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The purpose of this paper is to set forth easily implementable

expressions for the Fisher information matrix (FIM) of a Gauss-

ian stationary vector autoregressive and moving average process

with exogenous or input variables, a vector ARMAX or VARMAX

process. The entries of the FIM are represented as circular integral

expressions and canbe computedby applyingCauchy’s residue the-

orem. An extension of the Whittle formula for the FIM of multiple

time series processes is developed for VARMAX processes. It will

be shown that the extendedWhittle formula yields the FIMwhen a

bivariate structure, consisting of theVARMAXprocess and the exog-

enous-input process, is considered. Consequently, the equivalence

between a frequency and time domain representation of the FIM

of VARMAX processes is established. In order to obtain the results

presented in this paper, the differentiation techniques developed

and used in [A. Klein, P. Spreij, An explicit expression for the Fisher

informationmatrix of amultiple time series process, Linear Algebra

Appl. 417 (2006) 140–149] are applied.
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1. Introduction

Thepurpose of this paper is to set forth easily implementable expressions for the Fisher information

matrix of a Gaussian stationary vector autoregressive and moving average process with exogenous or
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input variables, a vector ARMAX or VARMAX process. A difficult computational problem involved in

the statistical inference from time series is that of determining the asymptotic covariancematrix of the

maximum likelihood estimators. The asymptotic covariancematrix is obtained by inverting the Fisher

informationmatrix. The Fisher information plays a vital role in estimation theory and statistical signal

processing and control, see e.g. [3,7] andmore recently in physics, see e.g. [5,6]. VARMAXprocesses are

of commonuse in signal processing, control and system theory and statistics, see e.g. [18,9]. The entries

of theFisher informationmatrix representedas circular integral expressions andcomputedbyapplying

Cauchy’s residue theorem. It concerns the evaluation of integrals of a rational function over the unit

circle. These integrals can be computed by recursions with respect to the degree of the polynomials,

see e.g. [23]. However, a more efficient and faster method consists of transforming the problem to the

evaluation of the autocovariances of an ARMA process by means of the algorithm developed in [4].

Until recently the asymptotic covariance matrix of the Gaussian VARMA model has been stated

only in terms of formulas involving integration over the frequency domain. For stationary time series

models without inputs, the Whittle formula, developed in the pioneering paper [24], for the Fisher

information matrix of multiple time series processes, is a frequency-domain integral representation

and used in [21] to derive closed form expressions for the VARMA case. In [14], an equivalence between

a frequency and time domain representation of the Fisher information matrix of VARMA processes is

established. It is worth emphasizing that many results on the asymptotic Fisher information matrix

of multiple time series processes are limited to these processes. In most of these cases, except in [15],

Whittle’s formula is used, see e.g. [21].

In the present paper, theWhittle formula is extended toVARMAXprocesses. Since a straightforward

application of theWhittle formula in a VARMAX context does not yield the Fisher informationmatrix,

an alternative approach will be developed. It will be shown that the original Whittle formula can be

used to obtain the Fisher information matrix of a VARMAX model, when the process is rewritten in a

bivariate form. The latter combinesboth theVARMAXprocess aswell as the exogenous stationary input

process. The Fisher information matrix of VARMAX processes as well as the corresponding extended

Whittle formula developed in this paper are set forth both at the full matrix and block matrix level.

We will establish equivalence between a frequency and time domain representation of the Fisher

information matrix.

In order to obtain the results presented in this paper, we apply the methods developed in [15] to

obtain the Fisher information matrix of a VARMA process. These methods involve differentiation of

the error process with respect to the parameter matrices. In many studies, e.g. [14,16,19] when differ-

entiation is applied in statistics andmatrix calculus, the differentiationmethods use the vectorization

of matrices and matrix products in order to obtain the desired representations. In the present paper

the differentiation is such that the structure of the matrix is left unchanged.

For other applications of matrix derivatives in statistics, see e.g. [19]. More recent developments

on matrix derivatives are well covered in the survey paper by Wong [25]. Matrix calculus finds also

applications in other areas of interest. Themathematical methods of quantum statistical inference are

based on matrix derivatives, see e.g. [1,2]. For applications in econometrics, see e.g. [20].

Consider the vector difference equation representation of a linear system {y(t), t ∈ Z}, Z the set of

integers, of order (p, r, q)
p∑

j=0

αjy(t − j) =
r∑

j=0

γjx(t − j)+
q∑

j=0

βjε(t − j), t ∈ Z, (1)

where y(t), x(t) and ε(t) are the outputs, the observed inputs x(t) also named the exogenous or con-

trol variable depending on the field of application (econometrics, signal processing and systems and

control), and the errors, respectively, and where αj ∈ Rn×n
, γj ∈ Rn×m

, and βj ∈ Rn×n
are the associate

parameter matrices. We impose α0 ≡ β0 ≡ In.

Eq. (1) can compactly be written as

α(L)y(t) = γ (L)x(t)+ β(L)ε(t), (2)

where

α(L) =
p∑

j=0

αjL
j; γ (L) =

r∑
j=0

γjL
j; β(L) =

q∑
j=0

βjL
j ,
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where L denotes the backward shift operator, e.g. Lx(t) = x(t − 1). The estimation of the matrices

α1,α2, . . . ,αp, γ1, γ2, . . . , γr ,β1,β2, . . . ,βq has received considerable attention in the time series and sta-

tistical signal processing literature, see e.g. [3,8,10,18].

