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Abstract. We provide explicit representations of the null space S of adjoints of companion-
related matrices and of certain rectangular generalized Vandermonde matrices of block Toeplitz type
which are encountered in the Fisher information matrix of time series processes. A formula for the
right-inverse of this class of matrices A is provided which allows one to express the solution of the
system Ax = b as x = A−b+ S. The formulas can be easily turned into solution algorithms.
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1. Introduction. The subject of this paper is concerned with a recursive solu-
tion of new linear systems of equations. The following two linear systems of equations
are investigated:

(1.1) Kν(σ)X = E

and

(1.2) Mτ (ρ)Y = R.

The coefficient matrices in (1.1) and (1.2) have the form

Kν(σ) =

(
dν

dzν
(
uq(z)u

∗�
q (z)

)
,
dν−1

dzν−1

(
uq(z)u

∗�
q (z)

)
, . . . , uq(z)u

∗�
q (z)

)
z=σ

and

Mτ (ρ) =

(
dτ

dzτ
(adj (zI − Cp)) ,

dτ−1

dzτ−1
(adj (zI − Cp)) , . . . , adj (zI − Cp)

)
z=ρ

,

where Kν(σ) ∈ R
q×q(ν+1) and Mτ (ρ) ∈ R

p×p(τ+1). The companion matrix Cp ∈ R
p×p

is given by

(1.3) Cp =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
... 0 1

...
...

. . .
. . . 0

0 0 1
−cp −c2 −c1

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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1192 ANDRÉ KLEIN AND PETER SPREIJ

where ρ is an eigenvalue of Cp with algebraic multiplicity τ + 1, � denotes the
transpose, adj(X) denotes the adjoint of matrix X, σ, q, and ν are arbitrary scalar
values. Further, we have

(1.4) uq(z) = (1, z, . . . , zq−1)� and u∗
q(z) = (zq−1, . . . , 1)�.

Here X and Y are matrices of size q (ν + 1) × � and p (τ + 1) × h, respectively, while
E and R have size q × � and p × h, respectively. The coefficient matrices in (1.1)
are rectangular generalized Vandermonde matrices of block Toeplitz type and in (1.2)
they are adjoints of companion-related matrices. The linear equations studied in this
paper are extracted from [5], where the Fisher information matrix of a stationary time
series process is interconnected with a solution to a Stein equation. The matrix E is
the Fisher information matrix of a stationary time series process, whereas matrix R
is a solution to a Stein equation for an extended version of Mτ (ρ). The matrices X
and Y are equal and this enables the interconnections to be successfully implemented.
In this paper, stationary processes do not play any role, contrary to [5]. However,
it is worth noticing that the interconnection between Toeplitz forms and stationary
processes has been extensively studied in [3].

In [5], q is the degree of a polynomial dq(z) in z ∈ C, σ is a root of polynomial
dq(z) with algebraic multiplicity ν +1. In other words, q, σ, and ν are interconnected
through polynomial dq(z), whereas in this paper q, σ, and ν are arbitrary scalar
values with no link to a common polynomial and q, ν > 0. The algorithm derived
in [5] constructs a vector belonging to the null space of Kν(σ), which requires matrix
multiplications.

A property proved in [6] is used in [5] to derive an algorithm for the kernel of
Mτ (ρ), it concerns an interconnection between adj(zI − Cp) and the basis vector
up(z), this holds for p = q, σ = ρ, ν = τ and when ρ is an eigenvalue of Cp. The
vectors y ∈ Ker (Mτ (ρ)) and x ∈ Ker (Kτ (ρ)), where Ker(X) is the kernel of the
matrix X, are then interconnected. Consequently, the algorithm of the null space
of Mτ (ρ) given by vector y is based on the algorithm of the null space of Kτ (ρ)
expressed by vector x. The computation of the vector y involves an inversion of
a lower triangular and Toeplitz matrix. However, this is combined with pτ matrix
multiplications of the inverted matrix with the corresponding vector x ∈ Ker (Kτ (ρ)).
This is in agreement with the dimension of the null space of Mτ (ρ).

In this paper the approach is different, (1.1) and (1.2) are two different linear
systems of equations without a common matrix, and we develop a new algorithm for
the null space of the coefficient matrices Kν(σ) and Mτ (ρ) independently.

A solution of the linear systems of (1.1) and (1.2) is considered when q = ν+1 and
p = τ + 1. In this case, the newly developed algorithms for the null spaces and right-
inverses are equivalent for both coefficient matrices. The appropriate right-inverse
is expressed in terms of a generalized Vandermonde matrix. A new algorithm is also
developed for the kernel of Kν(σ) for the case q > ν + 1. The newly displayed algo-
rithms for the null space do not require matrix multiplications and matrix inversions.
The main computational exercise consists of evaluating factorials and binomial coef-
ficients, the latter can be computed by applying the Pascal triangle, combined with
recursions that consist of addition of two vectors. However, the problem set forth in
this paper is algebraical. The purpose is to write a solution of new linear systems of
equations as a function of z and the problem studied is therefore not numerical. For
that purpose one will subsequently consider the coefficient matrix Kν(z). When we
consider the coefficient matrix Mτ (z), for technical reasons that shall be specified in
section 4, we will then consider the case z = ρ.

D
ow

nl
oa

de
d 

07
/2

2/
24

 to
 1

45
.1

8.
16

6.
19

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SOLUTION OF CERTAIN STRUCTURED LINEAR SYSTEMS 1193

When q = ν + 1 and p = τ + 1, the representation of the null space Ker(Mτ (ρ))
is obtained by simply transposing certain matrices in the representation of the null
space Ker (Kν(σ)). This means that when the algorithm of Ker (Mτ (ρ)) needs to
be evaluated one can use the algorithm for the null space Ker (Kν(σ)). Contrary to
the corresponding algorithm displayed in [5], where a matrix inversion and matrix
multiplications are involved, there is no need for a computational exercise of any kind
when the algorithm set forth in this paper is applied.

Another fundamental difference with the approach in [5] is that the algorithms
developed in this paper cover the entire span of the null spaces of Kν(σ) and Mτ (ρ)
and not just a vector as in [5].

Consequently, we may apply these results to provide explicit expressions of the
solutions to the systems (1.1) and (1.2); more specifically, for q = ν +1 and p = τ +1
we have

X = (Kν(σ))
− E + W(σ) with W(σ)∈ Ker (Kν(σ)) ,(1.5)

Y = (Mτ (ρ))
− R + L(ρ) with L(ρ)∈ Ker (Mτ (ρ)) .(1.6)

The similarity of the null spaces of the coefficient matrices in (1.1) and (1.2) is inter-
esting. It implies a connection between adjoints of companion-related matrices and
rectangular generalized Vandermonde matrices of the block Toeplitz type.

Solutions of linear systems of equations are also presented in, e.g., [1], [2], and
[4], where the coefficient matrices are Toeplitz, Hankel, Hilbert-type, Cauchy, and
Vandermonde-type matrices.

The paper is organized as follows. In section 2, a right-inverse representation
of the coefficient matrices Kν(z) and Mτ (ρ) is introduced. In sections 3 and 4, a
corresponding algorithm for the kernel of the coefficient matrices Kν(z) and Mτ (ρ)
is developed for the case q = ν + 1, respectively, p = τ + 1. The main conclusions
are formulated in section 5. An algorithm for the kernel of Kν(z), when q > ν + 1, is
displayed in section 6.

2. A right-inverse: Case q = ν + 1. A right-inverse of Kν(z) is given for
q = ν + 1, which is a special form of the right-inverse presented in [5]. We introduce
the q × q generalized Vandermonde matrix T q

ν (z) where

T q
ν (z) =

(
T (ν)
ν (z), T (ν−1)

ν (z), . . . , T (0)
ν (z)

)
and

T (ν−k)
ν (z) =

∂ν−k

∂zν−k
uq(z), k = 0, 1, . . . , ν.

The following lemma can now be formulated.
Lemma 2.1. When q = ν + 1 the relations

Kν(z) (Iq ⊗ eq) = T q
ν (z),

Kν(z)
(
(T q

ν (z))
−1 ⊗ eq

)
= Iq

hold true. Clearly, an appropriate right-inverse is then (Kν(z))
−
R = (T q

ν (z))
−1 ⊗ eq,

where eq is the last standard basis vector in R
q.

Proof. Straightforward computation confirms the property.
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1194 ANDRÉ KLEIN AND PETER SPREIJ

Consider the matrices A and B of size m × n and p × q, respectively; then the
mp× nq Kronecker product of the two matrices is defined as A⊗ B = (aij)B for all
i and j.

A choice for an appropriate right-inverse of Mτ (ρ) when p = τ +1 is given in the
following corollary.

Corollary 2.2. When p = τ + 1 a right-inverse of Mτ (ρ) is given by

(T p
τ (ρ))

−1 ⊗ ep,

where ep is the last standard basis vector in R
p. We then have

Mτ (ρ)
(
(T p

τ (ρ))
−1 ⊗ ep

)
= Ip.

