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Abstract

In this paper we derive some properties of the Bezout matrix and relate the Fisher information matrix for
a stationary ARMA process to the Bezoutian. Some properties are explained via realizations in state space
form of the derivatives of the white noise process with respect to the parameters. A factorization of the Fisher
information matrix as a product in factors which involve the Bezout matrix of the associated AR and MA
polynomials is derived. From this factorization we can characterize singularity of the Fisher information
matrix.
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1. Introduction

The Cramér–Rao lower bound on the covariance matrix of an estimator is a classical result in
statistics, see Cramér [6] and Rao [15]. This bound is given by the inverse of Fisher’s information
matrix. For regular statistical models, it is also known that the maximum likelihood estimator
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is asymptotically normal with this inverse as the asymptotic covariance matrix. Therefore it is
natural to ask for conditions of an underlying statistical model that guarantee non-singularity
of this matrix. In the present paper we are concerned with the Fisher information matrix for
(stationary) autoregressive moving average (ARMA) models. The information matrix is singular
in the presence of common roots of the AR and the MA polynomial and vice versa. This fact is
considered to be well known in time series analysis, see [13] or [14] for an early discussion of this
phenomenon, and [9] for the extension to ARMA models with an exogenous input (the ARMAX
case).

In [10] properties of the Fisher information matrix for an ARMA process have been derived
using contour integration in the complex plane and state space realizations of the ARMA process
itself. In the present paper we study Fisher’s information matrix by means of state space realizations
for the score process and by linking Fisher’s information matrix to the Sylvester resultant matrix
and the Bezout matrix associated with the autoregressive and moving average polynomials.

The role of the resultant matrix has been discussed in various studies in the fields of time
series and systems theory. For instance, in [1] this matrix shows up in a convergence analysis
of maximum likelihood estimators of the ARMA parameters (more precisely in the study of the
convergence of the criterion function), in Barnett [2] a relationship between Sylvester’s resultant
matrix and the companion matrix of a polynomial is given. Kalman [8] has investigated the concept
of observability and controllability in terms of Sylvester’s resultant matrix. Similar results can be
found in Barnett [3], which contains further discussions and references on these topics. But, it
seems that the use of the Bezout matrix has not been recognized yet. For ARMA models we will
show that Fisher’s information matrix can be factorized, where one of the factors is expressed in
terms of the Bezout matrix. Also from this it follows that Fisher’s information matrix is singular if
and only if the AR and MA polynomials have a non-trivial greatest common divisor. Singularity
of the information matrix can thus be interpreted as the result of overparametrization of the chosen
ARMA model and of using a model of too high order. In Söderström and Stoica [17, p. 162 ff.] a
discussion on overparametrization in terms of the transfer function of a system can be found. In a
static context, Fisher’s information matrix has already been studied in [16] for problems of local
and global identifiability.

The paper is organized as follows. In Section 2 we relate Fisher’s information matrix to the
derivatives of the noise process. The main results are state space realizations for these derivatives
and properties of these realizations are presented. In Section 3 we study some properties of the
Bezout matrix as well as its kernel. Section 4 is devoted to further properties of the Bezout matrix,
to be exploited in Sections 5 and 6. In the first of these sections, we study singularity of solutions to
certain Stein equations with coefficients related to the AR and MA polynomials, whereas in Section
6 all previous results are assembled to characterize non-singularity of Fisher’s information matrix.

2. Computations in state space

In this section we adopt the following notation. All random variables and processes used below
are assumed to be defined on some measurable space (�,F). If x = (xt , t ∈ Z) is a stochastic
process and π a polynomial given by π(z) = ∑k

j=0 πjz
j , then we define the stochastic process

π(L)x = (π(L)xt , t ∈ Z) by π(L)xt = ∑k
j=0 πjxt−j , where t ∈ Z. Thus L is the lag operator.

We use similar notation if π is replaced with the power series expansion of an analytic function,
assuming that the possibly infinite series is convergent in some sense. See [4, Chapter 3], for
general theorems on convergence issues.
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Consider the following two scalar monic polynomials in the variable z.

â(z) = zp + a1z
p−1 + · · · + ap,

ĉ(z) = zq + c1z
q−1 + · · · + cq .

By a and c we denote the reciprocal polynomials, soa(z) = zpâ(z−1) and c(z) = zq ĉ(z−1), and
also write a� = (a1, . . . , ap) and c� = (c1, . . . , cq). Usually no confusion between the notation
a for the polynomial and vector will arise, but sometimes we will write a(·)when a polynomial is
considered. Let θ = (a1, . . . , ap, c1, . . . , cq) be the parameter vector. The set � of parameters
θ (the parameter space) will be such that all corresponding polynomials a and c have only zeros
outside the unit circle (equivalently, â and ĉ have only zeros inside the unit circle).