The left-hand side of (1) is the autoregressive part, the second term on the right-hand side the

moving average part and process x(t) are the input variables. The error {ε(t), t ∈ N} is a collection

of uncorrelated zero mean n-dimensional random variables each having positive definite covariance

matrix� andwe assume, for all s, t,Eϑ {x(s)ε�(t)} = 0,where�denotes the transposition andEϑ repre-
sents the expected value under the parameter ϑ . Thematrix ϑ represents all the VARMAX parameters,

with the total number of parameters being n2(p + q)+ mn(r + 1). The choice for the n × {n(p + q)+
m(r + 1)} parameter matrix is

ϑ = (ϑ1 ϑ2 · · · ϑp ϑp+1 ϑp+2 · · · ϑp+r ϑp+r+1 ϑp+r+2 ϑp+r+3 · · · ϑp+r+q+1),

(3)

= (α1 α2 · · · αp γ0 γ1 · · · γr−1 γr β1 β2 · · · βq). (4)

Theobserved input variable x(t) is assumed tobea stationaryprocesswith spectral densityRx(·)/2π .
If x(t) is am-dimensional VARMA process satisfying

a(L)x(t) = b(L)η(t), (5)

then

Rx(e
iω) = a−1(eiω)b(eiω)�b∗(eiω)a−∗(eiω), ω ∈ [−π ,π ], (6)

where E{η(t)η�(t)} = �.

The assumptiondet(α(z)) /= 0, |z| � 1anddet(β(z)) /= 0, |z| � 1ensures that ε(t) are the linear inno-

vations, in the linear prediction of y(t) from x(s), y(s) when s < t. The elements of α−1(z) and β−1(z)

can be written in power series in z. In [13], the scalar version of (2) is considered. The authors proved

that the asymptotic Fisher informationmatrix is singular if and only if the scalar polynomials α(z), β(z)

and γ (z) have at least one common root. In [16], the same property is considered for the asymptotic

Fisher information matrix of a VARMA process. The authors show that the Fisher information matrix

becomes singular if and only if the VARMAmatrix polynomials have at least one common eigenvalue.

A similar result probably holds for the VARMAX case as well.

The {n2(p + q)+ mn(r + 1)} × {n2(p + q)+ mn(r + 1)} asymptotic Fisher information matrix of the

VARMAX process is given by

F(ϑ) = Eϑ

{(
�ε
�ϑ

)�
�−1

(
�ε
�ϑ

)}
. (7)

Thepaper isorganizedas follows. The techniqueofdifferentiationwith respect toamatrixapplied to

theVARMAXprocess isdescribed inSection2.Aconvenient representation for thederivative�ε/�ϑwill

be constructed in order to evaluate (7). In Section 3, the results developed in Section 2 are used to con-

struct the entries of the Fisher information matrix of a VARMAX process and closed form expressions

arederived. In Section4,weemphasize the fact thatWhittle’s formula for the Fisher informationmatrix

of a VARMA process cannot be directly used for a VARMAX process. We therefore present an extended

Whittle formula which corresponds to the Fisher information matrix of a VARMAX process. In the

appendix explicit expressionsof theblockmatrix representations of theWhittle formula arepresented.

2. Differentiation of the error process

In this section, the approach used in [15] is extended to a VARMAX process since a new component,

the input process x(t), is introduced. This will lead to an appropriate representation for �ε/�ϑ . Let us
first briefly outline the differentiation rules used in the present paper.

Consider a real, differential (m × n)matrix function X(ϑ) of a real (1 × 
) vector ϑ = (ϑ1,ϑ2, . . . ,ϑ
),

wherem,n and 
 are positive integers. Let the (m × n)matrices �rX = (�Xij/�ϑr)with r = 1, 2, . . . , 
 be

the first order partial derivatives of X(ϑ)with Xij the (i, j) element of X . Write dXij = ∑

r=1(�Xij/�ϑr)dϑr
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where dϑr is an arbitrary perturbation of ϑr . The (m × n) matrix dX = (dXij) is the differential form

of the first order derivative X(ϑ). An expression in differential form can instantaneously be put into a

partial derivative form by replacing d with �r for r = 1, 2, . . . , 
.

Let X(ϑ) and Y(ϑ) be real (m × n) and (n × p) differentiable matrix functions of the real vector

ϑ(
+ 1), where m,n, p and 
 are positive integers. The usual scalar product rule of differentiation

yields

d(XY) = (dX)Y + X(dY).

Consider now the VARMAX Eq. (2). From (2) one obtains

y(t) = α−1(L)γ (L)x(t)+ α−1(L)β(L)ε(t). (8)

Before applying the appropriate differentiation technique to Eq. (8), we note the properties dy(t) = 0

and dx(t) = 0, where dw(t) is the total differential of a process w(t) with respect to the parameters

α1 α2 · · · αp γ0 γ1 · · · γr−1 γr β1 β2 · · · βq, because the realizations of the processes y(t) and x(t) do not

depend on these parameters. Below we also use the differential rule, see e.g. [17]

dα−1(L) = −α−1(L)dα(L)α−1(L). (9)

When for typographical brevity the time argument for x(t) and ε(t) is omitted, we have for the

VARMAX process given in (8)

dε = β−1(L)dα(L)α−1(L)γ (L)x − β−1(L)dγ (L)x

+ β−1(L)dα(L)α−1(L)β(L)ε − β−1(L)dβ(L)ε. (10)

We can now develop (10), using (3) and (4) according to

�ε
�ϑ

�ϑ = β−1(L){L�ϑ1 + L2�ϑ2 + · · · + Lp�ϑp}α−1(L)γ (L)x

− β−1(L){�ϑp+1 + L�ϑp+2 + L2�ϑp+3 + · · · + Lr�ϑp+r+1}x
+ β−1(L){L�ϑ1 + L2�ϑ2 + · · · + Lp�ϑp}α−1(L)β(L)ε

− β−1(L){L�ϑp+r+2 + L2�ϑp+r+3 + · · · + Lq�ϑp+r+q+1}ε, (11)

where �ϑi is an arbitrary perturbation of ϑi.

The last two terms in (11) are given in [15] and since the method used in this section has been

introduced in [15], we will give a short description of the results, emphasizing the differences caused

by the presence of the input process.