Proof. We have the property that the last column of adj(zI − Cp) is up(z); this
can be shown by equality (4.4), and this coincides with the last column of the matrix
up(z)u

∗�
p (z). This implies equality of the last column of the blocks composing Kν(z)

and Mτ (z). Since the construction of the right-inverse displayed in Lemma 2.1
is based on the last column of the blocks in Kν(z), the right-inverse set forth in
Lemma 2.1 then also holds for Mτ (z).

In the next section an algorithm for the null space Ker (Kν(z)) is displayed.

3. Ker (Kν(z)) for the case ν + 1 = q. We shall specify the dimension of
the null space Ker (Kν(z)) in the next proposition.

Proposition 3.1. The null space Ker(Kν(z)) has dimension equal to qν and the
rank of the coefficient matrix Kν(z) is q, when ν + 1 = q.

Proof. In Lemma 2.1, a right-inverse of the coefficient matrix Kν(z) is set forth.
This implies that the q× q(ν +1) coefficient matrix Kν(z) is surjective or has full row
rank; its rank is then q. By virtue of the dimension rule it can be concluded that dim
Ker (Kν(z)) = qν.

We are going to prove that a basis of the null space Ker(Kν(z)) is formed by the
columns of the matrix

(3.1) N =

(
U(z)
Jqν

)
,

where Jqν is the qν rotation matrix⎛
⎜⎜⎜⎜⎜⎝

0 0 . . . 0 1
0 0 . . . 1 0
...

...
...

...
...

0 1 . . . 0 0
1 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

and where the q × qν matrix U(z) will be specified later on.
Observe that N has full rank qν since Jqν is a nonsingular submatrix of N .

Therefore the columns of N form a basis of Ker(Kν(z)).
The matrix U(z) is represented in the following form:

(3.2) U(z) =
1

ν!
(U0(z),U1(z),U2(z), . . . ,Uν−1(z)) .

The submatrices constituting (3.2) shall be specified in the next sections.

D
ow

nl
oa

de
d 

07
/2

2/
24

 to
 1

45
.1

8.
16

6.
19

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SOLUTION OF CERTAIN STRUCTURED LINEAR SYSTEMS 1195

3.1. A representation of U0(z). In Lemma 3.2 we prove that a column of the
matrix U0(z) which has the form

(3.3) U0(z) = (ξ � uq(z)) ⊗ u�
q (z)),

and where the vector ξ is given by

(3.4) ξ = (ξi) , ξi =

(
(−1)i

(
ν

i− 1

))
i=1,...,ν+1

,

belongs to the null space Ker(Kν(z)). The Hadamard product � is defined by A�B =
(aijbij) for A = (aij) and B = (bij) which are matrices of the same size.

Recall that the mth row of Kν(z) is given by

(3.5)
dν

dzν
(
zq−2+m, zq−3+m, . . . , zm−1

)
=

⎛
⎝zq+m−i−ν−1

v∏
j=1

(n− i− j)

⎞
⎠

i=1,...,q

.

We have the following lemma.
Lemma 3.2. The q (ν + 1) column vector composed of an arbitrary column of

U0(z) and the corresponding standard basis vector in R
qν belongs to the null space of

the coefficient matrix Kν(z).
Proof. The kth column of U0(z) has elements

(3.6)
1

ν!

(
(−1)izk+i−2

(
ν

i− 1

))
, i = 1, . . . , q.

The scalar product of (3.5) and (3.6) provides a monomial in zn−ν+k−3, where n =
q + m, whose coefficient is given by

1

ν!

ν∑
i=0

(−1)i+1

(
ν
i

)
(n− 2 − i)(n− 3 − i) · · · (n− ν − 1 − i)(3.7)

=
1

ν!

{
dν

dxν

ν∑
i=0

(−1)i+1

(
ν
i

)
xn−2−i

}
x=1

= − 1

ν!

{
dν

dxν

(
xn−2−ν(x− 1)ν

)}
x=1

.

The application of the Leibnitz rule to ν-fold differentiation of a product of two func-
tions yields the value − 1

ν!{xn−2−νν!}x=1 = −1. Consequently, the scalar product of
(3.5) and (3.6) is −zn−ν+k−3. This should be added to the product of the appropri-
ate z-variable in the coefficient matrix Kν(z) by the nonzero element of the standard
basis vector in the rotation matrix Jqν which is zn−ν+k−3, so the sum is null. This
completes the proof.

3.1.1. Summary of the construction of U0(z). Step 1. Introduce the vector
ξ according to (3.4).

Step 2. Define the columns of U0(σ) according to (3.3).

3.2. A representation of Uj(z) when j = 1, 2, . . . , ν − 1. We shall now
describe the form of the matrices U1(z),U2(z), . . . ,Uν−1(z) that consist of the following
structural representation:

Uj(σ) =
(
U (1)
j (z) U (2)

j (z)
)

,

for j = 1, 2, . . . , ν − 1.
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1196 ANDRÉ KLEIN AND PETER SPREIJ

3.2.1. A representation of U(1)
j (z). In this section the matrix U (1)

j (z) is dis-
played. It is Hankel type with the following configuration:

(3.8) U (1)
j (z) =

(
δ1
j (z)δ

2
j (z) · · · δ

j+1
j (z)

)
,

where the (ν + 1) basis column vector δ�+1
j (z) has components

(3.9)
[
δ�+1
j (z)

]
i
=

{
0 for i ≤ j − � or ν + 1 − i ≤ �

−j!(−z)i+�−j−1
(

ν−j
i+�−j−1

)
otherwise

for � = 0, 1, . . . , j. The following lemma is proved.
Lemma 3.3. The q (ν + 1) column vector composed of any arbitrary column of

U (1)
j (z) and the corresponding standard basis vector in R

qν belongs to the null space
of the coefficient matrix Kν(z).

Proof. Set j = p and � = g in (3.9). As can be seen from (3.5), the appropriate
nonzero elements of the scalar product of (3.9) with (3.5) provide a monomial in
zf−p−2−ν , where f = q + m + g. Its coefficient is given by

(3.10)

p!

ν!

ν−p∑
i=0

(−1)i+1

(
ν − p
i

)
(f − p− 2 − i) (f − p− 3 − i) · · · (f − p− 1 − i− ν)

=
p!

ν!

{
dν

dxν

ν−p∑
i=0

(−1)i+1

(
ν − p
i

)
xf−p−2−i

}
x=1

= −p!

ν!

{
dν

dxν

[
xf−2−ν

ν−p∑
i=0

(−1)i
(
ν − p
i

)
xν−p−i

]}
x=1

= −p!

ν!

{
dν

dxν
xf−2−ν(x− 1)ν−p

}
x=1

= −p!

ν!

{
0 + 0 + · · · +

(
ν

ν − p

)
dp

dxp
xf−2−ν dν−p

dxν−p
(x− 1)ν−p + 0 + · · · + 0

}
x=1

= − (f − 2 − ν) (f − 3 − ν) · · · (f − p− 1 − ν) .

The scalar product is then given by −(f−2−ν)(f−3−ν) · · · (f−p−1−ν)zf−p−2−ν .
The appropriate element of the mth row of the coefficient matrix Kν(z) that is multi-
plied by the nonzero element of the corresponding standard basis vector in the rotation
matrix Jqν is zq−w+m−1, where w = ν − g + 1, and the appropriate derivative is p.
We therefore have

(3.11) (dp/dzp) zf−ν−2 = (f − 2 − ν) (f − 3 − ν) · · · (f − p− 1 − ν) zf−p−2−ν .

Adding (3.10) to (3.11) confirms that the q (ν + 1) column vector composed of δ�+1
j (z)

given in (3.9) and the corresponding standard basis vector in the rotation matrix
Jqν belongs to the null space of the coefficient matrix Kν(z). This completes the
proof.

3.2.2. Summary of construction of the matrix U(1)
j (z). Step 1. Define

vector δ�+1
j (z) according to (3.9) for � = 0, 1, . . . , j.

Step 2. Derive the columns of matrix U (1)
j (z) according to (3.8).
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3.2.3. A representation of U(2)
j (z). For j = 1, 2, 3, . . . , ν − 1, the submatrix

U (2)
j (z) admits the structure

(3.12) U (2)
j (z) =

(
κ1
j (z)κ

2
j (z) · · ·κ

ν−j
j (z)

)
.

To specify the basis vectors κ1
j (z) κ2

j (z) . . . κ
ν−j
j (z), we first compute recursively for

j = 1 and k = 2, 3, . . . , ν − j the appropriate column vectors according to

(3.13) κk
1 = κk−1

1 + ξ,

where ξ is given in (3.4). A solution to recursion ( 3.13) in terms of the initial vector
κ1
j whose form shall be introduced below is

(3.14) κk
1 = κ1

1 + (k − 1)ξ.

We can now compute recursively for j = 2, 3, . . . , ν − 1, according to

(3.15) κk
j = κk−1

j + jκk
j−1.

In the next proposition, an explicit solution to recursion equations (3.15) and (3.13)
shall be displayed for j = 1, 2, 3, . . . , ν − 1.

Proposition 3.4. An explicit solution to the recursion equations (3.15) and
(3.13), expressed in terms of the initial vectors κ1

j , κ
1
j−1, . . . , κ

1
2, κ

1
1 and the known

vector ξ, is given by

(3.16) κk
j =

j−1∑
i=0

i!

