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Abstract

A matrix is called a multiple resultant matrix associated to two matrix polynomials when
it becomes singular if and only if the two matrix polynomials have at least one common
eigenvalue. In this paper a new multiple resultant matrix is introduced. It concerns the Fisher
information matrix (FIM) of a stationary vector autoregressive and moving average time series
process (VARMA). The two matrix polynomials are the autoregressive and the moving aver-
age matrix polynomials of the VARMA process. In order to show that the FIM is a multiple
resultant matrix two new representations of the FIM are derived. To construct such repres-
entations appropriate matrix differential rules are applied. The newly obtained representations
are expressed in terms of the multiple Sylvester matrix and the tensor Sylvester matrix. The
representation of the FIM expressed by the tensor Sylvester matrix is used to prove that the
FIM becomes singular if and only if the autoregressive and moving average matrix poly-
nomials have at least one common eigenvalue. It then follows that the FIM and the tensor
Sylvester matrix have equivalent singularity conditions. In a simple numerical example it is
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shown however that the FIM fails to detect common eigenvalues due to some kind of numerical
instability. Whereas the tensor Sylvester matrix reveals it clearly, proving the usefulness of the
results derived in this paper.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

A multiple resultant matrix associated to two matrix polynomials is singular if
and only if the two matrix polynomials have at least one common eigenvalue. Vector
ARMA (autoregressive-moving average) or VARMA(p, q) stochastic processes are
general-purpose representations in order to describe dynamic systems in engineering
and in econometrics. From the formal definition given below, it will be clear that
they depend on two matrix polynomials of degrees p and q which are called the
orders and characterize the complexity of the representation. Statistical inference
on the parameters of such models, the matrix coefficients, is largely based on the
asymptotic Fisher information matrix. Indeed, the (asymptotic) covariance matrix of
the parameter estimators is the inverse of that Fisher information matrix. Reliable
bounds for the coefficients can therefore only be found if the Fisher information
matrix is nonsingular.

In this paper it is proven that the asymptotic Fisher information matrix of a
VARMA process possesses the multiple resultant property associated with the
coefficient matrix polynomials.

For the purpose of that proof, new compact representations of the Fisher informa-
tion matrix are derived in terms of structured matrices: the multiple Sylvester matrix
and the tensor Sylvester matrix. Gohberg and Lerer [2] have shown that the tensor
Sylvester matrix has the multiple resultant property but not the multiple Sylvester
matrix. Using that property, it is shown that the Fisher information matrix becomes
singular if and only if the tensor Sylvester matrix is singular, in other words, if and
only if the autoregressive and moving average matrix polynomials of the VARMA
process have at least one common eigenvalue. Therefore, by checking the singularity
of the tensor Sylvester matrix, it can quickly be checked whether the Fisher inform-
ation matrix is singular. In that case, the model orders p and/or q need to be adapted.
That check can also be used before generating artificial time series from VARMA
processes [22,1], in particular in Monte Carlo studies or application of the bootstrap.

Before going on, let us introduce the statistical model more formally and explain
the general context of its application. Consider the n-dimensional mixed autoregress-
ive moving average stationary time stochastic process {y(t), t ∈ N} or VARMA
process, of order (p, q) that satisfies,
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p∑
j=0

Ajy(t − j) =
q∑

k=0

Bkε(t − k), t ∈ N, (1)

where A0 ≡ B0 ≡ In, the n-dimensional identity matrix, and the white noise process
{ε(t), t ∈ N} is a n-dimensional vector random variable, such that

Eϑ {ε(t)} = 0, Eϑ {ε(s)ε�(t)} = δst�.

The symbol Eϑ is the expected value under the parameter ϑ , an appropriate repres-
entation of ϑ which consists of the VARMA parameters is given in the next section,
� denotes transposition, δst is the usual Kronecker delta and the covariance matrix
� is positive definite.

The VARMA process can also be summarized as follows

A(L)y(t) = B(L)ε(t),

where the matrix polynomials A(·) and B(·) are given by A(L) = ∑p

j=0 AjL
j ,

B(L) = ∑q

j=0 BkL
k and L is the backward-shift operator Lky(t) = y(t − k). We

further assume that the eigenvalues of the matrix polynomials A(L) and B(L) lie
outside the unit disc so the elements of A−1(L) and B−1(L) can be written as
power series in L with convergence radius one. These eigenvalues are obtained by
solving the scalar polynomials det A(L) = 0 and det B(L) = 0 of degree pn and qn

respectively, det X is the determinant of X.
The estimation of the (n × n) matrices A1, . . . , Ap, B1, . . . , Bq , and � have re-

ceived considerable attention in the time series and filtering of multiple time series
literature [5,6]. The Fisher information matrix is of fundamental importance for
describing the asymptotic covariance structure of the estimated parameters since
this covariance matrix is obtained by inverting the Fisher information matrix. Con-
sequently, only a nonsingular Fisher information matrix can produce reliable cov-
ariances of the estimated VARMA parameters. Algorithms for the asymptotic Fisher
information matrix have been developed by several authors. Newton [18] has con-
structed an algorithm for the case of a VARMA process at the scalar-level, when
one element of the matrix is considered, and is based on Whittle’s formula, see [25].
In [8,9], algorithms are presented for a wider class of scalar time series processes
like the SISO (single-input–single-output) and MISO (multiple-input–single-output)
structures. The Fisher information matrix is also extensively studied in the statistical
signal processing literature, see for example Weiss and Friedlander [24], Scharf and
McWhorther [21], Karlsson et al. [7].

To obtain the appropriate representations of the Fisher information matrix of a
VARMA process, matrix differential rules applied in [13–15] are used. These rules
will be recalled in Section 2 before describing the compact representations which are
the main contributions of this paper. We introduce also two simple examples: Ex-
ample 1, with common eigenvalues, and Example 2, without a common eigenvalue.
Numerical experiments on these examples are discussed in Section 3. They first show
that the multiple Sylvester matrix gives a bad answer in both cases and that the tensor
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Sylvester matrix leads, of course, to the right conclusion. Furthermore, the Fisher
information matrix computed numerically for Example 1 wrongly appears invertible,
stressing the usefulness of the criterion based on the tensor Sylvester matrix.