To construct the first n2 columns of the matrix �ε/�ϑ , we define the n × nmatrix Eij = eie
�
j
, where

ei and ej are respectively the ith and jth standard basis vectors in Rn
, see [15]. The first n columns

will be set forth by considering the n standard basis vectors e1, e2, . . . , en in Rn
belonging to Ei1, for

i = 1, 2, . . . ,n. The standard basis matrices or block vectors necessary for deriving the first n columns

of �ε/�ϑ , corresponding to differentiation with respect to ϑ1, are(
Ei1 0n×n · · · 0n×n 0n×m · · · 0n×m 0n×n · · · 0n×n

)
.

In (11) �ϑ1 shall consist of the first n × n matrices Ei1 with i = 1, 2, . . . ,n, whereas all remaining

�ϑj , where j = 2, . . . , p + r + q + 1, are zero. Consequently, the first n columns of �ε/�ϑ are given by

Lβ−1(L)Ei1α
−1(L)γ (L)x + Lβ−1(L)Ei1α

−1(L)β(L)ε.

A similar method is applied to the n2 − n remaining columns associated with ϑ1.

We proceed in a similar manner for the remaining columns associated with�ϑ2, . . . ,�ϑp−1 in (11).

For ϑp the standard basis block vectors are then given by

pth n × n block

↓(
0n×n . . . 0n×n Eij 0n×m . . . 0n×m 0n×n . . . 0n×n

)
.
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The corresponding n2 columns are given by

Lpβ−1(L)Eijα
−1(L)γ (L)x + Lpβ−1(L)Eijα

−1(L)β(L)ε.

We now consider the construction of the nm(r + 1) columns associated with ϑp+1,ϑp+2, . . . ,ϑp+r ,

ϑp+r+1. For that purpose we introduce the n × m matrix Eij = en
i
(em

j
)� where en

i
is the ith standard

basis vector in Rn
and em

j
is the jth standard basis vector in Rm

. For a column associated with ϑp+k

where k = 1, 2, . . . , r + 1, the standard basis matrix–vector is then

kth n × m block

↓(
0n×n . . . 0n×n 0n×m Eij . . . 0n×m 0n×n . . . 0n×n

)
.

The corresponding columns of �ε/�ϑ are then

−Lkβ−1(L)Eijx.

Similarily, as for the first n2p columns, the n2q columns associated with ϑp+r+2,ϑp+r+3, . . . ,ϑp+r+q+1

have the representation

−Lkβ−1(L)Eijε,

where k = 1, 2, . . . , q and for each k we have the same specification for the matrices Eij as for the first

n2p columns.

We shall summarize the obtained results in Proposition 2.1, an extension of Proposition 3.1 in [15].

For that purpose we define

φxij(L) = β−1(L)Eijα
−1(L)γ (L) and φεij(L) = β−1(L)Eijα

−1(L)β(L), (12)

ψx
ij(L) = −β−1(L)Eij and ψεij(L) = −β−1(L)Eij. (13)

Put

�(L) = (φx11(L)x + φε11(L)ε,φ
x
21(L)x + φε21(L)ε, . . . ,φ

x
n1(L)x

+ φεn1(L)ε,φ
x
12(L)x + φε12(L)ε,φ

x
22(L)x + φε22(L)ε, . . . ,φ

x
n2(L)x

+ φεn2(L)ε, . . . ,φ
x
1n(L)x + φε1n(L)ε,φ

x
2n(L)x + φε2n(L)ε, . . . ,φ

x
nn(L)x

+ φεnn(L)ε),

�(L) = (ψx
11(L)x,ψ

x
21(L)x, . . . ,ψ

x
n1(L)x,ψ

x
12(L)x,ψ

x
22(L)x, . . . ,ψ

x
n2(L)x, . . . ,

ψx
1m(L)x,ψ

x
2m(L)x, . . . ,ψ

x
nm(L)x),

�(L) = (ψε11(L)ε,ψ
ε
21(L)ε, . . . ,ψ

ε
n1(L)ε,ψ

ε
12(L)ε,ψ

ε
22(L)ε, . . . ,ψ

ε
n2(L)ε, . . . ,

ψε1n(L)ε,ψ
ε
2n(L)ε, . . . ,ψ

ε
nn(L)ε),

where the matrices �(L),�(L) and �(L) have dimension n × n2, n × nm and n × n2, respectively.

Proposition 2.1. The following representation of the {n × ((n2(p + q)+ mn(r + 1))} matrix �ε/�ϑ holds

true when the parameter matrix ϑ given in (3) is considered:

�ε
�ϑ

= (L�(L), L2�(L), . . . , Lp�(L),�(L), L�(L), L2�(L), . . . , Lr�(L),

L�(L), L2�(L), . . . , Lq�(L)

= L{(1, L, L2, . . . , Lp−1)⊗ �(L), (L−1, 1, L, . . . , Lr−1)⊗ �(L),

(1, L, L2, . . . , Lq−1)⊗ �(L)}
= L{u�

p (L)⊗ �(L), L−1u�
r+1(L)⊗ �(L),u�

q (L)⊗ �(L)}, (14)

where u�
k
(L) = (1, L, L2, . . . , Lk−1) for positive integers k and ⊗ is the Kronecker product of two matrices.
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3. Closed form expressions for the entries of the Fisher information matrix

Easily implementable representations of the entries ofF(ϑ) shall be set forth by applying expres-

sion (14)–(7). We proceed with the block representation ofF(ϑ)which is given by

F(ϑ) =
⎛
⎝Fαα(ϑ) Fαγ (ϑ) Fαβ(ϑ)

Fγα(ϑ) Fγ γ (ϑ) Fγβ(ϑ)

Fβα(ϑ) Fβγ (ϑ) Fββ(ϑ)

⎞
⎠ . (15)

