papers are of little use in the case of discrete observations. The proof of
posterior consistency in [16] is based on the use of martingale arguments in a fashion similar to [22] (see
also [7]). The latter paper deals with posterior consistency for estimation of the transition density of an er-
godic Markov process. The idea of using martingale arguments in the proofs of consistency of nonparametric
Bayesian procedures goes back to [23] and [24] in the i.i.d. setting. On the other hand, a similarity between
the arguments used in the proof of posterior consistency in [22] and [16] is to a considerable extent on a con-
ceptual level only: conditions for posterior consistency in [22] involve conditions on transition densities that
typically cannot be transformed into conditions on the drift coefficients because transition densities associated
with stochastic differential equations are usually unknown in explicit form. Furthermore, in the setting of [16],
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which deals with ergodic and strictly stationary scalar diffusion processes (in particular, X0 is initialized at
the ergodic distribution of the process X), one cannot assume that the density πb0 of X0 is known (as done
in [22, p. 1714]) since it would completely determine the unknown drift coefficient b0.

The assumption on the class of drift coefficients in Theorem 3.5 of [16] (the latter deals with posterior
consistency), namely, the uniform boundedness of the drift coefficients, is quite restrictive in that it excludes
even such a prototypical example of a stochastic differential equation as the Langevin equation (here we
assume d = 1)

dXt = −βXt dt+ σ dWt, (1.4)

where β and σ are two constants. A solution to (1.4) is called an Ornstein–Uhlenbeck process (see Example 6.8
in [13, p. 358] and page 397 there). Hence, there is room for improvement. Furthermore, it is interesting to
investigate the case of multidimensional stochastic differential equations as well.

In this work, we will show that, under standard assumptions in nonparametric inference for multidi-
mensional stochastic differential equations (see [3] and [21]), posterior consistency holds for nonparametric
Bayesian estimation of an unbounded drift coefficient satisfying the linear growth condition. In particular,
the case of the Langevin equation will be covered. In our proof of posterior consistency, we follow the same
train of thought as initiated in [23] and [24], at the same time, making use of ideas from [22] and, especially,
from [16]. According to [16, p. 51], the boundedness condition on the drift coefficients cannot be avoided
in their approach due to technical reasons. Our analysis and contribution to the literature, however, shows
that the case of unbounded drift coefficients and multidimensional stochastic differential equations can also be
covered via techniques similar to those in [16]. We would also like to remark that, in the scalar case, posterior
consistency for nonparametric estimation of an unbounded drift coefficient holds under weaker conditions than
those given in this work. Due to space restrictions, we decided to omit a separate discussion of the scalar case.
Instead, we refer to an extended version of the paper (see [11]).

The rest of the paper is organized as follows. In the next section, we give our main result. In Section 3,
we provide a brief discussion on it. The proofs are given in Section 4. Finally, the Appendix contains several
auxiliary statements used in Section 4.

2 Posterior consistency

Our parameter set will be a subset of the class X̃ (K1,K2) of drift coefficients introduced below.

DEFINITION 1. The family X̃ (K1,K2) consists of drift coefficients b : Rd → R
d possessing the following

three properties:

(a) for any b ∈ X̃ (K1,K2), there exists a C3-function Vb : R
d → R such that

Cb =

∫
Rd

e−2Vb(u) du < ∞,

|Vb(x)| grows not faster than a polynomial of ‖x‖ at infinity, and b = −[∇Vb]
tr, where ∇Vb is the

gradient of Vb;
(b) for any b ∈ X̃ (K1,K2), there exist three constants rb > 0, Mb > 0, and αb � 1 such that

b(x) · x � −rb‖x‖αb ∀‖x‖ � Mb,

where by a dot we denote the usual scalar product on Rd, and ‖x‖ is the L2-norm of a vector x ∈ R
d;

(c) there exist two constants K1 > 0 and K2 > 0 such that, for any b ∈ X̃ (K1,K2),

∥∥b(x)∥∥ � K1

(
1 + ‖x‖

)
,

∣∣∣∣ ∂

∂xj
bi(x)

∣∣∣∣ � K2 ∀x ∈ R
d, i, j = 1, . . . , d.