2. Compact representations of the Fisher information matrix

2.1. Block matrix representations

Assume that {y(t), t ∈ N} is a zero mean Gaussian time series. Then its station-
ary distribution depends on parameters ϑ = (ϑ1, . . . , ϑ�)

�, where � is the number
of parameters of the vector autoregressive moving average model and is equal to
n2(p + q). The choice for the parameter vector is ϑ = vec{A1, . . . , Ap, B1, . . . , Bq}.
The vec operator transforms a matrix into a vector by stacking the columns of the
matrix one underneath the other, vec X = col(col(Xij )

n
i=1)

n
j=1, where col(Xij )

n
i=1

refers to the j th column of the matrix X with elements X1j , . . . , Xnj . When the rep-
resentation of the parameter vector ϑ as defined above is considered, the following
equality holds for the n2(p + q) × n2(p + q) asymptotic Fisher information matrix

F(ϑ) = Eϑ

{( �ε

�ϑ

)�
�−1

( �ε
�ϑ

)}
, (2)

where �ε/�ϑ is with dimension n × n2(p + q), and for simplicity t is omitted from
ε(t) in the right-hand side of (2).

In this section we will derive two compact expressions for the Fisher information
matrix of VARMA processes. Contrarily to Whittle’s formula [25] and the algorithm
developed in [18] which are both at the scalar-level, the Fisher information matrix
developed in this paper is at the vector-matrix level, meaning that the matrix is
considered as a whole, which is the only way to exhibit algebraic properties. For
an efficient description of the blocks constituting F(ϑ) we decompose the vector
parameter ϑ accordingly to obtain, ϑ = (ϑ�

a ϑ�
b )� where ϑa = vec{A1, . . . , Ap},

and ϑb = vec{B1, . . . , Bq}. We shall proceed with the block representation of F(ϑ)

which is given by

F(ϑ) =
(
Faa(ϑ) Fab(ϑ)

Fba(ϑ) Fbb(ϑ)

)
.

In a dynamic stationary stochastic context it has long been shown useful to use
Fourier transform representations or, alternatively, circular integral representations,
also called z-transform. We want to express F(ϑ) by integral representations like

F(ϑ) = 1

2π i

∮
|z|=1

I(z)
dz

z
= 1

2π i

∮
|z|=1

(
Iaa(z) Iab(z)

Iba(z) Ibb(z)

)
dz

z
, (3)

where the integration is counterclockwise around the unit circle. Explicit expressions
for I(z) or the blocks Iaa(z), Iab(z), Iba(z) and Ibb(z) will be given in our
new representations (9), (15), (17). Representation (17) will allow us to prove the
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resultant property of the Fisher information matrix of the VARMA process. In order
to evaluate the blocks Faa(ϑ), Fab(ϑ) = F�

ba(ϑ) and Fbb(ϑ) matrix differential
rules shall be applied, see [17].

We now evaluate �ε/�ϑa and �ε/�ϑb with dimension n × n2p and
n × n2q respectively. For that purpose we rewrite the VARMA process as y(t) =
A−1(L)B(L)ε(t) and we derive a form for the n × n2(p + q) matrix �ε/�ϑ which
can be decomposed in two terms, one term is associated with the vector autoreg-
ressive part and the second term with the vector moving average part. This will allow
appropriate expressions for the different blocks to be set forth.

2.2. Some differential rules

Consider a real, differentiable (m × n) matrix function X(ϑ) of a real (� × 1)

vector ϑ = (ϑ1, . . . , ϑ�)
�, where m, n and � are positive integers. Let (m × n)

matrices �rX = (�Xij /�ϑr) with r = 1, . . . , � be the first order derivatives of X(ϑ)

in partial derivative form with Xij being the first (i, j) element of X. Write dXij =∑�
r=1(�Xij /�ϑr)dϑr , where dϑr is an arbitrary perturbation of ϑr . The (m × n)

matrix dX = (dXij ) is the differential form of the first order derivative X(ϑ). An ex-
pression in differential form can instantaneously be put into a partial derivative form
by replacing d with �r for r = 1, . . . , �. Let us vectorize X(ϑ) then the (mn × �)

matrix �vec X(ϑ)/�ϑ is the gradient form of first order derivatives of X(ϑ) and can
be defined as vec dX(ϑ) = (�(vec X(ϑ))/�ϑ)dϑ = dvec X(ϑ).

Let X(ϑ) and Y (ϑ) be real (m × n) and (n × p) differentiable matrix functions
of the real vector ϑ(� × 1), where m, n, p, and � are positive integers. The usual
scalar product rule of differentiation yields

d(XY ) = (dX)Y + X(dY ).

The following properties are taken into account. The first property to be con-
sidered is �y(t)/�ϑ = 0, this holds because the given realization of y(t) is inde-
pendent of variations in ϑ , and as a second property the next differential rule is
used

dA−1(L) = −A−1(L)dA(L)A−1(L).

This enables us to formulate the following equation for the VARMA process

dε = B−1(L)dA(L)A−1(L)B(L)ε − B−1(L)dB(L)ε.

Recall the rule

vec ABC = (C� ⊗ A)vec B,

where ⊗ denotes the Kronecker product, A, B and C have appropriate dimensions.
Componentwise application of this rule yields for dε

dε=((A−1(L)B(L)ε)� ⊗ B−1(L))vec dA(L) − (ε� ⊗ B−1(L))vec dB(L)

={(A−1(L)B(L)ε)� ⊗ B−1(L)}�vec A(L)

�ϑ
dϑ −

(
ε� ⊗ B−1(L)

) �vec B(L)

�ϑ
dϑ.
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Consequently, we obtain

�ε

�ϑ
= {(A−1(L)B(L)ε)� ⊗ B−1(L)}�vec A(L)

�ϑ
− (ε� ⊗ B−1(L))

�vec B(L)

�ϑ
.

This representation of �ε/�ϑ can be summarized as

�ε

�ϑ
=

(
�ε

�ϑa

... 0n×n2q

)
+

(
0n×n2p

...
�ε

�ϑb

)
=

(
�ε

�ϑa

�ε

�ϑb

)
.

Note that

�ε

�ϑa

={(A−1(L)B(L)ε)� ⊗ B−1(L)}�vec A(L)

�ϑa

and

�ε

�ϑb

=−(ε� ⊗ B−1(L))
�vec B(L)

�ϑb

.