We will consider a stationary ARMA(p, q) process y = (yt , t ∈ Z) that satisfies

a(L)y = c(L)ε (2.1)

with ε = (εt , t ∈ Z) a white noise sequence with variance σ 2, to be further specified below. From
the assumption on � it then follows that y is causal and invertible and also that the infinite sums
that we use below, have the right convergence properties.

The distribution of the process y satisfying (2.1) depends on θ and will be denoted by Pθ . In the
present paper σ 2 is not taken as a parameter and henceforth it will be assumed to have some fixed,
but otherwise arbitrary positive value. Let (�,F,Pθ ) be the resulting probability space. Obvi-
ously, given the observed process y, the process ε then also depends on θ and to emphasize this,
we will write ε(θ) for this process and εt (θ) for εt . Indeed, let π(z, θ) = a(z)

c(z)
= ∑∞

j=0 πj (θ)z
j ,

then

εt (θ) =
∞∑
j=0

πj (θ)yt−j , (2.2)

where for each θ ∈ � the sum converges a.s. and in L2(�,F,Pθ ), see [4], Proposition 3.1.2 and
Theorem 3.1.2. The distribution of y is further specified by assuming that y is a Gaussian process
under each Pθ .

We denote by εθit the partial derivative of εt with respect to θi and by ε̇t the row vector with
elements εθit . Of course, ε̇t depends on the whole parameter vector θ as well and so we also write
ε̇t = ε̇t (θ). As we will explain now, the gradient vector ε̇t (θ) is crucial for the computation of the
Fisher information matrix.

Recall the assumption that the process y is Gaussian and that σ 2 is some fixed constant. If we
have observations y1, . . . , yn, the log likelihood �n(θ) is then essentially given by

�n(θ) = n

2
log σ 2 − 1

2σ 2

n∑
t=1

εt (θ)
2.

The score function, by definition the gradient of �n(θ) w.r.t. θ , is then given by

�̇n(θ) = − 1

σ 2

n∑
t=1

εt (θ)ε̇t (θ). (2.3)

To emphasize that the expectations below are taken w.r.t. Pθ , we use the notation Eθ . Traditionally
in statistics, the Fisher information matrix, denoted by In(θ), is defined as the covariance matrix
of the score function. Since the expectation (taken w.r.t. the distribution under θ ) of the score
function is zero, In(θ) can then be computed as

In(θ) = Eθ �̇n(θ)
��̇n(θ).
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Given that ε̇t (θ) is (stochastically) independent of εt (θ) under Pθ , it then follows from (2.3) that

In(θ)= 1

σ 4

n∑
t=1

Eθ εt (θ)
2Eθ ε̇t (θ)

�ε̇t (θ)

= 1

σ 2

n∑
t=1

Eθ ε̇t (θ)
�ε̇t (θ). (2.4)

This motivates why ε̇t (θ) is needed for the computation of the Fisher information matrix. In
Section 6 we will come back to this issue. Now we continue to study the ε̇(θ) process. We obtain
by differentiation of (2.1) the formal expressions

ε
aj
t (θ) = 1

a(L)
εt−j (θ), (2.5)

ε
cl
t (θ) = − 1

c(L)
εt−l (θ). (2.6)

We introduce some auxiliary notation. Write for each positive integer k

uk(z) = (1, z, . . . , zk−1)�,
u∗
k(z) = (zk−1, . . . , 1)� = zk−1uk(z

−1).

It is notationally convenient to represent the process ε̇(θ) by column vectors. So we write ξ(θ)t =
ε̇(θ)�t , t ∈ Z. Let us compute the transfer function τ(z, θ) that relates ξ(θ) to ε(θ) by replacing
L with z−1 in Eqs. (2.5) and (2.6). Here z−1 represents the forward shift. One obtains from (2.5)
and (2.6)

τ(z, θ) =
( 1

â(z)
u∗
p(z)

− 1
ĉ(z)
u∗
q(z)

)
. (2.7)

In [10] we have investigated certain controllable or observable realizations of the ARMA
process y. There we have also briefly outlined a procedure without detailed proofs to obtain from
these realizations also realizations for the process ε̇(θ). We repeat the conclusions, but give in
the present paper a short proof of them, based on transfer function considerations, without using
the realizations of the ARMA process y itself. Let en be the first basis vector of the Euclidean
space Rn. When no confusion can arise (often in the proofs), we often simply write e, which we
will also use as the notation for the first basis vector in Euclidean spaces of different dimensions.
By J we denote the forward n× n shift matrix, Jij = 1 if i = j + 1 and zero else. Similarly, we
denote by I the identity matrix of the appropriate size and 0 stands for the zero vector or matrix
of appropriate dimensions. Occasionally these matrices and vectors will have a subscript, when
it is necessary to indicate the sizes.