(
j
i

)(
k − 2 + i

k − 2

)
κ1
j−i + j!

(
k + j − 2

k − 2

)
ξ.

Proof. The proof consists of using the recursion equations (3.15) and (3.14). Take
j = 2, a combination of (3.15) and (3.14) yields for k = 2, 3, 4, . . .

κ2
2 = κ1

2 + 2κ1
1 + 2ξ

κ3
2 = κ1

2 + 4κ1
1 + 6ξ

κ4
2 = κ1

2 + 6κ1
1 + 12ξ

...

κk
2 = κ1

2 + 2(k − 1)κ1
1 + k(k − 1)ξ.(3.17)

Similarily when j = 3, 4, the recursion exercise yields for the kth column

κk
3 = κ1

3 + 3(k − 1)κ1
2 + 3k(k − 1)κ1

1 + k(k2 − 1)ξ,(3.18)

κk
4 = κ1

4 + 4(k − 1)κ1
3 + 6k(k − 1)κ1

2 + 4k(k2 − 1)κ1
1 + k(k2 − 1) (k + 2) ξ.(3.19)

From (3.17), (3.18), and (3.19) can be concluded that for all values of j, the solution
is then given by (3.16), where the case j = 1 is also included. When j = 1, (3.16)
becomes (3.14).

The columns κk
j for k = 1, 2, . . . , ν − j and j = 1, 2, 3, . . . , ν − 1 are essential for

displaying the corresponding columns of the submatrix U (2)
j (z) set forth in (3.12) and

to obtain

(3.20) κk
j (z) = κk

j � zkuν+1(z).
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In order to start the recursions, the (ν + 1) initial column vector κ1
j shall be introduced.

For j = 1, 2, . . . , ν − 1, the components of the vector κ1
j are given by

(3.21)

⎧⎨
⎩
[
κ1
j

]
1

= (j + 1)!,
[
κ1
j

]
2

= ((j + 1)!/2) (2ν − j) ,[
κ1
j

]
i
= j!

(
ν+1
i

)
− si, i = 3, . . . , ν − j,[

κ1
j

]
i
= j!

(
ν+1
i

)
, i = ν − j + 1, . . . , ν + 1,

where the terms s�, encountered if ν ≥ 5, are defined by

(3.22) s� =

⎧⎨
⎩j!

(
ν − j
�

)
, � = 3, 4, . . . , ν − j for j = 1, 2, . . . , ν − 3,

0, α > ν − 3 for κ1
α.

From (3.22) it can be concluded that when j = ν − 2 and j = ν − 1, s� = 0 for

the corresponding initial vectors κ1
ν−2 and κ1

ν−1 of the submatrices U (2)
j=ν−2(z) and

U (2)
j=ν−1(z), respectively. For the case q ≤ 5, the initial vectors κ1

j do not contain the

terms s� so the elements of κ1
j to be considered are the two first elements and then

pursuing the reading upwards, starting from the last term at the bottom.
The first part of the right-hand side of (3.16) is displayed in order to better

understand the development of the proof of Lemma 3.6 by setting ϑ =
∑j−1

i=0

(
k−2+i
k−2

)
,

(3.23) j!

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑j−1
i=0

(
k−2+i
k−2

)
(j − i + 1)∑j−1

i=0

(
k−2+i
k−2

)
((j − i + 1)/2) (2ν − j + i)

ϑ
(
ν+1
3

)
−
∑j−1

i=0

(
k−2+i
k−2

)(
ν−j+i

3

)
ϑ
(
ν+1
4

)
−
∑j−1

i=0

(
k−2+i
k−2

)(
ν−j+i

4

)
...

ϑ
(
ν+1
ν−j

)
−
∑j−1

i=0

(
k−2+i
k−2

)(
ν−j+i
ν−j

)
ϑ
(

ν+1
ν−j+1

)
...

ϑ
(
ν+1
ν+1

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The sign pattern of the elements in each column of U (2)
j (z) is given by (−1)

�
with

� = 1, 2, . . . , ν + 1.
First some results which shall be used in the proof of Lemma 3.6 are set forth.
Proposition 3.5. The following equalities hold true:

j−1∑
i=0

(
k − 2 + i

k − 2

)
=

(
k − 2 + j

k − 1

)
,(3.24)

j−1∑
i=1

(
k − 2 + i

k − 2

)
i =

j(j − 1)

k

(
k − 2 + j

k − 2

)
,(3.25)

j−1∑
i=1

(
k − 2 + i

k − 2

)
i2 =

j(j − 1)(1 + (j − 1)k)

k(k + 1)

(
k − 2 + j

k − 2

)
.(3.26)

Proof. We shall prove the equalities (3.24), (3.25), and (3.26) by applying math-
ematical induction.
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It is straightforward to see that the left-hand side of equality (3.24) yields the
right-hand side when j = 1.

Assume for j = p that

p−1∑
i=0

(
k − 2 + i
k − 2

)
=

(
k − 2 + p
k − 1

)
.

This implies that for j = p + 1,

p∑
i=0

(
k − 2 + i
k − 2

)
=

p−1∑
i=0

(
k − 2 + i
k − 2

)
+

(
k − 2 + p
k − 2

)

=

(
k − 2 + p
k − 1

)
+

(
k − 2 + p
k − 2

)

=

(
k − 1 + p
k − 1

)
.

The last equality is based on the elementary identity for integers n and j:

(3.27)

(
n
j

)
+

(
n

j + 1

)
=

(
n + 1
j + 1

)
.

The proof of (3.24) is completed. When j = 2, the left-hand side of equality (3.25)
is
(
k−1
k−2

)
and equals the right-hand side which becomes 2

k

(
k
k−2

)
Assume that (3.25) is

true for j = p. Then

p−1∑
i=0

(
k − 2 + i
k − 2

)
i =

p(p− 1)

k

(
k − 2 + p
k − 2

)
,

for j = p + 1,

p∑
i=0

(
k − 2 + i
k − 2

)
i =

p−1∑
i=0

(
k − 2 + i
k − 2

)
i + p

(
k − 2 + p
k − 2

)

=
p(p− 1)

k

(
k − 2 + p
k − 2

)
+ p

(
k − 2 + p
k − 2

)

=
(k + p− 1)!

(k − 2)!(p− 1)!k
=

p(p + 1)

k

(
k − 1 + p
k − 2

)
.

This confirms (3.25). Finally we prove (3.26). When j = 2, the left-hand side of
equality (3.26) is

(
k−1
k−2

)
and equals the right-hand side which becomes 2

k

(
k
k−2

)
Assume

for j = p that

p−1∑
i=0

(
k − 2 + i
k − 2

)
i2 =

p(p− 1)(1 + (p− 1)k)

k(k + 1)

(
k − 2 + p
k − 2

)
.
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This implies that for j = p + 1,

p∑
i=0

(
k − 2 + i
k − 2

)
i2 =

p−1∑
i=0

(
k − 2 + i
k − 2

)
i2 + p2

(
k − 2 + p
k − 2

)

=
p(p− 1)(1 + (p− 1)k)

k(k + 1)

(
k − 2 + p
k − 2

)
+ p2

(
k − 2 + p
k − 2

)

=
(1 + pk) (k + p− 1)(k + p− 2)!

(k − 2)! (p− 1)!k(k + 1)

=
p(p + 1)(1 + pk)

k(k + 1)

(
k − 1 + p
k − 2

)
.

This completes the proof.
We shall now continue with the following lemma.
Lemma 3.6. The q (ν + 1) column vector composed of κk

j (z), described in (3.16)
and (3.20), and the corresponding standard basis vector in R

qν belongs to the null
space of the coefficient matrix Kν(z).

Proof. The scalar product of (3.20) and (3.5) provides a monomial in zn+k−ν−2.
The z-variables will be reintroduced at a later stage for typographical brevity. The
scalar product is first computed for the last ν− 1 entries of the first column of (3.23),
then sets j = p in (3.16) and takes (3.24) into consideration yielding

(3.28)

p!

ν!

(
k − 2 + p
k − 1

) ν−2∑
i=0

(−1)i+1

(
ν + 1
3 + i

)
(n− 4 − i)(n− 5 − i) · · · (n− ν − 3 − i)

=
p!

ν!

(
k − 2 + p
k − 1

){
dν

dxν

ν−2∑
i=0

(−1)i+1

(
ν + 1
3 + i

)
xn−4−i

}
x=1

= −p!

ν!

(
k − 2 + p
k − 1

){
dν

dxν

[
xn−2−ν

ν−2∑
i=0

(−1)i
(
ν + 1
3 + i

)
xν−2−i

]}
x=1

.

Then set j = 3 + i

(3.29) =
p!

ν!

(
k − 2 + p
k − 1

)⎧⎨
⎩ dν

dxν

⎡
⎣xn−2−ν

⎛
⎝ν+1∑

j=3

(−1)j
(
ν + 1
j

)
xν+1−j

⎞
⎠
⎤
⎦
⎫⎬
⎭

x=1

.

The following holds:

ν+1∑
j=3

(−1)j
(
ν + 1
j

)
xν+1−j =

ν+1∑
j=0

(−1)j
(
ν + 1
j

)
xν+1−j −

2∑
j=0

(−1)j
(
ν + 1
j

)
xν+1−j .