2.3. Representation with reordered factors

An appropriate representation for the four blocks which compose F(ϑ) can then
be set forth by applying formula (2). We shall use block Faa(ϑ) to illustrate how the
representations of the blocks are obtained. For that purpose a useful equality is in-
troduced. Consider the discrete-time stationary process x(t) where x(t) = H(L)u(t)

and H(L) is an asymptotically stable filter. For evaluating the covariance matrix of
x(t), the following equation holds true

Eϑ {x(t)x�(t)} =
∫ π

−π

�x(ω)dω, (4)

where �x(ω) is the spectral density of the process x(t) and is defined as �x(ω) =
H(eiω)�u(ω)H(e−iω)�, with �u(ω) being the spectral density of the input process
u(t). In order to apply equality (4) to block Faa(ϑ) that is given by

Faa(ϑ) = Eϑ

{(
�ε
�ϑa

)�
�−1

(
�ε

�ϑa

)}
, (5)

we rearrange the elements of the right-hand side of (5) so that representation
x(t)x�(t) is obtained. For that purpose the rule

(A1 ⊗ B1)(A2 ⊗ B2) · · · (Am ⊗ Bm) = (A1A2 · · ·Am) ⊗ (B1B2 · · ·Bm) (6)

is used, where the matrices A1, A2, . . . , Am and B1, B2, . . . , Bm have appropriate
dimensions, see e.g. [16]. Note that we will use precedence of the Kronecker product
over the matrix product and, consequently, omit the parentheses in the right-hand side
of (6). We therefore rewrite �ε/�ϑa accordingly, to obtain

(ε� ⊗ In){(A−1(L)B(L))� ⊗ B−1(L)}�vec A(L)

�ϑa

.
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We now can write(
�ε
�ϑa

)�
�−1

(
�ε

�ϑa

)
=

(
�vec A(L)

�ϑa

)�
{A−1(L)B(L) ⊗ B−�(L)}(ε ⊗ In)�

−1(ε� ⊗ In)

×{(A−1(L)B(L))� ⊗ B−1(L)}�vec A(L)

�ϑa

=
(

�vec A(L)

�ϑa

)�
{A−1(L)B(L) ⊗ B−�(L)}(ε ⊗ �−1)(ε� ⊗ In)

×{(A−1(L)B(L))� ⊗ B−1(L)}�vec A(L)

�ϑa

.

In order to obtain a symmetric expression we apply a Cholesky factorization to �−1.
Since � is positive definite we can write �−1 = ���, where � is a unique lower
triangular matrix with positive diagonal entries. To obtain

Eϑ

{(
�ε

�ϑa

)�
�−1

(
�ε

�ϑa

)}

= Eϑ

{(
�vec A(L)

�ϑa

)� {
A−1(L)B(L) ⊗ B−�(L)

}
(ε ⊗ �) (ε ⊗ �)�

×{(A−1(L)B(L))� ⊗ B−1(L)}�vec A(L)

�ϑa

}
.

2.4. First integral representation

We have now a similar representation to the left-hand side of (4) where

x(t) =
(

�vec A(L)

�ϑa

)� {
A−1(L)B(L) ⊗ B−�(L)

}
(ε ⊗ �) .

The next step consists of formulating the spectral density of (ε ⊗ �). For that purpose
the corresponding covariance matrix has to be computed, to obtain

Eϑ {(ε ⊗ �)(ε ⊗ �)�} = Eϑ {εε� ⊗ ���} = � ⊗ �−1.

Since the white noise process ε has a constant spectral density (independent of the
frequency ω), then it is straightforward to conclude that in view of (4) the value of
the spectral density of (ε ⊗ �) is (1/2π)(� ⊗ �−1). As a consequence, in view of
(4), the matrix block Faa(ϑ) can now be given by the integral expression

1

2π

∫ π

−π

(
�vec A(eiω)

�ϑa

)� {
A−1(eiω)B(eiω) ⊗ B−�(eiω)

} (
� ⊗ �−1

)
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×
{(

A−1(e−iω)B(e−iω)
)� ⊗ B−1(e−iω)

} (
�vec A(e−iω)

�ϑa

)
dω

= 1

2π

∫ π

−π

(
�vec A(eiω)

�ϑa

)� {
A−1(eiω)B(eiω)� ⊗ B−�(eiω)�−1

}
×

{(
A−1(e−iω)B(e−iω)

)� ⊗ B−1(e−iω)

} (
�vec A(e−iω)

�ϑa

)
dω,

to obtain

1

2π

∫ π

−π

(
�vec A(eiω)

�ϑa

)�{
A−1(eiω)B(eiω)�(A−1(e−iω)B(e−iω))�

⊗B−�(eiω)�−1B−1(e−iω)
}(�vec A(e−iω)

�ϑa

)
dω.

It can be seen that the integrand, the spectral density of the derived representation of
x(t), is Hermitian. Equivalently for z = eiω we have

Faa(ϑ)

= 1

2π i

∮
|z|=1

(
�vec A(z)

�ϑa

)�(
A−1(z)B(z)�B�(z−1)A−�(z−1)

⊗B−�(z)�−1B−1(z−1)
) (

�vec A(z−1)

�ϑa

)
dz

z
.

Analogously for the remaining blocks, to obtain

Fab(ϑ) = Eϑ

{(
�ε

�ϑa

)�
�−1

(
�ε

�ϑb

)}

= − 1

2π i

∮
|z|=1

(
�vec A(z)

�ϑa

)�

×
(
A−1(z)B(z)� ⊗ B−�(z)�−1B−1(z−1)

) (
�vec B(z−1)

�ϑb

)
dz

z
,

Fba(ϑ)

= Eϑ

{(
�ε

�ϑb

)�
�−1

(
�ε

�ϑa

)}
= − 1

2π i

∮
|z|=1

(
�vec B(z)

�ϑb

)�

×
(
�B�(z−1)A−�(z−1)⊗B−�(z)�−1B−1(z−1)

) (
�vec A(z−1)

�ϑa

)
dz

z
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and

Fbb(ϑ) = Eϑ

{(
�ε

�ϑb

)�
�−1

(
�ε

�ϑb

)}
= 1

2π i

∮
|z|=1

(
�vec B(z)

�ϑb

)�

×
(
� ⊗ B−�(z)�−1B−1(z−1)

) (
�vec B(z−1)

�ϑb

)
dz

z
.

The representation of the parameter vector ϑ leads to the equalities

�vec A(z)

�ϑa

= zu�
p (z) ⊗ In2 and

�vec B(z)

�ϑb

= zu�
q (z) ⊗ In2 , (7)

where u�
x (z) = (1, z, z2, . . ., zx−1) for positive integers x.