Let ĝ(z, θ) = â(z)ĉ(z) = zp+q +∑p+q
i=1 gi(θ)z

p+q−i and ĝ(θ) the vector ĝ(θ) = (gp+q(θ),
. . . , g1(θ))

�. Likewise we have g(z, θ) = a(z)c(z) and the column vector g(θ) = (g1(θ), . . . ,

gp+q(θ))�.
The Sylvester resultant matrix R of ĉ and −â is defined as the (p + q)× (p + q) matrix

R(c,−a) =
(
Rp(c)

−Rq(a)

)
,
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where Rp(c) is the q × (p + q) matrix

Rp(c) =




1 c1 · · · cq 0 · · · 0
0 1 c1 · · · cq
...

. . .
. . .

. . .
. . .

0 · · · 0 1 c1 · · · cq




and Rq(a) is the q × (p + q) matrix given by

Rq(a) =




1 a1 · · · ap 0 · · · 0
0 1 a1 · · · ap
...

. . .
. . .

. . .
. . .

0 · · · 0 1 a1 · · · ap


 .

In the presence of common roots of â and ĉ the matrix R(c,−a) becomes singular. Moreover
it is known (see e.g. [18, p. 106]) that

detR(c,−a) = (−1)p
p∏
i=1

q∏
j=1

(γj − αi),

where the αi and the γj are the roots of â and ĉ, respectively.
Next we introduce the matrices F(θ) and G(θ) defined by

F(θ) =
(
J − epa

� 0
0 J − eqc

�
)

(2.8)

and

G(θ) = J − ep+qg(θ)�. (2.9)

Lemma 2.1. Let F(θ) and G(θ) be as in (2.8) and (2.9). Then the following relation holds:
R(c,−a)G(θ) = F(θ)R(c,−a).

Proof. The easiest way to see this, is to multiply both sides of this equation on the right with
up+q(z). Then we compute on the left hand side the product

R(c,−a)(J − ep+qg(θ)�)up+q(z)= R(c,−a)(up+q(z)− g(z, θ)ep+q)

=
(
c(z)up(z)− g(z, θ)ep

−a(z)uq(z)+ g(z, θ)eq

)
.

The computations on the right hand side are of a similar nature and an easy comparison yields
the result. �

We now present the first realization of the process ε̇(θ).

Proposition 2.2. The process ξ(θ) = ε̇(θ)� can be realized by the following stable and control-
lable system:

Zt+1 = G(θ)Zt + eε(θ)t ,

ξ(θ)t = R(c,−a)Zt , (2.10)
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whereG(θ) is as in (2.9). This system is observable iff the polynomials a and c have no common
zeros.

Proof. Let us compute the transfer function τ(·, θ) of the above system. Standard computations
show that (z−G(θ))−1e = 1

ĝ(z,θ)
u∗
p+q(z). The trivial observations Rp(c)u∗

p+q(z) = ĉ(z)u∗
p(z)

andRq(a)u∗
p+q(z)= â(z)u∗

q(z) then lead to the conclusion that τ(z, θ) = R(c,−a)(z−G(θ))−1e

is exactly the same as in (2.7). The system is obviously controllable. The observability matrix of the
system involves products of the formR(c,−a)G(θ)k (k = 0, . . . , p + q − 1). In view of Lemma
2.1 these can be written as F(θ)kR(c,−a), from which the assertion follows. Stability is an
immediate consequence of the assumptions on the polynomials a and c. Indeed, the characteristic
polynomial of G(θ) is ĝ(·, θ) = â(·)ĉ(·), which has its zeros inside the unit circle. �

An alternative (observable) realization of the process ε̇(θ) is given in the next proposition.

Proposition 2.3. The process ξ(θ) = ε̇(θ)� is the state process of the stable system given by

ξ(θ)t+1 = F(θ)ξ(θ)t + Bε(θ)t , (2.11)

where F(θ) is as in (2.8) and B =
(
ep

−eq
)
. This system is controllable iff â and ĉ have no common

zeros.