Equation (3.29) becomes

(3.30)

p!

ν!

(
k − 2 + p
k − 1

)
dν

dxν

{
xn−2−ν

(
(x− 1)ν+1 − xν+1 + (ν + 1)xν − ν(ν + 1)

2
xν−1

)}
x=1

=
p!

ν!

(
k − 2 + p
k − 1

)⎧⎪⎨
⎪⎩

−(n− 1)(n− 2) · · · (n− ν)
+(ν + 1)(n− 2)(n− 3) · · · (n− ν − 1)

−ν(ν + 1)

2
(n− 3)(n− 4) · · · (n− ν − 2)

⎫⎪⎬
⎪⎭ .
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We shall now focus on the part of (3.23) that contains s�. For that purpose an explicit
representation is displayed,

p!

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(
k − 2
k − 2

)⎛⎜⎜⎜⎝
(
ν−p

3

)(
ν−p

4

)
...(

ν−p
ν−p

)

⎞
⎟⎟⎟⎠+

(
k − 1
k − 2

)⎛⎜⎜⎜⎝
(
ν−p+1

3

)(
ν−p+1

4

)
...(

ν−p+1
ν−p+1

)

⎞
⎟⎟⎟⎠

+ · · · +
(
k + p− 3
k − 2

)⎛⎜⎜⎜⎝
(
ν−1
3

)(
ν−1
4

)
...(

ν−1
ν−1

)

⎞
⎟⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

The scalar product of (3.5) with each of the columns above can be expressed as
follows, consider the index � = 0, 1, 2, . . . , p− 1, to obtain

p!

ν!

(
k + �− 2
k − 2

) ν−p+�−3∑
i=0

(−1)i
(
ν − p + �

3 + i

)
(n− 4 − i)(n− 5 − i) · · · (n− ν − 3 − i)

=
p!

ν!

(
k + �− 2
k − 2

){
dν

dxν

ν−p+�−3∑
i=0

(−1)i
(
ν − p + �

3 + i

)
xn−4−i

}
x=1

.

Set j = 3 + i; it then yields

p!

ν!

(
k + �− 2
k − 2

)⎧⎨
⎩ dν

dxν

ν−p+�∑
j=3

(−1)j−3

(
ν − p + �

j

)
xn−j−1

⎫⎬
⎭

x=1

= −p!

ν!

(
k + �− 2
k − 2

)⎧⎨
⎩ dν

dxν
xn−ν+p−�−1

⎛
⎝ν−p+�∑

j=3

(−1)j
(
ν − p + �

j

)
xν−p+�−j

⎞
⎠
⎫⎬
⎭

x=1

= −p!

ν!

(
k + �− 2
k − 2

)⎧⎨
⎩ dν

dxν
xn−ν+p−�−1

⎛
⎝ν−p+�∑

j=0

(−1)j
(
ν − p + �

j

)
xν−p+�−j

−
2∑

j=0

(−1)j
(
ν − p + �

j

)
xν−p+�−j

⎞
⎠
⎫⎬
⎭

x=1

= −p!

ν!

(
k + �− 2
k − 2

){
dν

dxν

(
xn−ν+p−�−1(x− 1)ν−p+� − xn−1 + (ν − p + �)xn−2

− (ν − p + �− 1) (ν − p + �)

2
xn−3

)}
x=1

.

The first term can be expanded according to Leibnitz rule for ν-fold differentiation of
a product of two functions,

{
0 + 0 + · · · +

(
ν

ν − p + �

)
dp−�

dxp−�
xn−ν+p−�−1 dν−p+�

dxν−p+�
(x− 1)ν−p+� + 0 + · · · + 0

}
x=1

.
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The result is then

(3.31)

p!

ν!

(
k + �− 2
k − 2

)⎧⎪⎨
⎪⎩

(n− 1)(n− 2) · · · (n− ν)
−(ν − p + �)(n− 2)(n− 3) · · · (n− ν − 1)

+
(ν − p + �− 1) (ν − p + �)

2
(n− 3)(n− 4) · · · (n− ν − 2)

⎫⎪⎬
⎪⎭

− p!

(p− �)!

(
k + �− 2
k − 2

)
(n− ν + p− �− 1)(n− ν + p− �− 2) · · · (n− ν).(3.32)

Since q = ν + 1, the terms (n− ν), (n− ν − 1), and (n− ν − 2) in (3.31) are positive
and (n− ν − 2) ≥ 0.

The terms involving p!
ν! (n − 1)(n − 2) · · · (n − ν) appearing in (3.30) and (3.31),

the latter for � = 0, 1, 2, . . . , p− 1, when added yield

−
(
k − 2 + p
k − 1

)
+

p−1∑
i=0

(
k − 2 + i
k − 2

)

= −
(
k − 2 + p
k − 1

)
+

(
k − 2 + p
k − 1

)
= 0.

The last equality is established by virtue of (3.24). A more explicit expression for the
first term in (3.23) is now considered, with the corresponding minus sign. By virtue
of (3.24) and (3.25) it can be seen that

−p!

ν!

p−1∑
i=0

(
k − 2 + i
k − 2

)
(p− i + 1) = −p!

ν!

{
(p + 1)

(
k − 2 + p
k − 1

)

−p(p− 1)

k

(
k − 2 + p
k − 2

)}
.

In the scalar product, the first term of (3.23) is multiplied by (n−2)(n−3) · · · (n−ν−1).
Summing up all of the terms involving this product, which also appears in (3.30) and
(3.31), yields

{
−(p + 1)

(
k − 2 + p
k − 1

)
+

p(p− 1)

k

(
k − 2 + p
k − 2

)
+

(
k + p− 2
k − 1

)
(ν + 1)

−
p−1∑
i=0

(
k − 2 + i
k − 2

)
(ν − p + i)

}

= −(p + 1)

(
k − 2 + p
k − 1

)
+

p(p− 1)

k

(
k − 2 + p
k − 2

)
+

(
k + p− 2
k − 1

)
(ν + 1)

−(ν − p)

(
k + p− 2
k − 1

)
− p(p− 1)

k

(
k − 2 + p
k − 2

)
= 0.

The last equality is established by virtue of (3.24) and (3.25).
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We focus now on an explicit form of the second term of (3.23). By virtue of (3.24),
(3.25), and (3.26) we obtain

(3.33)

p!

2

p−1∑
i=0

(
k − 2 + i
k − 2

)
(p− i + 1) (2ν − p + i)

=
p!

2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(p + 1) (2ν − p)

(
k − 2 + p
k − 1

)
+ (2p− 2ν + 1)

p(p− 1)

k

(
k − 2 + p
k − 2

)

−p(p− 1)(1 + (p− 1)k)

k(k + 1)

(
k − 2 + p
k − 2

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

In the scalar product, the term (3.33) is multiplied by (n−3)(n−4) · · · (n−ν− 2). Sum-
ming up all of the terms involving this product, without (p!/ν!), which also appears
in (3.30) and (3.31), yields next to (3.33),

(3.34)

{
−
(
k − 2 + p
k − 1

)
ν(ν + 1)

2
+

1

2

p−1∑
i=0

(
k − 2 + i
k − 2

)
(ν − p + i− 1) (ν − p + i)

}
.

We now collect all of the terms involved to obtain

(p + 1) (2ν − p)

2

(
k − 2 + p
k − 1

)
+ (2p− 2ν + 1)

p(p− 1)

2k

(
k − 2 + p
k − 2

)

− p(p− 1)(1 + (p− 1)k)

2k(k + 1)

(
k − 2 + p
k − 2

)
− ν(ν + 1)

2

(
k − 2 + p
k − 1

)

+
(ν − p− 1) (ν − p)

2

(
k − 2 + p
k − 1

)
+ (2ν − 2p− 1)

p(p− 1)

2k

(
k − 2 + p
k − 2

)

+
p(p− 1)(1 + (p− 1)k)

2k(k + 1)

(
k − 2 + p
k − 2

)
= 0;

as in the other cases, this result is obtained by using (3.24), (3.25), and (3.26).
Consequently, the remaining terms are now collected—it concerns the term

involving ξ in (3.16), the appropriate scalar product is by virtue of (3.7) −p!
(
k−2+p
k−2

)
,

and the terms derived from (3.32), for � = 0, 1, 2, . . . , p− 1, to obtain

−
p−1∑
i=0

p!

(p− i)!

(
k + i− 2
k − 2

)
(n− ν + p− i− 1)(n− ν + p− i− 2) · · · (n− ν).

The remaining terms can be summarized according to

(3.35) −p!

p−1∑
i=0

(
k + i− 2
k − 2

)(
n− ν + p− i− 1

n− ν − 1

)
− p!

(
k − 2 + p
k − 2

)
.

Concerning (3.35), the following property will be proved:

(3.36)

p∑
i=0

(
k + i− 2
k − 2

)(
n− ν + p− i− 1

n− ν − 1

)
=

(
n− ν + k + p− 2
n− ν + k − 2

)
.
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1204 ANDRÉ KLEIN AND PETER SPREIJ

For proving (3.36), we consider, for all nonnegative integers l, p and n ≥ p,

(3.37)

(
n + l + 1

p

)
=

p∑
i=0

(
l + i

i

)(
n− i

p− i

)
.

