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Abstract
In this paper we address the problem of estimating the posterior distribution of the static
parameters of a continuous-time state space model with discrete-time observations by an
algorithm that combines theKalmanfilter and a particle filter. The proposed algorithm is semi-
recursive and has a two layer structure, in which the outer layer provides the estimation of the
posterior distribution of the unknown parameters and the inner layer provides the estimation
of the posterior distribution of the state variables. This algorithm has a similar structure as
the so-called recursive nested particle filter, but unlike the latter filter, in which both layers
use a particle filter, our algorithm introduces a dynamic kernel to sample the parameter
particles in the outer layer to obtain a higher convergence speed. Moreover, this algorithm
also implements the Kalman filter in the inner layer to reduce the computational time. This
algorithm can also be used to estimate the parameters that suddenly change value. We prove
that, for a state spacemodel with a certain structure, the estimated posterior distribution of the
unknown parameters and the state variables converge to the actual distribution in L p with rate

of order O(N− 1
2 + Δ

1
2 ), where N is the number of particles for the parameters in the outer

layer and Δ is the maximum time step between two consecutive observations. We present
numerical results of the implementation of this algorithm, in particularly we implement this
algorithm for affine interestmodels, possiblywith stochastic volatility, although the algorithm
can be applied to a much broader class of models.
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1 Introduction

We pose the problem, describe its background and give a brief sketch of earlier approaches.
After that we explain our approach and contribution to the literature and outline the organi-
zation of the present paper.

1.1 Problem description and background

When using stochastic models in a practical environment, model parameters need to be esti-
mated, which turns out to be a very challenging problem. In the present paper we present a
method based on a combination of the Kalman and particle filters to do so. In Statistics one
can discern two paradigms, Bayesian and frequentist, with ensuing Bayesian and frequentist
estimation methods. Among the latter, Maximum Likelihood estimation (MLE) is a classical
one. Such methods can also be categorized as online or offline depending on whether the
data are used sequentially, or used in batches of observations. The MLE approach is to find
the estimate which maximizes the likelihood function of the observed data. The Bayesian
approach, however, considers the parameters as randomvariables. Prior distributions of these,
reflecting prior knowledge of the parameters, is updated by the observations through the like-
lihood, resulting in posterior distributions.In applications, the MLE based on offline methods
is often linked to the Kalman filter or its modifications such as the extended Kalman filter,
see Einicke and White (1999) and Wan and Nelson (2002), or the unscented Kalman filter,
see Wan and van der Merwe (2002), because these algorithms can compute or approximate
the likelihood function analytically. However, a common problem of the MLE calibration
is that the likelihood function is usually not convex. Hence the numerical optimization of
the likelihood often ends up at a local maximum instead of the global maximum. This prob-
lem can be even more severe when dealing with models with many parameters, such as
multi-factor Hull–White and Vasiěk models, popular in interest rate modeling. Originally,
the MLE method requires static model parameters, while in reality the model parameters,
such as volatility in financial models, could change over time. Later on, likelihood based
methods have been developed to cope with this situation as well. Change point methods, see
for example Nemeth et al. (2014), are developed to address the abrupt change of parameters,
but those models require a separate model to determine when the model parameters change
in the time series, which could increase the complexity of the model. An alternative is to use
online methods, which have received more and more attention in recent decades.

Attempts to solve the problem of estimating the static parameters online was to include
simulations (particles) of parameter values. One then has a particle filter, see for example
Doucet et al. (2000), Gordon et al. (1993), Kitagawa (1996), Liu and Chen (1998) and
Kantas et al. (2015) for a survey. However, through successive time steps this approach can
quickly lead to what is called particle degeneracy of the parameter space. One solution to
this degeneracy problem is to use a kernel density to estimate the posterior distribution of
the parameters from which new parameter particles can be drawn at each time step (Liu and
West 2001). Besides the fact that a study of the convergence of the algorithm introduced in
this latter paper has not been carried out, also such a method could deliver poor performance
in some simple set-ups other than the low dimensional case (Miguez et al. 2005).
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In recent years, some new methods have been proposed to deal with the online parameter
estimation problem, including the iterated batch importance sampling (IBIS), see Chopin
(2002), the sequential Monte Carlo square (SMC2) simulation, see Chopin et al. (2013), and
the recursive nested particle filter (RNP filter, also RNPF in short), see Crisan and Míguez
(2018). The SMC2 and the RNPF use two layers ofMonte Carlomethods to overcome certain
difficulties with the IBIS method, see Papavasiliou (2006). An important difference between
SMC2 and the RNPF is that the SMC2 is a non-recursive method, whereas the RNPF is
recursive (see Ljung and Söderström 1983 for a definition of a recursive (online) algorithm
for the estimation of a given model parameter). Hence in general, RNPF is more efficient
than SMC2.

In Crisan and Míguez (2018) the estimated posterior measure of the parameters by using
an RNPF algorithm is shown to converge to the actual measure in L p-normwith rate N−1/2+
M−1/2, where N is the number of particles for the parameter estimation in the outer layer
and N × M is the number of particles for the state variables in the inner layer. The RNPF
has some drawbacks for a practical application. One is that the computation of the two
Monte Carlo layers is very time consuming, another one is that the RNPF requires that the
parameter mutation size is small enough. As a consequence the RNPF converges very slowly
to the actual value of the parameters and hence requires a very long time series of data,
which is very often not available in many applications. To obtain a faster while still accurate
algorithm, we propose an algorithm that combines the Kalman filter and a particle filter
together with a so-called jittering kernel. The mixture of a Kalman filter and a particle filter is
previously considered inAndrieu andDoucet (2002) andChen and Liu (2000) for conditional
linear-Gaussian systems, although the focus in these papers is different, merely on filtering
with known parameters while in the present paper we focus on parameter estimation. Other
algorithms have been proposed by Stroud et al. (2018) that combine an Ensemble Kalman
filter for state estimation with various approximations (one involving a particle filter too)
for the updates for the parameter posterior. Their performances have only been numerically
evaluated in examples. We apply our algorithm to well chosen non-Gaussian non-linear
models and we also provide a convergence analysis of the parameter estimators, an issue not
treated in Andrieu and Doucet (2002), Chen and Liu (2000) and Stroud et al. (2018). More
explanation follows in the next section.

1.2 Contribution

In this paper, we consider joint parameter and state estimation for a state space model where
the state evolves continuously in time, whereas the observations are sampled at discrete
time instants. We use a Bayesian online approach to parameter estimation. We propose an
algorithm which combines the Kalman filter and a particle filter for online estimation of
the posterior distribution of the unknown parameters. This algorithm has a similar structure
as the RNPF, it is a semi-recursive algorithm with also two layer structure: the inner layer
provides the approximation on the posterior distribution of the state variables conditioned
on the parameter particles generated in the outer layer, while the outer layer provides an
approximation of the posterior distribution of the parameters by using the outcome of the
inner layer.

Our proposed methodology has two main differences when compared to the RNPF algo-
rithm. One difference is that in the inner layer, the posterior distribution of the state variables
is estimated by theKalman filter instead of a particle filter. The implementation of theKalman
filter reduces the computational complexity and hence results in a much faster and robust
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algorithm. The second difference is in the outer layer. In the RNPF the parameter samples
are generated from a certain kernel function. In order to obtain a recursive algorithm, some
requirements on the kernel function are introduced. This results in a kernel that significantly
reduces the convergence speed of the RNPF. We overcome this problem by using dynamic
jittering kernels. Especially in this paper, we implement two different kernel functions. One
is applied at the beginning stage to obtain a higher convergence speed. The consequence,
however, is that the algorithm is not recursive at this beginning stage since this kernel func-
tion does not satisfy the requirements of a recursive algorithm. The other kernel is applied
when the variance of the parameter particles decreases to a certain level which is such that
this kernel function satisfies the conditions for a recursive method. From that time on, the
algorithm is truly recursive. From the numerical experiments we performed, we observe that
the variance of the particles decreases very fast at the beginning stage, usually after hundreds
steps. Hence by using these two different kernel functions, the algorithm converges much
faster than the RNPF.

This paper also provides theoretical results on the asymptotical behavior of the proposed
algorithm. When dealing with linear and Gaussian state space models, we show that our
algorithm converges with a speed of order O(N−1/2), where N is the number of particles
for the parameter space. When dealing with non-Gaussian or non-linear models, the Kalman
filter in the inner layer could produce a biased estimate of the posterior distribution of the
state variables. This makes it in general difficult to study the convergence of the posterior
distribution of the parameters. Although it is shown in Pérez-Vieites et al. (2018) that, under
certain assumptions, the bias introduced in the inner layer makes the posterior distribution
of the parameters converge to a biased distribution, this bias is intractable in general. In this
paper, for models with a well chosen structure (affine models for interest rates), we show that
the estimated distributions of the parameters and the states converge to the actual distributions
in L p with rate of order O(N−1/2 + Δ1/2) under certain regularity assumptions, where Δ is
the maximum time step between consecutive observations. Note that we do not have to deal
with particles in the inner layer, which improves on the order M−1/2 term for convergence
rate of the RNPF. Our proofs are inspired by those in Crisan andMíguez (2018), but at crucial
steps we obtain novel results. These are due to the use of the Kalman filter in one of the layers
and to the size of the time discretization that governs the observations of the continuous-time
system, the latter not playing a role in the setting of the cited reference.

To illustrate the performance of the algorithm, we present numerical results of the param-
eter estimation on several affine interest rate models, some allowing for stochastic volatility,
including the Vasiček model, also known as the two-factor Hull-White model with constant
parameters, and the Cox-Ingersoll-Ross (CIR)model. For the CIRmodel we have also imple-
mented the RNPF and we observed that our algorithm outperforms the RNPF. Although the
algorithm is designed for static parameter estimation, it can also be used to estimate param-
eters that perform sudden changes in value. We present an implementation of the algorithm
in such a situation, and we observe that the algorithm is able to quickly track such a sudden
change.

1.3 Organization of the paper

In Sect. 2 we present the state space model of interest. This section also provides brief
reviews on Bayesian filters, including the Kalman filter and the particle filter, and online
parameter estimation using particle filters. Section 3 contains an encompassing framework
for various affine models that are used in interest rate modeling and to which we apply our
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proposed Kalman particle algorithm, which is introduced in Sect. 4. In Sect. 5 we provide
the convergence analysis and in Sect. 6 the numerical results are presented. Finally, Sect. 7 is
devoted to the conclusions. In the “Appendix” we collect some background results on affine
processes.

1.4 Notation

Let d ≥ 1, S ⊆ R
d , and B(S) be the sigma algebra of Borel subsets of S. We denote by 1A

the indicator function on A ∈ B(S) and by δx the Dirac measure for a given x ∈ S, i.e.,

δx (A) = 1A(x) =
{
1, if x ∈ A ,

0, otherwise .

Suppose given a function f : S → R and a probability measure μ on (S,B(S)). We denote
the integral of f w.r.t. μ by ( f , μ) := ∫

S f (x) μ(dx) and the supremum norm of f by
‖ f ‖∞ = supx∈S | f (x)|. In the case of a conditional measure ν(· | y), y ∈ S, defined on
(S,B(S)), we use the notation ( f , ν(· | y)) := ∫

S f (x) ν(dx | y).
We use the notation x0:k := (x0, . . . , xk) for a discrete-time sequence up to time k of a

process (xk)k∈N. By ·�, we denote the transpose of a vector or a matrix. The Euclidian norm
of an element x ∈ R

d , is denoted by ‖x‖ and the L p-norm, for p ≥ 1 of a random variable X ,
defined on some probability space (Ω,F,P), is denoted by ‖X‖p = (E|X |p)1/p . Densities
of random variables or vectors x (always assumed to exist w.r.t. the Lebesgue measure) are
often denoted p, or p(x) and conditional densities of X given Y = y are often denoted
p(x | y), possibly endowed with sub- or superscripts.

2 Set up and background on parameters estimation using filters

In this section we outline the set up, we pose the problem formulation, give a brief survey
of various filters (Bayesian, Kalman, particle filter) and address the parameter estimation
problem using particle filters. Time is assumed to be discrete.

2.1 Discrete-time state spacemodel

We consider the following general state space model, defined on some probability space
(Ω,F,P).

xk = fk(xk−1, uk) k ∈ N
+,

yk = hk(xk, vk) , k ∈ N
+ ,

(2.1)

where fk : Rd × R
d → R

d , hk : Rd × R
d → R

m are given functions and {uk}k∈N+ and
{vk}k∈N+ are d-dimensional strong white noise processes, so independent sequences, both
independent of the initial condition x0, and mutually independent as well. Parameters in the
functions fk and hk , together with the covariance of uk and vk can be seen as the parameters
of the state space model, and to which we refer to as θ .

It follows that the model (2.1) satisfies the properties of a stochastic system, i.e. at every
(present) time k ≥ 1 the future states and future observations (x j , y j ), j ≥ k, are condition-
ally independent from the past states and observations (x j , y j−1), j ≤ k, given the present
state xk , see van Schuppen (1989). It then follows that {xk}k∈N is a Markov process, and for
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every k ≥ 1 one has that yk and y1:k−1 are conditionally independent given xk−1, in terms
of densities,

p(yk | y1:k−1, xk) = p(yk | xk) , for k ∈ N
+ . (2.2)

Moreover, one also has, for every k ≥ 1, that xk and y1:k−1 are conditionally independent
given xk , in terms of densities,

p(xk | xk−1, y1:k−1) = p(xk | xk−1). (2.3)

The latter equation has the consequence

p(xk | y1:k−1) =
∫

p(xk | xk−1)p(xk−1 | y1:k−1)dxk−1. (2.4)

We are interested in estimating the (latent) state process {xk}k∈N+ , but only have access
to the process {yk}k∈N+ which represents the observations. Because of the existence of the
white noise in the data, estimating the value of the latent states {xk}k∈N+ by the observations
{yk}k∈N+ is not trivial. There are different methodologies in the literature to estimate the
latent process (see e.g. Press 2003; Chui and Chen 2017; Arulampalam et al. 2002). We
introduce some of these methodologies in our paper since we will need them in our analysis
later. We first introduce the Bayesian filter.

2.2 Bayesian filter of discrete-timeMarkovian state spacemodel

The Bayesian filter, see e.g. Press (2003), Robert (2007) for an overview, is used to estimate
the latent states {xk}k∈N+ in (2.1) given the parameter θ . We define the initial probability
measure π0 of x0, and the transition measure πθ

k of xk under a given parameter θ at time k
by

π0(A) = P(x0 ∈ A),

πθ
k (A | xk−1) = P(xk ∈ A | xk−1, θ), k ∈ N

+ ,
(2.5)

where A ∈ B(Rd) is a Borel set.
The methodology in Bayesian filtering consists of two parts: prediction and update. At

every time point k, the prediction part computes (estimates) the prior measure of xk (a time
k given the past observations up to time k − 1) and the update part computes (estimates) the
posterior measure of xk given the past up to time k, respectively given by

γ θ
k (dxk) = P(dxk | y1:k−1, θ) ,

Γ θ
k (dxk) = P(dxk | y1:k, θ) , k ∈ N

+ .
(2.6)

Using Bayes’ rule, we deduce that the density function of the prior distribution is given by

p(xk | y1:k−1, θ) =
∫

p(xk | xk−1, y1:k−1, θ)p(xk−1 | y1:k−1, θ) dxk−1

=
∫

p(xk | xk−1, θ)p(xk−1 | y1:k−1, θ) dxk−1 ,

where we used (2.3) to get the last equality. This implies the relation

γ θ
k (dxk) =

∫
πθ
k (dxk | xk−1)Γ

θ
k−1(dxk−1). (2.7)
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Let f : Rd → R be an integrable function w.r.t. the measure γ θ
k . Then we get by Fubini’s

theorem

( f , γ θ
k ) =

∫ ∫
f (xk)π

θ
k (dxk | xk−1)Γ

θ
k−1(dxk−1)

=
∫

( f , πθ
k (· | xk−1))Γ

θ
k−1(dxk−1),

which we abbreviate by

( f , γ θ
k ) = (( f , πθ

k ), Γ θ
k−1). (2.8)

The purpose of the Bayesian algorithm is to sequentially compute the posterior measure Γ θ
k .