In a dynamic stationary stochastic context it has long been shown useful to use Fourier transform

representations, which provide alternative circular integral representations. For evaluatingF(ϑ), the

integral

F(ϑ) = 1

2π i

∮
|z|=1

⎛
⎝Iαα(ϑ) Iαγ (ϑ) Iαβ(ϑ)

Iγα(ϑ) Iγ γ (ϑ) Iγβ(ϑ)

Iβα(ϑ) Iβγ (ϑ) Iββ(ϑ)

⎞
⎠ dz

z
(16)

is considered, where the integration in (16) and everywhere below is counterclockwise around the

unit circle. We shall first consider an arbitrary entry of blockIαα(ϑ). The other blocks can be treated

similarly. For thatpurposeauseful equality is introduced. Consider thediscrete-timestationaryprocess

w(t) where w(t) = H(L)u(t) and the input process is described by u(t) = G(L)v(t). H(L) and G(L) are

asymptotically stable filters. For evaluating the cross covariance matrix of the output w(t) and the

input u(t), the equality

Eϑ {w(t)u�(t)} =
∫ π

−π
�wu(ω)dω, ω ∈ [−π ,π ] (17)

holds true, where �wu(ω) is the cross spectral density of the proceses w(t) and u(t). It is defined as

�wu(ω) = H(eiω)�u(ω)where �u(ω) is the spectral density of the input process u(t)which is given by

�u(ω) = G(eiω)�v(ω)G
∗(eiω). (18)

Expression (18), which is a Hermitian matrix, is the definition of the spectral density of the stationary

process u(t). Here Y∗ denotes the complex conjugate transpose of the matrix Y and �v(ω) is the

spectral density of the process v(t). When representation (14) is inserted in (7), an arbitrary element

of submatrixFαα(ϑ) then takes the form

Eϑ {Tr(Lk+1φxij(L)x(L
v+1φxlf (L)x)

��−1
)}

+ Eϑ {Tr(Lk+1φεij(L)ε(L
v+1φε

lf
(L)ε)��−1

)}, (19)

where Tr(M) is the trace of a square matrix M and v, k = 0, 1, 2, . . . , p − 1 and i, j, l, f = 1, 2, . . . ,n. The

indices (i, j) and (l, f ) are associatedwith the non-zero elements of thematrices Eij and Elf , respectively,

whereas the indices k and v are associated with the corresponding coefficients αk and αv of the matrix

polynomial α(z). We consider the first part of (19) and using formula (17) yields

w(t) = Lk+1φxij(L)x and u(t) = �−1
Lv+1φxlf (L)x.

The Hermitian positive definite spectral density of the process u(t) is, by virtue of (18), equal to

1

2π
{�−1

φxlf (e
iω)Rx(e

iω)(φxlf (e
iω))∗�−1}.

Interchanging expectation Eϑ and trace in the first part of (19) and application of (17) leads to

1

2π

∫ π

−π
Tr{eiω(k−v)φxij(e

iω)Rx(e
iω)(φxlf (e

iω))∗�−1}dω.

Equivalently, for z = eiω , we have

(Fx
αα(ϑ))

k,v
i,j,l,f

= 1

2π i

∮
|z|=1

zk−vTr(φxij(z)Rx(z)(φ
x
lf (z))

∗�−1
)
dz

z
. (20)
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The second part of (19) is now considered. We choose

w(t) = Lk+1φεij(L)ε and u(t) = �−1
Lv+1φε

lf
(L)ε.

The connection between the processes u(t) and w(t) is

w(t) = Lk−vφεij(L)(φ
ε
lf
(L))−1�u(t).

Since the process ε is white noise, it has a constant spectral density equal to (1/2π)�. The spectral

density of the process u(t) is then by virtue of (18) equal to

1

2π
{�−1

φεij(e
iω)�(φε

lf
(eiω))∗�−1}.

Interchanging expectation Eϑ and trace in the second part of (19) and application of (17) leads to

1

2π

∫ π

−π
Tr{eiω(k−v)φεij(e

iω)�(φε
lf
(eiω))∗�−1}dω.

Equivalently, for z = eiω , we have

(Fε
αα(ϑ))

k,v
i,j,l,f

= 1

2π i

∮
|z|=1

zk−vTr(φεij(z)�(φ
ε
lf
(z))∗�−1

)
dz

z
. (21)

Both for (20) and (21) we have, i, j, l, f = 1, 2, . . . ,n. Consequently, in agreement with (19)–(21) we have

(Fαα(ϑ))
k,v
i,j,l,f

= (Fx
αα(ϑ))

k,v
i,j,l,f

+ (Fε
αα(ϑ))

k,v
i,j,l,f

.

A similar approach is used for the remaining components of the Fisher information matrixF(ϑ). An

elementwise representation ofF(ϑ) in (16) then becomes

(Fαγ (ϑ))
k,g
i,j,l,f

= 1

2π i

∮
|z|=1

zg−kTr(ψx
lf (z)Rx(z)(φ

x
ij(z))

∗�−1
)
dz

z
, (22)

where i, j, l = 1, 2, . . . ,n and f = 1, 2, . . . ,m. The fact that Rx(z) is Hermitian, yields

(Fγα(ϑ))
d,v
i,j,l,f

= 1

2π i

∮
|z|=1

zv−dTr(�−1
φxlf (z)Rx(z)(ψ

x
ij(z))

∗)dz
z
, (23)

where g, d = 0, 1, . . . , r and i, f , l = 1, 2, . . . ,n and j = 1, 2, . . . ,m.

Furthermore, we have

(Fαβ(ϑ))
k,s
i,j,l,f

= 1

2π i

∮
|z|=1

zs−kTr(ψε
lf
(z)�(φεij(z))

∗�−1
)
dz

z
(24)

and

(Fβα(ϑ))
c,v
i,j,l,f

= 1

2π i

∮
|z|=1

zv−cTr(�−1
φε
lf
(z)�(ψεij(z))

∗)dz
z
, (25)

where s, c = 0, 1, . . . , q − 1 and i, j, l, f = 1, 2, . . . ,n.