2.5. Second integral representation

Before proceeding with additional developments, the next property is set forth.
Consider the partitioned matrix

A =
(

A11 A12
A21 A22

)
,

then the Kronecker product A ⊗ B takes the form

A ⊗ B =
(

A11 ⊗ B A12 ⊗ B

A21 ⊗ B A22 ⊗ B

)
. (8)

The rules (6) and (8) as well as the properties given in the right-hand sides of the
equalities in (7) are applied to the newly obtained representations of the blocks
Faa(ϑ), Fab(ϑ), Fba(ϑ) and Fbb(ϑ) which constitute F(ϑ). Consequently, the
Fisher information matrix can be written as

F(ϑ) = 1

2π i

∮
|z|=1

(
Faa(z) Fab(z)

Fba(z) Fbb(z)

)
⊗ B−�(z)�−1B−1(z−1)

dz

z
, (9)

where

Faa(z)=up(z)u�
p (z−1) ⊗ A−1(z)B(z)�B�(z−1)A−�(z−1),

Fab(z)=−{up(z)u�
q (z−1) ⊗ A−1(z)B(z)�},

Fba(z)=−{uq(z)u�
p (z−1) ⊗ �B�(z−1)A−�(z−1)},

Fbb(z)=uq(z)u�
q (z−1) ⊗ �.

The matrix

(
Faa(z) Fab(z)

Fba(z) Fbb(z)

)
can then be set forth accordingly, to obtain(

up(z) ⊗ A−1(z)(−B(z))

uq(z) ⊗ A−1(z)A(z)

)
�

(
up(z) ⊗ A−1(z)(−B(z))

uq(z) ⊗ A−1(z)A(z)

)∗
, (10)
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where Y ∗ denotes the complex conjugate transpose of the matrix Y . It can be verified
that representation (9) can also be obtained when �ε/�ϑ is substituted in (2). The
block matrices in (10) when multiplied with Ip and Iq can be rewritten as

Ipup(z) ⊗ A−1(z)(−B(z)) = (Ip ⊗ A−1(z))(up(z) ⊗ (−B(z))), (11)

Iquq(z) ⊗ A−1(z)A(z) = (Iq ⊗ A−1(z))(uq(z) ⊗ A(z)). (12)

2.6. Representation based on the multiple Sylvester matrix

In order to write the Fisher information matrix F(ϑ) in a compact form and in
terms of a structured matrix, we introduce the matrix block version of the Sylvester
matrix which is given by the n(p + q) × n(p + q) matrix

S(−B, A) =



−In −B1 · · · −Bq 0n×n · · · 0n×n

0n×n

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0n×n

0n×n · · · 0n×n −In −B1 · · · −Bq

In A1 · · · Ap 0n×n · · · 0n×n

0n×n

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0n×n

0n×n · · · 0n×n In A1 · · · Ap


.

In the scalar case the Sylvester matrix S(−b, a) associated with the polynomials
a(z) and b(z) and having the form given above is called a resultant matrix. A res-
ultant matrix of two scalar polynomials a(z) and b(z) becomes singular if and only
if the polynomials a(z) and b(z) have at least one common root, see e.g. [16]. The
number of common roots (counting multiplicities) of the polynomials a(z) and b(z)

is equal to dim Ker S(−b, a).
However, in the matrix polynomial case the Sylvester matrix S(−B, A) does not

have the same property as in the scalar case. We illustrate this with two examples.
Consider the matrix polynomials A(z) and B(z) given by:

Example 1: A(z)=
(

1 + 0.6z 0.2z

0.4z 1 − 0.6z

)
and

B(z)=
(

1 + 0.5z 0.76z

0.25z 1 − 0.5z

)
.

This choice of A(z) and B(z) does not result in a singular matrix S(−B, A) despite
the fact that the corresponding eigenvalues of both matrix polynomials A(z) and B(z)

coincide and are equal to −1.50756 and 1.50756. These eigenvalues are obtained
by solving the scalar polynomials det A(z) = 0 and det B(z) = 0 so that det A(z) =
det B(z) = 1 − 11

25z2. Analogously, consider the matrix polynomials given by:
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Example 2: A(z)=
(

1 − 0.8z 0.2z

−1.2z 1 − 0.2z

)
and

B(z)=
(

1 z

−0.5z 1 + 0.5z

)
.

In this case the matrix S(−B, A) is not invertible although the matrix polynomials
A(z) and B(z) do not have common eigenvalues.

It is clear that when the Fisher information matrix F(ϑ) is expressed in terms of
the Sylvester matrix S(−B, A), one will not get insight in the singularity condition of
F(ϑ). Despite this property we shall proceed constructing a representation of F(ϑ)

in terms of S(−B, A). This can be justified since the purpose of this paper also
consists of developing new representations of the Fisher information matrix F(ϑ)

that are expressed in terms of known structured matrices.
It can be shown through matrix multiplication that

S(−B, A)
(
up+q(z) ⊗ In

) =
(

up(z) ⊗ (−B(z))

uq(z) ⊗ A(z)

)
. (13)

Eqs. (11) and (12) combined with (13), results in the following form for the first
matrix in the right-hand side of (10)(

up(z) ⊗ A−1(z)(−B(z))

uq(z) ⊗ A−1(z)A(z)

)
=

(
Ip ⊗ A−1(z) 0pn×qn

0qn×pn Iq ⊗ A−1(z)

) (
up(z) ⊗ (−B(z))

uq(z) ⊗ A(z)

)
=

(
Ip+q ⊗ A−1(z)

)
S(−B, A)

(
up+q(z) ⊗ In

)
. (14)

Combining (9), (10) and (14) leads to a compact form of the Fisher information
matrix in terms of the structured matrix S(−B, A) which is given in the following
proposition.

Proposition 2.1. The Fisher information matrix of a VARMA process when ex-
pressed in terms of S(−B, A) has the following representation

F(ϑ) = 1

2π i

∮
|z|=1

�(z)��∗(z) ⊗ B−�(z)�−1B−1(z−1)
dz

z
, (15)

where

�(z) =
(
Ip+q ⊗ A−1(z)

)
S(−B, A)

(
up+q(z) ⊗ In

)
.

The components of F(ϑ) can be computed from (15) by applying Cauchy’s
residue theorem to a Hermitian matrix polynomial. For each element of this matrix
polynomial it consists of evaluating integrals of a rational function over the unit
circle in the complex plane, the algorithm of Peterka and Vidinčev [19] can be
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applied. However, contrariwise to the scalar ARMA case [12], from (15) we cannot
infer that the Fisher information matrix becomes singular if the Sylvester matrix
S(−B, A) becomes singular or vice versa. However, we will show below that when
the matrix polynomials A(z) and B(z) have at least one common eigenvalue the
Fisher information matrix F(ϑ) becomes singular irrespective of the nonsingularity
of the matrix S(−B, A). It can be concluded that the singularity condition of F(ϑ) is
hidden when representation (15) is considered. To characterize singularity of F(ϑ)

a new resultant matrix will be used.