Let

lθyk (x) = p(yk | x, θ)

be the density (with some abuse of statistical terminology we often also call it likelihood) of
the realized observation yk conditional on the state value xk = x and the model parameter
θ . Then using Bayes’ rule, (2.2) and (2.7), we obtain for a function f that is integrable w.r.t.
Γ θ
k

( f , Γ θ
k ) =

∫
f (xk)p(xk | y1:k, θ) dxk

=
∫

f (xk)
p(xk, yk, y1:k−1 | θ)

p(y1:k | θ)
dxk

=
∫

f (xk)p(yk | xk, y1:k−1, θ)p(xk | y1:k−1, θ) dxk
p(yk | y1:k−1, θ)

=
∫

f (xk)p(yk | xk, θ)p(xk | y1:k−1, θ) dxk∫
p(yk | xk, θ)p(xk | y1:k−1, θ) dxk

=
∫

f (xk)lθyk (xk)p(xk | y1:k−1, θ) dxk∫
lθyk (xk)p(xk | y1:k−1, θ) dxk

=
∫

f (xk)lθyk (xk)
∫

πθ
k (dxk | xk−1)Γ

θ
k−1(dxk−1)∫

lθyk (xk)
∫

πθ
k (dxk | xk−1)Γ

θ
k−1(dxk−1)

,

which we abbreviate, similar to (2.8), by

( f , Γ θ
k ) = (( f lθyk , π

θ
k ), Γ θ

k−1)

((lθyk , π
θ
k ), Γ θ

k−1)
. (2.9)

If we assume the likelihood function lθyk and the transition measure πθ
k are known, then given

the posterior measure Γ θ
k−1, we can use Eq. (2.9) to compute the posterior measure Γ θ

k .
In this way the posterior measure {Γ θ

k }k∈N+ can be computed recursively. Moreover, using
(2.2) again, the conditional likelihood p(yk | y1:k−1, θ) and the likelihood p(y1:k | θ) can be
respectively computed as

p(yk | y1:k−1, θ) =
∫

p(yk | xk, y1:k−1, θ)p(xk | y1:k−1, θ) dxk

=
∫

p(yk | xk, θ)p(xk | y1:k−1, θ) dxk
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= (lθyk , γ
θ
k ), (2.10)

and

p(y1:k | θ) = P(y1 | θ)

k∏
i=2

p(yti | y1:i−1, θ)

= P(y1 | θ)

k∏
i=2

(lθyi , γ
θ
i ) .

When (2.1) is a linear Gaussian model, then the Bayesian filter is equivalent to the Kalman
filter, which we briefly review in the next subsection.

2.3 Kalman filter

We assume that the state and observations in (2.1) evolve according to a linear Gaussian
model. That is the functions fk and hk have to take linear forms as follows

xk = Fkxk−1 + uk ,

yk = Hkxk + vk , k ∈ N
+ ,

(2.11)

where Fk is a d × d matrix, Hk is a m × d matrix and the noise terms uk (d-dimensional), vk
(m-dimensional) are assumed to be Gaussian with mean 0 and variance Qk , Rk , respectively.
Moreover, the initial state x0 is assumed to beGaussian. Due to the Gaussian assumptions and
the linear structure of the model in (2.11), one can derive analytic expressions for the prior
and posterior measures defined in (2.6) and the algorithm in the Kalman filter, see e.g. Chui
and Chen (2017), Grewal and Andrews (2015), yields the exact solution to the estimation
problem.

Denote by N (dx;μ,Σ) or N (μ,Σ) the Gaussian distribution with mean μ and Covari-
ance Σ . We also use the generic notation N (x;μ,Σ) to denote the density at x of this
normal distribution. Recall from (2.6), the prior and posterior measures and denote by Ak−1

and Pk−1 respectively, the mean and the covariance of the posterior measure at time k − 1.
Recall also that we denote θ the vector of all the parameters involved, i.e. those in Fk and
Hk for model (2.11). Then the prior measure is given by

γ θ
k (dxk) = N (dxk; Fk Ak−1, Fk Pk−1F

�
k + Qk) ,

which implies that the prior measure is a conditionally Gaussian measure with mean and
covariance respectively given by

A−
k = Fk Ak−1 , P−

k = Fk Pk−1F
�
k + Qk .

Moreover, the posterior measure is given by

Γ θ
k (dxk) = N (dxk; Ak,Ck) , (2.12)

where

Ak = A−
k + P−

k H�
k (Hk P

−
k H�

k + Rk)
−1(yk − Hk A

−
k ) ,

Ck = P−
k − P−

k H�
k (Hk P

−
k H�

k + Rk)
−1Hk P

−
k .

Finally, the conditional likelihood is given by

p(yk | y1:k−1, θ) = N (yk; Hk A
−
k , Hk P

−
k H�

k + Rk) . (2.13)
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Let Sk = Hk P
−
k H�

k + Rk , k ∈ N
+. Then we obtain the recursion for the log-likelihood of

the observation log(p(y1:k) | θ) as follows,

log(p(y1:k) | θ) = log p((y1:k−1) | θ)

− 1

2
(m log 2π − log(det(Sk)))

− 1

2
(yk − Hk A

−
k )�S−1

k (yk − Hk A
−
k ) ,

where m is the dimensionality of the data yk , k ∈ N
+. Hence, by maximizing the likelihood

of the observations, one can determine the optimal parameters of the linear Gaussian system
(2.11).

For most non linear non Gaussian models, it is not possible to compute the prior and
posterior measures analytically and numerical methods are called for. In this case, the particle
filter, which we introduce in the next subsection, is widely used.

2.4 Particle filter

In the particle filter, see e.g. Arulampalam et al. (2002), Cappé et al. (2007) and Doucet
and Johansen (2009), the prior and posterior distributions are estimated by a Monte Carlo
method. With a Monte Carlo method, a certain measure μ is generally estimated by

μN (dx) =
N∑
i=1

a(i)δx (i) (dx) ,

where {x (i), i = 1, · · · , N } are i.i.d. random samples from a so-called importance density
and {a(i), i = 1, · · · , N } are the importance weights. The key part of the particle filter is to
choose the importance density and compute the importance weights, see e.g. Doucet (1997).
For the general state space model (2.1), suppose the posterior measure Γ θ

k−1 at time k − 1 is
estimated by

Γ θ
k−1 ≈

N∑
i=1

a(i)
k−1δx (i)

k−1
.

If at time k, the samples x̃ (i)
k are generated from the transition measure πθ

k (dx | x (i)
k−1) for

i = 1, · · · , N , then using Eq. (2.8), the integral ( f , γ θ
k ) can be estimated by

( f , γ θ
k ) ≈

N∑
i=1

a(i)
k−1 f (x̃

(i)
k ).

Moreover, using Eq. (2.9), the prior and posterior measures are respectively estimated by

γ θ
k ≈

N∑
i=1

a(i)
k−1δx̃ (i)

k
,

Γ θ
k ≈

N∑
i=1

a(i)
k δ

x̃ (i)
k

(2.14)
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and from (2.10), we deduce the following approximation for the conditional likelihood

p(yk | y1:k−1, θ) ≈
N∑
i=1

a(i)
k−1l

θ
yk (x̃

(i)
k ) . (2.15)

Consequently, the integral ( f , Γ θ
k ) can be estimated by

( f , Γ θ
k ) ≈

∑N
i=1 a

(i)
k−1l

θ
yk (x̃

(i)
k ) f (x̃ (i)

k )∑N
i=1 a

(i)
k−1l

θ
yk (x̃

(i)
k )

=
N∑
i=1

a(i)
k f (x̃ (i)

k ) ,

where the weights a(i)
k are defined by

a(i)
k = a(i)

k−1l
θ
yk (x̃

(i)
k )∑N

i=1 a
(i)
k−1l

θ
yk (x̃

(i)
k )

. (2.16)

Eqs. (2.14) and (2.15) show how to sequentially estimate the posterior measure Γ θ
k using the

Monte Carlo method. This type of particle filter is often referred to as sequential particle
filter. It is a specificmember of the family termed the bootstrap particle filter (seeGordon et al.
1993). In Doucet (1997) it is shown that the variance of the importance weights decreases
stochastically over time. This will lead the importance weights to be concentrated on a
small amount of sampled particles. This problem is called degeneracy. To address the rapid
degeneracy problem, the sampling-importance resampling (SIR) method, see e.g. Doucet
(1997), Pitt and Shephard (1999), is introduced to eliminate the samples with low importance
weight andmultiply the sampleswith high importanceweight. In SIR, once the approximation
of the posterior measure Γ θ

k ≈ ∑N
i=1 a

(i)
k δ

x̃ (i)
k

is obtained, new, re-sampled, particles x ( j)
k are

i.i.d. sampled from this approximated measure, i.e. every x ( j)
k is independently chosen from

the x̃ (i)
k with probabilities a(i)

k , for i = 1, · · · , N . This step can be accomplished by sampling

integers j from {1, . . . , n} with probabilities a(i)
k , i = 1, · · · , N . Then the new estimation

on the posterior measure Γ θ
k is given by

Γ θ
k ≈ 1

N

N∑
i=1

δ
x (i)
k

and the new estimate of the conditional likelihood is

p(yk | y1:k−1, θ) ≈ 1

N

N∑
i=1

lθyk (x
(i)
k ) .

2.5 Static model parameters estimation using particle filter

When the parameters are known, the particle filter is a quite effective algorithm for latent
variable estimation. However, if the parameters are not known beforehand, it is a very chal-
lenging task to estimate the parameters and the latent states using the particle filter. Here
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we take a Bayesian approach to estimate the parameters. The estimation of the parame-
ters in online estimation requires the computation of the posterior distribution of θ , i.e.,
p(θ | y1:k), k ∈ N

+. Using Bayes’ rule, one can represent the posterior density as

p(θ | y1:k) = p(yk | y1:k−1, θ)p(θ | y1:k−1)∫
p(yk | y1:k−1, θ)p(θ | y1:k−1) dθ

.

To estimate the density of θ given y1:k , a straightforward way is to sample parameter particles
from the former posterior distribution p(θ | y1:k−1). Denote the samples by {θ(i), i =
1, · · · , N }, then the measure p(dθ | y1:k) at time k can be approximated by

N∑
i=1

p(yk | y1:k−1, θ
(i))∑N

i=1 p(yk | y1:k−1, θ(i))
δθ(i) (dθ) =

N∑
i=1

wθ(i)

k δθ(i) (dθ) , (2.17)

where the weights wθ(i)

k , i = 1, · · · N , are defined by

wθ(i)

k = p(yk | y1:k−1, θ
(i))∑N

i=1 p(yk | y1:k−1, θ(i))
. (2.18)

There are two issues to implement (2.17). One is that sampling from the former posterior
distribution p(θ | y1:k−1) usually cannot be carried out exactly. Another is that often the
likelihood p(yk | y1:k−1, θ

(i)) cannot be computed theoretically. These two latter issues can
be tackled by using the recursive nested particle filter (RNPF), recently introduced in Crisan
and Míguez (2018), which is presented below.

2.5.1 Recursive nested particle filter

In the RNPF, a two layer Monte Carlo method is used. In the first layer, also referred to as
outer layer, new parameter samples are generated by using a kernel function. This step is
usually called jittering and the kernel is referred to as the jittering kernel. In the second layer,
also called inner layer, a particle filter is applied to approximate the conditional likelihood
p(yk | y1:k−1, θ

(i)). In the following paragraph of this section we present the RNPF in more
detail and introduce its ensuing Algorithm 2.1.

First, assume that θ has a compact support Dθ ⊂ R
dθ , where dθ is the dimension of θ .

Moreover assume at time k − 1, one can generate a random grid of samples in the parameter
space Dθ , say {θ(i)

k−1, i = 1, · · · , N }, and for each θ
(i)
k−1, we have the set of particles in the

state space {x (i, j)
k−1 , 1 ≤ j ≤ M}.

– Jittering.Given the parameters samples {θ(i)
k−1, i = 1, · · · , N } at time k−1, newparticles

{θ̃ (i)
k , i = 1, · · · , N } at time k are generated by some Markov kernels denoted by κ(dθ |

θ
(i)
k−1) : B(Dθ ) × Dθ → [0, 1] (step 1.a in Algorithm 2.1 below). This step is the outer
Monte Carlo layer.

– Update. From Eqs. (2.8) and (2.10), we know that for a given θ̃ , the likelihood function
is obtained by calculating the integral

p(yk | y1:k−1, θ̃ ) = ((l θ̃yk , π
θ̃
k ), Γ θ̃

k−1) .

In order to compute this latter integral, the posterior measure at time k − 1, Γ θ̃
k−1, needs to be

known. In the standard Bayesian filter, the parameters are fixed over time and this posterior
measure is computed at time k − 1 by using Eq. (2.9). However in this case, this measure
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is not directly available since the parameter has evolved from θ at time k − 1 to θ̃ at time

k. In order to compute Γ θ̃
k−1, one needs to re-run a filter from time 1 to k, which makes the

algorithm not recursive and very time consuming. The authors in Crisan and Míguez (2018)
solved this latter problem by assuming that Γ θ

k−1 is continuous w.r.t. θ ∈ Dθ , which means

that when θ ≈ θ̃ , then Γ θ
k−1 ≈ Γ θ̃

k−1. Therefore by considering a rather small variance in the
jittering kernel, one can use the particle approximation of the filter computed for θ at time
k − 1 as a particle approximation of the filter for the new sampled θ̃ at time k.

In the RNPF, the jittering kernel is chosen such that the mutation step from θk−1 to
θ̃k is sufficiently small, see Sect. 4.2 in Crisan and Míguez (2018). Then for each θ̃

(i)
k ,

{i = 1, · · · , N }, a sequential nested particle filter (see Sect. 2.4 for the description of the
particle filter methodology) is used for the state space to obtain {x̃ (i, j)

k , 1 ≤ j ≤ M}; see
steps 1.b, 1.d, 1.e in Algorithm 2.1 below. This is the inner Monte Carlo layer.

– Resampling. The outer layer Monte Carlo method in the update step above provides
an approximation of the likelihood p(yk | y1:k−1, θ̃

(i)
k ), i = 1, · · · , N , (step 1.c

in Algorithm 2.1) which are used to re-weight the parameter particles and obtain
{θ(i)

k , x (i, j)
k , i = 1 · · · , N , j = 1, · · · , M}; see step 2 in Algorithm 2.1.

The RNPF is introduced in Crisan and Míguez (2018). We reproduce it here for the sake of
completeness.

Algorithm 2.1 (sequential nested particle filter for parameter estimation)

Initialization: Assume an initial distribution p(θ0) for the parameters and p(x0) for the
states, and sample from the initial distributions to get N particles {θ(i)

0 , i = 1, · · · , N }
and N × M particles {x (i, j)

0 , i = 1, · · · , N , j = 1, · · · , M}.
Recursion:

1. Filtering: given {θ(i)
k−1, x

(i, j)
k−1 }, for each i = 1, · · · , N ,

a. (jittering, outerMonte Carlo layer) sample new parameters θ̃
(i)
k from the jittering

kernel κ(dθ | θ
(i)
k−1),

b. (together with the next two steps, this is the update part) sample new states

x̂ (i, j)
k , j = 1, · · · , M , from the transition measure π

θ̃
(i)
k

k (dx | x (i, j)
k−1 ) (inner

Monte Carlo Layer),

c. compute p(yk | y1:k−1, θ̃
(i)
k ) ≈ 1

M

∑M
j=1 l

θ̃
(i)
k
yk (x̂ (i, j)

k ),
d. compute the weights for the state space using Eq. (2.16)

a( j)
k = a( j)

k−1 p(yk | x̂ (i, j)
k , θ̃

(i)
k )∑M

j=1 a
( j)
k−1 p(yk | x̂ (i, j)

k , θ̃
(i)
k )

, j = 1, · · · , M ,

e. resample the x̂ (i,p): set x̃ (i, j) equal to x̂ (i,p) with probability a(p)
k , where j, p ∈

{1, · · · M}.
2. Resampling of the {θ(i)

k }: compute the weights for the parameters space using Eq.
(2.18)

w
θ̃

(i)
k
k = p(yk | y1:k−1, θ̃

(i)
k )∑N

i=1 p(yk | y1:k−1, θ̃
(i)
k )

, i = 1, · · · , N . (2.19)
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For i = 1, · · · , N , set {θ(i)
k , x (i, j)

k }1≤ j≤M equal to {θ̃ (p)
k , x̃ (p, j)

k }1≤ j≤M with proba-

bility w
θ̃

(p)
k
k , where p ∈ {1, · · · , N }.

3. Go back to the filtering step.

2.5.2 A note on the convergence of the RNPF

A convergence study of Algorithm 2.1 was carried out in Lemmas 3 to 6 and Theorems 2
and 3 in Crisan and Míguez (2018), where the reasoning was split in the three steps of the
algorithm: the jittering, the update and the resampling. In this latter paper, it was proven
that, under some regularity conditions, the L p-norms of the approximation errors, induced
by these different steps, vanish with rate proportional to 1√

N
and 1√

M
. Recall here that N

and N × M are respectively the number of samples in the parameter space and the number
of particles in the state space. A similar result was proven for the approximation of the joint
posterior distribution of the parameters and the state variables. We will make use of some
of these convergence results later in Sect. 5 to carry out convergence study of our proposed
algorithm, Algorithm 4.2.

Under the assumption that the posterior measureΓ θ
k (dx) is continuous w.r.t. the parameter

θ and when the mutation step of the parameters is small enough, the RNPF is a recursive
algorithm.Thismakes theRNPFmore efficient thannon-recursivemethods such as sequential
Monte Carlo square, see Chopin et al. (2013), and Markov Chain Monte Carlo methods,
see Gamerman and Lopes (2006), Geweke and Tanizaki (1999) and Higdon (1998). The
drawbacks of the RNPF are its heavy computational burden and slow convergence speed
which are respectively due to the nested simulations in the two Monte Carlo layers and
the small mutation step of the parameters. In many applications, including some in financial
modeling, the time length of the data is quite limited, and often too short to observe convergent
behavior of the RNPF. To tackle this problem, we propose a new methodology in Sect. 4.

3 Parameters estimation in short rate models

Here we present a rather general model, an affine process, particularly relevant in mathemat-
ical finance for instance where one is interested in estimating the parameters of the short rate
curve given the observed data. It motivates the kind of system that we will consider and to
which the new (Kalman particle) filter of Sect. 4 will be applied.