The proof is based on (3.27), which we rewrite as

(3.38)

(
m
j

)
+

(
m

j + 1

)
=

(
m + 1
j + 1

)
.

First we prove the formula for n = p. In this case the identity (3.37) reduces to

(
l + p + 1

p

)
=

p∑
i=0

(
l + i

i

)
.

We use induction w.r.t. the variable p. The case p = 0 is a triviality. Assume
that (3.37) holds true for a certain value of p. Then

p+1∑
i=0

(
l + i

i

)
=

p∑
i=0

(
l + i

i

)
+

(
l + p + 1

p + 1

)
.

The first term on the right-hand side is equal to
(
l+p+1

p

)
by hypothesis. Then adding

the second term gives
(
l+p+2
p+1

)
by virtue of (3.38).

The rest of the proof is by induction w.r.t. the variable n, n ≥ p, since we
have settled the case n = p. Consider the right-hand side of (3.37) with n + 1
instead of n and compute using the induction hypothesis two times and repeatedly
the identity (3.38),

p∑
i=0

(
l + i

i

)(
n + 1 − i

p− i

)
=

p∑
i=0

(
l + i

i

)(
n− i

p− i

)
+

p−1∑
i=0

(
l + i

i

)(
n− i

p− 1 − i

)

=

(
n + l + 1

p

)
+

(
n + l + 1

p− 1

)

=

(
n + l + 2

p

)
.

From (3.35) and (3.36) it can be concluded that the scalar product is equal to

(3.39) −(n− ν + k + p− 2)(n− ν + k + p− 3) · · · (n− ν + k − 1)zn+k−ν−2.

The corresponding nonzero element of the standard basis vector in the rotation matrix
Jqν is multiplied by zn−w−1 for w = ν − p + 1 − k, and the appropriate derivative is
(3.40)
(dp/dzp) zn−ν+k+p−2 = (n−ν+k+p−2)(n−ν+k+p−3) · · · (n−ν+k−1)zn+k−ν−2.

Adding (3.39) to (3.40) confirms that the q (ν + 1) column vector composed of vector
κk
j (z), described in (3.16) and (3.20), and the corresponding standard basis vector in

the rotation matrix Jqν belongs to the null space of the coefficient matrix Kν(z) when
s� �= 0 in (3.21).
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SOLUTION OF CERTAIN STRUCTURED LINEAR SYSTEMS 1205

We now proceed with the proof when s� = 0 in (3.21), the cases j = ν − 1 and
j = ν − 2 are therefore considered. The initial vector (3.21) for the former case is

(3.41) κ1
ν−1 = (ν − 1)!

(
ν,

(
ν + 1

2

)
,

(
ν + 1

3

)
, . . . ,

(
ν + 1
ν + 1

))�
.

The scalar product involving the first ν+1 elements is displayed, and the last ν entries
of (3.41) are first considered to obtain

(ν − 1)!

ν!

ν−1∑
i=0

(−1)i
(
ν + 1
2 + i

)
(n− 3 − i)(n− 4 − i) · · · (n− ν − 2 − i).

The same approach as we used to derive (3.29) yields

(ν − 1)!

ν!

{
−(n− 1)(n− 2) · · · (n− ν)

+ (ν + 1) (n− 2)(n− 3) · · · (n− ν − 1)

}
.

Adding the scalar product involving the first element of (3.41) and (3.5) yields⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−(n− 2)(n− 3) · · · (n− ν − 1)

+
(ν − 1)! (ν + 1)

ν!
(n− 2)(n− 3) · · · (n− ν − 1)

− (ν − 1)!

ν!
(n− 1)(n− 2) · · · (n− ν)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= −(n− 2)(n− 3) · · · (n− ν).

This result is obtained through straightforward calculation. It can now be concluded
that the scalar product is

(3.42) −(n− 2)(n− 3) · · · (n− ν)zn−ν−1.

Note for the case under study, k = 1 (it concerns the initial vector κ1
ν−1). The

corresponding nonzero element of the standard basis vector in the rotation matrix
Jqν is multiplied by zn−w−1 for w = 2− k, w = ν− p+ 1− k in the general case. The
appropriate derivative is then

(3.43)
(
dν−1/dzν−1

)
zn−2 = (n− 2)(n− 3) · · · (n− ν)zn−ν−1.

Adding (3.42) to (3.43) confirms that when in (3.21) s� = 0 and j = ν−1, the q (ν + 1)
column vector, composed of vector κ1

ν−1, given in (3.41), and the corresponding stan-
dard basis vector in the rotation matrix Jqν , belongs to the null space of the coefficient
matrix Kν(z).

The case j = ν − 2 is considered next. The initial vector (3.21) is then

(3.44) κ1
ν−2 = (ν − 2)!

(
(ν − 1) , ((ν − 1) /2) (ν + 2) ,

(
ν + 1

3

)
, . . . ,

(
ν + 1
ν + 1

))�
.

The scalar product involving the first ν +1 elements is displayed, and the last (ν − 1)
entries of (3.44) are first considered to obtain

(ν − 2)!

ν!

ν−2∑
i=0

(−1)i+1

(
ν + 1
3 + i

)
(n− 4 − i)(n− 5 − i) · · · (n− ν − 3 − i).
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1206 ANDRÉ KLEIN AND PETER SPREIJ

According to (3.28) we have

(ν − 2)!

ν!

⎧⎪⎪⎨
⎪⎪⎩

−(n− 1)(n− 2) · · · (n− ν)
+(ν + 1)(n− 2)(n− 3) · · · (n− ν − 1)

−ν(ν + 1)

2
(n− 3)(n− 4) · · · (n− ν − 2)

⎫⎪⎪⎬
⎪⎪⎭ .

The scalar product involving the first and second elements of (3.44) and (3.5) are

− (ν − 1)!

ν!
(n− 2)(n− 3) · · · (n− ν − 1)

and
((ν − 1)!/2) (ν + 2)

ν!
(n− 3)(n− 4) · · · (n− ν − 2),

respectively. Summing all of the terms yields⎧⎪⎪⎨
⎪⎪⎩

(ν−2)!(ν+1)−(v−1)!
ν! (n− 2)(n− 3) · · · (n− ν − 1)

+ (ν−1)!(ν+2)−(ν−2)!ν(ν+1)
2(ν!) (n− 3)(n− 4) · · · (n− ν − 2)

− (ν−2)!
ν! (n− 1)(n− 2) · · · (n− ν)

⎫⎪⎪⎬
⎪⎪⎭

= −(n− 3)(n− 4) · · · (n− ν).

This result is obtained through straightforward computation. It can now be concluded
that the scalar product is

(3.45) −(n− 3)(n− 4) · · · (n− ν)zn−ν−1.

Note for the case under study, k = 1 (it concerns the initial vector κ1
ν−2).

The corresponding nonzero element of the standard basis vector in the rotation
matrix Jqν is multiplied by zn−w−1 for w = 3−k and w = ν−p+1−k in the general
case. The appropriate derivative is then

(3.46)
(
dν−2/dzν−2

)
zn−3 = (n− 3)(n− 4) · · · (n− ν)zn−ν−1.

Adding (3.45) to (3.46) confirms that when in (3.21) s� = 0 and j = ν−2, the q (ν + 1)
column vector, composed of vector κ1

ν−2, given in (3.44), and the corresponding stan-
dard basis vector in the rotation matrix Jqν , belongs to the null space of the coefficient
matrix Kν(z).

It can be concluded that the q (ν + 1) column vector, composed of vector κk
j (z),

described in (3.16) and (3.20), and the corresponding standard basis vector in the
rotation matrix Jqν , belongs to the null space of the coefficient matrix Kν(z). The
proof of Lemma 3.6 is now complete.

3.2.4. Summary of the construction of matrix U(2)
j (z). Step 1. Define

the initial vectors κ1
j given in (3.21) for the values of j = 1, 2, 3, . . . , ν − 1.

Step 2. Expand (3.16) for the corresponding values of j = 1, 2, 3, . . . , ν − 1.

Step 3. Compute the columns of U (2)
j (z) according to (3.20) for the corresponding

values of j = 1, 2, 3, . . . , ν − 1.

In the next section an example will illustrate the results set forth in previous
sections.
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SOLUTION OF CERTAIN STRUCTURED LINEAR SYSTEMS 1207

3.3. Example Ker (Kν(z)) for the case ν + 1 = 6. This case will be
illustrated for q = 6 and ν = 5. The first submatrix contained in the null space of
Kν(z) is then

U0(z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 − z − z2 − z3 − z4 − z5

5z 5z2 5z3 5z4 5z5 5z6

−10z2 −10z3 −10z4 −10z5 −10z6 −10z7

10z3 10z4 10z5 10z6 10 z7 10z8

−5z4 −5z5 −5z6 −5 z7 −5z8 −5z9

z5 z6 z7 z8 z9 z10

⎞
⎟⎟⎟⎟⎟⎟⎠

.