Proof. Again, the proof that this realization produces ε̇(θ) boils down to computing the transfer
function, like we did in the proof of Proposition 2.2. The computations needed for this have been
encountered there, so we skip them. To explain the statement on controllability, we consider the
equation (u, v are row vectors and λ is an arbitrary complex number)

(u, v)

(
Fa − λ 0 e

0 Fc − λ −e
)

= 0,

where Fa = J − epa
� and Fc = J − eqc

�. This equation is equivalent to u(Fa − λ) = 0,
v(Fc − λ) = 0 and (u− v)e = 0. We first consider the case where â and ĉ have no common zeros.
Suppose that u = 0. Then we have that v(Fc − λ) = 0 and ve = 0. Since (Fc, e) is controllable, v
must be zero as well. Therefore we will assume that there is a nonzero solution u. Then λmust be
a root of â(z) = 0. If v = 0, then we also have ue = 0. This situation cannot happen since (Fa, e)
is a controllable pair. So we have to assume that v is not zero, but then λ is also a root of ĉ(z) = 0.
It then follows from the above that this cannot happen. Hence (F (θ), B) is controllable. In the
other case â and ĉ have a common zero λ. In this case u is the row vector (1, â1(λ), . . . , âp−1(λ)),
where the âi are the Hörner polynomials, defined by â0(z) = 1, âk(z) = zâk−1(z)+ ak and we
have a similar expression for v. One obviously then also has (u− v)e = 0 and hence the system
is not controllable. Stability follows upon noting that the characteristic polynomial of F(θ) is
equal to ĝ(θ). �

Remark 2.4. By Lemma 2.1, the realization of Proposition 2.3 is connected to the one in Pro-
position 2.2 in a very simple way. Starting from Eq. (2.10), one obtains

ξ(θ)t+1 = R(c,−a)Zt+1

= R(c,−a)(G(θ)Zt + eεt (θ))

= F(θ)ξt + Bεt (θ).
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3. The Bezoutian

We follow the notation of Lancaster and Tismenetsky [12]. Recall the following definitions.
In this section and henceforth we assume that p and q are taken to have a common value, denoted
by n, to yield many of the subsequent expression meaningful. We consider polynomials a and
b given by a(z) = ∑n

k=0 akz
k and b(z) = ∑n

k=0 bkz
k . We will always assume that the constant

term a0 = 1 and likewise for b and other polynomials.
Consider the Bezout matrix B(a, b) of the polynomials a and b. It is defined by the relation

a(z)b(w)− a(w)b(z) = (z− w)un(z)
�B(a, b)un(w).

We often refer to this matrix as the Bezoutian. For a given complex number φ, we introduce the
matrix Uφ as follows:

Uφ =




1 0 · · · · · · 0

−φ 1
...

0
. . .

...
...

. . . 0
0 · · · 0 −φ 1



.

We also need the inverses Tφ of the matrices Uφ . These take the form

Tφ =




1 0 · · · · · · 0

φ 1 0
...

φ2 φ
. . .

. . .
...

...
. . .

. . . 0
φn−1 · · · φ2 φ 1



.

Observe that matrices Uφ and Uψ commute, as well as Tφ and Tψ .
Consider again a and b, nth order polynomials with constant term equal to 1. Let (1 − α1z)

be a factor of a(z) and (1 − β1z) be a factor of b(z). Of course, α1 and β1 are zeros of â
and ĉ respectively. Write a(z) = (1 − α1z)a−1(z) and b(z) = (1 − β1z)b−1(z). Continuing this
way, for α1, . . . , αn we define recursively a−(k−1)(z) = (1 − αkz)a−k(z) and polynomials b−k
similarly. We also put a0(z) = a(z) and b0(z) = b(z). The following proposition is not completely
necessary for what follows, but may be of independent interest. Its proof, as well as those of the
two corollaries that follow have been relegated to Appendix A.

Proposition 3.1. With the above introduced notation we have

a(z)b(w)− a(w)b(z)

z− w
= (1 − α1z)(1 − β1w)

a−1(z)b−1(w)− a−1(w)b−1(z)

z− w

+ (β1 − α1)a−1(w)b−1(z). (3.1)

In terms of the Bezoutian this is equivalent to the (non-symmetric) decomposition

B(a, b) = Uα1

(
B(a−1, b−1) 0

0 0

)
U�
β1

+ (β1 − α1)bβ1a
�
α1

(3.2)

with aα1 such that a�
α1
un(z) = a−1(z) and bβ1 likewise.
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Iteration of this procedure gives

a(z)b(w)− a(w)b(z)

z− w
= a(z)b(w)

n∑
k=1

(βk − αk)
a−k(w)b−k(z)

a−(k−1)(z)b−(k−1)(w)
, (3.3)

which gives the following expansion for the Bezout matrix

B(a, b) =
n∑
k=1

(βk − αk)Uα1 · · ·Uαk−1Uβk+1 · · ·Uβnee�U�
β1

· · ·U�
βk−1

U�
αk+1

· · ·U�
αn
.