Let (Ω,F, (Ft )t≥0,P) be a filtered probability space satisfying the usual conditions and
(Wt )t≥0 be a d-dimensional Brownian motion. In this paper, although our results can be
applied to general state space models of type (2.1), we will mainly consider dynamics of the
type

dxt = A(β − xt ) dt +
(

Σ + Σ̃

√
x (1)
t

)
dWt , x0 = x ∈ R

d , (3.1)

where A,Σ and Σ̃ are d×d-matrices, β is a d-vector and its first component is non-negative,
and (x (1)

t )t≥0 is the first component of (xt )t≥0. We assume the matrix A is diagonal and we
denote the diagonal elements of A by α1, · · · , αd . Consider some integers p, q ≥ 0 with
p + q = d . When ΣΣ̃ = Σ̃Σ = 0 (below we specialise to the cases Σ = 0 or Σ̃ = 0)
and the parameters of the model (3.1) satisfy certain conditions known in the literature as
admissibility conditions, the process (xt )t≥0 is Rp

+ × R
q -valued affine process, see Duffie
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et al. (2003), Duffie et al. (2000), Keller-Ressel and Mayerhofer (2015)) for an overview of
affine processes. In “Appendix A.1” we specify the admissibility of the parameters of the
dynamics (3.1). In our context, the short rate evolution will be described by a process (rt )t≥0

given in terms of (xt )t≥0 by

rt = c + γ �xt ,

where c ∈ R, γ ∈ R
d . Let T > 0 be the maturity time, then the zero coupon bond price at

time t < T is defined as

P(t, T ) = E[e− ∫ Tt r(s) ds | Ft ] ,
and the corresponding zero rates, also called yields, are defined as

− log P(t, T )/(T − t) .

The fact that the process (xt )t≥0 is affine, which happens if ΣΣ̃ is zero, allows one to obtain
an explicit formula for the zero coupon bond price, i.e.

P(t, T ) = e−φ(T−t,0)−ψ(T−t,0)�x(t) . (3.2)

The functions φ and ψ are the solutions to some ordinary differential equations, which are
often referred to as the Riccati equations, see Theorem A.1 in “Appendix A.2” for details.
Then, if Σ̃ = 0 (first case), Eq. (3.2) holds for (φ, ψ) the solution to (A.1). IfΣ = 0 (second
case), then (3.2) holds for (φ, ψ) the solution to (A.2). Denote the time to maturity T − t by
τ , then the zero rate at time t with time to maturity τ can be computed by 1

τ
Rt (τ ), where

Rt (τ ) := φ(τ, 0) + ψ(τ, 0)�xt . (3.3)

In the market, we can obtain the data for zero rates at discrete-time instants tk with certain
times to maturity τ1, · · · , τL , call these data Rk(τl). We believe these data contain noise,
hence at time k we observe

yk = [yk(τ1), · · · , yk(τL)] = [Rk(τ1), · · · , Rk(τL)]� + vk,

for k = 1, · · · , K , and vk is an L-dimensional random vector which presents the noise in
the observed data. Let 0 = t0 ≤ t1, · · · , tn = T be a partition of the time interval [0, T ].
Then, considering a time-discrete version xk := xtk , k ∈ N

+, of the affine process (xt )t≥0,
our aim is to derive the parameters of the latent state process (xk)k∈N+ given the observations
(yk)k∈N+ . To be more precise, we consider the following state space model, the observation
equation can be seen as of the general form in (2.11) by enlarging the state vector,

xk = e−A(tk−tk−1)xk−1 +
(
I − e−A(tk−tk−1)

)
β

+
∫ tk

tk−1

e−A(tk−u)

(
Σ + Σ̃

√
x (1)
u

)
dWu , (3.4)

yk = Hkxk + H0
k + vk , (3.5)

where I is the identity matrix, (xk)k∈N+ is the latent process, (yk)k∈N+ represents the obser-
vations, Hk is a L × d matrix with each row equal to −ψ(τl , 0)/τl , l = 1, · · · , L , H0

k is the
column vector [−φ(τ1, 0)/τ1, · · · ,−φ(τL , 0)/τL ]� and vk represents the noise. Note that
the xk from (3.4) forms a discrete-time sample from the continuous process that solves (3.1)
and that (3.4) exactly represents xt at time t = tk , it is not a recipe for an approximation.
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The aim is to estimate the model parameters A, β,Σ, Σ̃ given the observation vector y1:k
and the variance of vk . As usual, in the sequel we collectively denote these parameters by θ .

We end this section by giving some examples of the models of type (3.1) which are well
known in the literature and to which we return with numerical experiments in Sect. 6. For
d = 1, p = 1, Σ = 0, Σ̃ 
= 0, one obtains the Cox-Ingersoll-Ross (CIR) model, see Cox
et al. (1985), i.e.,

dxt = α1(β − xt ) dt + Σ̃
√
xt dWt . (3.6)

For d = 2, p = 0, β(1) = β(2) = 0, Σ 
= 0, Σ̃ = 0, one obtains the two-factor Hull-
White model with constant parameters (also known as the two-factor Vasiček model), with
mean-reversion level 0, see Hull and White (1990), i.e.,

dx (1)
t = −α11x

(1)
t dt + Σ11 dW

(1)
t + Σ12 dW

(2)
t ,

dx (2)
t = −α22x

(2)
t dt + Σ21 dW

(1)
t + Σ22 dW

(2)
t .

(3.7)

For d = 2, p = q = 1, Σ = 0, one obtains the stochastic volatility model, see Heston
(1993), in which the first component, (x (1)

t )t≥0, represents the stochastic volatility of the
short rate (x (2)

t )t≥0, i.e.,

dx (1)
t = α11(β1 − x (1)

t ) dt +
√
x (1)
t

(
Σ̃11 dW

(1)
t + Σ̃12 dW

(2)
t

)
,

dx (2)
t = α22(β2 − x (2)

t ) dt +
√
x (1)
t

(
Σ̃21 dW

(1)
t + Σ̃22 dW

(2)
t

)
.

(3.8)

4 Kalman particle filter for online parameters estimation

In this section, we introduce the Kalman particle filter for online parameter estimation. It is
a semi-recursive algorithm that combines the Kalman filter and the particle filter. In this new
approach, we consider a two layers method as in the RNPF algorithm. In the outer layer, we
sample the particles of the model parameters using some Markovian Gaussian kernel which
is updated at each time step. In the inner layer, the distribution of the state process and the
conditional likelihood function p(yk | y1:k−1, θ

(i)
k ), which is used to re-weight the parameter

particles in the outer layer, are estimated given the sampled parameter particles.
There are twomain differences between our proposed Kalman particle filter algorithm and

the RNPF algorithm. The first difference is that in the outer layer we use dynamic jittering
functions, i.e. the jittering functions can change over time. Specially, in this paper we specify
two jittering functions to sample the model parameters, see (4.5) and (4.9) as described in
Sect. 4.1 below. The second difference is that we use the Kalman filter, instead of the particle
filter, to update the underlying states in the inner layer.Note that in case the state space does not
follow linear Gaussian dynamics, the literature offers different alternatives, see Bruno (2013)
for a Monte Carlo approach, or the Gaussian mixture, see Sorenson and Alspach (1971), or
Kalman filter extensions such as the extended Kalman filter, see Einicke and White (1999)
andWan and Nelson (2002), the unscented Kalman filter, seeWan and van derMerwe (2002)
. In these latter methodologies, the idea is to consider an approximation of the state variables
which is linear and Gaussian, and then run a Kalman filter on the approximation. When the
model is not Gaussian, such an approximation introduces bias. In Sect. 5, we will carry a
convergence analysis of our algorithm andwewill prove that the bias induced by theGaussian
approximation of the model (3.4), (3.5) indeed vanishes when the time step tends to zero.
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The use of the two jittering functions in the outer layer and of the Kalman filter in the
inner layer allows us to obtain an algorithm that has faster convergence speed and less
computational complexity than the RNPF algorithm. This will be further illustrated in the
examples in Sect. 6.

4.1 Static model estimation

As described in Sect. 2.5, in order to sequentially estimate the posterior density p(θ | y1:k),
k = 1, · · · , K , we face two issues: how to sample particles from the former posterior
distribution p(θ | y1:k−1) and how to compute the conditional likelihood p(yk | y1:k−1, θ).
First, we consider the sampling problem and we introduce the first jittering kernel that we
use to update the parameter space θ . We assume that the parameter θ has a compact domain
Dθ ⊂ R

dθ , with dθ the dimension of θ . For the time being, θ is an abstract parameter, which
will be specified later when a specific model is assumed.

4.1.1 Truncated Gaussian kernel with changing covariance

Recall that we use the generic notation N (x;μ,Σ) to denote the density at x of the normal
distribution with mean vectorμ and covariance matrixΣ . We choose a Gaussian kernel such
that the conditional density of θk is given as

p(θk | θk−1) = N (θk;μ(θk−1),Σ(θk−1)) ,

with μ(θk−1) and Σ(θk−1) being respectively the conditional mean and covariance of θk
given θk−1 . Then if the parameters θk are jittered from this Gaussian kernel, one can easily
derive that

E(θk) = E(μ(θk−1)),

Var(θk) = E(Σ(θk−1)) + Var(μ(θk−1)) .
(4.1)

Ideally, the jittering should not introduce bias and information loss (artificial increase in
the variance), see Liu and West (2001), which means that E(θk) = E(θk−1) and Var(θk) =
Var(θk−1), k = 1, · · · , K . The latter, together with Eqs. (4.1) imply

E(μ(θk−1)) = E(θk−1),

E(Σ(θk−1)) + Var(μ(θk−1)) = Var(θk−1) .
(4.2)

To achieve that, the Liu and West (2001) applies a shrinkage to the kernel. We will apply the
same technique although the jittering function is used differently in our case. If one assumes
a deterministic jittering covariance, i.e. Σ(θk−1) = Σk−1 and a linear mean function

μ(θk−1) = aθk−1 + (1 − a)E(θk−1), for some a ∈ (0, 1), (4.3)

then the jittering kernel satisfying (4.2) is given by

p(θk | θk−1) = N (θk;μ(θk−1),Σ(θk−1)) , (4.4)

where Σ(θk−1) = (1− a2)Var(θk−1). The kernel in (4.4) is the same jittering kernel as used
in the Liu and West (2001). We will refer to the number a as the discount factor. However,
note that the domain of the kernel (4.4) is not compact, whereas we assumed the domain
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of θ to be compact. So instead of directly using the kernel (4.4), we truncate this Gaussian
distribution to the compact domain Dθ . The truncated kernel is denoted

p(θk | θk−1) = TruncNorm(θk;μ(θk−1),Σ(θk−1), Dθ ) , (4.5)

with TruncNorm(x;μ,Σ, Dθ ) the truncated normal distribution which truncates the normal
distribution with mean μ and covariance Σ to the range Dθ .

Before we present our methodology for jittering in detail, we introduce the following
assumption which we need in our recursive algorithm later. We will use this assumption in
Sect. 5 to prove the convergence of our proposed algorithm.

Assumption 4.1 The jittering kernels κN
k (dθ | θ ′) : B(Dθ ) × Dθ → [0, 1], for k =

1, · · · , N , and θ ′ taking values in a compact set Dθ ⊂ R
d , satisfy the following inequalities

sup
θ ′∈Dθ

∫ ∣∣ f (θ) − f (θ ′)
∣∣ κN

k (dθ | θ ′) ≤ e1,k ‖ f ‖∞√
N

, (4.6)

for all bounded function f : Dθ → R and some positive constant e1,k which is independent
of f , and

sup
θ ′∈Dθ

∫ ∥∥θ − θ ′∥∥p κN
k (dθ | θ ′) ≤ ep2,k√

N p
, (4.7)

for p ≥ 1 and some positive constant e2,k .

Let f : Dθ → R be a bounded Lipschitz function. In Proposition 1 of Appendix C in Crisan
and Míguez (2018), set εn = 1 there, it is shown that if for any p ≥ 1, the jittering kernels
κN
k (dθ | θ ′) satisfy

sup
θ ′∈Dθ

∫ ∥∥θ − θ ′∥∥2 κN
k (dθ | θ ′) ≤ c√

N p+2
, (4.8)

for some positive constant c independent of N , then Assumption 4.1 holds.
The jittering kernels of type (4.5) have an appealing property, the covariance can change

over time. This aspect helps us to design an algorithm with the following attractive feature.
Initially, since we lack information on the unknown parameters, a larger covariance can
lead to a faster convergence of the parameters to the high likelihood area. Over time, the
filter refines the estimate of the fixed parameters until at some points a very small variance
has been reached which makes the parameter estimation more accurate. However, a direct
application of this kernel does not yield a recursive method since it generally does not satisfy
Assumption 4.1. Hence, it is unclear whether the algorithm converges. To tackle this issue,
we introduce a second Gaussian jittering kernel which satisfies Assumption 4.1. This second
jittering kernel will allow us to obtain a recursive method. The details will be described below
in Sect. 4.1.2.

Remark 4.1 Although in this paper we have specified the use of (truncated) Gaussian kernels
with a certainmean andvariance, the dynamickernel set up is very generic. In implementation,
one can freely choose another kernel that fits its purpose. For example, one can define the
variance of the jittering kernel as a monotonically decreasing function of time so that the
convergence speed can be manually controlled.
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4.1.2 Description of the Kalman particle filter methodology

Here we present our methodology to Gaussian and linear models. When the model is not
Gaussian and linear, we approximate it by a Gaussian linear model and hence we can follow
the same methodology as described below to the approximation. Before we present the
algorithms, we introduce some notation and convention. We denote by diag(A) the diagonal
matrix that has the same diagonal elements as in a given matrix A. With a diagonal matrix
V , diag(A) < V means every diagonal element of diag(A) is smaller than the corresponding
diagonal element in V . Similarly, an expression like min{diag(A), V } is to be interpreted as
element wise. These notational conventions apply to all algorithms below.

In the recursive step explained below we set thresholds on the covariance matrices of the
jittering kernel so that Assumption 4.1 holds. Notice that although the (co)variance matrices
used in the jittering kernel of the recursive step do not have to be diagonal when Assump-
tion 4.1 holds, they are chosen to be diagonal for the convenience of the implementation.
Hence, in the jittering kernel in (4.9) below of the recursive step we use diag(Σ(θk)) instead
of Σ(θk).

The non recursive step.Assume at time k − 1, one can generate a random grid of samples
in the parameter space, say {θ(i)

k−1, i = 1, · · · , N }.
– Jittering step 1.Here we apply the kernel (4.5), referred to as jittering kernel 1, to obtain

new samples {θ̃ (i)
k , i = 1, · · · , N } (step 1.a.i in Algorithm 4.2 below).

– Update. In order to compute the posterior measure Γ
θ̃

(i)
k

k at time k, one needs to know

the mean B
θ̃

(i)
k

k−1 and the covariance P
θ̃

(i)
k

k−1 at time k − 1 of the posterior distribution, see

Formula (2.12) and note that we make the dependence on θ̃
(i)
k clear in the notation.

However, these latter quantities are not available since the parameter has evolved from
θk−1 at time k to θ̃k at time k, see also the discussion in Sect. 2.5. Hence at this step, the
algorithm does not run recursively and at every time k where a new parameter particle is
sampled, the inner filter re-runs from time t0 to tk (step 1.a.ii in Algorithm 4.2).Moreover,
the conditional likelihood function p(yk | y1:k−1, θ̃

(i)
k ), i = 1, · · · , N is computed in the

inner filter, using Eq. (2.13). This latter will be used to re-weight the parameter particles,
see step 1.c in Algorithm 4.2 below.

– Resampling.We use a resampling technique to obtain {θ(i)
k , B(i)

k , P(i)
k , i = 1, · · · , N },

further specified in step 2 of Algorithm 4.2.

The recursive step. In this step we first need to specify a diagonal matrix VN . This
chosen VN serves as the threshold for the (co)variance of the jittering kernel satisfying
Assumption 4.1. For example, the i-th diagonal element of VN can be defined as ci√

N p+2

with arbitrary positive constants ci . Once at some time point tl , diag(Σ(θl)) = (1 − a2)
diag(Var(θl)) < VN , we switch to the jittering kernel 2. In a practical implementation, one
could also set a floor, a diagonal matrix V f , with 0 ≤ V f ≤ VN , for the elements of the
jittering variance matrix to prevent the algorithm of getting stuck.

– Jittering step 2.We apply the jittering kernel 2,

p(θ(i)
k | θ

(i)
k−1) =

TruncNorm(θ
(i)
k ; θ

(i)
k−1,min{max{diag(Σ(θl)), V f }, VN }, Dθ ) ,

(4.9)

for k ≥ l + 1, see step 1.b.i of Algorithm 4.2.
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– Update. From time tl+1 on, we have a recursive algorithm based on the idea to approx-

imate the posterior measure Γ
θ̃

(i)
k

k by Γ̂
θ

(i)
k−1

k , which is computed using θ̃
(i)
k , B

θ
(i)
k−1

k−1 and

the covariance P
θ

(i)
k−1

k−1 (step 1.a.ii in Algorithm 4.2). Note that here we use the Kalman
filter. Note that, as in Sect. 2.5.1, here we assume that Γ θ

k is continuous w.r.t. θ ∈ Dθ .

Moreover, the marginal likelihood p(yk | y1:k−1, θ̃
(i)
k ), i = 1, · · · , N is approximated

by the inner filter using Eq. (2.13), step 1.c in Algorithm 4.2. This latter will be used to
re-weight the parameter particles

– Resampling. Apply a resampling technique to obtain {θ(i)
k , B(i)

k , P(i)
k , i = 1, · · · , N },

see step 2 of Algorithm 4.2.