Finally

(Fγ γ (ϑ))
d,g
i,j,l,f

= 1

2π i

∮
|z|=1

zd−gTr(ψx
ij(z)Rx(z)(ψ

x
lf (z))

∗�−1
)
dz

z
, (26)

where i, l = 1, 2, . . . ,n and j, f = 1, 2, . . . ,m. Similarly

(Fββ(ϑ))
c,s
i,j,l,f

= 1

2π i

∮
|z|=1

zc−sTr(ψεij(z)�(ψ
ε
lf
(z))∗�−1

)
dz

z
, (27)

where i, j, l, f = 1, 2, . . . ,n.

The fact that the input x(t) and the noise ε(t) are orthogonal processes implies that

Fγβ(ϑ) = 0. (28)
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The abovematrix representations (20)–(27) are multivariate extensions of their scalar couterparts,

see [13]. The algorithm developed in [4] can be used for computing (20)–(27) as well as the computer

program displayed in [23] and based on [22] algorithm.

For an appropriate computation of (α(z))−1, (β(z))−1, (α(z−1))−1 and (β(z−1))−1 which appear in

(20)-(27), we refer to procedures proved in [11] and used in [16]. In [21] closed form expressions for

the Fisher information matrix of a VARMA process are set forth. These representations are derived

from the Whittle formula where the derivatives of the spectral density of the output process y(t) are

considered. The closed form expressions given in [21] aswell as (20)–(27) are easily implementable. In

[14] the equivalence between the VARMA version of (7) and amatrix-level representation ofWhittle’s

formula is established. In the next section a similar interconnection is set forth for a VARMAX process.

4. An extension of the Whittle formula to VARMAX processes

In this section an extension of theWhittle formula is set forth. An equivalence between two repre-

sentations is then established. It concerns a time and frequency-domain representation given by (7)

and the latter is a circular integral with a Hermitian integrand. First we show that theWhittle formula

for VARMAprocesses derived in the pioneering paper [24] does not yield the Fisher informationmatrix

of VARMAX processes when the spectral density of the observations y(t) given in (2) is considered.

For that purpose we recall the known representation of the Fisher information matrix of multiple

stationary time series processes or VARMA process developed in [24]

Fe,h
ijkl(ϑ) = 1

4π

∫ π

−π
Tr

(
�fy(eiω)

�ϑe
ij

f−1
y (eiω)

�fy(eiω)
�ϑh

lk

f−1
y (eiω)

)
dω, (29)

where fy(e
iω) is the spectral densitymatrix of the process y(t). The spectral density of the process given

by (2) with z = eiω is

fy(z) = 1

2π
(α−1(z)γ (z)Rx(z)γ

∗(z)α−∗(z)+ α−1(z)β(z)�β∗(z)α−∗(z)). (30)

It can be verified that the representations of the VARMA components of the Fisher informationmatrix

of the VARMAX process (2), as derived in the previous section, are equivalent with the corresponding

schemes developed through (29), see [21,15]. It concerns the representations (21), (24), (25) and (27).

However, such an equivalence does not hold for the exogenous components of (2)when (29) is applied.

Thiswill be illustrated in the next section bymeans of an examplewhere representation (29) is applied

to a parameter associated with an exogenous component of process (2).

4.1. An example of the Whittle formula for a VARMAX process

Consider the following VARMAX process with n = 2, m = 3 and p = q = r = 1. The appropriate

matrix polynomials are then

α(L) =
(
1 + α11

1
L α12

1
L

α21
1
L 1 + α22

1
L

)
, β(L) =

(
1 + β11

1
L β12

1
L

β21
1
L 1 + β22

1
L

)
,

γ (L) =
(
γ 11
0

+ γ 11
1

L γ 12
0

+ γ 12
1

L γ 13
0

+ γ 13
1

L

γ 21
0

+ γ 21
1

L γ 22
0

+ γ 22
1

L γ 23
0

+ γ 23
1

L

)
. (31)

Sincem = 3 the input process x(t) ∈ R3
, the corresponding matrix polynomials are

a(L) =
⎛
⎝1 + a11

1
L a12

1
L a13

1
L

a21
1
L 1 + a22

1
L a23

1
L

a31
1
L a32

1
L 1 + a33

1
L

⎞
⎠ and

b(L) =
⎛
⎝1 + b11

1
L b12

1
L b13

1
L

b21
1
L 1 + b22

1
L b23

1
L

b31
1
L b32

1
L 1 + b33

1
L

⎞
⎠ .
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We further assume

� =
(
1 0

0 1

)
and � =

⎛
⎝1 0 0

0 1 0

0 0 1

⎞
⎠ . (32)

The spectral densities are then

fy(e
iω) = 1

2π
(α−1(eiω){γ (eiω)Rx(eiω)γ ∗(eiω)+ β(eiω)β∗(eiω)}α−∗(eiω)),

Rx(e
iω) = a−1(eiω)b(eiω)b∗(eiω)a−∗(eiω).

We shall consider the (γ , γ ) block consisting of the parameters of the matrix polynomial γ (z) given

in (31). Therefore, the appropriate derivatives in (29) with respect to an element of the (γ , γ ) block are

given by

�fy(eiω)
�γ ij

1

= α−1(eiω)

2π
{eiωEijRx(e

iω)γ ∗(eiω)+ e−iωγ (eiω)Rx(e
iω)E�

ij }α−∗(eiω) (33)

and

�fy(eiω)
�γ lk

0

= α−1(eiω)

2π
{ElkRx(e

iω)γ ∗(eiω)+ γ (eiω)Rx(e
iω)E�

lk}α−∗(eiω), (34)

where i, l = 1, 2 and j, k = 1, 2, 3.