Corollary 3.2. Let φ be a common zero of â and b̂. Then a(z) = (1 − φz)a−1(z) and b(z) =
(1 − φz)b−1(z) and

B(a, b) = Uφ

(
B(a−1, b−1) 0

0 0

)
U�
φ . (3.4)

It is a well known fact (see [12, Theorem 13.1] or [7, Theorem 8.4.3]) that the Bezout matrix
B(a, b) is non-singular iff a and b have no common factors. This also follows from Corollary 3.3
below in which we give a description of the kernel of the Bezout matrix.

Corollary 3.3. Letφ1, . . . , φm be all the common zeros of â and b̂,with multiplicities n1, . . . , nm.

Let � be the last basis vector of Rn and put

v
j
k = (T

j
φk
J j−1)��

for k = 1, . . . , m and j = 1, . . . , nk. Then kerB(a, b) is the linear span of the vectors vjk .

Remark 3.4. For more applications of confluent Vandermonde matrices to the analysis of sta-
tionary ARMA processes, we refer to [11].

4. The Bezoutian and the ARMA polynomials

In this section we continue to study some properties related to the Bezout matrix, which (aimed
at applications in Section 6) we express in terms of the ARMA polynomials a and c that define
the process y of Eq. (2.1). For a polynomial a(z) = ∑n

k=0 akz
k the matrix S(a) is given by

S(a) =



a1 a2 · · · an
a2 · · · an 0
... q q

...

an 0 · · · 0




and S(â) is given by

S(â) =



an−1 an−2 · · · a0
an−2 · · · a0 0
... q q

...

a0 0 · · · 0


 .

As before we will work with polynomials a whose constant term a0 = 1. Notice that S(â)
is connected to the reciprocal polynomial â, â(z) = ∑n

k=0 an−kzk , as is S(a) to a. Let P be the
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‘anti-diagonal identity’ matrix in Rn×n, so with elements Pij = δi,n+1−j . On a Toeplitz matrix
M pre- and postmultiplication by P results in the same as transposition: PMP = M�. We will
use this property mainly for the choice M = J , the shift matrix.

We continue under the assumption that the polynomials â and ĉ have common degree n and
consistently write e for en, the first basis vector of Rn. One of the possible relations between the
Sylvester matrix R(c,−a) and the Bezoutian B(c, a) is given below.

Proposition 4.1. The matrices R(c,−a) and B(c, a) satisfy(
P 0

PS(â)P PS(ĉ)P

)
R(c,−a) =

(
I 0
0 B(c, a)

)(
PS(ĉ)P S(c)

0 I

)
.

Proof. This relation is just a variant on Eq. (21) on [12, p. 460] and can be proven similarly. �

We will use the short hand notation

M(c, a) =
(

P 0
PS(â)P PS(ĉ)P

)
(4.1)

and

N(c) =
(
PS(ĉ)P S(c)

0 I

)
. (4.2)

Notice that bothM(c, a) andN(c) are nonsingular if a0 /= 0 and c0 /= 0 (which is our case, since
we always work with a0 = c0 = 1).

Theorem 4.2. Let F(θ), G(θ), M(c, a) andN(c) be as in Eqs. (2.8), (2.9), (4.1) and (4.2). The
following identities hold true:

M(c, a)G(θ)M(c, a)−1 =
(
P(J − ea�)P 0

(c − a)e� PJP − ce�

)
=: GM(θ) (4.3)

and

N(c)F (θ)N(c)−1 =
(
P(J − ea�)P 0

ee� J − ec�

)
=: FN(θ). (4.4)

Moreover we have the relation

GM(θ)

(
I 0
0 B(c, a)

)
=
(
I 0
0 B(c, a)

)
FN(θ). (4.5)

Before giving the proof of this theorem we formulate a few technical lemmas that will be of
use in this proof.

Lemma 4.3. The following two equalities hold true:

PS(ĉ)P (J − ec�) = (PJP − ce�)PS(ĉ)P =




0 · · · 0 1 0
... c1

...

0
...

...