We now introduce the Kalman particle algorithm. Recall μ(θk−1) and Σ(θk−1) from (4.5)
and the discount factor a from (4.3).

Algorithm 4.2 (Kalman particle filter for static parameter model)
Initialization:

1. set the number of particles N , a value for the discounting factor a, a switching variance
level VN and a floored variance level V f ,

2. assume an initial distribution p(θ0) for the parameters,
3. sample from the initial distribution to get N particles {θ(i)

0 , i = 1, · · · , N } for the param-
eters,

4. for each particle θ
(i)
0 , assign the same initial mean B(i)

0 and covariance value P(i)
0 of the

posterior distribution Γ
θ

(i)
0

0 , i = 1, · · · , N .

Recursion:

1. Filtering: given {θ(i)
k−1, i = 1, · · · , N },

a. as long as diag(Σ(θk−1)) is not smaller than VN (jittering case 1), for each i =
1, · · · , N ,
i. sample new parameters from the kernel (4.5), i.e.

θ̃
(i)
k ∼ TruncNorm

(
θ̃k;μ(θ

(i)
k−1),Σ(θk−1), Dθ

)
,

ii. based on the parameter θ̃
(i)
k , use the Kalman filter to compute the mean and

covariance of the posterior distribution from time 1 to k and hence obtain Γ
θ̃

(i)
k

k ,
b. once diag(Σ(θl−1)) < VN (jittering case 2), for some tl , then for k ≥ l + 1 and

i = 1, · · · , N , given {B(i)
k−1, P

(i)
k−1},

i. sample new parameters from the kernel (4.9), i.e.

θ̃
(i)
k ∼ TruncNorm(θ̃k; θ

(i)
k−1,min{max{diag(Σ(θk−1)), V f }, VN }, Dθ ) ,

ii. based on the parameters θ̃
(i)
k , B(i)

k−1 and P(i)
k−1, use the Kalman filter to compute

the mean B̃(i)
k−1 and covariance P̃(i)

k−1 of the posterior distribution at time k and

hence obtain an approximation Γ̂
θ

(i)
k−1

k of the posterior distribution (update step),

c. if 1.a or 1.b holds, then for i = 1, · · · , N , compute p̃(yk | y1:k−1, θ̃
(i)
k )usingEq. (2.13),

consequently, using (2.18)), obtain an approximation of the normalized weights given

123



372 Statistical Inference for Stochastic Processes (2021) 24:353–403

by

w̃
θ̃

(i)
k
k = p̃(yk | y1:k−1, θ̃

(i)
k )∑N

i=1 p̃(yk | y1:k−1, θ̃
(i)
k )

,

which gives un update to be used in the next step,

2. Resampling: for each i = 1, · · · , N , set {θ(i)
k , B(i)

k , P(i)
k } equal to

{θ̃ (p)
k , B̃(p)

k , P̃(p)
k } with probability w̃

θ̃
(p)
k
k , where p ∈ {1, · · · , N }.

3. Return to the filtering step.

Note that Algorithm 4.2 can be applied to general state space models (2.1). For our conver-
gence analysis in the next section and in financial applications, we will focus on the special
type (3.4), (3.5) of affine state space models. For those models, when Σ 
= 0, the transition
kernel πθ

k (dx | xk−1) resulting (3.4) is not Gaussian, and we need to approximate it by a
Gaussian transition kernel in order to apply the Kalman filter.

The approximation is obtained by replacing
√
x (1)
u in (3.4) with

√
x (1)
tk−1

, resulting in

x̌k = e−A(tk−tk−1)xk−1 +
(
I − e−A(tk−tk−1)

)
β

+
∫ tk

tk−1

e−A(tk−u)

(
Σ + Σ̃

√
x (1)
k−1

)
dWu . (4.10)

Note that given xk−1, the variable x̌k admits a Gaussian transition for k ∈ N
+. Hence,

given the model parameters θ (i.e. A, β,Σ, Σ̃), we can compute the approximated transition
measure π̂ θ

k = p(dx̌k | xk−1, θ). Recall from Eqs. (2.17), (2.8) and (2.10) that the weights
for the parameters space are computed by

w
θ̃

(i)
k
k ∝

(
(l

θ̃
(i)
k
yk , π

θ̃
(i)
k

k ), Γ
θ̃

(i)
k

k−1

)
. (4.11)

In the recursive step of Algorithm 4.2, the measure Γ
θ̃

(i)
k

k−1 is not available at time k − 1,

since the parameter evolves from θ
(i)
k−1 to θ̃

(i)
k in the jittering step at time k. In order to

have a recursive algorithm, the estimate Γ̂
θ

(i)
k−1

k−1 obtained at time k − 1 is used to approximate

the measure Γ
θ̃

(i)
k

k−1. Hence, when the model is linear and Gaussian, we obtain the following
estimation of the weights for the parameters space

w̃
θ̃

(i)
k
k ∝

(
(l

θ̃
(i)
k
yk , π

θ̃
(i)
k

k ), Γ̂
θ

(i)
k−1

k−1

)
. (4.12)

When the model is nonlinear or non-Gaussian, then we consider the approximation (4.10) to

(3.4). In this case, the transition probability π
θ̃

(i)
k

k is approximated by a Gaussian transition

probability π̂
θ̃

(i)
k

k . Therefore, in the non-recursive step, estimation of the weights for the
parameters space is given by

ŵ
θ̃

(i)
k
k ∝

(
(l

θ̃
(i)
k
yk , π̂

θ̃
(i)
k

k ), Γ̂
θ̃

(i)
k

k−1

)
, (4.13)
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In the recursive step, the measure Γ
θ̃

(i)
k

k−1 is approximated by Γ̂
θ

(i)
k−1

k−1 . Hence, we obtain the
following estimation of the weights for the parameters space

ŵ
θ̃

(i)
k
k ∝

(
(l

θ̃
(i)
k
yk , π̂

θ̃
(i)
k

k ), Γ̂
θ

(i)
k−1

k−1

)
, (4.14)

together with the estimation of the posterior measure of xk , for A ∈ B(Rd) a Borel set,

Γ̂
θ̃

(i)
k

k (A) =

(
(1{xk∈A}l

θ̃
(i)
k
yk , π̂

θ̃
(i)
k

k ), Γ̂
θ

(i)
k−1

k−1

)
(

(l
θ̃

(i)
k
yk , π̂

θ̃
(i)
k

k ), Γ̂
θ

(i)
k−1

k−1

) .

We will make use of the weights (4.12), (4.13) and (4.14) in our convergence analysis later
in Sect. 5.

Remark 4.2 Switching between jittering kernel happens once the condition in the step 1.b
of the algorithm is satisfied. Here one may take VN having diagonal elements of order
N−(p+2)/2, as mentioned at the beginning of the recursive step. It may however happen
in an implementation that the switching does not take place. As will be explained at the
beginning of Sect. 5, not switching from kernel 1 to kernel 2 will not prevent convergence
of the algorithm. We consider two causes for not switching between kernels: first, the length
of the data is too short; and second, the noise level h is extremely big and hence there is not
much information contained in the data.

In the first case there are notmany data points, and the non-recursive algorithmwill anyway
quickly produce results, so this case is not problematic from a practical point of view. The
second case is not problematic either, because it deals with a really extreme situation. For
example, the experiment that we present in Sect. 6.1 on simulated interest rates without noise
produces data with on average a magnitude of several basis points (10−4). But the variance of
the added noise is 10−7, which is already quite big compared to the interest rate themselves.
Even in this case, we observed that after 1164 steps the algorithm switches kernel. Data
with 1164 working days (a bit less than 5 years) or more are widely available in financial
markets, especially for interest rates. Nevertheless, for Algorithm 4.2 the convergence to the
true measure is always assured.

4.2 Kalman Particle filter for models with piece-wise constant parameters

So far in this paper, the model parameters are assumed to be fixed over time. But in many
applications, it is more realistic to assume that, at least, some parameters are time-varying, for
instance if they are piecewise constant. An offline method that can deal with the estimation
of the location of the change-points and of the parameters of the model is studied e.g. in
Chib (1998). For an SMC perspective, there are multiple papers that deal with change-point
detection problems, see e.g. Chopin (2007), Fearnhead and Liu (2007) and He and Maheu
(2010). For the particle filter methods which treat the model parameters as static, the variance
of the samples for the parameters decreases with more observed data. Hence the marginal
distribution of the model parameters will be increasingly concentrated around certain values.
The consequence is that the particle filter algorithm is not able to capture abrupt changes of
parameters.

We extend our proposed algorithm for static parameter to adapt to abrupt changes of
parameters. To achieve that,wefirst identify the change points. This step is done by comparing
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the marginal likelihood between two consecutive steps. Suppose the parameter samples have
already converged to the actual value. If at some point the actual parameter value jumps
to another value, then the marginal likelihood based on the existing parameter samples are
far from optimal. Hence the marginal likelihood at this time point should be significantly
smaller than that at the previous time point. On the other hand, if at this time point the actual
parameter value does not change, then the marginal likelihood should also be very close to
the previous value. So we set a threshold q < 1 and if at some point time k, the maximum
marginal likelihood for θ

(i)
k ∈ Dθ , k ∈ N

+, satisfies

max
1≤i≤N

{
p(yk | y1:k−1, θ

(i)
k )
}

< q max
1≤i≤N

{
p(yk−1 | y1:k−2, θ

(i)
k−1)

}
,

then we consider the time point k to be the change point of the parameters. Of course,
this condition is not sufficient but it is necessary. Notice that the threshold q in our case is
user-specific. For statistical methods to choose q , we refer e.g. to Maheu and Gordon (2008).

Another issue here is that the parameter samples may have already (nearly) converged
before the change point, hence the variance of these samples is too small to capture the change.
This problem can be tackled by adding new samples from the initial parameter distribution
to increase the sample variance. But since the variance is increased, the jittering kernel (4.9)
does not satisfy Assumption 4.1. Hence the jittering kernel should switch to (4.5). Moreover,
since the model parameter changes, the posterior distributions from the previous time point
are also not valid anymore, and a new initial value for the mean and the variance of the
posterior distribution should also be initialized. So once the change point is determined, one
can treat the calibration of the model as a new calibration based on data after this change
point.

We introduce the Kalman particle algorithm extended to time-varying parameters. We
present the algorithm in full detail, noting that the differenceswith the previousAlgorithm 4.2
are in the two jittering cases in the filtering step.

Algorithm 4.3 (Kalman particle filter for models with time-varying parameters)
Initialization:

1. set the number of particles N , a value for the discounting factor a, a switching variance
level VN , a floored variance level V f , and the threshold parameter q ,

2. assume an initial distribution p(θ0) for the parameters,
3. sample from the initial distribution to get N particles {θ(i)

0 , i = 1, · · · , N } for the param-
eters,

4. for each particle {θ(i)
0 }, assign the same initial mean and covariance value of the posterior

distribution B(i)
0 and P(i)

0 for the Kalman filter update,

Recursion:

1. Filtering: given {θ(i)
k−1, i = 1, · · · , N },

a. as long as diag(Σ(θk−1)) is not smaller than VN (jittering case 1), for each i =
1, · · · , N ,
i. sample new parameters from the kernel (4.5), i.e.,

θ̃
(i)
k ∼ TruncNorm(θ̃k;μ(θ

(i)
k−1),Σ(θk−1), Dθ ) ,

ii. based on the parameter θ̃
(i)
k , use the Kalman filter to compute the mean and the

covariance of the posterior distribution from time 1 to k,
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iii. compute the likelihood p(yk | y1:k−1, θ̃
(i)
k ), consequently obtain the normalized

weights

w
θ̃

(i)
k
k = p(yk | y1:k−1, θ̃

(i)
k )∑N

i=1 p(yk | y1:k−1, θ̃
(i)
k )

;

b. once diag(Σ(θl−1)) < VN (jittering case 2), then for k ≥ l + 1 and i = 1, · · · , N ,
given {B(i)

k−1, P
(i)
k−1},

i. sample new parameters from the kernel (4.9), i.e.

θ̃
(i)
k ∼ TruncNorm(θ̃k; θ

(i)
k−1,min{max{Σ(θk−1), V f }, VN }, Dθ ),

ii. based on the parameters θ̃
(i)
k , B(i)

k−1 and P(i)
k−1, use the Kalman filter to compute

the mean B̃(i)
k and the covariance P̃(i)

k of the approximated posterior distribution
at time k,

iii. compute an approximation p̃(yk | y1:k−1, θ̃
(i)
k ) of the likelihood p(yk |

y1:k−1, θ̃
(i)
k ). If

max
1≤i≤N

{ p̃(yk | y1:k−1, θ̃
(i)
k )} < q max

1≤i≤N
{ p̃(yk−1 | y1:k−2, θ̃

(i)
k−1)} ,

then go to the Initialization step of the algorithm to initialize the algorithm using
the data after time k. Otherwise compute the normalized weights

w̃
θ̃

(i)
k
k = p̃(yk | y1:k−1, θ̃

(i)
k )∑N

i=1 p̃(yk | y1:k−1, θ̃
(i)
k )

.

2. Resampling: for each i = 1, · · · , N , set {θ(i)
k , B(i)

k , P(i)
k } = {θ̃ (p)

k , B̃(p)
k , P̃(p)

k }, with
probability w

θ̃
(p)
k
k , where p ∈ {1, · · · , N }.

In Sect. 6 we will present a numerical study where Algorithm 4.3 is seen to be capable of
quickly tracking a sudden parameter change. Similar to the example in Crisan and Míguez
(2018), Sect. 6, we content ourselves with this empirical tracking behaviour and refrain from
presenting a consistency result in a large sample setting. For a fixed number of change points
though, convergence results do exist, see e.g. Bai and Perron (1998) on multiple structural
changes in linear regression. But, as stated above, an asymptotic analysis of this behaviour
is besides the purpose of the present section.

5 Convergence analysis

This section is devoted to showing a convergence result, Theorem 5.9 below, for the Kalman
particle Algorithm 4.2 introduced in Sect. 4.1.2. The standing assumption is that we have
observations y1:k generated by (3.4) and (3.5). The parameters are A, β,Σ, Σ̃ , collectively
denoted θ .

In Algorithm 4.2, the (conditional) measure

μk(dθk) = p(dθk | y1:k) , (5.1)

is estimated for k = 1, · · · , K . Fromnowon, for convenience, we assume the algorithm starts
at time 1. At each time, the algorithm has three main steps: jittering, update and resampling.
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Define the maximum step size Δ = supk=1,··· ,K (tk − tk−1). Let the parameter θ ∈ Dθ .
At time k, suppose the estimated measure of the last time μN

k−1 is available and

μN
k−1 = 1

N

N∑
i=1

δ
θ

(i)
k−1

(dθ) .

In the jittering step as described in Algorithm 4.2, new samples θ̃
(i)
k are sampled from the

kernel functions. The resulting measure μ̃N
k is then defined by

μ̃N
k = 1

N

N∑
i=1

δ
θ̃

(i)
k

(dθ) . (5.2)

In this step, no extra information is used to refine the estimates on the parameters. Hence the
aim is to prove that the measure μ̃N

k converges to the measure μN
k−1 in some sense when Δ

goes to zero and the number of samples N goes to infinity.
In the update step as described in Algorithm 4.2 of Sect. 4.1.2, there are four cases to

analyze, combinations of Gaussian-linear or non-Gaussian/non-linear models and recursive
or non-recursive parts of the algorithm. When the model is linear and Gaussian, and we con-

sider the non-recursive step of the algorithm, then the normalized weightsw
θ̃

(i)
k
k are computed

exactly. When we consider the recursive step of the algorithm for a Gaussian linear model,

the normalized weights w
θ̃

(i)
k
k are estimated by w̃

θ̃
(i)
k
k , see (4.12). For the non-Gaussian and

non-linear model, we consider the approximation (4.10) to (3.4), the normalized weights are
estimated by (4.13) and (4.14) in the non-recursive step and recursive step, respectively. Since
the convergence of the weights in this latter case, the recursive step, implies the convergence
of the weights in the first three cases, we will only consider the model (4.10) and the recursive
step of the algorithm. In this case, we obtain a new estimated measure

μ̂N
k =

N∑
i=1

ŵ
θ̃

(i)
k
k δθ̃ ik

(dθ) (5.3)

and the convergence analysis of μ̂N
k depends on that of the estimated weights ŵ

θ̃
(i)
k
k . The aim

is to prove that μ̂N
k converges to μk in some sense when Δ goes to 0 and N goes to infinity.

In the resampling step, the new particles {θ(i)
k , i = 1, · · · , N } are sampled from the

empirical distribution
∑N

i=1 ŵ
θ̃

(i)
k
k δ

θ̃
(i)
k

and we need to prove that the measure

μN
k = 1

N

N∑
i=1

δ
θ

(i)
k

(dθ) , (5.4)

converges to μk when Δ goes to zero and N goes to infinity.
For our convergence analysis we will need besides Assumption 4.1, the following three

assumptions. They are of a type that is common when dealing with parameter estimation
using particle filters.