Recall thatEij = eie
�
j
, where ei and ej are standard basis vectors inR2

andR3
respectively. As can be

seen, when f−1
y (eiω) and the derivatives (33) and (34) are used in theWhittle formula (29), the matrix

polynomial γ (z) contributes to the pole location when Cauchy’s residue theorem is applied. A similar

situation occurs for the remaining parameter blocks that are associated with exogenous components.

This is not the case in expression (26), see also [13] for a scalar equivalent of (26). For that purpose we

consider (26) for the (γ , γ ) block with the matrix polynomials given in (31). First we use

�(L) = (ψx
11(L)x,ψ

x
21(L)x,ψ

x
12(L)x,ψ

x
22(L)x,ψ

x
13(L)x,ψ

x
23(L)x) (35)

as given in Proposition 2.1. We use (31), (32) and (35) for the computation of the 12 × 12 submatrix

Fγ γ (ϑ) in (15). This yields for the Fisher information matrix (7)

Eϑ

{(
�ε
�γ

)� ( �ε
�γ

)}
= Fγ γ (ϑ), (36)

where �ε/�γ is according to Proposition 2.1 given by the 2 × 12 matrix �ε
�γ = (1, L)⊗ �(L) or, more

explicitely

�ε
�γ

= −{β−1(L)E11x,β
−1(L)E21x,β

−1(L)

E12x,β
−1(L)E22x,β

−1(L)E13x,β
−1(L)E23x,

Lβ−1(L)E11x, Lβ
−1(L)E21x, Lβ

−1(L)E12x, Lβ
−1(L)E22x,

Lβ−1(L)E13x, Lβ
−1(L)E23x}. (37)

The entries of Fγ γ (ϑ) can be computed by inserting representation (37) in (36) and the partitioned

form ofFγ γ (ϑ) is given by

Fγ γ (ϑ) =
(
Fγ0γ0 (ϑ) Fγ0γ1 (ϑ)

Fγ1γ0 (ϑ) Fγ1γ1 (ϑ)

)
. (38)

Using (26) for computing the elements of (38) yields

(Fγ0γ0 (ϑ))
0,0
i,j,l,f

= 1

2π i

∮
|z|=1

Tr(β−1(z)EijRx(z)E
�
lf β

−∗(z))dz
z
, (39)
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(Fγ0γ1 (ϑ))
0,1
i,j,l,f

= 1

2π i

∮
|z|=1

Trz−1(β−1(z)EijRx(z)E
�
lf β

−∗(z))dz
z
, (40)

(Fγ1γ0 (ϑ))
1,0
i,j,l,f

= 1

2π i

∮
|z|=1

Trz(β−1(z)Elf Rx(z)E
�
ij β

−∗(z))dz
z
, (41)

(Fγ1γ1 (ϑ))
1,1
i,j,l,f

= 1

2π i

∮
|z|=1

Tr(β−1(z)EijRx(z)E
�
lf β

−∗(z))dz
z
, (42)

where i, l = 1, 2 and j, f = 1, 2, 3. It is straightforward to see that the matrix polynomial γ (z) does not

affect the pole location in (39)–(42), contrary to (29). This example clearly reveals that the Whittle

formula (29) does not correspond to the Fisher information matrix of process (2) when the spectral

density of the observations y(t) , given in (2), is used. However, as will be shown in the next section,

when an appropriate bivariate representation, consisting of the VARMAX process and the exogenous

variable, is used, equality of amatrix-level representation of the extended version of (29) and (7) holds

true.

To illustrate the computationof (39)–(42)weconsider anumerical examplewhere the inputprocess

x(t) is driven by a white noise process with covariance � given in (32). Additionaly we have for the

entries of thematrix polynomial β(z)with the setting given in (31), β11
1

= 6/5, β12
1

= 1/2, β21
1

= −(7/5)
and β22

1
= −(1/5). The basic assumption that the eigenvalues of thematrix polynomial β(z) lie outside

the unit circle is fulfilled since the eigenvalues are: (5/23)(−5 ± i
√
21)withmodulus equal to 1.47442.

We first choose (Fγ0γ0 (ϑ))
0,0
1,1,1,1

, to obtain the following circular integral expression:

(Fγ0γ0 (ϑ))
0,0
1,1,1,1

= 1

2π i

∮
|z|=1

Tr(β−1(z)E11E
�
11β

−∗(z))dz
z

= − 1

2π i

∮
|z|=1

500z(1 − 15z + z2)

(50 + 50z + 23z2)(23 + 50z + 50z2)

dz

z
.

For applying Cauchy’s residue theorem we have to consider the poles whithin the unit circle and

these are given by the polynomial (23 + 50z + 50z2). For evaluating the integral, the algorithm devel-

oped in [4] or the computer program displayed in [23] and based on the Peterka–Vidinčev [22] algo-

rithm can be implemented. This yields (Fγ0γ0 (ϑ))
0,0
1,1,1,1

= (Fγ1γ1 (ϑ))
1,1
1,1,1,1

= 7.82242. We proceed

by computing an element of block Fγ0γ1 (ϑ) and Fγ1γ0 (ϑ) involving the parameters γ 13
1

and γ 23
0

, to

obtain

(Fγ1γ0 (ϑ))
1,0
1,3,2,3

= 1

2π i

∮
|z|=1

Trz(β−1(z)E13E
�
23β

−∗(z))dz
z

(43)

= 1

2π i

∮
|z|=1

50z2(−25 + 89z + 70z2)

(50 + 50z + 23z2)(23 + 50z + 50z2)

dz

z

= −3.3552

and

(Fγ0γ1 (ϑ))
0,1
2,3,1,3

= 1

2π i

∮
|z|=1

Trz−1(β−1(z)E23E
�
13β

−∗(z))dz
z

(44)

= − 1

2π i

∮
|z|=1

50(−70 − 89z + 25z2)

(50 + 50z + 23z2)(23 + 50z + 50z2)

dz

z
.

= −3.3552.