Lith. Math. J., 54(2):127–141, 2014.
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Remark 1. Assumptions made in Definition 1 are more than enough to guarantee the existence of a unique (in
the sense of the probability law) solution to (1.1): b ∈ X̃ (K1,K2) is automatically measurable, and the linear
growth condition on b, together with Proposition 3.6 and Remark 3.7 in [13, p. 303], implies the existence of a
weak solution. The uniqueness in the sense of the probability law follows by Proposition 3.10 in [13, p. 304]
and Proposition 1.1 in [9]. By Proposition 1 in [21] (see [3, p. 27]) these assumptions also imply the existence
of a unique ergodic distribution μb that has the density

πb(x) =
1

Cb
e−2Vb(x) > 0

with respect to the d-dimensional Lebesgue measure. In models in physics, the function Vb has the interpreta-
tion of the potential energy of the system. Furthermore, Proposition 1.2 in [9] implies the existence of strictly
positive transition densities pb(t, x, y) associated with (1.1). Finally, for any b, b̃ ∈ X (K1,K2), we also have
that the Kullback–Leibler divergence K(μb, μb̃) between μb and μb̃ is finite, which we use in the proof of
Lemma A.4 in the Appendix.

Remark 2. Examples of multidimensional stochastic differential equations satisfying the assumptions in Defi-
nition 1 are given in Section 5.2 in [21]. In particular, when d = 1, Definition 1 covers the case of the Langevin
equation (with σ = 1 and for parameter β ranging in the interval (0,K] for some constant K).

Remark 3. The positivity of πb and pb formally justifies rewriting the likelihood as in (1.2) and allows us to
employ the likelihood ratio Ln(b) in the proof of our main result, Theorem 1.

Remark 4. The measurability of the mapping b 
→ pb(t, x, y) is a subtle property essential in (1.3), but it is
difficult to ascertain it in a general setting. Therefore, we will simply tacitly assume that all the quantities in
(1.3) (or in other formulae where we integrate with respect to the prior) are suitably measurable.

Since the notion of posterior consistency depends on a topology on the class of drift coefficients under
consideration, we first have to introduce the latter. We want our topology to separate distinct drift coefficients,
which can be thought of as an identifiability condition. At the same time, we want the posterior measure to
concentrate on arbitrarily small neighborhoods of the true parameter b0. Fortunately, this will be possible with
our choice of topology, as it will have the required separation property.

We will base our topology on the transition operators Pb
Δ. Transition operators associated with (1.1) and

acting on the class of bounded measurable functions f : Rd → R are given by

Pb
tf(x) =

∫
Rd

pb(t, x, y)f(y) dy.

As it often happens in practice, it will be convenient in our case to define a topology not by directly specifying
the open sets, but rather by specifying a subbase Ũ (for a notion of a subbase, see, e.g., [5, p. 37]).

DEFINITION 2. Let ν be a finite Borel measure on R
d that assigns strictly positive mass to every nonempty

open subset of Rd, and let Cbdd(Rd) denote the class of all bounded continuous functions on R
d. For fixed

b ∈ X̃ (K1,K2), f ∈ Cbdd(Rd), and ε > 0, define

U b
f,ε =

{
b̃ ∈ X̃ (K1,K2):

∥∥Pb̃
Δf − Pb

Δf
∥∥
1,ν

< ε
}
,

where ‖ · ‖1,ν denotes the L1-norm with respect to the measure ν. Furthermore, let

Ũ =
{
U b
f,ε: f ∈ Cbdd

(
R
d
)
, ε > 0, b ∈ X̃ (K1,K2)

}
.

The topology T̃ on X̃ (K1,K2) is determined by the requirement that the family Ũ is a subbase for T̃ .
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Remark 5. The fact that Definition 2 is indeed a valid definition follows from a standard result in general
topology, Theorem 2.2.6 in [5]. Note also that T̃ depends on the choice of the measure ν. Since ν is assumed
to be fixed beforehand and its specific choice is not of great importance for subsequent developments, it is not
reflected in our notation.

Remark 6. Let d = 1. The topology in Definition 2 has already been employed in [16], who in that respect
follow Section 6 in [22]. For a C2-function f and small Δ,

Pb
tf(x)− Pb̃

tf(x) ≈ Δ
(
b(x)− b̃(x)

)
f ′(x)

(see [16, p. 50]). Hence, for small Δ, the topology T̃ in some sense resembles the topology induced by the
L1(ν)-norm on the collection of drift coefficients.

We will now show that the topology of Definition 2 has the Hausdorff property. This is perfectly sufficient
for our purposes. For a notion of a Hausdorff space, see, e.g., [5, p. 30].

Lemma 1. The topological space (X̃ (K1,K2), T̃ ) with X̃ (K1,K2) as in Definition 1 is a Hausdorff space.

Let X (K1,K2) ⊆ X̃ (K1,K2) with the interpretation that X (K1,K2) is our parameter set, and let T =
{A ∩ X (K1,K2): A ∈ T̃ } be the corresponding relative topology on X (K1,K2).

DEFINITION 3. If, for any neighborhood Ub0 ∈ T of b0 ∈ X (K1,K2), we have

Π
(
U c
b0

∣∣X0, . . . , XnΔ

)
→ 0 Pb0-a.s.

as n → ∞, we will say that posterior consistency holds at b0.