Assumption 5.1 The posterior measure Γ θ
k , k = 1, · · · , N , θ ∈ Dθ , is Lipschitz in the

parameter θ , i.e. for any bounded continuous function f ,∣∣∣( f , Γ θ
k ) − ( f , Γ θ ′

k )

∣∣∣ ≤ e3,k ‖ f ‖∞
∥∥θ − θ ′∥∥ , (5.5)
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for some positive constant e3,k independent of f .

Assumption 5.2 Let (xk)k∈N+ be as in (3.4). To emphasize that the dependence of the dis-
tribution of xk depends on θ , we write (xθ

k )k∈N+ . It is assumed that there exist a constant
M > 0 such that

sup
θ∈Dθ , k∈N+

E
[∣∣xθ

k

∣∣] ≤ M .

Assumption 5.3 For any fixed observation sequence y1:k , the likelihood {lθyt (x), t =
1, · · · , k, θ ∈ Dθ } satisfies
1.
∥∥lyt∥∥∞ := supθ∈Dθ

∥∥∥lθyt
∥∥∥∞ < ∞,

2. infθ∈Dθ l
θ
yt > 0.

Remark 5.1 Assumptions 5.2 and 5.3 hold when a judicious choice of Dθ is made. For
instance, the inequality in Assumption 5.2 involves xθ

k for all k. This leads us to assume that
the matrix −A is stable, all eigenvalues of A have positive real part, or in the diagonal case,
all diagonal elements of A are positive. To have also Assumption 5.3 satisfied, one has to
impose further restrictions, the elements of A come from a bounded set and its eigenvalues are
bounded away from zero (then also A−1 belongs to a bounded set), whereas these conditions
are also imposed on Σ and Σ̃ . Under these specified conditions, Assumptions 5.2 and 5.3
hold true.

The Inequality (4.6) in Assumption 4.1 is used for the convergence analysis of the jittering
step, the Inequality (4.7) in Assumption 4.1, together with Assumptions 5.1 and 5.2 are
specially used for the analysis for the update step and Assumption 5.3 is used for the analysis
for both update and resampling steps. Given the convergence ofμN

k−1 toμk−1 in an L p-sense
when Δ goes to zero and N goes to infinity, we present the convergence of the measures
μ̃N
k , μ̂

N
k and μN

k respectively in the three Lemmas 5.4, 5.7, 5.8 in the subsections below. In
Sect. 5.4, we study the convergence of Algorithm 4.2 presented in Sect. 4.1.2 by induction
using these three lemmas. The main result there is Theorem 5.9. Our analysis in inspired by
the results in Crisan and Míguez (2018) for the nested particle filter and follows a similar
pattern. Note however the crucial differences between our Algorithm 4.2 and their nested
particle filter. We have to deal with only one layer with a particle filter (instead of two such
layers), as we use the Kalman filter in the other layer, but we also pay attention to the time
discretization of the continuous processes.

5.1 Jittering

In the jittering step 1.b.i for low values of Σ(θk−1) the new parameter particles θ̃
(i)
k are

sampled from a kernel function κN
k (dθ | θ

(i)
k−1), i = 1, · · · , N . The following lemma shows

that the error due to the jittering step vanishes. This lemma can be seen as the analog of
Lemma 3 in Crisan and Míguez (2018), but with the term 1√

M
there (which plays no role

in our analysis) replaced with
√

Δ as we treat the influence of time discretization. It can be
proven in the same way and we present it here for the sake of completeness and in a form
that suits our purposes.

Lemma 5.4 Let f be a bounded function and suppose Assumption 4.1 holds. If∥∥∥( f , μN
k−1) − ( f , μk−1)

∥∥∥
p

≤ c1,k−1 ‖ f ‖∞√
N

+ d1,k−1 ‖ f ‖∞
√

Δ, (5.6)
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for some constants c1,k−1 and d1,k−1 which are independent of f , N and Δ, then there exist
constants c̃1,k and d̃1,t which are independent of f , N and Δ, such that

∥∥∥( f , μ̃N
k ) − ( f , μk−1)

∥∥∥
p

≤ c̃1,k ‖ f ‖∞√
N

+ d̃1,k ‖ f ‖∞
√

Δ . (5.7)

5.2 Update

To prove the convergence in the update step 1.c, we first need to prove that the error introduced

from the approximation of the weightsw
θ̃

(i)
k
k by theweights ŵ

θ̃
(i)
k
k , can be bounded by a desired

quantity as in (5.7). The following lemma is a core result in our convergence analysis, in the
proof of it we exploit the affine nature of the state process.

Lemma 5.5 Let the observation sequence y1:k be fixed. Suppose function f is bounded and
continuous and Assumptions 4.1,5.1, and 5.2 hold. If

sup
1≤i≤N

∣∣∣∣( f , Γ̂ θ
(i)
k−1

k−1 ) − ( f , Γ
θ

(i)
k−1

k−1 )

∣∣∣∣ ≤ c2,k−1 ‖ f ‖∞√
N

+ d2,k−1 ‖ f ‖∞
√

Δ , (5.8)

for some constants c2,k−1 and d2,k−1 which are independent of f , N and Δ, then there exist
constants c̃2,k and d̃2,k which are independent of f , N and Δ such that

sup
1≤i≤N

∣∣∣∣(( f , π̂ θ̃
(i)
k

k ), Γ̂
θ

(i)
k−1

k−1 ) − (( f , π
θ̃

(i)
k

k ), Γ
θ̃

(i)
k

k−1)

∣∣∣∣ ≤ c̃2,k ‖ f ‖∞√
N

+ d̃2,k ‖ f ‖∞
√

Δ . (5.9)

To prove Lemma 5.5, we exploit the structure (3.4) of the state process. Besides, we need the
following auxiliary result. The proof of it follows the same lines as the proof of Lemma 4 in
Crisan and Míguez (2018), but note again the 1√

M
term is replaced by

√
Δ.

Lemma 5.6 Suppose the function f is bounded and continuous. Moreover, suppose Assump-
tions 4.1 and 5.1 and Inequality (5.8) hold. Then there exist some constants c̃2,k−1 and d̃2,k−1

which are independent of f , N , Δ and of all θ such that

sup
1≤i≤N

∣∣∣∣( f , Γ̂ θ
(i)
k−1

k−1 ) − ( f , Γ
θ̃

(i)
k

k−1)

∣∣∣∣ ≤ c̃2,k−1 ‖ f ‖∞√
N

+ d̃2,k ‖ f ‖∞
√

Δ . (5.10)

Now we are ready to prove Lemma 5.5.

Proof Using the triangle inequality, one obtains

sup
1≤i≤N

∣∣∣∣(( f , π̂ θ̃
(i)
k

k ), Γ̂
θ

(i)
k−1

k−1 ) − (( f , π
θ̃

(i)
k

k ), Γ
θ̃

(i)
k

k−1)

∣∣∣∣
≤ sup

1≤i≤N

∣∣∣∣(( f , π̂ θ̃
(i)
k

k ), Γ̂
θ

(i)
k−1

k−1 ) − (( f , π̂
θ̃

(i)
k

k ), Γ
θ̃

(i)
k

k−1)

∣∣∣∣
+ sup

1≤i≤N

∣∣∣∣(( f , π̂ θ̃
(i)
k

k ), Γ
θ̃

(i)
k

k−1) − (( f , π
θ̃

(i)
k

k ), Γ
θ̃

(i)
k

k−1)

∣∣∣∣ . (5.11)

Note that supθ∈Dθ
( f , π̂ θ

k ) is bounded by ‖ f ‖∞. Hence, using Inequality (5.10), we get for
the first term on the right hand side of (5.11)
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sup
1≤i≤N

∣∣∣∣(( f , π̂ θ̃
(i)
k

k ), Γ̂
θ

(i)
k−1

k−1 ) − (( f , π̂
θ̃

(i)
k

k ), Γ
θ̃

(i)
k

k−1)

∣∣∣∣
≤ sup

θ∈Dθ

sup
1≤i≤N

∣∣∣∣(( f , π̂ θ
k ), Γ̂

θ
(i)
k−1

k−1 ) − (( f , π̂ θ
k ), Γ

θ̃
(i)
k

k−1)

∣∣∣∣
≤ c̃2,k−1 ‖ f ‖∞√

N
+ d̃2,k ‖ f ‖∞

√
Δ . (5.12)

Recall (xk)k∈N and (x̌k)k∈N respectively from (3.4) and (4.10). For ε, M1 > 0, define the
sets

Aε,i =
{∣∣∣∣x̌ θ̃

(i)
k

k − x
θ̃

(i)
k

k

∣∣∣∣ < ε

}
,

BM1,i =
{∣∣∣∣x̌ θ̃

(i)
k

k

∣∣∣∣ ≤ M1,

∣∣∣∣x θ̃
(i)
k

k

∣∣∣∣ ≤ M1

}
.

Note that ( f , π̂
θ̃

(i)
k

k ) can be seen as the (conditional) expectation of f (.) taken under the

measure π̂
θ̃

(i)
k

k . Stated otherwise, we can see it as the expectation of f (x̌
θ̃

(i)
k

k ). Likewise, we

can see ( f , π
θ̃

(i)
k

k ) as the (conditional) expectation of f (x
θ̃

(i)
k

k ). Below we use the notations

E f (x̌
θ̃

(i)
k

k ) and E f (x
θ̃

(i)
k

k ) for these expectations. With these interpretations, the second term
on the right hand side of (5.11) yields

sup
1≤i≤N

∣∣∣∣
(

( f , π̂
θ̃

(i)
k

k ), Γ
θ̃

(i)
k

k−1

)
−
(

( f , π
θ̃

(i)
k

k ), Γ
θ̃

(i)
k

k−1

)∣∣∣∣
= sup

1≤i≤N

∣∣∣∣
(

( f , π̂
θ̃

(i)
k

k ) − ( f , π
θ̃

(i)
k

k ), Γ
θ̃

(i)
k

k−1

)∣∣∣∣
≤ sup

1≤i≤N

(∣∣∣∣( f , π̂ θ̃
(i)
k

k ) − ( f , π
θ̃

(i)
k

k )

∣∣∣∣ , Γ θ̃
(i)
k

k−1

)

= sup
1≤i≤N

(∣∣∣∣E f (x̌
θ̃

(i)
k

k ) − E f (x
θ̃

(i)
k

k )

∣∣∣∣ , Γ θ̃
(i)
k

k−1

)

≤ sup
1≤i≤N

(
E

∣∣∣∣ f (x̌ θ̃
(i)
k

k ) − f (x
θ̃

(i)
k

k )

∣∣∣∣ , Γ θ̃
(i)
k

k−1

)

= sup
1≤i≤N

(
E1Aε,i 1BM1,i

∣∣∣∣ f (x̌ θ̃
(i)
k

k ) − f (x
θ̃

(i)
k

k )

∣∣∣∣ , Γ θ̃
(i)
k

k−1

)

+ sup
1≤i≤N

(
E1Aε,i 1Bc

M1,i

∣∣∣∣ f (x̌ θ̃
(i)
k

k ) − f (x
θ̃

(i)
k

k )

∣∣∣∣ , Γ θ̃
(i)
k

k−1

)

+ sup
1≤i≤N

(
E1Ac

ε,i

∣∣∣∣ f (x̌ θ̃
(i)
k

k ) − f (x
θ̃

(i)
k

k )

∣∣∣∣ , Γ θ̃
(i)
k

k−1

)
. (5.13)

We need to find an upper bound for the three terms on the right hand side of (5.13).
Consider the first term on the right hand side of (5.13) and note that the random variables

x̌
θ̃

(i)
k

k and x
θ̃

(i)
k

k restricted to BM1 take values in a compact set. Hence the continuous function f
is also uniformly continuous on that set. Then there exists an ε > 0, such that | f (x) − f (y)| ≤√

Δ, for all |x − y| < ε. From now on we assume that we use this ε, and we obtain for the
first term on the right hand side of (5.13), using the definition of Aε,i ,
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sup
1≤i≤N

E1Aε,i 1BM1,i

∣∣∣∣ f (x̌ θ̃
(i)
k

k ) − f (x
θ̃

(i)
k

k )

∣∣∣∣ ≤ √
Δ ,

which implies

sup
1≤i≤N

(
E1Aε,i 1BM1,i

∣∣∣∣ f (x̌ θ̃
(i)
k

k ) − f (x
θ̃

(i)
k

k )

∣∣∣∣ , Γ θ̃
(i)
k

k−1

)
≤ √

Δ . (5.14)

Next we consider the second term on the right hand side of (5.13). Set M1 = M/
√

Δ + ε,

where M is as defined in Assumption 5.2. On the set Aε,i , we have

∣∣∣∣x̌ θ̃
(i)
k

k

∣∣∣∣ − ε ≤
∣∣∣∣x θ̃

(i)
k

k

∣∣∣∣ ≤∣∣∣∣x̌ θ̃
(i)
k

k

∣∣∣∣ + ε, which implies P

(
Aε,i ,

∣∣∣∣x̌ θ̃
(i)
k

k

∣∣∣∣ > M1

)
≤ P

(∣∣∣∣x θ̃
(i)
k

k

∣∣∣∣ > M1 − ε

)
. Hence using

Assumption 5.2 and the Markov inequality, we obtain

sup
1≤i≤N

E1Aε,i 1Bc
M1,i

∣∣∣∣ f (x̌ θ̃
(i)
k

k ) − f (x
θ̃

(i)
k

k )

∣∣∣∣
≤ 2 ‖ f ‖∞ sup

1≤i≤N

(
E1Aε,i 1Bc

M1,i

)

≤ 2 ‖ f ‖∞ sup
1≤i≤N

[
P

(
Aε,i ,

∣∣∣∣x̌ θ̃
(i)
k

k

∣∣∣∣ > M1

)
+ P

(
Aε,i ,

∣∣∣∣x θ̃
(i)
k

k

∣∣∣∣ > M1

)]

≤ 2 ‖ f ‖∞ sup
1≤i≤N

[
P

(∣∣∣∣x θ̃
(i)
k

k

∣∣∣∣ > M1 − ε

)
+ P

(∣∣∣∣x θ̃
(i)
k

k

∣∣∣∣ > M1

)]

≤ 4 ‖ f ‖∞ sup
1≤i≤N

P

(∣∣∣∣x θ̃
(i)
k

k

∣∣∣∣ > M1 − ε

)

≤ 4 ‖ f ‖∞
sup1≤i≤N E

∣∣∣∣x θ̃
(i)
k

k

∣∣∣∣
M1 − ε

≤ 4 ‖ f ‖∞
√

Δ . (5.15)

Substituting (5.15) into the second term of the right hand side of (5.13), we obtain

sup
1≤i≤N

(
E1Aε,i 1Bc

M1,i

∣∣∣∣ f (x̌ θ̃
(i)
k

k ) − f (x
θ̃

(i)
k

k )

∣∣∣∣ , Γ θ̃
(i)
k

k−1

)

≤ sup
1≤i≤N

(
4 ‖ f ‖∞

√
Δ,Γ

θ̃
(i)
k

k−1

)

≤ 4 ‖ f ‖∞
√

Δ . (5.16)

For the last term on the right hand side of (5.13), we apply again the Markov inequality, to
obtain

E1Ac
ε,i

∣∣∣∣ f (x̌ θ̃
(i)
k

k ) − f (x
θ̃

(i)
k

k )

∣∣∣∣ ≤ 2 ‖ f ‖∞ P(Ac
ε,i )

≤ 2 ‖ f ‖∞
E

∣∣∣∣x̌ θ̃
(i)
k

k − x
θ̃

(i)
k

k

∣∣∣∣
ε

.
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We denote the i-th component of an R
d -valued process (xk)k∈N by (x (i)

k )k∈N. Furthermore,

we temporarily suppress the dependence on θ̃
(i)
k in the notation. Given xk−1, according to

Eqs. (3.4) and (4.10), we obtain

E

∣∣∣x̌ (i)
k − x (i)

k

∣∣∣ = e−αi (tk−tk−1)E

∣∣∣∣∣∣
∫ tk

tk−1

eαi u
d∑
j=1

Σi j

(√
x (1)
u −

√
x (1)
k−1

)
dW ( j)

u

∣∣∣∣∣∣
≤ E

∣∣∣∣∣∣
∫ tk

tk−1

eαi u
d∑
j=1

Σi j

(√
x (1)
u −

√
x (1)
k−1

)
dW ( j)

u

∣∣∣∣∣∣ .

DefineΣ(i) =
√∑d

j=1(Σi j )2. Using the Burkholder-Davis-Gundy inequality (Karatzas and
Shreve 1998, Theorem 3.28), we know there exists a constant C which does not depend on
(xt )t≥0 such that, for every i = 1, · · · , d ,

E

∣∣∣∣∣∣
∫ tk

tk−1

eαi u
d∑
j=1

Σi j

(√
x (1)
u −

√
x (1)
k−1

)
dWu

∣∣∣∣∣∣
≤ CΣ(i)

E

(∫ tk

tk−1

e2αi u
(√

x (1)
u −

√
x (1)
k−1

)2

du

) 1
2

≤ CΣ(i)
E

(∫ tk

tk−1

e2αi u
(
x (1)
u + x (1)

k−1

)
du

) 1
2

.