This is followed by the second class of submatrices Uj(z) when j = 1, 2, 3, 4,

U (1)
j=1(z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −1
−1 4z

4z −6z2

−6z2 4z3

4z3 −z4

−z4 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, U (1)
j=2(z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 −2
0 −2 6z

−2 6z −6z2

6z −6z2 2z3

−6z2 2z3 0
2z3 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

U (1)
j=3(z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 −6
0 0 −6 12z
0 −6 12z −6z2

−6 12z −6z2 0
12z −6z2 0 0

−6z2 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and

U (1)
j=4(z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −24
0 0 0 −24 24z
0 0 −24 24z 0
0 −24 24z 0 0

−24 24z 0 0 0
24z 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

This is then followed by a class of submatrices U (2)
j (z) when j = 1, 2, 3, 4,

U (2)
j=1(z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−2z −3z2 −4z3 −5z4

9z2 14z3 19 z4 24z5

−16z3 −26z4 −36z5 − 46z6

14z4 24z5 34 z6 44z7

−6z5 −11z6 −16z7 −21z8

z6 2z7 3 z8 4z9

⎞
⎟⎟⎟⎟⎟⎟⎠

,

U (2)
j=2(z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

− 6z −12z2 −20z3

24z2 52z3 90z4

−38z3 −90z4 −162z5

30z4 78z5 146z6

−12z5 −34z6 −66z7

2z6 6z7 12z8

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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1208 ANDRÉ KLEIN AND PETER SPREIJ

U (2)
j=3(z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−24z −60z2

84z2 240z3

−120z3 −390z4

90z4 324z5

−36z5 −138z6

6z6 24z7

⎞
⎟⎟⎟⎟⎟⎟⎠

, and

U (2)
j=4(z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−120z
360z2

−480z3

360z4

−144z5

24z6

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Insertion of U0(z) and the matrices

U1(z) =
(
U (1)
j=1(z) U (2)

j=1(z)
)
,

U2(z) =
(
U (1)
j=2(z) U (2)

j=2(z)
)
,

U3(z) =
(
U (1)
j=3(z) U (2)

j=3(z)
)
,

U4(z) =
(
U (1)
j=4(z) U (2)

j=4(z)
)

,

in (3.2) yields the form

U(z) =
1

5!
( U0(z),U1(z),U2(z),U3(z),U4(z)) .

The columns that compose
(U(z)
J30

)
span Ker (Kν(z)) when q = 6 and ν = 5.

In the next section the null space of the coefficient matrix Mτ (ρ) is set forth.

4. A representation of Ker (Mτ (ρ)). In this section a representation of the
subspace Ker(Mτ (ρ)) is displayed for the case τ + 1 = p. The coefficient matrix
Mτ (z) is considered for z = ρ, and a motivation is formulated below. We shall first
focus on the dimension of the null space Ker(Mτ (ρ)) .

Proposition 4.1. The null space Ker(Mτ (ρ)) has dimension equal to pτ and
the rank of the coefficient matrix (Mτ (ρ)) is p, when τ + 1 = p.

Proof. By virtue of Corollary 2.2, a similar argument as in Proposition 3.1 holds
for the coefficient matrix Mτ (ρ); see also Lemma 2.4 in [5]. It can be concluded
that the p × p(τ + 1) coefficient matrix Mτ (ρ) is surjective or has full row rank;
its rank is then p. By virtue of the dimension rule, it can be concluded that dim
Ker(Kν(z)) = pτ .

We can essentially reduce the problem of computing the null space Ker(Mτ (ρ))
to the computation of the kernel of the matrix Kτ (ρ). The vectors contained in

(4.1) G =

(
Y(ρ)
Jpτ

)

span the null space of Mτ (ρ), where Jpτ is the pτ rotation matrix.
Observe that G has full rank pτ since Jpτ is a nonsingular submatrix of G.

Therefore the columns of G form a basis of Ker(Mτ (ρ)).

D
ow

nl
oa

de
d 

07
/2

2/
24

 to
 1

45
.1

8.
16

6.
19

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SOLUTION OF CERTAIN STRUCTURED LINEAR SYSTEMS 1209

Write

(4.2) Y(ρ) =
1

τ !
(Y0(ρ),Y1(ρ),Y2(ρ), . . . ,Yτ−1(ρ)) ,

where

Y0(ρ) = U�
0 (ρ)

and

Yj(ρ) =

(
Y(1)
j (ρ)

Y(2)
j (ρ)

)
=

⎛
⎜⎝
(
U (1)
j (ρ)

)�
(
U (2)
j (ρ)

)�
⎞
⎟⎠ = U�

j (ρ) for j = 1, 2, . . . , τ − 1.

The matrices U0(ρ), U (1)
j (ρ), and U (2)

j (ρ) are given in section 3.
In section 3.2 of [5], the vector y ∈ Ker (Mτ (ρ)) is computed according to

(4.3) y = (Iτ+1 ⊗ S(f))−1x,

where x ∈ Ker (Kτ (ρ)) and the p×p symmetrizer S(f) is associated with a polynomial
f(z) of degree p. Consider f(z) = zp + a1z

p−1 + a2z
p−2 + · · · + ap, then the p × p

matrix S(f) is

S(f) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0

a1 1 0
...

...
. . .

. . . 0
... 1 0

ap−1 a1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Formula (4.3) is derived from an equality which connects the matrices adj(zI − Cp)
and up(z)u

∗�
p (z), where up(z) and u∗

p(z) are defined in (1.4). From [6], we take
Proposition 3.1 which gives the identity

(4.4) adj (zI − Cp) = up(z)a
� (z)Jp − π(z)

p−1∑
i=0

ziSi+1.

The vector a (z) is the p-vector (a0 (z) , . . . , ap−1 (z)), where ak (z) is the Hörner poly-
nomial defined by a0 (z) = 1 and ak (z) = zak−1 (z) + ak, and ak is an entry of Cp.
Note that ap (z) is the characteristic polynomial of Cp. We further have that the
rotation matrix Jp ∈ R

p×p, π(z) is the characteristic polynomial of Cp and S denotes
the shift matrix, so Sij = δi,j+1. Observe that the property a� (z)Jp = u∗

p(z)
�S(f)

is used in (4.4) to obtain (4.3).
If z = ρ, where ρ is an eigenvalue of the companion matrix Cp, then the second

term in the right-hand side of (4.4) vanishes. It is then possible to derive form (4.3)
(see [5]), and this is the reason why in this section one chooses working with z = ρ
instead of z.

A relation between the submatrices Y(ρ) in (4.2) and U(ρ) in (3.2) can now
be displayed through equality (4.3). For that purpose we denote the vectors v0(ρ),
v1(ρ), v2(ρ), . . . , vτ−1(ρ) as being the first columns of the submatrices U0(ρ), U1(ρ),
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1210 ANDRÉ KLEIN AND PETER SPREIJ

U2(ρ), . . . ,Uτ−1(ρ), given in (3.2). Whereas the vectors w0(ρ), w1(ρ), w2(ρ), . . . ,
wτ−1(ρ) represent the first rows of the same submatrices. The following property
is now summarized in the lemma.

Lemma 4.2. By virtue of (4.3), the following equalities hold true for i = 0, 1, 2, . . . ,
τ − 1:

yi(ρ) = S−1(f)vi(ρ) = w�
i (ρ),

where y0(ρ), y1(ρ), y2(ρ), . . . , yτ−1(ρ) are the first columns of the submatrices Y0(ρ),
Y1(ρ),Y2(ρ), . . . ,Yτ−1(ρ) given in (4.2).

Proof. Straightforward matrix multiplications S−1(f)vi(ρ) confirm the prop-
erty.

This leads to the main result of this section.
Corollary 4.3. For the case τ + 1 = p, the span of the null space of Mτ (ρ) is(

Y(ρ)
Jpτ

)
,

where Y(ρ) is given by (4.2).
Proof. It can be verified through matrix multiplications that

Mτ (ρ)

(
Y(ρ)
Jpτ

)
= 0

holds. This is in agreement with the appropriate dimensions specified above.
It can be seen from (4.3) that for every vector y ∈ Ker (Mτ (ρ)) computed

according to the approach suggested in [5], the symmetrizer S(f), a lower trian-
gular and Toeplitz matrix has to be inverted once. However, this is combined with
pτ matrix multiplications by the corresponding vector x ∈ Ker (Kτ (ρ)). This is in
agreement with the dimension of the null space of Mτ (ρ). In this paper there are
neither matrix multiplications nor inversions involved in the construction of the span
of the null spaces of Kτ (ρ) and Mτ (ρ). The null space of Mτ (ρ) is obtained by trans-
posing the submatrices contained in the null space of Kτ (ρ). Consequently, when the
algorithm of the null space of Kτ (ρ) is available, the new approach does not require
any computational exercise for displaying the span of the null space of Mτ (ρ). In the
next section an example of the null space of Mτ (ρ) is set forth so that the property
emphasized in this section will be illustrated.