We summarize our assumptions.

ASSUMPTION 1. Assume that:

(a) a unique in law nonexploding weak solution to (1.1) corresponding to each b ∈ X (K1,K2) is initialized
at the ergodic distribution μb;

(b) b0 ∈ X (K1,K2) denotes the true drift coefficient;
(c) a discrete-time sample X0, . . . , XnΔ from the solution to (1.1) corresponding to b0 is available (we

assume that we are in the canonical setup as in Section 1), and, finally, Δ is fixed and independent of n.

The following is our main result.

Theorem 1. Let Assumption 1 hold and suppose that the prior Π on X (K1,K2) is such that

Π

(
b ∈ X (K1,K2):

{
d∑

i=1

‖bi − b0,i‖22,μb0

}1/2

< ε

)
> 0 ∀ε > 0. (2.1)

Then posterior consistency as in Definition 3 holds.

Remark 7. Condition (2.1) on the prior Π is formulated in terms of the L2(μb0)-neighborhoods, whereas the
posterior consistency assertion returned by Theorem 1 is for the weak topology T . However, by Remark 6, for
small Δ, at least in the case d = 1, the “discrepancy” is not as dramatic as it may seem at first sight.

Condition (2.1) on the prior is of the same type as the one in Theorem 3.5 in [16]. Since b0 is unknown,
the prior Π must verify (2.1) at all parameter values b ∈ X . We provide an example of a prior Π satisfying
this condition. The construction of Π is similar to that in Example 4.1 in [16]. Both examples are related to
discrete net priors in nonparametric Bayesian inference problems studied in [6]. The construction is admittedly
artificial, but its sole goal is to show the existence of a prior satisfying (2.1).

Lith. Math. J., 54(2):127–141, 2014.
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Example 1. Let F be a collection of C3-functions f : R → R such that:

(a) for some constant K1 > 0 and for all f ∈ F, we have

∣∣f ′(x)
∣∣ � K1

2
∀x ∈ R+;

(b) for all f ∈ F, we have ∫
Rd

e−2f(‖x‖2) dx < ∞;

(c) for all f ∈ F, there exist two constants Mf > 0 and rf > 0 (possibly depending on f ) such that
f ′(x) � rf for all x � Mf ;

(d) for some constant K2 > 0 and for all f ∈ F,

sup
x∈R+

{
4x
∣∣f ′′(x)

∣∣+ 2
∣∣f ′(x)

∣∣} � K2.

For all x ∈ R
d, set Vf (x) = f(‖x‖2) and bf (x) = −[∇Vf (x)]

tr. Let X (K1,K2) be a subset of a collection
of all functions bf = (bf,1, . . . , bf,d) obtained in this way (the fact that this is a valid definition, in the sense
that the requirements from Definition 1 are satisfied, follows by easy but somewhat tedious computations; note
that by taking fβ = βx/2 and assuming d = 1 and β ∈ (0,K1] we can cover the case of the Langevin equation
(1.4)). We get from (a) that, for every fixed i = 1, . . . , d, the functions bf,i are locally bounded by constants
uniform in f ∈ F. Furthermore, they are Lipschitz with uniform constants in f ∈ F as well: by the mean value
theorem, ∣∣bf,i(x)− bf,i(y)

∣∣ � ∥∥∇bf,i
(
λx+ (1− λ)y

)∥∥‖x− y‖ �
√
dK2‖x− y‖.

Hence, for each m ∈ N and i = 1, . . . , d, by the Arzelà–Ascoli theorem (see Theorem 2.4.7 in [5]) the
collection Bm,i of restrictions bf,i|[−m,m] of the functions bf,i, f ∈ F, to the intervals [−m,m] is totally
bounded for the supremum metric ‖ · ‖∞ (for the required definitions, see [5, pp. 45, 52]). Then so is the
product

⊗d
i=1Bm,i for the product metric

‖bf‖d,m,∞ = max
i=1,...,d

‖bf,i|[−m,m]‖∞,

as well as its subset consisting of the elements

bf |[−m,m]d = (bf,1|[−m,m], . . . , bf,d|[−m,m]), f ∈ F.