Using Jensen’s inequality and Fubini’s theorem, we get for the latter expectation

E

(∫ tk

tk−1

e2αi u
(
x (1)
u + x (1)

k−1

)
du

) 1
2

≤
(
E

∫ tk

tk−1

e2αi u
(
x (1)
u + x (1)

k−1

)
du

) 1
2

=
(∫ tk

tk−1

e2αi uE
(
x (1)
u + x (1)

k−1

)
du

) 1
2

=
(∫ tk

tk−1

e2αi u
[
(1 + e−α1(u−tk−1))x (1)

k−1 + (1 − e−α1(u−tk−1))β1

]
du

) 1
2

=
(
x (1)
k−1 + β1

2αi

(
e2αiΔ − 1

)
e2αi tk−1

+ x (1)
k−1 − β1

2αi − α1

(
e(2αi−α1)Δ − 1

)
e2αi tk−1

) 1
2

.

Note that ex − 1 = O(x) if x → 0. Since the parameters are assumed to have a compact
domain, we conclude there exists a constant C1 which is independent of the parameters and
such that

E
∣∣x̌k − xk

∣∣ ≤ C1x
(1)
k−1

√
Δ .
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Hence, returning to previously used notation,

E1cAε,i

∣∣∣∣ f (x̌ θ̃
(i)
k

k ) − f (x
θ̃

(i)
k

k )

∣∣∣∣ ≤ C1

ε
x

(1),θ̃ (i)
k

k−1

√
Δ,

which implies

sup
1≤i≤N

(
E1Ac

ε,i

∣∣∣∣ f (x̌ θ̃
(i)
k

k ) − f (x
θ̃

(i)
k

k )

∣∣∣∣ , Γ θ̃
(i)
k

k−1

)
≤ C1

ε

√
Δ sup

1≤i≤N
Ex

(1),θ̃ (i)
k

k−1

≤ C1M

ε

√
Δ . (5.17)

Combining (5.16),(5.14) and (5.17) togetherwith (5.12),weprove the statement of the lemma.
��

Lemma 5.5 shows that the approximation errors of π̂
θ̃

(i)
k

k and Γ̂
θ

(i)
k−1

k−1 can be controlled in an
appropriate manner, guaranteeing Σ(θk−1) below a threshold value VN . This allows us to
run the outer layer in Algorithm 4.2 recursively, see step 1.b. Adding Assumption 5.3, we
present in the following lemma the convergence of μ̂N

k .

Lemma 5.7 Let the observation sequence y1:k be fixed and Assumptions 4.1, 5.1, 5.2 and 5.3
hold. Then for any bounded and continuous function f , if (5.6) and

sup
1≤i≤N

∣∣∣∣( f , Γ̂ θ
(i)
k−1

k−1 ) − ( f , Γ
θ

(i)
k−1

k−1 )

∣∣∣∣ ≤ c2,k−1 ‖ f ‖∞√
N

+ d2,k−1 ‖ f ‖∞
√

Δ,

hold for some constants c2,k−1 and d2,k−1 which are independent of f , N and Δ, then there
exist constants ĉ1,k, d̂1,k, c̃2,k and d̃2,k which are independent of f , N and Δ such that∥∥∥( f , μ̂N

k ) − ( f , μk)

∥∥∥
p

≤ ĉ1,k ‖ f ‖∞√
N

+ d̂1,k ‖ f ‖∞
√

Δ,

sup
1≤i≤N

∣∣∣∣( f , Γ̂ θ̃
(i)
k

k ) − ( f , Γ
θ̃

(i)
k

k )

∣∣∣∣ ≤ c̃2,k ‖ f ‖∞√
N

+ d̃2,k ‖ f ‖∞
√

Δ .

Proof First, we prove the convergence of the estimated normalized weights ŵ
θ̃

(i)
k
k , which are

used to prove the convergence of the measures μ̂N
k . Denote the unnormalized weights by

v̂
θ̃

(i)
k
k = ((l

θ̃
(i)
k
yk , π̂

θ̃
(i)
k

k ), Γ̂
θ

(i)
k−1

k−1 ), see (4.14), and v
θ̃

(i)
k
k = ((l

θ̃
(i)
k
yk , π

θ̃
(i)
k

k ), Γ
θ̃

(i)
k

k−1), see (4.11). Note
that supθ∈Dθ

(lθyk , π
θ
k ) is bounded by

∥∥lyk∥∥∞. Using Lemma 5.5, noting that
∥∥lyt∥∥∞ is some

finite number under Assumption 5.3, we have

sup
1≤i≤N

∣∣∣∣v̂θ̃
(i)
k
k − v

θ̃
(i)
k
k

∣∣∣∣ = sup
1≤i≤N

∣∣∣∣((l θ̃ (i)
k
yk , π̂

θ̃
(i)
k

k ), Γ̂
θ

(i)
k−1

k−1 ) − ((l
θ̃

(i)
k
yk , π

θ̃
(i)
k

k ), Γ
θ̃

(i)
k

k−1)

∣∣∣∣
≤ sup

θ∈Dθ

sup
1≤i≤N

∣∣∣∣((lθyk , π̂ θ̃
(i)
k

k ), Γ̂
θ

(i)
k−1

k−1 ) − ((lθyk , π
θ̃

(i)
k

k ), Γ
θ̃

(i)
k

k−1)

∣∣∣∣
≤ c̃2,k√

N
+ d̃2,k

√
Δ, (5.18)

where c̃2,k and d̃2,k are constants which are independent of N ,Δ and θ . By Assumption 5.3,
we obtain
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inf
θ∈Dθ

v̂θ
k , inf

θ∈Dθ

vθ
k > 0 ,

sup
θ∈Dθ

v̂θ
k , sup

θ∈Dθ

vθ
k < ∞ .

Hence for the normalized weights, it follows that

sup
1≤i≤N

∣∣∣∣ŵθ̃
(i)
k
k − w

θ̃
(i)
k
k

∣∣∣∣ = sup
1≤i≤N

∣∣∣∣∣∣
v̂

θ̃
(i)
k
k∑N

i=1 v̂
θ̃

(i)
k
k

− v
θ̃

(i)
k
k∑N

i=1 v
θ̃

(i)
k
k

∣∣∣∣∣∣
≤ sup

1≤i≤N

∣∣∣∣∣∣
v̂

θ̃
(i)
k
k∑N

i=1 v̂
θ̃

(i)
k
k

− v̂
θ̃

(i)
k
k∑N

i=1 v
θ̃

(i)
k
k

∣∣∣∣∣∣
+ sup

1≤i≤N

∣∣∣∣∣∣
v̂

θ̃
(i)
k
k∑N

i=1 v
θ̃

(i)
k
k

− v
θ̃

(i)
k
k∑N

i=1 v
θ̃

(i)
k
k

∣∣∣∣∣∣
≤ sup

1≤i≤N

v̂
θ̃

(i)
k
k

(
∑N

i=1 v
θ̃

(i)
k
k )(

∑N
i=1 v̂

θ̃
(i)
k
k )

N∑
i=1

∣∣∣∣vθ̃
(i)
k
k − v̂

θ̃
(i)
k
k

∣∣∣∣
+ sup

1≤i≤N

1∑N
i=1 v̂

θ̃
(i)
k
k

∣∣∣∣v̂θ̃
(i)
k
k − v

θ̃
(i)
k
k

∣∣∣∣ . (5.19)

Observe that
v̂

θ̃
(i)
k
k∑N

i=1 v
θ̃
(i)
k
k

≤ 1 and that
∑N

i=1 v̂
θ̃

(i)
k
k is bounded from below by a constant times

N . Substituting Inequality (5.18) into Inequality (5.19), one obtains that there exist constants
ĉ2,k and d̂2,k such that

sup
1≤i≤N

∣∣∣∣ŵθ̃
(i)
k
k − w

θ̃
(i)
k
k

∣∣∣∣ ≤ ĉ2,k√
N

+ d̂2,k
√

Δ . (5.20)

Next we study the convergence of the measures μ̂N
k . For simplification in the notation,

we write ŵk = ŵ
θ̃

(i)
k
k . Recalling that wk = p(yk |y1:k−1,θ)∫

p(yk |y1:k−1,θ)dθ
(note that ‖wk‖∞ < ∞ by

Assumption 5.3)), we get from Bayes’ rule

( f , μk) =
∫

f (θ)p(θ | y1:k)dθ

=
∫

f (θ)
p(yk | y1:k−1, θ)p(θ | y1:k−1)∫
p(yk | y1:k−1, θ)p(θ | y1:k−1)dθ

dθ

= ( f wk, μk−1)

(wk, μk−1)
,

and from (5.2) and (5.3) we get

( f , μ̂N
k ) = ( f ŵk, μ̃

N
k )

(ŵk, μ̃
N
k )

.

Since wk and (wk, μk−1) ≥ 0, using Assumption 5.3 and the triangle inequality, we get
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∥∥∥( f , μ̂N
k ) − ( f , μk)

∥∥∥
p

=
∥∥∥∥∥ ( f ŵk, μ̃

N
k )

(ŵk, μ̃
N
k )

− ( f wk, μk−1)

(wk, μk−1)

∥∥∥∥∥
p

= 1

(wk, μk−1)

∥∥∥∥∥ ( f ŵk, μ̃
N
k )

(ŵk, μ̃
N
k )

(wk, μk−1) − ( f wk, μk−1)

∥∥∥∥∥
p

≤ 1

(wk, μk−1)

⎛
⎝
∥∥∥∥∥ ( f ŵk, μ̃

N
k )

(ŵk, μ̃
N
k )

(wk, μk−1) − ( f ŵk, μ̃
N
k )

∥∥∥∥∥
p

+
∥∥∥( f ŵk, μ̃

N
k ) − ( f wk, μk−1)

∥∥∥
p

)

= 1

(wk, μk−1)

⎛
⎝
∥∥∥∥∥ ( f ŵk, μ̃

N
k )[(wk, μk−1) − (ŵk, μ̃

N
k )]

(ŵk, μ̃
N
k )

∥∥∥∥∥
p

+
∥∥∥( f ŵk, μ̃

N
k ) − ( f wk, μk−1)

∥∥∥
p

)

≤ 1

(wk, μk−1)

(
‖ f ‖∞

∥∥∥(wk, μk−1) − (ŵk, μ̃
N
k )

∥∥∥
p

+
∥∥∥( f ŵk, μ̃

N
k ) − ( f wk, μk−1)

∥∥∥
p

)
. (5.21)

Hence, we proceed to finding upper bounds for the two quantities ‖(wk, μk−1)−(ŵk, μ̃
N
k )‖p

and
∥∥( f ŵk, μ̃

N
k ) − ( f wk, μk−1)

∥∥
p . Note that∥∥∥( f ŵk, μ̃

N
k ) − ( f wk, μk−1)

∥∥∥
p

≤∥∥∥( f wk, μk−1) − ( f wk, μ̃
N
k )

∥∥∥
p

+
∥∥∥( f wk, μ̃

N
k ) − ( f ŵk, μ̃

N
k )

∥∥∥
p
. (5.22)

For the first term on the right hand side of (5.22), note that ‖wk‖p < ∞, it follows from
Lemma 5.4 that∥∥∥( f wk, μk−1) − ( f wk, μ̃

N
k )

∥∥∥
p

≤ c̃1,k ‖ f ‖∞√
N

+ ‖ f ‖∞ d̃1,k
√

Δ . (5.23)

For the second term on the right hand side of (5.22), we get using (5.20)

∣∣∣( f wk, μ̃
N
k ) − ( f ŵk, μ̃

N
k )

∣∣∣ =
∣∣∣∣∣ 1N

N∑
i=1

f (θ̃ (i)
k )

(
ŵ

θ̃
(i)
k
k − w

θ̃
(i)
k
k

)∣∣∣∣∣
≤ ‖ f ‖∞

N

N∑
i=1

∣∣∣∣ŵθ̃
(i)
k
k − w

θ̃
(i)
k
k

∣∣∣∣
≤ ‖ f ‖∞ sup

1≤i≤N

∣∣∣∣ŵθ̃
(i)
k
k − w

θ̃
(i)
k
k

∣∣∣∣
≤ c̃2,k ‖ f ‖∞√

N
+ d̃2,k ‖ f ‖∞

√
Δ .
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Hence, ∥∥∥( f wk, μ̃
N
k ) − ( f ŵk, μ̃

N
k )

∥∥∥
p

≤ c̃2,k ‖ f ‖∞√
N

+ d̃2,k ‖ f ‖∞
√

Δ .

Inserting the latter together with (5.23) in (5.22), we obtain∥∥∥( f ŵk, μ̃
N
k ) − ( f wk, μk−1)

∥∥∥
p

≤ c′
k ‖ f ‖∞√

N
+ d ′

k ‖ f ‖∞
√

Δ, (5.24)

where c′
k and d

′
k are constants independent of N and Δ. Letting f = 1 in (5.24) implies

∥∥∥(wk, μk−1) − (ŵk, μ̃
N
k )

∥∥∥
p

≤ c′
k√
N

+ dk′
√

Δ . (5.25)

Therefore substituting (5.25) and (5.24) into the right hand side of Inequality (5.21), we
obtain ∥∥∥( f , μ̂N

k ) − ( f , μk)

∥∥∥
p

≤ ĉ1,k ‖ f ‖∞√
N

+ d̂1,k ‖ f ‖∞
√

Δ,

where ĉ1,k = 2
(wk ,μk−1)

c′
k < ∞ and d̂1,k = 2

(wk ,μk−1)
d ′
k < ∞ are independent of N and Δ

and the statement for μ̂N
k follows.

To prove the statement for Γ̂
θ̃

(i)
k

k , we compute using (2.9) and (4.14)∣∣∣∣( f , Γ̂ θ̃
(i)
k

k ) − ( f , Γ
θ̃

(i)
k

k )

∣∣∣∣
=

∣∣∣∣∣∣∣
(( f l

θ̃
(i)
k
yk , π̂

θ̃
(i)
k

k ), Γ̂
θ

(i)
k−1

k−1 )

ŵ
θ̃

(i)
k
k

− (( f l
θ̃

(i)
k
yk , π

θ̃
(i)
k

k ), Γ
θ̃

(i)
k

k−1)

w
θ̃

(i)
k
k

∣∣∣∣∣∣∣
= 1

ŵ
θ̃

(i)
k
k w

θ̃
(i)
k
k

∣∣∣∣wθ̃
(i)
k
k (( f l

θ̃
(i)
k
yk , π̂

θ̃
(i)
k

k ), Γ̂
θ

(i)
k−1

k−1 ) − ŵ
θ̃

(i)
k
k (( f l

θ̃
(i)
k
yk , π

θ̃
(i)
k

k ), Γ
θ̃

(i)
k

k−1)

∣∣∣∣
≤ 1

ŵ
θ̃

(i)
k
k w

θ̃
(i)
k
k

(∣∣∣∣wθ̃
(i)
k
k (( f l

θ̃
(i)
k
yk , π̂

θ̃
(i)
k

k ), Γ̂
θ

(i)
k−1

k−1 ) − ŵ
θ̃

(i)
k
k (( f l

θ̃
(i)
k
yk , π̂

θ̃
(i)
k

k ), Γ̂
θ

(i)
k−1

k−1 )

∣∣∣∣
+
∣∣∣∣ŵθ̃

(i)
k
k (( f l

θ̃
(i)
k
yk , π̂

θ̃
(i)
k

k ), Γ̂
θ

(i)
k−1

k−1 ) − ŵ
θ̃

(i)
k
k (( f l

θ̃
(i)
k
yk , π

θ̃
(i)
k

k ), Γ
θ̃

(i)
k

k−1)

∣∣∣∣
)

≤ 1

ŵ
θ̃

(i)
k
k w

θ̃
(i)
k
k

(
‖ f ‖∞

∥∥lyk∥∥∞

∣∣∣∣wθ̃
(i)
k
k − ŵ

θ̃
(i)
k
k

∣∣∣∣
)

+ ŵ
θ̃

(i)
k
k

∣∣∣∣(( f l θ̃ (i)
k
yk , π̂

θ̃
(i)
k

k ), Γ̂
θ

(i)
k−1

k−1 ) − (( f l
θ̃

(i)
k
yk , π

θ̃
(i)
k

k ), Γ
θ̃

(i)
k

k−1)

∣∣∣∣ .

Since ŵ
θ̃

(i)
k
k , w

θ̃
(i)
k
k ≥ infθ∈Dθ l

θ
yk > 0, then using Eq. (5.20) and Lemma 5.5 (note that l

θ̃
(i)
k
yk is

bounded by Assumption 5.3), we prove the statement of the Lemma. ��

5.3 Resampling

In the following lemma we study the convergence of the measure μN
k .
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Lemma 5.8 Let the observation sequence y1:k be fixed, for bounded and continuous function
f . If ∥∥∥( f , μ̂N

k ) − ( f , μk)

∥∥∥
p

≤ ĉ1,k ‖ f ‖∞√
N

+ d̂1,k ‖ f ‖∞
√

Δ,

sup
1≤i≤N

∣∣∣∣( f , Γ̂ θ̃
(i)
k

k ) − ( f , Γ
θ̃

(i)
k

k )

∣∣∣∣ ≤ c̃2,k ‖ f ‖∞√
N

+ d̃2,k ‖ f ‖∞
√

Δ,

holds for some constants ĉ1,k, d̂1,k, c̃2,k and d̃2,k which are independent of N and Δ, then
there exist constants c1,k, d1,k, c2,k and d2,k which are independent of N and Δ, such that∥∥∥( f , μN

k ) − ( f , μk)

∥∥∥
p

≤ c1,k ‖ f ‖∞√
N

+ d1,k ‖ f ‖∞
√

Δ,

sup
1≤i≤N

∣∣∣∣( f , Γ̂ θ
(i)
k

k ) − ( f , Γ
θ

(i)
k

k )

∣∣∣∣ ≤ c2,k ‖ f ‖∞√
N

+ d2,k ‖ f ‖∞
√

Δ .