1 c1 · · · cn−2 0
0 · · · · · · 0 −cn



.
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Proof. Compare to the analogous statement in [12, p. 455]. �

Lemma 4.4. Let g(z, θ) = a(z)c(z) = ∑2n
k=0 g(θ)kz

k and g(θ) = (g1(θ), g2(θ)), with g1(θ) =
(g1(θ), . . . , gn(θ)) and g2(θ) = (gn+1(θ), . . . , g2n(θ)). Then the following identities hold true:

S(ĉ)P e = e,

a�S(ĉ)P = (g1(θ)− c)�,
S(c)Pa = g2(θ). (4.6)

Proof. This is a straightforward verification. �

Along with the matrices S(c) and S(ĉ) we also use the Hankel matrix S̃(ĉ) ∈ R(n+1)×(n+1)

defined by

S̃(ĉ) =




cn · · · · · · c1 1
... 1 0
...

...

c1 1
...

1 0 · · · · · · 0



.

Lemma 4.5. One has

JS(ĉ)+ ec�P = (I 0)S̃(ĉ)

(
I

0

)
.

In particular the matrix JS(ĉ)+ ec�P is symmetric.

Proof. The following relations are immediate:

S(ĉ) = (0 I )S̃(ĉ)

(
I

0

)
(4.7)

and

ec�P = (e 0)S̃(ĉ)

(
I

0

)
. (4.8)

Use Eqs. (4.7) and (4.8) to write

JS(ĉ)+ ec�P = J (0 I )S̃(ĉ)

(
I

0

)
+ (e 0)S̃(ĉ)

(
I

0

)

= (
(0 J )+ (e 0)

)
S̃(ĉ)

(
I

0

)
,

from which the result follow. �

Proof of Theorem 4.2. Compute the products M(c, a)G(θ) and GM(θ)M(c, a) to get respec-
tively



170 A. Klein, P. Spreij / Linear Algebra and its Applications 416 (2006) 160–174

(
P(J − ea�) 0

PS(â)P (J − ea�) PS(ĉ)P (J − ec�)

)
(4.9)

and (
P(J − ea�) 0

(c − a)e� + (PJP − ce�)PS(â)P (PJP − ce�)PS(ĉ)P

)
. (4.10)

Clearly we only have to look at the (2, 1) and (2, 2) blocks in (4.9) and (4.10). Comparing the two
(2,2) blocks is just the content of Lemma 4.3, so we now focus on the (2, 1) blocks. Use Lemma
4.3 again to write PS(â)P (J − ea�) the (2, 1) block of (4.9) as

(PJP − ae�)PS(â)P = PJS(â)− ae�P = PJS(â)− ce�P + (c − a)e�P
= PJS(â)− ce�PS(â)P + (c − a)e�P,

which is just the (2, 1) block of (4.10). This proves the identity (4.3).

Next we prove (4.4). WriteK(θ) =
(
J − eg1(θ)� −eg2(θ)�

ee�P J

)
. Work out the productsN(c)K(θ)

and FN(θ)N(c) to get respectively(
PS(ĉ)P (J − eg1(θ)�)+ S(c)ee�P −PS(ĉ)P eg2(θ)� + S(c)J

ee�P J

)
(4.11)

and (
P(J − ea�)S(ĉ)P P (J − ea�)PS(c)
ee�PS(ĉ)P ee�S(c)+ J − ec�

)
. (4.12)

Compare now the corresponding blocks in these two matrices. We start with the (1, 1) block of
(4.11). Write it as

P(S(ĉ)PJP + Pce�)P − Peg1(θ)� = P(S(ĉ)J� + Pce�)P − Peg1(θ)�

and use the symmetry asserted in Lemma 4.5 to get

P(JS(ĉ)+ ec�P)P − Peg1(θ)� = PJS(ĉ)P + e(c� − g1(θ)�)
= PJS(ĉ)P − Pea�S(ĉ)P,

which equals the (1, 1) block of (4.12).
Next we consider the (1, 2) blocks. Start with (4.11):

−PS(ĉ)P eg2(θ)� + S(c)J = −Peg2(θ)� + S(c)J = −Pea�PS(c)+ S(c)J,

where the last equality just follows from (4.6). Since S(c)J is symmetric it is equal to J�S(c) =
PJPS(c). Hence

−Pea�PS(c)+ S(c)J = P(J − ea�)PS(c),

which is equal to the (1,2) block of (4.12). Comparison of the other blocks is trivial.
Finally we prove (4.5). Recall from Lemma 2.1 that G(θ)R(c,−a) = R(c,−a)F (θ). Write

B(θ) for
(
I 0
0 B(c, a)

)
. Then we have the string of equalities
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GM(θ)B(θ)= GM(θ)M(c, a)R(c,−a)N(c)−1 = M(c, a)G(θ)R(c,−a)N(c)−1

= M(c, a)R(c,−a)F (θ)N(c)−1 = B(θ)N(c)F (θ)N(c)−1 = B(θ)FN(θ).