Take a sequence εl ↓ 0. For any l ∈ N, there exists a finite subset Fm,εl = {fm,εl
n , n = 1, . . . , nm,l} such that,

for all f ∈ F, ‖bf − bfm,εl
n

‖d,m,∞ < εl for some n = 1, . . . , nm,l. Let Q̃1 and Q̃2 be two probability measures
on N such that qj,i = Q̃i(j) > 0, i = 1, 2, j ∈ N. The prior Π on X (K1,K2) is defined by

Π =

∞∑
m=1

∞∑
l=1

nm,l∑
n=1

qm,1ql,2
nm,l

δb
f
m,εl
n

,

where δb
f
m,εl
n

is the Dirac measure at bfm,εl
n

. The fact that Π satisfies requirement (2.1) is the content of
Lemma 2 in Section 4. Since Π assigns all its mass to a countable subset of X (K1,K2), measurability issues
should not concern us when integrating with respect to Π .
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3 Discussion

In this work, we were able to demonstrate that posterior consistency for nonparametric Bayesian estimation
of the drift coefficient of a stochastic differential equation holds not only for the class of uniformly bounded
drift coefficients and in the scalar setting, as shown previously in [16], but also in the multidimensional set-
ting for the class of drift coefficients satisfying a linear growth assumption (and some additional technical
assumptions). This considerably enlarges the scope of the main result in [16]. Conditions that we impose
are analogous to those used in the frequentist literature (see [3] and [21]), which is a comforting fact. On
the other hand, posterior consistency results both in [16] and in our work are established for a weak topol-
ogy on the class of drift coefficients. This is a consequence of the fact that we rely on techniques from [24]
in our proofs, which are better suited for proving posterior consistency in weak topologies. Consistency in
stronger topologies could have been established, and contraction rates of the posterior could have been derived
from general results for posterior consistency in Markov chain models had we known the existence of certain
tests satisfying the conditions as in formula (2.2) in [8]; see Theorem 5 there. The existence of such tests for
Markov chain models has been demonstrated in Theorem 3 in [1], but unfortunately, the conditions involved
in this theorem (see also formula (4.1) in [8]) do not appear to hold, in general, for the stochastic differential
equation models we consider. Hence, establishing posterior consistency in a stronger topology and derivation
of the posterior contraction rate for nonparametric Bayesian drift estimation is an interesting and difficult open
problem. A recent paper [19] addresses the latter question for a one-dimensional stochastic differential equa-
tion with a periodic drift coefficient. However, this is done under the assumption that an entire sample path
{Xt: t ∈ [0, T ]} is observed over the time interval [0, T ] with T → ∞. Moreover, periodic drift coefficients
are completely different from the drift coefficients considered in Section 2 of the present work, and making
use of the techniques from [19] is impossible in our setting. Neither are the techniques in [15] and [17] of any
significant help (these papers deal with continuously observed scalar diffusion processes). It should also be
noted that also with the frequentist approaches (with Δ fixed), already in the one-dimensional setting, study
of convergence rates of nonparametric estimators of the drift and dispersion coefficients is a highly nontrivial
task (see, e.g., [10]), where various simplifying assumptions have been made, such as the requirement that the
diffusion process under consideration has a compact state space, say [0, 1], and is reflecting at the boundary
points. Nevertheless, some progress in establishing posterior consistency in a stronger topology than in this
work might be possible in the setting where Δ = Δn → 0 in such a way that nΔn → ∞ (the so-called
high-frequency data setting).

Finally, we remark that issues associated with practical implementation of the nonparametric Bayesian
approach to estimation of a drift coefficient are outside the scope of this work. Although much remains to
be done in this direction, preliminary studies, such as those in [18] and [14] (see also the overview paper
[26]) indicate that a nonparametric Bayesian approach in this context is both feasible and leads to reasonable
results.

4 Proofs

Proof of Lemma 1. The lemma can be proved by arguments similar to those in the proof of Lemma 3.2
in [16]. The proof employs Lemma A.1 from the Appendix, which plays the role of Lemma 3.1 from [16] in
this context. ��

Proof of Theorem 1. The proof follows the same main steps as the proof of Theorem 3.5 in [16], which in
turn uses some ideas from [22] and [24]. Fix ε > 0, take a fixed f ∈ Cbdd(Rd), and write

B =
{
b ∈ X (K1,K2):

∥∥Pb
Δf − Pb0

Δf
∥∥
1,ν

> ε
}
. (4.1)

Without loss of generality, we may assume that ‖f‖∞ � 1 and ε � 2ν(Rd). We claim that by the definition
of the topology T it suffices to establish posterior consistency for every fixed B of the above form. Indeed,
a subbase U for T can be obtained by intersecting the sets from the subbase Ũ for T̃ with X (K1,K2). By

Lith. Math. J., 54(2):127–141, 2014.
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definition, an arbitrary neighborhood Ub0 of b0 contains an open set Ûb0 ∈ T . The set Ûb0 is a union of
open sets V from the base V (determined by U), Ûb0 =

⋃
{V ∈ V: V ⊂ Ûb0}. There is at least one V that

contains b0. Fix such V . By the definition of the subbase U this set V can be represented as V =
⋂m

j=1 U
b0
fj ,εj

for some m, positive numbers εj , bounded continuous functions fj , and sets U b0
fj ,εj

from the subbase U . Note
that we have

U c
b0 ⊂ Û c

b0 ⊂ V c =

m⋃
j=1

(
U b0
fj ,εj

)c
.