4.1. Example Ker (Mτ (ρ)) when τ + 1 = 7. This case will be illustrated
for p = 7 and τ = 6. The first matrix is then

Y0(ρ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 6ρ −15ρ2 20ρ3 −15ρ4 6ρ5 −ρ6

−ρ 6ρ2 −15ρ3 20ρ4 −15ρ5 6ρ6 −ρ7

−ρ2 6ρ3 −15ρ4 20ρ5 −15ρ6 6ρ7 −ρ8

−ρ3 6ρ4 −15ρ5 20ρ6 −15ρ7 6ρ8 −ρ9

−ρ4 6ρ5 −15ρ6 20ρ7 −15ρ8 6ρ9 −ρ10

−ρ5 6ρ6 −15ρ7 20ρ8 −15ρ9 6ρ10 −ρ11

−ρ6 6ρ7 −15ρ8 20 ρ9 −15ρ10 6ρ11 −ρ12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The following class of matrices are for j = 1, 2, 3, 4, 5:

Y(1)
j=1(ρ) =

(
0 −1 5ρ −10ρ2 10ρ3 −5ρ4 ρ5

−1 5ρ −10ρ2 10ρ3 −5ρ4 ρ5 0

)
,
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Y(1)
j=2(ρ) =

⎛
⎝ 0 0 −2 8ρ −12ρ2 8ρ3 −2ρ4

0 −2 8ρ −12ρ2 8ρ3 −2 ρ4 0
−2 8ρ −12ρ2 8ρ3 −2ρ4 0 0

⎞
⎠ ,

Y(1)
j=3(ρ) =

⎛
⎜⎜⎝

0 0 0 −6 18ρ −18ρ2 6ρ3

0 0 −6 18ρ −18ρ2 6ρ3 0
0 −6 18ρ −18ρ2 6ρ3 0 0
−6 18ρ −18ρ2 6ρ3 0 0 0

⎞
⎟⎟⎠ ,

Y(1)
j=4(ρ) =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 −24 48ρ −24ρ2

0 0 0 −24 48ρ −24ρ2 0
0 0 −24 48ρ −24ρ2 0 0
0 −24 48ρ −24ρ2 0 0 0

−24 48ρ −24ρ2 0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,

Y(1)
j=5(ρ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 −120 120ρ
0 0 0 0 −120 120ρ 0
0 0 0 −120 120ρ 0 0
0 0 −120 120ρ 0 0 0
0 −120 120ρ 0 0 0 0

−120 120ρ 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The matrices Y(2)
j (ρ) with j = 1, 2, 3, 4, 5 are now displayed:

Y(2)
j=1(ρ) =

⎛
⎜⎜⎜⎜⎝

−2ρ 11ρ2 −25ρ3 30ρ4 −20ρ5 7ρ6 −ρ7

−3ρ2 17ρ3 −40ρ4 50ρ5 −35ρ6 13ρ7 −2ρ8

−4ρ3 23ρ4 −55ρ5 70ρ6 −50ρ7 19ρ8 −3ρ9

−5ρ4 29ρ5 −70ρ6 90ρ7 −65ρ8 25ρ9 −4ρ10

−6ρ5 35ρ6 −85ρ7 110ρ8 −80ρ9 31ρ10 −5ρ11

⎞
⎟⎟⎟⎟⎠ ,

Y(2)
j=2(ρ) =

⎛
⎜⎜⎝

−6ρ 30ρ2 −62ρ3 68ρ4 −42ρ5 14ρ6 −2ρ7

−12ρ2 64ρ3 −142ρ4 168ρ5 −112ρ6 40ρ7 −6ρ8

−20ρ3 110ρ4 −252ρ5 308ρ6 −212ρ7 78 ρ8 −12ρ9

−30ρ4 168ρ5 −392ρ6 488ρ7 −342ρ8 128 ρ9 −20ρ10

⎞
⎟⎟⎠ ,

Y(2)
j=3(ρ) =

⎛
⎝ −24ρ 108ρ2 −204ρ3 210ρ4 −126ρ5 42ρ6 −6ρ7

−60ρ2 300ρ3 −630ρ4 714ρ5 −462ρ6 162 ρ7 −24 ρ8

−120ρ3 630ρ4 −1386ρ5 1638ρ6 −1098ρ7 396 ρ8 −60ρ9

⎞
⎠ ,

Y(2)
j=4(ρ) =

(
−120ρ 480ρ2 −840ρ3 840ρ4 −504ρ5 168ρ6 −24ρ7

−360ρ2 1680ρ3 −3360ρ4 3696ρ5 −2352ρ6 816 ρ7 −120ρ8

)
,

Y(2)
j=5(ρ) =

(
−720ρ 2520ρ2 −4200ρ3 4200ρ4 −2520ρ5 840ρ6 −120ρ7

)
.

Insertion of the matrix Y0(ρ) in (4.2) followed by

Y1(ρ) =

(
Y(1)
j=1(ρ)

Y(2)
j=1(ρ)

)
, Y2(ρ) =

(
Y(1)
j=2(ρ)

Y(2)
j=2(ρ)

)
,

Y3(ρ) =

(
Y(1)
j=3(ρ)

Y(2)
j=3(ρ)

)
, Y4(ρ) =

(
Y(1)
j=4(ρ)

Y(2)
j=4(ρ)

)
, Y5(ρ) =

(
Y(1)
j=5(ρ)

Y(2)
j=5(ρ)
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1212 ANDRÉ KLEIN AND PETER SPREIJ

yields the representation

Y(ρ) =
1

6!
( Y0(ρ),Y1(ρ),Y2(ρ),Y3(ρ),Y4(ρ),Y5(ρ)) .

The vectors contained in
(Y(ρ)
J42

)
span the null space of Mτ (ρ) when p = 7 and τ = 6.

It is straightforward to verify that when the matrices Y0(ρ), Y(1)
j (ρ), and Y(2)

j (ρ),
with j = 1, 2, 3, 4, 5, are transposed and inserted in (3.2) accordingly, one obtains the
null space of Kτ (ρ).

A summary of the results will be given in the next section.

5. Main conclusions. The results displayed in sections 2–4 allow us to present
an explicit representation of the solutions to the linear systems of equations introduced
in this paper. The solutions, (1.5) and (1.6), to the linear system of (1.1) and (1.2)
are given by

X = (Kν(z))
− E + W(z) with W(z)∈ Ker (Kν(z)) ,

Y = (Mτ (ρ))
− R + L(ρ) with L(ρ) ∈ Ker (Mτ (ρ)) .

An explicit expression for (Kν(z))
−

and W(z) has been developed in sections 2 and 3,
respectively, and a solution to the linear system of equations (1.1) is implementable.
Analogously for the expressions (Mτ (ρ))

− and L(ρ), constructed in sections 2 and 4,
respectively, a solution to the linear system of (1.2) is implementable.

In the next section an algorithm for the null space Ker(Kν(z)), for the case ν +
1 < q, is presented. It is a variant of the algorithm displayed in section 3.

6. Ker (Kν(z)) for the case ν + 1 < q. In this section the case ν + 1 < q
is considered for the null space Ker (Kν(z)). We then have rank(Kν(z)) = ν + 1 so
that dim Ker(Kν(z)) = (q − 1) (ν + 1). In this case the coefficient matrix Kν(z) is
not surjective, so a Moore–Penrose generalized inverse should be used when one is
interested in a solution of (1.1). This can be a subject for future research. Consider
the null space of the coefficient matrix Kν(z),

Ker Kν(z) = span

(
U(z)

J(q−1)(ν+1)

)
,

where J(q−1)(ν+1) is the (q − 1) (ν + 1) rotation matrix. An algorithm of the matrix
U(z) contained in Ker(Kν(z)) will be set forth to obtain

U(z) =
1

ν!
(U0(z),U1(z),U2(z), . . . ,Uν−1(z)) .

In this section no proofs are provided since they are similar to the proofs done in
section 3.

6.1. A representation for U0(z). An appropriate partition is U0(z) = (U (1)
0 (z)

U (2)
0 (z)). For evaluating U (1)

0 (z) we introduce the (ν + 1) × q matrix

(6.1) Ω = (ξ, ξ, . . . , ξ) ,

where the vector ξ is given in (3.4), and we put

(6.2) U (1)
0 (z) = Ω � z−(q−ν−1)

(
uν+1(z)u

�
q (z)

)
,
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for ν = 1, 2, . . . , q − 2. The signs of the elements of each column vector of U (1)
0 (z)

follow the same pattern as for U0(z) in section 3. The second part of U0(z) is

(6.3) U (2)
0 (z) = χ� U∗

1,2(z),

where

U∗
1,2(z) =

{
U∗

1 (z) for ν = 2, 3, . . . , q − 2
U∗

2 (z) for ν = 1

and ⎧⎨
⎩U∗

1 (z) = u∗�
q−ν−1(z

−1) ⊗
(
u∗

3(z
−1)

zuν−2(z)

)
for ν = 2, 3, . . . , q − 2

U∗
2 (z) = u∗�

q−ν−1(z
−1) ⊗ z−1u∗

2(z
−1) for ν = 1.

The matrix χ has the form χ = (χq−ν−1, χq−ν−2, . . . , χ2, χ1), where the columns are
computed recursively for k = 2, 3, . . . , q − ν − 1:

(6.4) χk = χk−1 + ξ.

The (ν + 1) column vector χ1 is for ν = 1, 2, . . . , q − 2

(6.5) χ1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

(
ν
0

)(
ν
1

)
+
(
ν−1
0

)(
ν
2

)
+
(
ν−1
1

)
...(

ν
ν

)
+
(
ν−1
ν−1

)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The sign pattern of each column of U (2)
0 (z) is (−1)

�
with � = 0, 1, . . . , ν. In the next

section we shall summarize the construction of U0(z).