2.7. Representation based on the tensor Sylvester matrix

Gohberg and Lerer [2] have set forth the tensor resultant S⊗(−B, A)�S(−B ⊗
In, In ⊗ A) and proved that the matrix polynomials A(z) and B(z) have at least one
common eigenvalue if and only if det S⊗(−B, A) = 0 or when the matrix S⊗(−B, A)

is singular. In other words, the tensor resultant S⊗(−B, A) becomes singular if
and only if the scalar polynomials det A(z) = 0 and det B(z) = 0 have at least one
common root. The n2(p + q) × n2(p + q) tensor Sylvester matrix is given by

S⊗(−B, A) =



(−In) ⊗ In (−B1) ⊗ In · · · (−Bq) ⊗ In 0n2×n2 · · · 0n2×n2

0n2×n2

. . .
. . .

. . .
. . .

.

.

.

.

.

.
. . .

. . .
. . .

. . . 0n2×n2

0n2×n2 · · · 0n2×n2 (−In) ⊗ In (−B1) ⊗ In · · · (−Bq) ⊗ In

In ⊗ In In ⊗ A1 · · · In ⊗ Ap 0n2×n2 · · · 0n2×n2

0n2×n2

. . .
. . .

. . .
. . .

.

.

.

.

.

.
. . .

. . .
. . .

. . . 0n2×n2

0n2×n2 · · · 0n2×n2 In ⊗ In In ⊗ A1 · · · In ⊗ Ap



.

For inserting S⊗(−B, A) in (3) we rewrite the integrand of (9) accordingly, to obtain(
Iaa(z) Iab(z)

Iba(z) Ibb(z)

)
=

(
up(z) ⊗ A−1(z)(−B(z)) ⊗ In

uq(z) ⊗ A−1(z)A(z) ⊗ In

) (
� ⊗ B−�(z)�−1B−1(z−1)

)
×

(
up(z) ⊗ A−1(z)(−B(z)) ⊗ In

uq(z) ⊗ A−1(z)A(z) ⊗ In

)∗
. (16)

Next some property of the tensor Sylvester matrix S⊗(−B, A) is given. It is
straightforward to verify that (13) can be extended to the representation

S⊗(−B, A)(up+q(z) ⊗ In2) =
(

up(z) ⊗ (−B(z)) ⊗ In

uq(z) ⊗ In ⊗ A(z)

)
.

We now proceed with the first matrix term in the right-hand side of (16) which
can be rewritten when the rule
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A ⊗ B ⊗ C = (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C)

is used, as(
Ipup(z) ⊗ (A−1(z) ⊗ In)(−B(z) ⊗ In)

Iquq(z) ⊗ (A−1(z) ⊗ In)(A(z) ⊗ In)

)
.

Taking the property

(A−1(z) ⊗ In)(A(z) ⊗ In) = In ⊗ In = (In ⊗ A−1(z))(In ⊗ A(z))

into account, the first matrix block of (16) can be represented as((
Ip ⊗ A−1(z) ⊗ In

) (
up(z) ⊗ (−B(z) ⊗ In)

)(
Iq ⊗ In ⊗ A−1(z)

) (
uq(z) ⊗ In ⊗ A(z)

) )

=
(

Ip ⊗ A−1(z) ⊗ In 0pn2×qn2

0qn2×pn2 Iq ⊗ In ⊗ A−1(z)

) (
up(z) ⊗ (−B(z)) ⊗ In

uq(z) ⊗ In ⊗ A(z)

)
=

(
Ip ⊗ A−1(z) ⊗ In 0pn2×qn2

0qn2×pn2 Iq ⊗ In ⊗ A−1(z)

)
S⊗(−B, A)

(
up+q(z) ⊗ In2

)
.

This derivation leads to an alternative representation for the Fisher information mat-
rix F(ϑ) that will be given in the next proposition.

Proposition 2.2. The Fisher information matrix of a VARMA process when ex-
pressed in terms of the tensor Sylvester matrix has the following representation

F(ϑ) = 1

2π i

∮
|z|=1

�(z)�(z)�∗(z)dz

z
, (17)

where

�(z) =
(

Ip ⊗ A−1(z) ⊗ In 0pn2×qn2

0qn2×pn2 Iq ⊗ In ⊗ A−1(z)

)
S⊗(−B, A)

(
up+q(z) ⊗ In2

)
and

�(z) = � ⊗ B−�(z)�−1B−1(z−1).

2.8. New multiple resultant matrices

The representation of the Fisher information matrix F(ϑ) in (17) shall be used for
proving that F(ϑ) will become singular if and only if the autoregressive and moving
average matrix polynomials A(z) and B(z) have at least one common eigenvalue. In
other words, the matrix F(ϑ) will become singular if and only if the tensor Sylvester
matrix S⊗(−B, A) is singular. We proceed as follows. Set

�(z)�(z)�∗(z) = I(z)
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and

�(z) =
(

Ip ⊗ A(z) ⊗ In 0pn2×qn2

0qn2×pn2 Iq ⊗ In ⊗ A(z)

)
,

to obtain

�(z)I(z)�∗(z)=S⊗(−B, A)
(
up+q(z) ⊗ In2

)
�(z)

(
up+q(z) ⊗ In2

)∗

× [
S⊗(−B, A)

]�
.

Then

M(ϑ)= 1

2π i

∮
|z|=1

�(z)I(z)�∗(z)dz

z

=S⊗(−B, A)P(ϑ)
[
S⊗(−B, A)

]�
, (18)

where

P(ϑ) = 1

2π i

∮
|z|=1

(up+q(z) ⊗ In2)�(z)(up+q(z) ⊗ In2)
∗ dz

z
.

In [12], a representation similar to (18) is derived to prove the resultant property of
the Fisher information matrix of a scalar ARMA time series process. For establishing
the resultant property of the Fisher information matrix F(ϑ) of a VARMA process,
we first establish the resultant property of M(ϑ). This will be summarized in the
next lemma.

Lemma 2.3. The matrix M(ϑ) as formulated in (18) becomes singular iff the matrix
polynomials A(z) and B(z) have at least one common eigenvalue.

Proof. Clearly the matrix M(ϑ) becomes singular if the matrix polynomials A(z)

and B(z) have at least one common eigenvalue in view of Eq. (18) and the resultant
property of S⊗(−B, A). In order to prove the converse, it suffices to prove that
P(ϑ) is strictly positive definite or P(ϑ) > 0. This can be shown via the following
computation. Suppose that there is a fixed vector x such that P(ϑ)x = 0. So,

0 = 1

2π i

∮
|z|=1

(
up+q(z) ⊗ In2

)
�(z)

(
up+q(z) ⊗ In2

)∗
x

dz

z
.