Since

(
U b0
fj ,εj

)c
=
{
b ∈ X (K1,K2):

∥∥Pb
Δfj − Pb0

Δfj
∥∥
1,ν

� εj
}

⊂
{
b ∈ X (K1,K2):

∥∥Pb
Δfj − Pb0

Δfj
∥∥
1,ν

>
εj
2

}
,

say, the claim becomes obvious.
The posterior measure of the set B given in (4.1) can be written as

Π(B|X0, . . . , XnΔ) =

∫
B Ln(b)Π(db)∫

X (K1,K2)
Ln(b)Π(db)

,

where

Ln(b) =
πb(X0)

πb0(X0)

n∏
i=1

pb(Δ, X(i−1)Δ, XiΔ)

pb0(Δ, X(i−1)Δ, XiΔ)

is the likelihood ratio. By Lemma A.2 from the Appendix, in order to prove the theorem, it suffices to show
that

Π
(
B+

j

∣∣X0, . . . , XnΔ

)
→ 0, Π

(
B−

j

∣∣X0, . . . , XnΔ

)
→ 0 Pb0-a.s.

for the sets B+
j and B−

j (j = 1, . . . , N for some suitable integer N > 0) given in the statement of that lemma.
We give a brief outline of the remaining part of the proof: thanks to property (2.1) of the prior, by Lemma A.4
from the Appendix the prior Π has the Kullback–Leibler property in the sense that (A.5) holds. Then by
Lemma A.5 from the Appendix, in order to establish posterior consistency, it suffices to show that Pb0-a.s. the
terms √√√√

∫
B+

j

Ln(b)Π(db) and

√√√√
∫
B−

j

Ln(b)Π(db)

converge to zero exponentially fast. This fact can be proved by a reasoning similar to that given in the proof of
Theorem 3.5 in [16] (employing the convergence theorem for a positive supermartingale, see, e.g., Theorem 22
in [20, p. 148], and not Doob’s martingale convergence theorem as employed in [16, pp. 59–60]1). This
completes the proof. ��

In the next lemma, we verify the claim made at the end of Example 1.

Lemma 2. The prior Π from Example 1 satisfies requirement (2.1).

1 Note that, in [16, p. 58], the expression Ln is called the likelihood, although obviously the likelihood ratio is meant.
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Proof. The proof is similar to the demonstration of an analogous property of the prior in Example 4.1 in [16]:
for all b ∈ X (K1,K2) and positive integers m, we have

d∑
i=1

‖bi − bi,0‖22,μb0
=

d∑
i=1

∫
‖x‖�m

(
bi(x)− b0,i(x)

)2
πb0(x) dx+

d∑
i=1

∫
‖x‖>m

(
bi(x)− b0,i(x)

)2
πb0(x) dx

� d‖b− b0‖m,d,∞ + 4K2d

∫
‖x‖>m

(
1 + ‖x‖

)2
πb0(x) dx.

Thanks to the fact that μb0 has an exponential moment, the second term on the right-hand side can be made
less than ε2 by choosing m large enough. Hence,

Π

(
b ∈ X (K1,K2):

d∑
i=1

‖bi − b0,i‖22,μb0
< 2ε2

)
� Π

(
b ∈ X (K1,K2): ‖b− b0‖2m,d,∞ <

ε2

d

)
.

For l such that εl < ε/
√
d, we have by construction of Π that the right-hand side of the above display is

bounded from below by qm,1ql,2/km,l > 0. This completes the proof of the lemma. ��

Appendix

Lemma A.1. Let b, b̃ ∈ X̃ (K1,K2). Fix t > 0. If b �= b̃, then Pb
t �= Pb̃

t .

Proof. The proof is similar to the proof of Lemma 3.1 in [16]. By the continuity of b and b̃ we have that
if b �= b̃, this, in fact, holds on a set of positive Lebesgue measure. Then also Vb �= Vb̃ on a set of positive
Lebesgue measure (it contains, for instance, some open ball in R

d), and, therefore, πb �= πb̃ on a set of
positive Lebesgue measure. Now assume that Pb

t = Pb̃
t . Then, for any bounded measurable function f and any

positive integer m, by the semigroup property of Pb
t we have that

Eb
x

[
f(Xmt)

]
=
(
Pb
t

)m
f(x) =

(
Pb̃
t

)m
f(x) = Eb̃

x

[
f(Xmt)

]
,

where Eb
x and Eb̃

x denote the expectation operators under parameter values b and b̃ when X is initialized at x.
Letting m → ∞, the above display and ergodicity give that∫

Rd

f(y)πb(y) dy =

∫
Rd

f(y)πb̃(y) dy.