Since the matrix Fγ γ (ϑ) is symmetric we have Fγ0γ1 (ϑ) = F�
γ1γ0

(ϑ) and property (55) proved in

Lemma A.1 is numericaly confirmed through the computation of (43) and (44) that results in

(Fγ1γ0 (ϑ))
1,0
1,3,2,3

= (Fγ0γ1 (ϑ))
0,1
2,3,1,3

.
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4.2. The Whittle formula for a VARMAX process

We proceed by presenting a setting which makes Whittle’s formula (29) appropriate for the Fisher

information matrix of a VARMAX process. The setting proposed in this section has also been applied

in [12].

Insert the exogenous variable x(t) = a−1(L)b(L)η(t), given by (5), in (2). This leads to

α(L)y(t) = γ (L)a−1(L)b(L)η(t)+ β(L)ε(t). (45)

Consider the bivariate representation of the VARMAX process (2), based on the exogenous variable

x(t) and representation (45),(
α(L) 0n×m

0m×n a(L)

)(
y(t)

x(t)

)
=
(
β(L) γ (L)a−1(L)b(L)

0m×n b(L)

)(
ε(t)

η(t)

)
(46)

or equivalently(
y(t)

x(t)

)
=
(
α−1(L)β(L) α−1(L)γ (L)a−1(L)b(L)

0m×n a−1(L)b(L)

)(
ε(t)

η(t)

)
. (47)

Let us denote the vectors
(
y(t)
x(t)

)
and

(
ε(t)
η(t)

)
by ξ(t) and δ(t), respectively. Since the white noise

processes {ε(t)} and {η(t)} are not correlated we have

E{δ(t)δ(t)�} =
(
� 0

0 �

)

and the spectral density matrix of δ(t) is

fδ = 1

2π

(
� 0

0 �

)
. (48)

The spectral density matrix fξ (e
iω), of the extended vector ξ(t) displayed in (47), is obtained by com-

bining (48) and (18)

fξ (e
iω) = 1

2π

(
α−1(eiω)β(eiω) α−1(eiω)γ (eiω)a−1(eiω)b(eiω)

0m×n a−1(eiω)b(eiω)

)(
� 0

0 �

)

×
(
α−1(eiω)β(eiω) α−1(eiω)γ (eiω)a−1(eiω)b(eiω)

0m×n a−1(eiω)b(eiω)

)∗
. (49)

The inverse of (49) is then

f−1
ξ (eiω) = 2π

(
β−1(eiω)α(eiω) −β−1(eiω)γ (eiω)

0m×n b−1(eiω)a(eiω)

)∗ (
�−1

0

0 �−1

)

×
(
β−1(eiω)α(eiω) −β−1(eiω)γ (eiω)

0m×n b−1(eiω)a(eiω)

)
. (50)

The main idea in this section consists of showing that when the spectral density matrix fξ (e
iω) is used

instead of fy(e
iω) inWhittle’s formula (29), one obtains the Fisher informationmatrix of multiple time

series with exogenous variables.

Property (9) for the derivative of f−1
ξ (eiω) leads to the following alternative representation of (29)

when the spectral density fξ (e
iω) is used. It holds that

Fe,h
ijkl(ϑ) = − 1

4π

∫ π

−π
Tr

(
�fξ (eiω)

�ϑe
ij

�f−1
ξ (eiω)

�ϑh
kl

)
dω. (51)

Representation (51) of Whittle’s formula shall be subsequently used.
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In [14], the following interconnection between a time and frequency-domain representation of the

Fisher information matrix of a VARMA process has been established:

Eϑ

{(
�ε
�ζ

)�
�−1

(
�ε
�ζ

)}
= 1

4π i

∮
|z|=1

(
�vec f (z)

�ζ

)∗
(f�(z)⊗ f (z))−1

×
(

�vec f (z)
�ζ

)
dz

z
, (52)

where the right-hand side is a matrix level representation ofWhittle’s formula for the Fisher informa-

tionmatrix of aVARMAprocess. The vec operator is defined as vecX = col(col(Xij)
n
i=1
)n
j=1

and col(Xij)
n
i=1

refers to the jth column of the matrix X with elements X1j , . . . ,Xnj . The spectral density of the VARMA

process is givenby f (z), ζ is theparametervectorwith representation ζ =vec{α1,α2, . . . ,αp,β1,β2, . . . ,βq}
and� is the positive definite covariance matrix of the VARMAwhite noise process. The left-hand side

of (52) is the VARMA equivalent to (7). However, the derivatives in [14] are defined differently than

in this paper. The approach used for the VARMA equivalent of (10) consists of vectorizing the (m × n)

matrix function X(ϑ) introduced in Section 2 according to the following rule:

vec(ABC) = (C� ⊗ A)vec B where A ∈ Rm×n
, B ∈ Rn×p

and C ∈ Rp×s
.

The (mn × 
)matrix�vecX(ϑ)/�ϑ , the gradient formoffirst orderderivatives ofX(ϑ), canbedefined

as vec(dX(ϑ)) = (�(vecX(ϑ))/�ϑ)dϑ = dvecX(ϑ). Componentwise application of this rule to the VAR-

MA equivalent of (10) results in a different representation of �ε/�ϑ than the one displayed in Propo-

sition 2.1. In Section 2, �ε/�ϑ is set forth at a component-level and involves all the entries of ϑ . As a

consequence, the Fisher informationmatrix displayed in Section 3 has an elementwise representation

that involves all the entries of the parameter ϑ . The computation of these entries rely on evaluating

integrals of a rational function over the unit circle. This is illustrated in Section 4.1. In [14], as a result of

a differentmethod, �ε/�ϑ is given at the vector–matrix level so that the scalar entries of the parameter

ϑ can not be directly located in the corresponding Fisher information matrix.

In Theorem 4.1 below, the main result of this section, it is shown that a VARMAX equivalent to (52)

can be establishedwhen the spectral density of the extended vector ξ(t), based on the setting (46) and

(47), is considered.