Proof Note that in the resampling step the θ
(i)
k are resampled from the pool {θ̃ (i)

k , i =
1, · · · , N }. Hence it is trivial that

sup
1≤i≤N

∣∣∣∣( f , Γ̂ θ
(i)
k

k ) − ( f , Γ
θ

(i)
k

k )

∣∣∣∣ ≤ sup
1≤i≤N

∣∣∣∣( f , Γ̂ θ̃
(i)
k

k ) − ( f , Γ
θ̃

(i)
k

k )

∣∣∣∣
≤ c̃2,k ‖ f ‖∞√

N
+ d̃2,k ‖ f ‖∞

√
Δ

= c2,k ‖ f ‖∞√
N

+ d2,k ‖ f ‖∞
√

Δ,

where c2,k = c̃2,k and d2,k = d̃2,k are independent of N and Δ. Moreover, by triangle
inequality, we have∥∥∥( f , μN

k ) − ( f , μk)

∥∥∥
p

≤
∥∥∥( f , μN

k ) − ( f , μ̂N
k )

∥∥∥
p

+
∥∥∥( f , μ̂N

k ) − ( f , μk)

∥∥∥
p

. (5.26)

For the second term on the right hand side of (5.26), it follows from the conditions in the
lemma, that ∥∥∥( f , μ̂N

k ) − ( f , μk)

∥∥∥
p

≤ ĉ1,k ‖ f ‖∞√
N

+ d̂1,k ‖ f ‖∞
√

Δ . (5.27)

Note that {θ(i)
k , i = 1, · · · , N } are i.i.d. samples generated from μ̂N

k (dθ) = ∑N
i=1 ŵ

θ̃
(i)
k
k

δ
θ̃

(i)
k

(dθ). Let G̃k be the sigma-algebra generated by {θ(i)
1:k−1, θ̃

(i)
1:k, i = 1, · · · , N }, then

E[ f (θ(i)
k ) | G̃k] =

∫
f (θ)

N∑
i=1

ŵ
θ̃

(i)
k
k δ

θ̃
(i)
k

(dθ)

=
N∑
i=1

ŵ
θ̃

(i)
k
k f (θ̃ (i)

k )

= ( f , μ̂N
k ) .

Define Z (i)
k = f (θ(i)

k ) − ( f , μ̂N
k ) = f (θ(i)

k ) − E[ f (θ(i)
k ) | G̃k]. The Z (i)

k , i = 1, · · · , N are

randomvariableswith zero-mean and bounded by 2 ‖ f ‖∞ and have the propertyE[Z (i)
k Z ( j)

k |
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G̃k] = 0 for i 
= j . Let p ≥ 1, and let’s first additionally assume p is an even integer. Then

E

[∣∣∣( f , μN
k ) − ( f , μ̂N

k )

∣∣∣p | G̃k
]

= E

⎡
⎣
∣∣∣∣∣ 1N

N∑
i=1

f (θ(i)
k ) − ( f , μ̂N

k )

∣∣∣∣∣
p

| G̃k
⎤
⎦

= E

⎡
⎣
∣∣∣∣∣ 1N

N∑
i=1

Z (i)
k

∣∣∣∣∣
p

| G̃k
⎤
⎦

= 1

N p
E

⎡
⎣ N∑
i1=1

· · ·
N∑

i p=1

Z (i1)
k · · · Z (i p)

k | G̃k
⎤
⎦ .

Since E[Z (i)
k | G̃k] = 0, there are at most N

p
2 non-zero contributions to

N∑
i1=1

· · ·
N∑

i p=1

E

[
Z (i1)
k · · · Z (i p)

k | G̃k
]

.

Hence

E

⎡
⎣ N∑
i1=1

· · ·
N∑

i p=1

Z (i1)
k · · · Z (i p)

k | G̃k
⎤
⎦ ≤ 1

N
p
2
2p ‖ f ‖p∞ ,

which implies ∥∥∥( f , μN
k ) − ( f , μ̂N

k )

∥∥∥
p

≤ 2 ‖ f ‖∞√
N

. (5.28)

Substituting Inequality (5.28) and (5.27) into Eq. (5.26) yields, for any even p, the result∥∥∥( f , μN
k ) − ( f , μk)

∥∥∥
p

≤ c1,k ‖ f ‖∞√
N

+ d1,k ‖ f ‖∞
√

Δ, (5.29)

where c1,k = 2 ‖ f ‖∞ + ĉ1,k and d1,k = d̂1,k . For any real number p ≥ 1, we know there
exist an even number q > p such that (5.29) holds for this number q . Hence the statement
is proved. ��

5.4 Convergence of the Kalman Particle algorithm

In the following theorem we prove the convergence of our proposed algorithm.

Theorem 5.9 Suppose the function f is bounded and continuous and Assumptions 4.1, 5.1,
5.2, 5.3 hold. Let the sequence of the observation y1:k be fixed and the measures μk and
μN
k resulting from Algorithm 4.2 be respectively as in (5.1) and (5.4), where the model is

Gaussian and linear in the sense of (2.11) or is of type (3.1). Then it holds∥∥∥( f , μN
k ) − ( f , μk)

∥∥∥
p

≤ c1,k ‖ f ‖∞√
N

+ d1,k ‖ f ‖∞
√

Δ,

with constants c1,k, d1,k, 1 ≤ k ≤ K independent of N and Δ.

Proof We prove this theorem by induction. At time t0, the parameter samples θ
(i)
0 , i =

1, · · · , N , are sampled from the initial measure μ0 and μN
0 = 1

N

∑N
i=1 δ

θ
(i)
0
. A well known
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result of Monte Carlo simulation, see for example Chapter I in Glasserman (2013), implies
that ∥∥∥( f , μ0) − ( f , μN

0 )

∥∥∥
p

≤ c1,t0 ‖ f ‖∞√
N

+ d1,t0 ‖ f ‖∞
√

Δ,

for some constant c1,t0 and d1,t0 independent of N and Δ. Moreover, one can just define

the initial measure of x0 by a Gaussian measure Γ0 and define Γ̂
θ

(i)
0

0 = Γ
θ

(i)
0

0 = Γ0, for
i = 1, · · · , N . Then it is trivial that

sup
1≤i≤N

∣∣∣∣( f , Γ̂ θ
(i)
0

0 ) − ( f , Γ
θ

(i)
0

0 )

∣∣∣∣ ≤ c2,t0 ‖ f ‖∞√
N

+ d2,t0 ‖ f ‖∞
√

Δ

holds for some constant c2,t0 and d2,t0 independent of N and Δ (actually c2,t0 = d2,t0 = 0).
Assume that, at time k − 1, the inequalities∥∥∥( f , μN

k−1) − ( f , μk−1)

∥∥∥
p

≤ c1,k−1 ‖ f ‖∞√
N

+ d1,k−1 ‖ f ‖∞
√

Δ

and

sup
1≤i≤N

∣∣∣∣( f , Γ̂ θ
(i)
k−1

k−1 ) − ( f , Γ
θ

(i)
k−1

k−1 )

∣∣∣∣ ≤ c2,k−1 ‖ f ‖∞√
N

+ d2,k−1 ‖ f ‖∞
√

Δ

hold for some constants c1,k−1, d1,k−1, c2,k−1 and d2,k−1 which are independent of N and
Δ. Then we can just successively apply Lemmas 5.7 and 5.8 to obtain the statements of the
lemma. ��

6 Numerical results on affine term structuremodels

In this section we illustrate our results by considering some specific examples of the affine
class (3.1) to which we apply our algorithms. In particular we consider the one-factor Cox-
Ingersoll-Ross (CIR) model, the two-factor Vasiček model, and the one-factor Vasiček model
with stochastic volatility. To test how the designed algorithm works on these models, the
models are calibrated on simulated data using pre-determined parameters. Moreover, for the
illustration of our algorithm on empirical data, we consider the calibration of a two-factor
Vasičekmodel on yield curves.We compare the behavior of our algorithm to the one generated
by the recursive nested particle filter (RNPF) for the CIR model. The comparison shows that
in this case our algorithm outperforms the RNPF.

6.1 One-factor CIRmodel

At first we consider the CIR model (3.6). One important property of the CIR models is that
the yield curves are always non-negative. The transition density of the CIR model has a
non-central chi-square distribution, i.e.,

xtk+1 | xtk ∼ cχ2
p(λ) ,

where p = 4αβ

σ 2 is the degree of freedom, λ = xk(4αe−α(tk+1−tk ))/(σ 2(1 − e−α(tk+1−tk )))

is the non-centrality parameter and c = σ 2(1 − e−α(tk+1−tk ))/4α. We define the short rate
process to be rt = xt . The analytical solution of the functions φ and ψ defined in (3.2) can
be obtained by solving the ODE (A.2), with d = 1, γ = −1 and c = 0.
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Fig. 1 Convergence of parameter estimates by KPF for the CIR model with noise variance h = 1 × 10−8;
the blue lines represent the posterior mean of the parameters, the red lines represent the true values of the
parameters and the black dots are the lower and upper bounds of the 95% credible intervals

In the tests, the parameters are set to be α1 = 0.45, β = 0.001 and Σ̃ = 0.017. Based on
these parameters values, we generate daily data for yield curves with the times to maturity
ranging from 1 year to 30 years. The time length is T = 2000, i.e., the data set contains 2000
days. Furthermore, we add white noise with variance h = 1 × 10−8 in the simulated zero
rates.

We use our Kalman particle filter algorithm (Algorithm 4.2, henceforth referred to as
KPF) to calibrate the model parameters. The transition distribution of the CIR model is not
Gaussian, but note that the CIR model fits the structure of (3.1) with Σ = 0. Hence we use
the approximation (4.10) and apply the Kalman filter in the inner layer. In the outer layer, we
set the number of particles to be N = 5000 and the initial prior distribution of the parameters
to be uniform, i.e.,

α ∼ U (0, 1), β ∼ U (0, 0.01), and σ ∼ U (0, 0.1) .

Moreover, the sampled parameters at each step are truncated by the boundary of the latter
corresponding uniform distributions respectively. In the next sections we use the same kind
of truncation. In the inner layer, the mean and variance of the initial prior distribution of x0
are 0.005 and 0.01. The discounting factor a is set to be 0.98 and the variance boundaries
VN and V f are set to be the diagonal matrices whose elements are equal to 1√

N3
, i.e. p = 1

and 10−8, respectively. We will also use the same a, VN and V f for other experiments later.
Figure 1 shows that the estimated parameters converge over time to the real value. In this

figure (and in other ones below) the blue lines represent the posterior mean of the parameters,
the red lines represent the true values of the parameters and the black dots are the lower and
upper bounds of the 95% credible intervals.

Figure 2 shows the estimated states follow the simulated states very well. Moreover, we
observe that after 810 steps the variance is smaller than the required level VN . We repeated
this experiment for noise variance h = 1×10−7 and h = 1×10−9 and the results are shown
in Figures 3 and 4 , respectively.
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Fig. 2 Simulated states and estimated states; the blue line represents estimates of the simulated states, the red
line represents the simulated states

Fig. 3 Convergence of parameter estimates by KPF for the CIR model with noise level h = 1 × 10−7
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Fig. 4 Convergence of parameter estimates by KPF for the CIR model with noise level h = 1 × 10−9

We find out that in all these cases the posterior means converge to the real value. We also
observed that the bigger the variance of the noise is, the more steps it takes to switch the
jittering kernel and the more steps it takes to the algorithm to converge. Specifically, in these
three cases with noise levels 1 × 10−7, 1 × 10−8 and 1 × 10−9, it has taken 1164, 810 and
134 steps to switch between the kernels, respectively.

Furthermore, for noise variance h = 1 × 10−8, we extend this experiment to weekly and
monthly data, i.e. the time step is weekly and monthly and the results are shown in Figures 5
and 6 , respectively. We find out that also in both cases the posterior means converge to the
real value. We also observe that the bigger the time step is, the more time it takes for the
algorithm to converge (note that 1 step in those two cases is 1 week and 1month respectively).

We also implemented the recursive nested particle filter (RNPF) for comparison. The
sample size in the two layers are set to be 1000 and 300 respectively. Moreover, we simulated
18000 more days of data, hence in total we obtain 20000 days of data. For the rest we use
the same settings as in the previous example, i.e. the same initial sample distributions for the
parameter generation, the same boundary on the parameter samples in the outer layer, and
the variance of the jittering kernel is also set the same as VN .

Figure 7 shows how the behavior of the estimated parameters over time. One observes
that even after 20000 time steps the RNPF algorithm estimates of α and σ do not reach the
correct parameter values.

6.2 Two-factor Vasicekmodel

In this subsection we consider the two-factor Vasiček model (3.7). The short rate process
rt is given by rt = x (1)

t + x (2)
t . The analytical solution of the functions φ and ψ defined

in (3.2) can be obtained by solving the ODE (A.1), with d = 2, γ = (−1,−1)� and
c = 0. Furthermore we set α11 = 0.03, α22 = 0.23, Σ11 = 0.02, Σ12 = 0, Σ21 =
0.02ρ, Σ22 = 0.02

√
1 − ρ2, ρ = −0.5 . Similar as in the previous example, the yield curve

data are simulated based on these parameters and then a white noise process is added on the
simulated data. The variance of the white noise is 6 × 10−7. The times to maturity of the
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Fig. 5 Convergence of parameter estimates by KPF for the CIR model with weekly data and noise level
h = 1 × 10−8

Fig. 6 Convergence of parameter estimates by KPF for the CIR model with monthly data and noise level
h = 1 × 10−8

yield curves range from 1 year up to 30 years. The time step of the data is set to be daily and
the time length is 2000.

Using these noisy simulated data, we use our Kalman particle algorithm 4.2 to calibrate
the model parameters. The Vasiček fits the structure of (3.1) with Σ = 0. Since the Vasiček
model is a Gaussian model, the Kalman filter in the inner layer gives an optimal filter. The
number of particles at each step is N = 2000. For the initialization of the parameter samples,
the initial prior distribution of parameters is chosen to be uniform, namely:

α1, α2 ∼ U (0, 0.4), σ1, σ2 ∼ U (0, 0.1), and ρ ∼ U (−0.8,−0.3) .
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Fig. 7 Behavior of parameter estimates by RNPF for the CIR model

Fig. 8 Convergence of parameter estimates by KPF for the Vasiček model

The initial prior distribution of the state xk is chosen to be Gaussian with mean 0 and variance
diag([0.1, 0.1]). Figure 8 shows the how the estimated parameters converge over time. One
can observe that the convergence is very fast and accurate.
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6.3 Vasicekmodel with stochastic volatility

We consider the following stochastic volatility model,

dVt = α1(0.1 − Vt ) dt + σ1
√
Vt dW

(1)
t ,

dxt = α2(β − xt ) dt + σ2
√
Vt
(
ρ dW (1)

t +
√
1 − ρ2 dW (2)

t

)
,

which is model (3.8) in a notation that is more suitable for the purposes of this section.
The process Vt presents the fluctuation of the volatility of the system. Note that the long
term mean of the process Vt is fixed at the known constant 0.1, otherwise the model would
be over-parametrized, i.e. by scaling the volatility process and the parameters σ1, σ2 one
can obtain an equivalent model. The transition density of this stochastic volatility model is
not analytically available. To tackle this issue, we apply the same approximation as in the
CIR model test of Sect. 6.1, namely, we approximate the stochastic diffusion by constant
diffusion between the time steps, see (4.10). Under this approximation, the transition density
of the model is Gaussian and the mean and variance can be theoretically computed. The
short rate is defined by rt = xt and hence the yield curve can be computed, see (3.3), from
Rt (τ ) = φ(τ, 0) + ψ(τ, 0)� x̃t , with x̃t = [Vt , xt ]�. The functions φ, ψ are the solutions to
the Riccati Eqs. (A.2), with d = 2, γ = (0,−1)� and c = 0. The solutions to these latter
equations are not known in closed form. We introduce an efficient numerical algorithm to
compute these functions, the detailed algorithm is in the Appendices A.3. The parameters
of this model are set to be [α1, α2, β, σ1, σ2, ρ] = [0.1, 0.3, 0.03, 0.3, 0.07,−0.5]. The
variance of the white noise is 10−8. The times to maturity of the yield curves range from 1
year up to 20 years. The time step of the data is set to be daily and the time length is 2000.
In the outer layer, we sample N = 2000 particles and in the inner layer, we use the Kalman
filter. The initial prior distributions of the parameters are uniform,

α1, α2 ∼ U (0, 1), β ∼ U (0, 0.1),

σ1 ∼ U (0, 0.8), σ2 ∼ U (0, 0.2) and ρ ∼ U (−1, 1).

Themean and variance of the initial prior distribution of x̃t are [0.1, 0] and diag([0.01, 0.01]).
Figure 9 shows that also for amodel with stochastic volatility the parameter estimates quickly
converge.