It follows that πb = πb̃ Lebesgue-a.e., and, in fact, by continuity πb = πb̃ everywhere. This is a contradiction
and thus b �= b̃ implies Pb

t �= Pb̃
t . ��

Lemma A.2. Fix ε > 0 such that ε � 2ν(Rd), take a fixed f ∈ Cbdd(Rd) such that ‖f‖∞ � 1, and write

B =
{
b ∈ X :

∥∥Pb
Δf − Pb0

Δf
∥∥
1,ν

> ε
}
.

Then there exist a compact set F ⊂ R
d, an integer N > 0, and cubes I1, . . . , IN covering F such that

B ⊂
(

N⋃
j=1

B+
j

)
∪
(

N⋃
j=1

B−
j

)
,
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where

B+
j =

{
b ∈ B: Pb

Δf(x)− Pb0
Δf(x) >

ε

4ν(F )
∀x ∈ Ij

}
,

B−
j =

{
b ∈ B: Pb

Δf(x)− Pb0
Δf(x) < − ε

4ν(F )
∀x ∈ Ij

}
.

Proof. The proof of Lemma 5.3 in [16] carries over, provided that we redefine the intervals Ij of length
δ/2 > 0 from that proof to be cubes with sides of length δ/2 and use, instead of Lemma A.1 from [16],
Lemma A.3 given below. ��

Recall that a family F of functions f : Rd → R is called locally uniformly equicontinuous if, for any
compact set F ⊂ R

d, the restrictions f |F of the functions f ∈ F to F form a uniformly equicontinuous family
of functions, i.e., for every ε > 0, there exists δ > 0 such that

sup
f∈F

sup
x,y∈F
|x−y|<δ

∣∣f(x)− f(y)
∣∣ < ε.

The next lemma is an adaptation of Lemma A.1 in [16], but in its proof we need somewhat different
arguments than those used in [16].

Lemma A.3. For a fixed f ∈ Cbdd(Rd) and t > 0, the family {Pb
Δf : b ∈ X (K1,K2)} is a locally uniformly

equicontinuous family of functions.

Proof. In order to prove the lemma, we need to show that the family of functions {Pb
Δf : b ∈ X (K1,K2)} is

uniformly equicontinuous whenever the argument x of Pb
Δf(x) is restricted to an arbitrary compact set F. Fix

a compact set F ⊂ R
d. Throughout this proof, we assume that x, y ∈ F.

Let

lu =

d∑
i=1

Δ∫
0

bi(u+Ws) dWi,s −
1

2

d∑
i=1

Δ∫
0

b2i (u+Ws) ds and Lu = elu

for a standard d-dimensional Brownian motion W = (W1, . . . ,Wd). Then, employing the Girsanov theorem
as in the proof of Lemma A.1 in [16], it can be shown that

Pb
Δf(x) = E

[
f(x+WΔ)Lx

]
,

where the expectation is evaluated under the Wiener measure. It is enough to prove the lemma for Δ small
enough, in particular, such that

ΔK1 <
1

2
√
d
. (A.1)

In fact, by the semigroup property of the transition operators we have

∣∣Pb
Δf(x)− Pb

Δf(y)
∣∣ � Pb

Δ/2

∣∣Pb
Δ/2f(x)− Pb

Δ/2f(y)
∣∣,

and if {Pb
Δ/2f : b ∈ X (K1,K2)} is uniformly equicontinuous when the argument x ranges in F , then it is

immediately seen that so is {Pb
Δf : b ∈ X (K1,K2)}, while if not, then we can reiterate the same argument,

but now with Δ/2 and Δ/4 instead of Δ and Δ/2, and so on, until (A.1) is met.
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We have

∣∣Pb
Δf(x)− Pb

Δf(y)
∣∣ � E

[∣∣f(x+WΔ)
∣∣|Lx − Ly|

]
+E

[
Ly

∣∣f(x+WΔ)− f(y +WΔ)
∣∣]

:= S1 + S2.

We will bound the two terms S1 and S2 separately.
There exists q̃ > 1 such that

K1Δ <
1

2
√
dq̃

. (A.2)

Fix such q̃ and let q be the root of the equation

q̃ = 2

(
q2 − q

2

)
(A.3)

that is larger than 1. Next, set r = q/(q − 1). Note that r > 1 and 1/r + 1/q = 1.
To bound S1, we apply the elementary inequality |ea − eb| � |a − b||ea + eb| for a, b ∈ R and Hölder’s

inequality with exponents r and q defined before to obtain

S1 � ‖f‖∞E
[
|Lx − Ly|

]
� ‖f‖∞E

[
|lx − ly||Lx + Ly|

]
� ‖f‖∞

{
E
[
|lx − ly|r

]}1/r{
E
[
|Lx + Ly|q

]}1/q
.