Take z = eiω, we then get

0 = 1

2π

∫ 2π

0
x∗ (

up+q(eiω) ⊗ In2

)
�(eiω)

(
up+q(eiω) ⊗ In2

)∗
x dω.

Note that (up+q(eiω) ⊗ In2)�(eiω)(up+q(eiω) ⊗ In2)∗ � 0.
Then we must have x∗ (

up+q(eiω) ⊗ In2

)
�(eiω) ≡ 0, but since �(eiω) > 0 we

have x∗(up+q(eiω) ⊗ In2) ≡ 0. Fully written as

x∗ (
In2 , eiωIn2 , e2iωIn2 , . . . , e(p+q−1)iωIn2

)� ≡ 0
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or

(x∗
1 , x∗

2 , . . . , x∗
p+q)(In2 , zIn2 , z

2In2 , . . . , z
(p+q−1)In2)

� = 0 with z ∈ C.

It is straightforward to see that for z = 0 we have x∗
1 = 0, to obtain

zx∗
2 In2 + z2x∗

3 In2 + · · · + z(p+q−1)x∗
p+qIn2 = 0,

divide by z and take then z = 0 results in x∗
2 = 0. A similar approach is done for the

remaining components of x∗ to conclude that x∗
j = 0 for j = 1, 2, . . . , p + q. As a

consequence, x = 0 and hence P(ϑ) > 0. �

The equivalence of the singularity conditions of the Fisher information matrix
F(ϑ) and the matrix M(ϑ) is shown in the next proposition.

Proposition 2.4. The Fisher information matrix F(ϑ) becomes singular iff the
matrix M(ϑ) is singular.

Proof. If F(ϑ) is singular, there exists a fixed vector x /= 0, such that F(ϑ)x = 0.

Representation (17) yields

0 = 1

2π i

∮
|z|=1

x∗I(z)x
dz

z
.

But I(z) � 0 for all |z| = 1 yields I(z)x ≡ 0, since x /= 0 it can be concluded that
singularity of F(ϑ) implies detI(z) = 0.

It is straightforward to verify that detI(z) ≡ 0 results in a singular matrix F(ϑ).
The proof follows directly from the approach just applied.

We shall now establish the singularity condition for the matrix M(ϑ).
If M(ϑ) is singular there exists a fixed vector y /= 0, such that M(ϑ)y = 0. From

Lemma 2.3 it can be deduced that this implies a singular tensor Sylvester matrix
S⊗(−B, A). From Eq. (18) it then follows that

0 = 1

2π i

∮
|z|=1

�(z)I(z)�∗(z)y dz

z
.

Taking z = eiω, we get

0 = 1

2π

∫ 2π

0
y∗�(eiω)I(eiω)�∗(eiω)y dω.

As before we conclude from this �(eiω)I(eiω)�∗(eiω)y ≡ 0 and hence
det �(eiω)I(eiω)�∗(eiω) = 0. But since det �∗(eiω) /= 0 and det �(eiω) /= 0, we
must have detI(eiω) ≡ 0 or detI(z) ≡ 0. But then the Fisher information matrix
F(ϑ) becomes singular. Conversely, if detI(z) ≡ 0 it leads to a singular matrix
M(ϑ), this can be directly shown by virtue of the proof just done. If F(ϑ) is singular
then detI(z) ≡ 0 and hence trivially M(ϑ) is singular in view of (18). �
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2.9. Main conclusions

By combining Lemma 2.3 and Proposition 2.4 one concludes that the Fisher in-
formation matrix F(ϑ) becomes singular if and only if the tensor Sylvester resultant
matrix S⊗(−B, A) is singular. By virtue of Gohberg and Lerer [2], this will happen
if and only if the matrix polynomials A(z) and B(z) have at least one common eigen-
value. This explains the aspect of singularity of the Fisher information matrix F(ϑ).
This also allows us to introduce a new resultant matrix, namely the matrix F(ϑ). In
other words, the Fisher information matrix F(ϑ) of a VARMA process has the same
fundamental algebraic property as the tensor Sylvester resultant matrix S⊗(−B, A).
In [12,11] it is proved that the Fisher information matrix of scalar ARMA and
ARMAX time series processes have the resultant property. Apparently the class
of matrices consisting of the Fisher information matrices associated with various
stationary time series processes (the scalar ARMA, ARMAX and vector ARMA
processes) represents a new class of resultant matrices. However, the question of
singularity of F(ϑ) is also interesting from a statistical point of view. In [10] a Wald
test is formulated for testing common roots between the autoregressive and moving
average polynomials of a scalar ARMA process. Such a test is equivalent with testing
the singularity of the corresponding Fisher information matrix. Consequently, the
results obtained in this paper should allow a similar test to be formulated in the
multiple time series case.

For the evaluation of the matrix polynomials (A(z))−1, (B(z))−1, (A(z−1))−1 and
(B(z−1))−1 which appear in (15) and (17), a property proved in Gohberg et al. [3] is
considered.

2.10. Inverting matrix polynomials

Let Ã(z) = zpA(z−1) and B̃(z) = zqB(z−1). The companion matrices associated
with the matrix polynomials Ã(z) and B̃(z) are defined by the np × np and nq × nq

matrices

CA =


0 I 0 . . . 0
0 0 I . . . 0
...

. . .
0 I

−Ap −Ap−1 · · · · · · −A1

 and

CB =


0 I 0 . . . 0
0 0 I . . . 0
...

. . .
0 I

−Bq −Bq−1 · · · · · · −B1

 ,



A. Klein et al. / Linear Algebra and its Applications 403 (2005) 291–313 307

respectively. As in the scalar case, the properties

det(Iz − CA) = detÃ(z) and det(Iz − CB) = detB̃(z)

and

det(I − zCA) = detA(z) and det(I − zCB) = detB(z)

hold, see [3].
The following equalities hold for every z ∈ C which is not an eigenvalue of the

matrix polynomials Ã(z) and B̃(z),

(Ã(z))−1 = PA(Iz − CA)−1RA and (B̃(z))−1 = PB(Iz − CB)−1RB

with

the n × np matrix PA = (
I 0 · · · 0

)
and

np × n matrix RA = (
0 · · · 0 I

)�
,

the n × nq matrix PB = (
I 0 · · · 0

)
and

nq × n matrix RB = (
0 . . . 0 I

)�
.