This proves the last assertion of the theorem. �

5. Stein equations

We start this section with considering two Stein equations that involve the matrices FM(θ) and
GN(θ) of Eqs. (4.3) and (4.4).

Proposition 5.1. Let e�P = [e�P, 0]� ∈ R2n and let H(θ) and Q(θ) be the unique solutions to
the following Stein equations:

H = GM(θ)HGM(θ)
� + eP e

�
P , (5.1)

Q= FN(θ)QFN(θ)
� + eP e

�
P . (5.2)

Then Q(θ) is strictly positive definite. Moreover, H(θ) and Q(θ) are related by

H(θ) =
(
I 0
0 B(c, a)

)
Q(θ)

(
I 0
0 B(c, a)

)
. (5.3)

Proof. To show that Q(θ) is strictly positive definite, it is sufficient to show that the pair

(FN(θ), eP ) is controllable. Let T =
(
P 0
0 I

)
. For computational reasons it is more convenient to

show controllability of the pair (A(θ), b), whereA(θ) = T FN(θ)T
−1 and b = T FN(θ). Observe

that b = e2n, the first standard basis vector in R2n, whereas A(θ) =
(
J − ea�P 0
ee�P J − ec�

)
. If one

computes the controllability matrix (b,A(θ)b, . . . , A2n−1(θ)b), then standard calculations lead
to the fact that this matrix is upper triangular with only ones on the diagonal. Hence it has full
rank. By Theorem 8d.66 of [5] the matrix Q(θ) is strictly positive definite.

Multiply Eq. (5.2) withQ = Q(θ) on the right and on the left by the symmetric matrix T (θ) =(
I 0
0 B(c, a)

)
and put H(θ) = T (θ)Q(θ)T (θ). In view of relation (4.5) H(θ) satisfies Eq. (5.1)

and is thus the unique solution to this equation. This shows (5.3). �

Corollary 5.2. The matrix H(θ) is non-singular iff the polynomials a and c have no common
factors.

Proof. The matrix Q(θ) is non-singular and B(c, a) is singular iff the polynomials a and c have
no common factors. �

Remark 5.3. If the polynomials a and c have a common factor (1 − φz), then the expression for
B(c, a) of Eq. (3.4) can be applied to obtain a rank factorization of H(θ).

Along with the matricesH(θ) andQ(θ) of Proposition 5.1 we will also work with the matrices
I(θ) and P(θ), defined in

I(θ) = M(c, a)−1H(θ)M(c, a)−�, (5.4)

P(θ) = N(c)−�Q(θ)N(c)−1, (5.5)
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whereM(c, a) and N(c) are as in (4.1) and (4.2). In view of Eqs. (4.3) and (4.4) and Proposition
5.1, we have that I(θ) and P(θ) are the (unique) solutions to the Stein equations

I = F(θ)IF(θ)� + BB�,

P = G(θ)PG(θ)� + e2ne
�
2n.

(5.6)

Corollary 5.4. The matrix P(θ) is non-singular and the matrix I(θ) is non-singular iff the
polynomials a and c have no common factors.

Proof. Since the matricesM(c, a) andN(c) are non-singular, the results follow from Proposition
5.1 and Corollary 5.2. �

6. Fisher’s information matrix

We turn back to the ARMA process y defined by (2.1) and the Fisher information matrix.
Recall Eq. (2.4) for the computation of the matrix In(θ). Remember that for ε̇t (θ) we have the
realizations of Propositions 2.2 and 2.3. For it (θ) :=Eθ ε̇t (θ)

�ε̇t (θ) we get from Eq. (2.11) and
the independence of εt (θ) and ε̇t (θ) the recursion

it+1(θ) = F(θ)it (θ)F (θ)
� + σ 2BB�. (6.1)

Because of stationarity we have it+1(θ) = it (θ) for all t. Hence In(θ) = n

σ 2 Eθ i1(θ). We call

1

σ 2
Eθ i1(θ) (6.2)

the asymptotic Fisher information matrix. Summing up intermediate results, we obtain the fol-
lowing theorem.

Theorem 6.1. The asymptotic Fisher information matrix of the ARMA process defined by (2.1)
is the same as the matrix I(θ) defined in Eq. (5.4). Hence it is the unique solution to the Stein
equation (5.6)and thus independent ofσ 2.Moreover this matrix is non-singular iff the polynomials
a and c have no common factors.