In order to bound S1, we hence need to bound the last two factors on the right-hand side of the last inequality.
We first treat the first of these two. The cr-inequality gives that it is enough to bound the terms

E

[∣∣∣∣∣
Δ∫
0

(
bi(x+Ws)− bi(y +Ws)

)
dWi,s

∣∣∣∣∣
r ]

, E

[∣∣∣∣∣
Δ∫
0

(
b2i (x+Ws)− b2i (y +Ws)

)
ds

∣∣∣∣∣
r ]

for i = 1, . . . , d. Since the arguments are the same for any i, we henceforth fix a particular i. By the
Burkholder–Davis–Gundy inequality (see Theorem 3.28 in [13, p. 166]),

E

[∣∣∣∣∣
Δ∫
0

(
bi(x+Ws)− bi(y +Ws)

)
dWi,s

∣∣∣∣∣
r ]

� CrE

[∣∣∣∣∣
Δ∫
0

(
bi(x+Ws)− bi(y +Ws)

)2
ds

∣∣∣∣∣
r/2]

,

where Cr > 0 is a universal constant independent of b. For a fixed constant R > 0 and the set F ′= {u + v:
u ∈ F, ‖v‖ � R}, by the Cauchy–Schwarz inequality the expectation on the right-hand side of the above
display can be bounded as follows:

E

[∣∣∣∣∣
Δ∫
0

(
bi(x+Ws)− bi(y +Ws)

)2
ds

∣∣∣∣∣
r/2

1[sups�Δ ‖Ws‖�R]

]

+E

[∣∣∣∣∣
Δ∫
0

(
bi(x+Ws)− bi(y +Ws)

)2
ds

∣∣∣∣∣
r/2

1[sups�Δ ‖Ws‖>R]

]
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� Δr/2 sup
u,v∈F ′

‖u−v‖�‖x−y‖

∣∣bi(u)− bi(v)
∣∣r

+

{
E

[∣∣∣∣∣
Δ∫
0

(
bi(x+Ws)− bi(y +Ws)

)2
ds

∣∣∣∣∣
r ]}1/2{

P
(
sup
s�Δ

‖Ws‖ > R
)}1/2

.

Since b has partial derivatives bounded in absolute value by K2, the first term on the right-hand side of the
above display can be made arbitrarily small by choosing δ small enough and ‖x − y‖ � δ. Furthermore,
the term {

P
(
sup
s�Δ

‖Ws‖ > R
)}1/2

can be made arbitrarily small by choosing R large enough. Next, by Hölder’s inequality,

{
E

[∣∣∣∣∣
Δ∫
0

(
bi(x+Ws)− bi(y +Ws)

)2
ds

∣∣∣∣∣
r ]}1/2

� Δr/(2q)

{
E

[ Δ∫
0

∣∣bi(x+Ws)− bi(x+Ws)
∣∣2r ds

]}1/2

,

and a lengthy but easy computation employing the Fubini theorem, the linear growth condition on b, and the
c2r-inequality shows that the term on the right-hand side is bounded by a constant independent of b. Conse-
quently, the term

E

[∣∣∣∣∣
Δ∫
0

(
bi(x+Ws)− bi(y +Ws)

)
dWi,s

∣∣∣∣∣
r ]

can be made arbitrarily small, once δ is chosen small enough and ‖x− y‖ � δ. The term

E

[∣∣∣∣∣
Δ∫
0

(
b2i (x+Ws)− b2i (y +Ws)

)
ds

∣∣∣∣∣
r ]

can be shown to be bounded uniformly in b ∈ X (K1,K2) by employing similar techniques: by the Cauchy–
Schwarz inequality (twice),

E

[∣∣∣∣∣
Δ∫
0

(
b2i (x+Ws)− b2i (y +Ws)

)
ds

∣∣∣∣∣
r ]

�
{
E

[∣∣∣∣∣
Δ∫
0

(
bi(x+Ws)− bi(y +Ws)

)2
ds

∣∣∣∣∣
r ]}1/2

×
{
E

[∣∣∣∣∣
Δ∫
0

(
bi(x+Ws) + bi(y +Ws)

)2
ds

∣∣∣∣∣
r ]}1/2

.