Since (A(z−1))−1 = zp (Ã(z))−1 and (B(z−1))−1 = zq (B̃(z))−1 we then have

(A(z−1))−1 = zpPA(Iz − CA)−1RA and

(B(z−1))−1 = zqPB(Iz − CB)−1RB,

and

(A(z))−1 = z−p+1PA(I − zCA)−1RA and

(B(z))−1 = z−q+1PB(I − zCB)−1RB.

These properties will enable us to evaluate the Fisher information matrix in a more
efficient way. In the next section some numerical illustration is provided.

3. Numerical experiments

In this section numerical experiments are carried out in order to illustrate that an
unnecessary computation of the Fisher information matrix of a VARMA process can
be avoided when the results obtained in this paper are taken into consideration. The
experiments were performed using MATLAB and Mathematica. The two examples
of Section 2 that correspond with a VARMA process when n = 2 and p = q = 1,
are considered. As a first example we consider the tensor Sylvester matrix in the
presence of common eigenvalues and establish its singularity.
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3.1. Tensor Sylvester matrix for Example 1

For Example 1, the tensor Sylvester matrix is

S⊗(−B,A) =



−1 0 0 0 −0.5 0 −0.76 0
0 −1 0 0 0 −0.5 0 −0.76
0 0 −1 0 −0.25 0 0.5 0
0 0 0 −1 0 −0.25 0 0.5
1 0 0 0 0.6 0.2 0 0
0 1 0 0 0.4 −0.6 0 0
0 0 1 0 0 0 0.6 0.2
0 0 0 1 0 0 0.4 −0.6


.

It can easily be checked that the determinant of that matrix is equal to zero and
even that its rank is equal to 6. This illustrates that, contrariwise to the Sylvester
matrix S(−B, A), the tensor Sylvester matrix becomes singular when the matrix
polynomials A(z) and B(z) have at least one common eigenvalue.

3.2. Tensor Sylvester matrix for Example 2

For that example, the tensor Sylvester matrix is

S⊗(−B, A) =



−1 0 0 0 0 0 −1 0
0 −1 0 0 0 0 0 −1
0 0 −1 0 0.5 0 −0.5 0
0 0 0 −1 0 0.5 0 −0.5
1 0 0 0 −0.8 0.2 0 0
0 1 0 0 −1.2 −0.2 0 0
0 0 1 0 0 0 −0.8 0.2
0 0 0 1 0 0 −1.2 −0.2


.

The determinant of that matrix is different from zero. This confirms that the matrix
polynomials A(z) and B(z) have no common eigenvalue in spite of the fact that the
Sylvester matrix S(−B, A) is singular, with rank 3. Indeed the two sets of eigenval-
ues are complex, with a modulus respectively equal to 1.5811 for A(z) and 1.4142
for B(z).

Let us now look at the Fisher information matrix and the resultant matrix M(ϑ)

for the first example of Section 2. The second example is not interesting as far as
the illustration of this paper is concerned because we expect a nonsingular Fisher
information matrix.

3.3. The Fisher information matrix for Example 1

The Fisher information matrix is

F(ϑ) = 1

2π i

∮
|z|=1

R(z) dz,



A. Klein et al. / Linear Algebra and its Applications 403 (2005) 291–313 309

where R(z) can be deduced from (15) or (17). Even in this simple example, it is
much too cumbersome to give all the rational elements of R(z) in detail. Therefore
we confine ourselves to give for example, element (1,1) which is equal to

R11(z) = 25(8 − 21z + 8z2)(87,500 + 66,090z − 393,209z2 + 66,090z3 + 87,500z4)

256(−25 + 11z2)2(−11 + 25z2)2
.

Evaluating the integral using e.g. the Peterka and Vidinčev [19] algorithm implemen-
ted by Södertröm [23], yields the following matrix:

F(ϑ) =



4.20240 1.66919 −0.17265 −0.34627 −1.81825 −0.46554 0.93619 0.81064

1.66919 3.35066 −0.02293 0.20263 −0.42162 −2.26694 0.56469 −0.17981

−0.17265 −0.02293 1.33498 0.10744 −0.12168 −0.19206 −1.37124 −0.15414

−0.34627 0.20263 0.10744 2.30449 −0.12618 0.22791 −0.19806 −2.17429

−1.81825 −0.42162 −0.12168 −0.12618 1.62760 0.31622 0.0 0.0

−0.46554 −2.26694 −0.19206 0.22791 0.31622 2.26637 0.0 0.0

0.93619 0.56469 −1.37124 −0.19806 0.0 0.0 1.62760 0.31622

0.81064 −0.17981 −0.15414 −2.17429 0.0 0.0 0.31622 2.26637


.

(shown with 5 decimals but the computations were done in double precision). The
same results were obtained in Mathematica using the procedure deduced from
Cauchy’s residue theorem which is simple here since there are only two poles to
consider: ±√

11/5. It can be verified that the determinant of that matrix is numeric-
ally not equal to zero, although the value is close to zero namely 0.01176 and that
its rank is equal to 8 so it has full rank. The eigenvalues of the matrix evaluated
by Mathematica are, in decreasing order: 7.1174, 4.7505, 3.4032, 2.7438, 0.7789,
0.1213, 0.0588, and 0.0067. For understanding this result we locate close roots in
the numerators and the denominators, the following elements possess close roots:

R51(z), R61(z), R52(z), R62(z). Numerator : 0.643717, denominator : 0.663325

R15(z), R25(z), R16(z), R26(z). Numerator : 1.55348, denominator : 1.50756

R71(z), R81(z), R72(z), R82(z). Numerator : 0.635714, denominator : 0.663325

R17(z), R27(z), R18(z), R28(z). Numerator : 1.57303, denominator : 1.50756

with a total of 16 elements with close roots. Note, the close root in the denominators
is either the common eigenvalue or its inverse. It has already been checked in other
contexts that evaluation of integrals in these circumstances is not at all accurate
which explains the fact that the theoretical result is not confirmed numerically. It
leads to the superiority of the tensor Sylvester matrix for confirming the presence of
common eigenvalues between the autoregressive and moving average matrix poly-
nomials. There are no numerical problems occurring since all the elements of the
tensor Sylvester matrix are directly available. Therefore, before computing the Fisher
information matrix it is recommended to check the rank of the tensor Sylvester
matrix and improve the ratio of the largest to the smallest eigenvalue of that matrix
e.g. [4]. In this simple numerical example we see that, simply for numerical reasons,
the Fisher information matrix fails to detect common eigenvalues whereas the tensor
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Sylvester matrix reveals it clearly, proving the usefulness of the results derived in
this paper.