Proof. From Eqs. (6.1) and (6.2) and the stationarity assumption, one immediately sees that the
asymptotic Fisher information matrix satisfies (5.6). Hence it is equal to I(θ) and the character-
ization of non-singularity is nothing else but Corollary 5.4. �

The conclusion of this theorem has been proved in [10] by different means, involving repre-
sentations of the Fisher information matrix as an integral in the complex plane and the following
lemma of which we give an alternative proof.

Lemma 6.2. Let I(θ) be the Fisher information matrix and P(θ) as in (5.5). Then the following
factorization holds:

I(θ) = R(c,−a)P(θ)R(c,−a)�. (6.3)

Proof. This follows from Proposition 4.1, combined with Eqs. (5.3), (5.4) and (5.5). �
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Since the matrix P(θ) is non-singular, also Lemma 6.2 illustrates the fact that I(θ) is non-
singular iff a and c have no common factors. Moreover, looking at Eq. (5.6), we see that I(θ) is
non-singular iff the pair (F (θ), B) is controllable. But the controllability matrices R(F (θ), B)
and R(G(θ), e) satisfy the easily verified relation R(F (θ), B) = R(c,−a)R(G(θ), e). Since the
matrix R(G(θ), e) has full rank, we see that (F (θ), e) is controllable iffR(c,−a) is non-singular,
which leads to another way of showing the conclusion of Theorem 6.1.

Appendix A. Proofs of Section 3

Proof of Proposition 3.1. Eq. (3.1) follows from elementary computations. To prove (3.2) we
premultiply both sides of the equation by un(z)� and postmultiply them by un(w). The obtained
left hand side then is obviously equal to the left hand side of (3.1). To show that the right hand
sides coincide one uses that un(z)�Uα1 = (1 − α1z)(un−1(z)

�, 0)+ (0, . . . , 0, zn−1). Then the
assertion easily follows from the definition of B(a−1, b−1). To prove the other assertions, we
proceed as follows. First we show how the right hand sides of Eqs. (3.3) and (3.1) are related. We
pre-multiply the right hand side of (3.1) by un(z)�. The important key relation is

un(z)
�Uα1 · · ·Uαk−1Uβk+1 · · ·Uβne =

k−1∏
j=1

(1 − αjz)

n∏
j=k+1

(1 − βjz),

which is easily shown to be true. Of course the right hand side of this equation is nothing else but

a(z)

a−(k−1)(z)
b−k(z).

Then post-multiplication of the obtained expression by un(w) obviously results in the right hand
side of (3.3).

We now show by induction that this is equal toun(z)�B(a, b)un(w). LetA(z)= (1−α0z)a(z),
B(z) = (1 − β0z)b(z). Define

A−k(z) = A(z)∏k
j=0(1 − αjz)

and define B−k(z) likewise (k = 0, . . . , n). We also letA1(z) = A(z) and B1(z) = B(z). We will
use the following trivial identities. For k = 1, . . . , n we have A−k(z) = a−k(z) and B−k(z) =
b−k(z).

A(z)B(w)

n∑
k=0

(βk − αk)
A−k(w)B−k(z)

A−(k−1)(z)B−(k−1)(w)

= (β0 − α0)a(w)b(z)+ (1 − α0z)(1 − β0w)a(z)b(w)

n∑
k=1

(βk − αk)
a−k(w)b−k(z)

a−(k−1)(z)b−(k−1)(w)
.

In view of (3.1) and the induction assumption, this equals A(z)B(w)−A(w)B(z)
z−w . The proposition

has been proved. �

Proof of Corollary 3.2. This is a straightforward consequence of Proposition 3.1. �

Proof of Corollary 3.3. First we have to show that the vectors vjk are independent. Explicit com-
putation of these vectors show that, after multiplication with P, they are columns of the confluent
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Vandermonde matrix associated with all zeros of â, from which independence then follows. For
j = 1, it follows immediately from Corollary 3.2 that the v1

k belong to the kernel of the Bezout
matrix. When φk is common zero with multiplicity j > 1 we can factor the matrix B(a−1, b−1)

in (3.4) like B(a, b), but with one dimension less. However, one can then show that also

B(a, b) = U2
φk

(
B(a−2, b−2) 0

0 0

)(
U�
φk

)2
,

where for instance the 0-matrix in the lower right corner now has size 2 × 2. Continuation of this
procedure leads to

B(a, b) = U
j
φk

(
B(a−j , b−j ) 0

0 0

)
(U�

φk
)j

for j = 1, . . . , nk . Since the last j columns of B(a, b) are thus zero vectors, one immediately sees
that B(a, b)vjk = 0. The proof is complete upon noticing that the kernel of the Bezout matrix has
dimension equal to n1 + · · · + nm (cf [7, Theorem 8.4.3]). �
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