The first factor on the right-hand side can be made arbitrarily small uniformly in b ∈ X (K1,K2) by taking δ
small (see above), whereas the second factor remains bounded uniformly in b ∈ X (K1,K2) and x, y,∈ F by
the linear growth condition on b.
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Next, we will bound the right-hand side of the inequality

E
[
|Lx + Ly|q

]
� cqE

[
Lq
x

]
+ cqE

[
Lq
y

]
.

Since obviously both terms on the right-hand side can be bounded in exactly the same manner, we will only
give an argument for the first one. By the Cauchy–Schwarz inequality applied to the random variables

exp

((
q2 − q

2

) d∑
i=1

Δ∫
0

b2i (x+Ws) ds

)
,

exp

(
d∑

i=1

Δ∫
0

qbi(x+Ws) dWi,s −
d∑

i=1

Δ∫
0

q2b2i (x+Ws) ds

)

we have

E
[
Lq
x

]
�
{
E

[
exp

(
2

(
q2 − q

2

) d∑
i=1

Δ∫
0

b2i (x+Ws) ds

)]}1/2

. (A.4)

Here we used the fact that

E

[
exp

(
d∑

i=1

Δ∫
0

2qbi(x+Ws) dWi,s −
1

2

d∑
i=1

Δ∫
0

4q2b2i (x+Ws) ds

)]
= 1,

since the process under the expectation sign is a martingale and has the expectation equal to one (this is due to
the linear growth condition and Corollary 5.16 in [13, p. 200]).

Hence, it remains to bound the right-hand side of (A.4), which we denote by S5. By the linear growth
condition we have

S2
5 � exp

(
2dq̃K2

1Δ
(
1 + ‖x‖

)2)
E

[
exp

(
2dq̃K2

1

Δ∫
0

‖Ws‖2 ds
)]

.

By Doob’s maximal inequality for submartingales (see Theorem 3.8(iv) in [13, pp. 13–14]) and the indepen-
dence of the scalar Brownian motions Wi,

E

[
exp

(
2dq̃K2

1

Δ∫
0

‖Ws‖2 ds
)]

� 4

d∏
i=1

E
[
exp

(
2dq̃K2

1ΔW 2
i,Δ

)]
< ∞.

Here, in the last inequality, we used (A.2). The conclusion is that the term S1 can be made arbitrarily small by
taking δ small and ‖x− y‖ � δ. The proof is now completed as follows: by Hölder’s inequality,

S2 �
{
E
[
Lq
y

]}1/q{
E
[∣∣f(x+WΔ)− f(y +WΔ)

∣∣r]}1/r.
The first factor on the right-hand side can be bounded as before uniformly in b ∈ X (K1,K2). The second
factor can be made arbitrarily small as soon as ‖x− y‖ � δ for small enough δ: for a constant R > 0,

E
[∣∣f(x+WΔ)− f(y +WΔ)

∣∣r]
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= E
[∣∣f(x+WΔ)− f(y +WΔ)

∣∣r1[‖WΔ‖>R]

]
+E

[∣∣f(x+WΔ)− f(y +WΔ)
∣∣r1[‖WΔ‖�R]

]
�
(
2‖f‖∞

)r
P
(
‖WΔ‖ > R

)
+E

[∣∣f(x+WΔ)− f(y +WΔ)
∣∣r1[‖WΔ‖�R]

]
.

The first term on the right-hand side of the last inequality can be made arbitrarily small by selecting R large
enough. Upon fixingR, so can be the second one by taking ‖x−y‖ � δ for small enough δ > 0. Combination
of all the above intermediate results entails the statement of the lemma. ��

Lemma A.4. Let

KL(b0, b) =

∫
Rd

∫
Rd

πb0(x)pb0(Δ, x, y) log
pb0(Δ, x, y)

pb(Δ, x, y)
dx dy,

and assume that the weak solution to (1.1) is initialized at μb. Then, for the prior Π satisfying property (2.1),
we have the inequality

Π
(
b ∈ X (K1,K2): KL(b0, b) < ε

)
> 0 ∀ε > 0. (A.5)

Proof. The proof is an obvious modification of the proof of Lemma 5.1 in [16]. The only additional fact
we need to verify is that the Kullback–Leibler divergence K(μb, μb̃) is finite for any b, b̃ ∈ X (K1,K2). This,
however, follows from Proposition 1.1 in [9]. ��

Lemma A.5. Suppose that the prior Π on X (K1,K2) has property (A.5) and assume that the weak solution
to (1.1) is initialized at μb. If, for a sequence Cn of measurable subsets of X (K1,K2), there exists a constant
c > 0 such that

enc
∫
Cn

Ln(b)Π(db) → 0 Pb0-a.s.,

then

Π(Cn|X0, . . . , XΔn) → 0 Pb0-a.s.

as n → ∞.

Proof. The proof is an easy generalization of the proof of Lemma 5.2 in [16]. ��
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