Since the matrix is numerically invertible, we have inverted it in order to obtain
the asymptotic covariance matrix of the estimators. There, two variances (those of
the third and seventh parameters) are abnormally high (respectively equal to 65.8
and 69.0) which may suggest an identification problem.

3.4. New matrix resultant for Example 1

The resultant matrix M(ϑ) = S⊗(−B, A)P(ϑ)
[
S⊗(−B, A)

]� has the form

M(ϑ) =



2.08175 −0.32386 −1.31682 −1.08175 −1.02042 −0.08512 −0.11168 0.46935

−0.32386 5.03487 −0.90113 0.32386 0.19338 −1.12887 0.06209 0.25876

−1.31682 −0.90113 3.02909 1.31682 −0.03674 0.15439 −0.87348 −0.70268

−1.08175 0.32386 1.31682 2.08175 0.02042 0.08512 0.11168 −1.46935

−1.02042 0.19338 −0.03674 0.02042 1.01878 −0.04473 0.0 0.0

−0.08512 −1.12887 0.15439 0.08512 −0.04473 1.25637 0.0 0.0

−0.11168 0.06209 −0.87348 0.11168 0.0 0.0 1.01878 −0.04473

0.46935 0.25876 −0.70268 −1.46935 0.0 0.0 −0.04473 1.25637


.

The matrix M(ϑ) has rank equal to 6, this is equivalent with the rank of the cor-
responding tensor Sylvester matrix (Section 3.1). The resultant property of M(ϑ) is
confirmed in this numerical example in contrast to the case of the Fisher information
matrix.

Note that the elements of

P(ϑ) = 1

2π i

∮
|z|=1

(up+q(z) ⊗ In2)�(z)(up+q(z) ⊗ In2)
∗ dz

z

are much easier to compute than those of the Fisher information matrix. For example,
the integrand of element (1,1) is equal to

625(8 − 21z + 8z2)

16(−25 + 11z2)(−11 + 25z2)
.

The matrix P(ϑ) has the following form

P(ϑ) =



1.62760 0.31622 0 0 −0.89286 −0.72470 0 0

0.31622 2.26637 0 0 −1.07887 0.89286 0 0

0 0 1.62760 0.31622 0 0 −0.89286 −0.72470

0 0 0.31622 2.26637 0 0 −1.07887 0.89286

−0.89286 −1.07887 0 0 1.62760 0.31622 0 0

−0.72470 0.89286 0 0 0.31622 2.26637 0 0

0 0 −0.89286 −1.07887 0 0 1.62760 0.31622

0 0 −0.72470 0.89286 0 0 0.31622 2.26637


.

In this numerical example it can be seen that the matrix P(ϑ) is symmetric block
Toeplitz. However, a generalization of the block Toeplitz property of P(ϑ) should be
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investigated. The matrix P(ϑ) is strictly positive definite with the numerical eigen-
values, 3.46132, 3.46132, 3.1278, 3.1278, 0.766171, 0.766171, 0.43265, 0.43265
and determinant equal to 12.8792.

4. Conclusion

It is shown that the Fisher information matrix F(ϑ) of a VARMA process is
a multiple resultant matrix with respect to the autoregressive and moving average
matrix polynomials. For that purpose we have developed compact representations of
F(ϑ) so they can be summarized in one single equation consisting of one term.
Other representations of the Fisher information matrix of a VARMA process as
outlined in [15] consist of four till 16 terms. In this paper it is reduced to just one
term. This has allowed us to establish new elegant algebraic results about the Fisher
information matrix that could not be obtained using the alternative representations.
The representation of the Fisher information matrix F(ϑ) that is explained by the
tensor Sylvester matrix S⊗(−B, A) is used to prove that the Fisher information mat-
rix F(ϑ) is singular if and only if the autoregressive and moving average matrix
polynomials have at least one common eigenvalue. It then follows that the Fisher
information matrix and the tensor Sylvester matrix have equivalent singularity con-
ditions. In the case of scalar ARMA processes the Sylvester matrix S(−B, A) and
the tensor Sylvester matrix S⊗(−B, A) coincide. But in the multivariate case only
the tensor Sylvester matrix has the resultant property.

This can have interesting applications when numerical aspects are considered.
The results derived in this paper suggest that during the modeling procedure one
should first consider the tensor Sylvester matrix S⊗(−B, A) before computing the
Fisher information matrix F(ϑ). It is clear that the issue of singularity is much easier
to check with the tensor Sylvester matrix S⊗(−B, A) than with Fisher’s information
matrix. Since the components of the matrix S⊗(−B, A) are directly available in
terms of the matrix coefficients of the VARMA process, no additional computation is
necessary. Contrarily, the Fisher information matrix F(ϑ) is composed of elements
that have to be computed by means of Cauchy’s residue theorem applied to rational
functions. These rational functions consist of high degree scalar polynomials. In the
example considered in Section 3.3, a VARMA process with n = 2 and p = q = 1,
the degree of the scalar polynomials appearing in the numerator and denominator
can sometimes be equal to 8.

Let us assume that an empirical researcher has identified a given model and estim-
ated its parameters using the approach described in e.g. [20] . He could then check
the obtained model by computing the determinant of the tensor Sylvester matrix
S⊗(−B, A). This is a straightforward exercise. Knowledge of the singularity condi-
tion of the Fisher information matrix F(ϑ) is then directly available. This knowledge
is crucial because it informs us whether we should start computing the elements of
the Fisher information matrix F(ϑ) or not. It is clearly illustrated in Section 3 that an
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apparently nonsingular F(ϑ) can be obtained in a case where it should be singular
according to S⊗(−B, A).

When the tensor Sylvester matrix S⊗(−B, A) is singular one should consider
a different VARMA process, generally simpler, and constitute the entries of the
corresponding tensor Sylvester matrix S⊗(−B, A). One shall proceed in this way
until the tensor Sylvester matrix S⊗(−B, A) of the new model has full rank. This
will guarantee a nonsingular Fisher information matrix F(ϑ) and one can then com-
pute its elements. This approach saves a lot of unnecessary computations and will
eventually result in more reliable covariances of the estimated VARMA parameters.
In the example of Section 3, these covariances would be nonsense.

The results obtained in this paper can be used to examine some additional algeb-
raic or other mathematical properties of the Fisher information matrix of a VARMA
process. Whereas in a statistical framework, the results derived in this paper can be
applied to set forth a statistical test for testing possible common eigenvalues of the
autoregressive and moving average matrix polynomials.
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