6.4 One-factor CIRmodel with jump parameters

In this section we test the performance of Algorithm 4.3 in case a sudden jump in the
parameter takes place, as the alternative of Algorithm 4.2 for the case of static parameters.
This experiment can be seen as an extension of the experiment on the CIR model calibration
of Sect. 6.1. In this experiment, we assume the parameters have a jump at time T = 2001,
from [α, β, σ ] = [0.45, 0.001, 0.017] to [α, β, σ ] = [0.55, 0.0015, 0.023]. We simulate
the new data from time point T = 2001 to T = 4000 based on the new parameters and
the settings for the other parameters are the same as in Sect. 6.1. To identify the parameter
change, we set q = 0.1. Figure 10 shows that in this study the KPF algorithm for models
with time-varying parameters is able to track a sudden change in the parameter values and
quickly stabilizes at the new values.
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Fig. 9 Convergence of parameter estimates by KPF for the Vasiček model with stochastic volatility

Fig. 10 Parameter estimates by KPF for the CIR model with a sudden jump

6.5 Two-factor Vasicekmodel for real data

In this subsection, we apply our algorithm to the calibration of a two-factor Vasiček model on
yield curves that are bootstrapped from Euro swap rates with 3-month floating and fixed leg.
The swap rates come from Bloomberg, with daily time step from 01-01-2009 to 29-05-2017.
The tenor we use are from 4 years to 15 years.
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Fig. 11 Parameter estimates by KPF and MLE for the two-factor Vasiček model applied to real data of yield
curves

Let (Yt )t≥0 = (Y (1)
t , Y (2)

t )t≥0 be a two-factor affine process. Assume the short rate rt =
Y (1)
t + Y (2)

t , t ≥ 0. Then the corresponding yield curves with tenor τ is given by

Rt (τ ) = φ(τ, 0) + ψ(τ, 0)�Yt .

We suppose we have observations of the process Y at discrete times k = 1, . . . T . Denote by
R̄(τ ) = 1

T

∑T
k=1 Rk(τ ) and Ȳ = 1

T

∑T
k=1 Yk . Then we obtain

Rk(τ ) − R̄(τ ) = ψ(τ, 0)�(Yk − Ȳ ) . (6.1)

We assume the process Xt = Yt − Ȳ , t ≥ 0, is a two-factor Vasiček process with mean
reversion level zero, i.e.,

dXt = AXt dt + Σ dWt , (6.2)

where A is a 2 × 2 diagonal matrix and Σ is a 2 × 2 lower diagonal matrix. Instead of the
perfect observations given by (6.1), we assume to have noisy observations of the yield curve
given by

Rk(τ ) − R̄(τ ) = ψ(τ, 0)�Xk + vk, (6.3)

which corresponds to Eq. (3.5). Moreover, ψ(τ, 0) the solution of ODE (A.1), with d = 2,
γ = (−1,−1)� and c = 0.

The model (6.2) has five parameters that need to be calibrated: the diagonal elements of
A, denoted by α1, α2, the volatility parameters and the correlation parameter in Σ , denoted
by σ1, σ2 and ρ, respectively. The variance of vk in (6.3) is set to be 2.36×10−8 (fromMLE).
The base configuration of our algorithm is the same as in Sect. 6.2, except that we now also
allow for sudden changes of the parameters. For that we set q = 0.01. Figure 11 shows for
all five parameters the calibration results using the KPF algorithm and the MLE. Figure 11
shows that there are three different levels of the parameters to which the algorithm quickly
converges in all cases.
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7 Conclusion

In this paper we have introduced a semi-recursive algorithm combining the Kalman filter and
the particle filter with a two layers structure. In the outer layer the dynamic Gaussian kernel
is implemented to sample the parameter particles. Moreover, the Kalman filter is applied the
inner layer to estimate the posterior distribution of the state variables given the parameters
sampled in the outer layer. These two changes provide faster convergence and reduce the
computational time comparable to the RNPF methodology. The theoretical contribution of
this paper is the convergence analysis of the proposed algorithm. We proved that, under
regularity assumptions and given a certain model structure, the posterior distribution of
the parameters and the state variables converge to the actual distribution in L p with rate

O(N− 1
2 +Δ

1
2 ). The theoretical result is complemented by numerical results for several affine

term structure models with static parameters or jump parameters. Although our numerical
illustrations are for term structure models, the Kalman particle algorithm can also be applied
to many other models.
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A Affine processes

Affine processes are continuous-time Markov processes characterised by the fact that their
characteristic function depends in an exponentially affine way on the initial state vector of the
process. From Theorem 2.7 in Duffie et al. (2003), we know that the model of type (3.1) is an
R

p
+ ×R

q -valued affine process given Σ or Σ̃ is zero and the admissibility of the parameters
of this model.

A.1 Admissibility of the parameters

Let Γ = ΣΣ�, Γ̃ = Σ̃Σ̃�, I = {1, · · · , p} and J = {p + 1, · · · , p + q}. Here below, we
introduce the admissibility of the parameters of (3.1) when Σ̃ = 0,

– ΓI I = 0 ,
– Aβ ∈ R

p
+ × R

q ,
– AI J = 0 ,
– AI I has nonpositive off-diagonal elements .

When Σ = 0, then the admissibility of the parameters of (3.1) reads

– Γ = 0, if p = 0 ,
– Γkl = Γlk = 0, for k ∈ I/{1}, for all 1 ≤ l ≤ d ,
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– Aβ ∈ R
p
+ × R

q ,
– AI J = 0 ,
– AI I has nonpositive off-diagonal elements .

This latter conditions on the parameters ensure that the process of (3.1) remains in the state
space Rp

+ × R
q .

A.2 Riccati equations

Let u ∈ C
d , (φ(·, u), ψ(·, u)) : [0, T ] → C×C

d and (φ̃(·, u), ψ̃(·, u)) : [0, T ] → C×C
d

be C1-functions. We introduce the following generalised Riccati equations.

Generalised Riccati equations (1).

∂tφ(t, u) = 1

2
ψ�

J (t, u)ΓJ JψJ (t, u)) + (Aβ)�ψ(t, u) − c ,

φ(0, u) = 0 ,

∂tψi (t, u) = −A�
i ψ(t, u) − γi , 1 ≤ i ≤ d ,

∂tψJ (t, u) = −AJ Jψ(t, u) − γJ ,

ψ(0, u) = u ,

(A.1)

Generalised Riccati equations (2).

∂t φ̃(t, u) = (Aβ)�ψ̃(t, u) − c ,

φ̃(0, u) = 0 ,

∂t ψ̃1(t, u) = 1

2
ψ̃�(t, u)Γ̃ �

1 ψ̃(t, u) − A�
1 ψ̃(t, u) − γ1 ,

∂t ψ̃i (t, u) = −A�
i ψ̃(t, u) − γi , 2 ≤ i ≤ d ,

∂t ψ̃J (t, u) = −A�
J J ψ̃J (t, u) − γJ ,

ψ̃(0, u) = u .

(A.2)

The aim in the following theorem is to compute the zero couponbondprice P(t, T ) introduced
in (3.2). For a proof, we refer to Theorem 3.1 in Keller-Ressel and Mayerhofer (2015).

Theorem A.1 Let τ > 0 and (xt )t≥0 be as in (3.1) with Σ̃ = 0. Then the following statements
are equivalent

1. E[e− ∫ τ
0 r(s) ds] < ∞ , for some x ∈ R

p
+ × R

q .
2. There exists a unique solution (φ, ψ) on [0, τ ] to the generalised Riccati equations (A.1)

with initial data u = 0.

In any of the above cases, it holds for all 0 ≤ t ≤ T ≤ τ and for all x ∈ R
p
+ × R

q ,

E[e− ∫ Tt r(s) ds | Ft ] = e−φ(T−t,0)−ψ(T−t,0)x(t) .

The above statements remain true when Σ = 0 if we replace (φ, ψ) by (φ̃, ψ̃), the solution
to (A.2).

123



Statistical Inference for Stochastic Processes (2021) 24:353–403 399

A.3 Numerical solution to Riccati equations

FormanyRiccati equations, it is hard (or even impossible) to calculate a closed-form solution,
especially in high dimensional cases. So a numerical approach is needed. In general, the
Riccati equations for φ(t, u) and ψ(t, u) are given by

∂tφ(t, u) = 1

2
ψ(t, u)�aψ(t, u) + b�ψ(t, u) − c,

φ(0, u) = 0;
∂tψi (t, u) = 1

2
ψ(t, u)�αiψ(t, u) + β�

i ψ(t, u) − γi ,

ψ(0, u) = u.

(A.3)

with known parameters a, b, c, αi , βi and γi , i = 1, · · · , d .
We use a Taylor series to approximate the solution (φ, ψ). In order to do so, first we need

to determine the coefficients in Taylor expansion.

Proposition A.2 Suppose (φ(t, u), ψ(t, u)) is the solution of (A.3). Given the value of u,
assume the Taylor expansions of (φ(t, u), ψ(t, u)) are given by φ(t, u) = ∑∞

k=0 Ck(u)tk <

∞, and ψi (t, u) = ∑∞
k=0 D

i
k(u)tk < ∞. Then we have the following recursion for the

coefficients:

C0(u) = 0,

C1(u) = 1

2
u�au + b�u − c,

Ck+1(u) = 1

1 + k

(
1

2

k∑
n=0

D�
n (u)aDk−n(u) + b�Dku

)
, k ≥ 2,

Di
0(u) = ui ,

Di
1(u) = 1

2
u�αi u + β�

i u − γi ,

Di
k+1(u) = 1

1 + k

(
1

2

k∑
n=0

D�
n (u)αi Dk−n(u) + β�

i Dk(u)

)
, k ≥ 2,

where Dk(u) = (D1
k (u), · · · , Dd

k (u))�, k = 0, · · · , n.

Proof Suppose φ(t, u) = ∑∞
k=0 Ck(u)tk, ψi (t, u) = ∑∞

k=0 D
i
k(u)tk , let t = 0, we obtain

C0(u) = 0, Di
0(u) = ui . Taking the derivative of ψi (t, u) w.r.t. t ,

∂tψi (t, u) =
∞∑
k=1

Di
k(u)ktk−1

=
∞∑
k=0

Di
k+1(u)(k + 1)tk . (A.4)

On the other hand, according to (A.3),

∂tψi (t, u) = 1

2
ψ(t, u)�αiψ(t, u) + β�

i ψ(t, u) − γi
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= 1

2

d∑
l,r=1

ψl(t, u)αi (l, r)ψr (t, u) +
d∑

s=1

B(s, i)ψs(t, u) − γi

= 1

2

d∑
l,r=1

(

∞∑
k=0

Dl
k(u)tk)αi (l, r)(

∞∑
k=0

Dr
k (u)tk) +

d∑
s=1

B(s, i)(
∞∑
k=0

Ds
k(u)tk) − γi

= 1

2

d∑
l,r=1

αi (l, r)
∞∑
k=0

(

k∑
m=0

Dl
m(u)Dr

k−m(u))tk +
d∑

s=1

B(s, i)(
∞∑
k=0

Ds
k(u)tk) − γi

=
∞∑
k=0

⎛
⎝1

2

d∑
l,r=1

k∑
m=0

Dl
m(u)αi (l, r)D

r
k−m(u) +

d∑
s=1

B(s, i)Ds
k(u)tk

⎞
⎠ tk − γi

=
∞∑
k=0

(
1

2

k∑
m=0

D�
m (u)αi Dk−m(u) + βT

i Dk(u)

)
tk − γi

= (
1

2
u�αi u + β�

i u − γi ) +
∞∑
k=1

(
1

2

k∑
m=0

D�
m (u)αi Dk−m(u) + β�

i Dk(u)

)
tk .

(A.5)

Comparing the Taylor coefficients in (A.4) and (A.5), we obtain

D1(u) = 1

2
u�αi u + β�

i u − γi ,

Di
k+1(u) = 1

1 + k

(
1

2

k∑
n=0

D�
n (u)αi Dk−n(u) + β�

i Dk(u)

)
.

Similarly, we also obtain

C1(u) = 1

2
u�au + b�u − c,

Ck+1(u) = 1

1 + k

(
1

2

k∑
n=0

D�
n (u)aDk−n(u) + b�Dku

)
.

��
This proposition allows us to approximate the (φ(t, u), ψ(t, u)) by

φ(t, u) ≈
N∑

k=0

Ck(u)tk,

ψi (t, u) ≈
N∑

k=0

Di
k(u)tk .

The approximation errors are of the form
∑∞

k=N+1 Ak(u)tk . The approximation is accurate
and converges quickly if t ≈ 0. For t � 0,we divide the time interval into several subintervals
which are small enough to make the approximation accurate.

Choose time steps Δi > 0, i = 1, · · · , n such that T − t = Δ1 + · · · + Δn , then by the
tower property,

eφ(T−t,u)+ψ(T−t,u)�X(t) = E[eu�X(T ) | Ft ]
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Fig. 12 Numerical errors of the approximate solutions

= E[E[eu�X(T ) | FT−Δ1 ] | Ft ]
= eφ(Δ1,u)

E[eψ(Δ1,u)�X(T−Δ1) | Ft ]
= eφ(Δ1,u)

E[E[eψ(Δ1,u)�X(T−Δ1) | FT−Δ1−Δ2 ] | Ft ]
= eφ(Δ1,u)+φ(Δ2,ψ(Δ1,u))

E[eψ(Δ2,ψ(Δ1,u))�X(T−Δ1−Δ2) | Ft ]
...

= eφ(Δ1,u0)+φ(Δ2,u1)+···+φ(Δn ,un−1)eψ(Δn ,un−1)
�X(t),

where ui+1 = ψ(Δi+1, ui ), u0 = u.
Comparing the two extreme sides of the latter equation, we obtain

φ(T − t, u) =
n∑

i=1

φ(Δi , ui−1),

ψ(T − t, u) = ψ(Δn, un−1).

In practice, we can set the approximation error level to be ε. If at each step we choose

Δ = (εAN (u))
1
N , then the last term in the Taylor expansion is AN (u) ∗ ΔN = ε. Hence we

can control the approximation at the level ε.

Remark A.1 The values of the functions φ(t, u), ψ(t, u) might go to infinity for some value
of t and u . In these situations, the Taylor expansion approximation doesn’t work. However, in
financial application, we assume these cases do not exist since in finance we always assume
the moments of the underlying process exist.

Example A.1 Consider (A.3) with d = 1 and the admissible parameters α = γ = 1, β = −1.
The ODE for ψ is

∂tψ(t, u) = ψ(t, u)2 − ψ(t, u) − 1,

ψ(0, u) = u.

The unique closed form solution to this equation is given by, see (Filipović 2009, Eq.(10.47)),

ψ(t, u) = 2(e
√
5t − 1) − ((

√
5 − 1)e

√
5t + √

5 + 1)u

(
√
5 + 1)e

√
5t + √

5 − 1 − 2(e
√
5t − 1)u

.

For the numerical approximation, we choose the Taylor expansion order N = 10 and the
tolerance of the error ε = 10−16. The plots in Figure 12 show the numerical errors for
different t and u.

123



402 Statistical Inference for Stochastic Processes (2021) 24:353–403

References

Andrieu C, Doucet A (2002) Particle filtering for partially observed Gaussian state space models. J R Stat Soc
Ser B 64(4):827–836. https://doi.org/10.1111/1467-9868.00363

Arulampalam M, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonlinear/non-
Gaussian Bayesian tracking. IEEE Trans Signal Process 50(2):174–188

Bai J, Perron P (1998) Estimating and testing linear models with multiple structural changes. Econometrica
66(1), 47–78. http://www.jstor.org/stable/2998540

Bruno M (2013) Sequential Monte Carlo methods for nonlinear discrete-time filtering. Synth Lect Signal
Process 6(1):1–99

Cappé O, Godsill S, Moulines E (2007) An overview of existing methods and recent advances in sequential
Monte Carlo. Proc IEEE 95(5):899–924

Chen R, Liu J (2000) Mixture Kalman filter. J R Stat Soc Ser B 62:493–508. https://doi.org/10.1111/1467-
9868.00246

Chib S (1998) Estimation and comparison of multiple change-point models. J Econ 86(2):221–241
Chopin N (2002) A sequential particle filter method for static models. Biometrika 89(3):539–551. https://doi.

org/10.1093/biomet/89.3.539
Chopin N (2007) Dynamic detection of change points in long time series. Ann Inst Stat Math 59(2):349–366
Chopin N, Jacob P, Papaspiliopoulos O (2013) SMC2: an efficient algorithm for sequential analysis of state

space models. J R Stat Soc Ser B (Methodological) 75(3):397–426. https://doi.org/10.1111/j.1467-9868.
2012.01046.x

Chui C, Chen G (2017) Kalman filtering with real-time applications, 5th edn. Springer, Cham. https://doi.org/
10.1007/978-3-319-47612-4

Cox J, Ingersoll J, Ross S (1985) A theory of the term structure of interest rates. Econometrica 53(2):385–407.
https://doi.org/10.2307/1911242

Crisan D, Míguez J (2018) Nested particle filters for online parameter estimation in discrete-time state-space
Markov models. Bernoulli 24(4A):3039–3086. https://doi.org/10.3150/17-BEJ954

Doucet A (1997) Monte carlo methods for bayesian estimation of hidden markov models. application to
radiation signals. Ph.D. thesis, Univ. Paris-Sud, Orsay

Doucet A, Godsill S, Andrieu C (2000) On sequential Monte Carlo sampling methods for Bayesian filtering.
Stat Comput 10(3):197–208

Doucet A, Johansen A (2009) A tutorial on particle filtering and smoothing: fifteen years later. Handbook of
nonlinear filtering 12(656–704):3
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