6.1.1. Summary of the construction of U0(z). Step 1. Introduce the vector
ξ according to (3.4).

Step 2. Define matrix Ω according to (6.1).

Step 3. Define the columns of U (1)
0 (z) according to (6.2).

Step 4. Introduce the vector χ1 given in (6.5).
Step 5. Compute the vectors χ2, χ3, . . . , χq−ν−1 by means of the recursions (6.4).

Step 6. Compute the columns of U (2)
0 (z) according to (6.3).

6.2. Example for U0(z) when q = 6, ν = 4. An example is chosen when

q = 6 and ν = 4 so the first matrices to consider are U (1)
0 (σ) and U (2)

0 (σ) to obtain

U (1)
0 (z) =

⎛
⎜⎜⎜⎜⎝
− 1

z − 1 − z − z2 − z3 − z4

4 4z 4 z2 4z3 4 z4 4z5

−6z −6z2 −6z3 −6z4 −6 z5 −6z6

4z2 4z3 4z4 4z5 4 z6 4z7

−z3 −z4 −z5 −z6 −z7 −z8

⎞
⎟⎟⎟⎟⎠

and

U (2)
0 (z) =

⎛
⎜⎜⎜⎜⎜⎝

1
z2

− 5
z

9
−7z

2z2

⎞
⎟⎟⎟⎟⎟⎠ .
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1214 ANDRÉ KLEIN AND PETER SPREIJ

6.3. A representation of Uj(z) when j = 1, 2, . . . , ν − 1. The matrices
U1(z),U2(z), . . . ,Uν−1(z) are now considered to obtain for j = 1, 2, . . . , ν − 1

Uj(z) =
(
U (1)
j (z) U (2)

j (z)U (3)
j (z)

)
.

Since the submatrices U (1)
j (z) and U (2)

j (z) have the same structure as the correspond-
ing submatrices in section 3, the case q = ν + 1, we therefore omit the description of

U (1)
j (z) and U (2)

j (z).

6.3.1. A representation of U(3)
j (z). We shall now focus on matrix U (3)

j (z)
and for that purpose the following matrix is considered for j = 1, 2, . . . , ν − 1:

(6.6) μj =
(
μq−ν−1
j μq−ν−2

j · · ·μ2
jμ

1
j

)
.

The first recursion to consider is when j = 1 and k = 2, 3, . . . , q − ν − 1, to obtain

(6.7) μk
1 = μk−1

1 + 2χk.

The vectors χ2, χ3, . . . , χq−ν−1 are obtained recursively for U (2)
0 (z); see (6.4). The

solution to (6.4) is

χk = χ1 + (k − 1)ξ,

where χ1 is given in (6.5). A solution to (6.7) is then given by

μk
1 = μ1

1 + 2(k − 1)χ1 + k(k − 1)ξ.

A generalization can now be given for j = 2, . . . , ν − 1 and k = 1, 2, 3, . . . , q − ν − 1.
The column vectors are computed recursively as follows:

(6.8) μk
j = μk−1

j + (j + 1)μk
j−1.

A solution to recursion (6.8) in terms of initial vectors μ1
j , μ

1
j−1, . . . , μ

1
2, μ

1
1, specified

in (6.10), and the known vectors χ1 and ξ, is given by

μk
j =

j−1∑
i=0

i!

(
j + 1
i

)(
k − 2 + i
k − 2

)
μ1
j−i(6.9)

+ (j + 1)!

(
k + j − 2
k − 2

)
χ1 + (j + 1)!

(
k + j − 1
k − 2

)
ξ.

The explicit solution (6.10) is derived in a similar manner as in Proposition 3.4.
For j = 1, 2, . . . , ν − 1, the components of the vector μ1

j are given by

(6.10)

⎧⎪⎨
⎪⎩

[
μ1
j

]
i
= (j + 1)!

(
ν+1
i

)
, i = 0, 1, . . . , j + 1,[

μ1
j

]
i
= (j + 1)!

(
ν+1
i

)
− ri−j−2, i = j + 2, . . . , ν − 1,[

μ1
j

]
ν+1

= (j + 2)!,

where the terms r�, are defined by

r� =

⎧⎨
⎩(j + 1)!

(
ν − j − 1

�

)
for � = 0, 1, . . . , ν − j − 3

0 for ν − j < 3.
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The submatrix U (3)
j (z) can now be given according to

(6.11) U (3)
j (z) = μj � z−jU∗

1 (z) for j = 1, 2, . . . , ν − 1.

The matrix U∗
1 (z) has also been used for specifying U (2)

0 (z). The sign pattern of the

elements of each column of U (3)
j (σ) follows the ordering (−1)�+j with � = 0, 1, . . . , ν.

6.3.2. Summary of the construction of matrix U(3)
j (σ). Step 1. Define the

initial vector μ1
j displayed in (6.10) for j = 1, 2, . . . , ν − 1.

Step 2. Compute the columns of matrix (6.6) by applying recursions (6.8) for the
corresponding values of j = 1, 2, . . . , ν − 1.

Step 3. Compute the columns of matrix U (3)
j (z) according to (6.11) for the corre-

sponding values of j = 1, 2, . . . , ν − 1.

6.4. Example Uj(z) when q = 6, ν = 4 and j = 1, 2, 3. The matrix

U (1)
j (z) = (δ1

j (z)δ
2
j (z) · · · δ

j+1
j (z)) will be illustrated for j = 1, 2, 3, to obtain

U (1)
j=1(z) =

⎛
⎜⎜⎜⎜⎝

0 −1
−1 3z

3z −3z2

−3z2 z3

z3 0

⎞
⎟⎟⎟⎟⎠ , U (1)

j=2(z) =

⎛
⎜⎜⎜⎜⎝

0 0 −2
0 −2 4z

−2 4z −2z2

4z −2z2 0
−2z2 0 0

⎞
⎟⎟⎟⎟⎠ ,

and

U (1)
j=3(z) =

⎛
⎜⎜⎜⎜⎝

0 0 0 −6
0 0 −6 6z
0 −6 6z 0

−6 6z 0 0
6z 0 0 0

⎞
⎟⎟⎟⎟⎠ .

The matrix U (2)
j (z) is, for j = 1, 2, 3,

U (2)
j=1(z) =

⎛
⎜⎜⎜⎜⎝
−2z −3z2 −4z3

7z2 11z3 15z4

−9z3 −15z4 −21z5

5z4 9z5 13z6

−z5 −2z6 −3z7

⎞
⎟⎟⎟⎟⎠ , U (2)

j=2(z) =

⎛
⎜⎜⎜⎜⎝
−6z −12z2

18z2 40z3

−20z3 −50z4

10z4 28z5

−2z5 −6z6

⎞
⎟⎟⎟⎟⎠ ,

U (2)
j=3() =

⎛
⎜⎜⎜⎜⎝
−24z

60z2

−60z3

30z4

−6z5

⎞
⎟⎟⎟⎟⎠ .

The matrix U (3)
j (z) is, for j = 1, 2, 3,

U (3)
j=1(z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

− 2
z3

10
z2

− 20
z

18

−6z

⎞
⎟⎟⎟⎟⎟⎟⎠

, U (3)
j=2(z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

6
z4

− 30
z3

60
z2

− 60
z

24

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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1216 ANDRÉ KLEIN AND PETER SPREIJ

and

U (3)
j=3(z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

− 24
z5

120
z4

− 240
z3

240
z2

− 120
z

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Insertion in (3.2) of the matrices U (1)
0 (z) and U (2)

0 (z), followed by the matrices

U1(z) =
(
U (1)
j=1(z) U (2)

j=1(z) U (3)
j=1(z)

)
,

U2(z) =
(
U (1)
j=2(z) U (2)

j=2(z) U (3)
j=2(z)

)
,

U3(z) =
(
U (1)
j=3(z) U (2)

j=3(z) U (3)
j=3(z)

)
,

results in the scheme

U(z) =
1

4!

(
U (1)

0 (z),U (2)
0 (z),U1(z),U2(z),U3(z)

)
.

The columns that compose the matrix
(U(z)
J25

)
span the null space of Kν(z) when q = 6

and ν = 4.

7. Conclusions. In this paper a solution to new linear systems of equations
is displayed. This is done when q = ν + 1 and p = τ + 1. The newly developed
algorithms for the null space and right-inverse are then equivalent for both coefficient
matrices. Explicit solutions to both linear system of equations can then be straight-
forwardly implemented by using the same algorithms. The algorithms for the null
space do not require matrix multiplications and matrix inversions. The main compu-
tational exercise consists of evaluating factorials and binomial coefficients combined
with recursions that consist of the addition of two vectors. The binomial coefficients
can be computed by applying the Pascal triangle.

A connection between adjoints of companion-related matrices and rectangular
generalized Vandermonde matrices of the block Toeplitz type is then confirmed through
the corresponding null spaces.

An algorithm for the null space for Kν(z) is also set forth when q > ν + 1. To
compute a solution to the linear systems of (1.1) and (1.2) under these conditions can
be considered for future research.
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