Theorem 4.1. The equality

Eϑ

{(
�ε
�ϑ

)�
�−1

(
�ε
�ϑ

)}
= 1

4π i

∮
|z|=1

(
�vec fξ (z)

�ϑ

)∗
(f�
ξ (z)⊗ fξ (z))

−1

×
(

�vec fξ (z)
�ϑ

)
dz

z
(53)

holds true for the bivariate form (46). The left-hand side is given by (7) and the right-hand side is a

representation of Whittle’s formula in matrix form applied to the process (y(t), x(t)) given by (47).

Proof. We use the principal result of [14], in this paper presented as (52), but now applied to the

process {ξ(t)}, driven by the white noise process {δ(t)} (see (46)) and with parameter vector ϑ . The

essential thing to do first is to compute the derivative process { dδ
dϑ

}. It immediately follows from (46),

that

dδ

dϑ
=
(

dε
dϑ
0

)
.

As a consequence we get that

Eϑ

{(
�δ
�ϑ

)� (� 0

0 �

)−1 ( �δ
�ϑ

)}
= Eϑ

{(
�ε
�ϑ

)�
�−1

(
�ε
�ϑ

)}
. (54)
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This gives the left-hand side of (53). The right-hand side of this equation is just the right-hand side of

(52) with f = fξ and identifying ζ with ϑ . �

Alternatively, we can also prove the equality of each submatrix in the left-hand side of (53) and

the corresponding submatrices in the right-hand side. For that purpose we use the extended Whittle

formula (51) for each submatrix of (15). This is outlined in the appendix. The approach in the appendix

can be applied to the VARMAX example (31) to illustrate the correspondence between the extended

Whittle formula and the Fisher information matrix of a VARMAX process. Eqs. (56)–(60) are sufficient

to illustrate this correspondence. It can also be seen that the computation of (20)–(27) requires much

less numerical operations than using the Whittle formula (53).

5. Conclusion

In this paper easily implementable formulas of the Fisher informationmatrix of a VARMAX process

have been derived. The Fisher information matrix set forth in this paper consists of an elementwise

representation. The entries are closed form expressions described by circular integrals and can be

computed by applying Cauchy’s residue theorem. An appropriate extension of the Whittle formula

leads to a correspondence with the Fisher information matrix of a VARMAX process. This implies an

equality between a time and frequency-domain representation of the Fisher information matrix of

VARMAX processes. These results are obtained by using appropriate matrix differential rules. From

the numerical point of view it can also be concluded that using representations (20)–(27) is far less

computationally expensive than applying the Whittle formula given in the right-hand side of (53).
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Appendix A

In this appendix, we present the block matrix representation of the Whittle formula and prove

the equivalence to the results in Section 3. First we present a lemma that we repeatedly use in the

computations to follow.

Lemma A.1. Consider a matrix polynomial A(z) ∈ Cn×n
with real coefficients, the property

1

2π i

∮
|z|=1

Tr A(z)
dz

z
= 1

2π i

∮
|z|=1

Tr A∗(z)dz
z

(55)

holds true.

Proof. We shall first prove the following property. If f (z) is analytic inside the unit circle then

1

2π i

∮
|z|=1

�

f (z)
dz

z
= 1

2π i

∮
|z|=1

�

f (z−1)
dz

z
,

the integral being taken counter-clockwise.

Set v = z−1, then dv
v = − dz

z , the integral can now be written according to

1

2π i

∮
|z|=1

�

f (z−1)
dz

z
= − 1

2π i

∮
|v|=1

�

f (v)
dv

v
= 1

2π i

∮
|z|=1

�

f (z)
dz

z
.

WenowconsideramatrixpolynomialA(z) ∈ Cn×n
with real coefficients.DefineTr A(z) = f (z)where

f (z) is a scalar holomorfic function. Then it is straightforward to observe that Tr A∗(z) = f (z−1). Conse-

quently, the property above yields equality (55). �
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The (γ , γ ) block of the Fisher information matrix of the VARMAX process (2) is first considered.

The appropriate matrices to be inserted in (51) and which are based on (49) and (50) respectively are

introduced, to obtain

�fξ (eiω)
�γ (d)

ij

= 1

2π

(
0 α−1(eiω)Eije

iωda−1(eiω)b(eiω)

0 0

)(
� 0

0 �

)

×
(

β�(e−iω)α−�(e−iω) 0

b�(e−iω)a−�(e−iω)γ�(e−iω)α−�(e−iω) b�(e−iω)a−�(e−iω)

)

+ 1

2π

(
α−1(eiω)β(eiω) α−1(eiω)γ (eiω)a−1(eiω)b(eiω)

0 a−1(eiω)b(eiω)

)(
� 0

0 �

)

×
(

0 0

b�(e−iω)a−�(e−iω)E�
ij e

−iωdα−�(e−iω) 0

)

= H(eiω)+H∗
(eiω), (56)

where

H(eiω) = 1

2π

(
α−1(eiω)Eije

iωdRx(e
iω)γ�(e−iω)α−�(e−iω) α−1(eiω)Eije

iωdRx(e
iω)

0 0

)

and Rx(e
iω) is the spectral density of the process x(t) given in (6).

It is followed by

�f−1
ξ (eiω)

�γ (g)
lf

= 2π

(
0 0

−E�
lf e

−iωgβ−�(e−iω) 0

)(
�−1

0

0 �−1

)

×
(
β−1(eiω)α(eiω) −β−1(eiω)γ (eiω)

0 b−1(eiω)a(eiω)

)

+ 2π

(
α�(e−iω)β−�(e−iω) 0

−γ�(e−iω)β−�(e−iω) a�(e−iω)b−�(e−iω)

)(
�−1

0

0 �−1

)

×
(
0 −β−1(eiω)Elf e

iωg

0 0

)

= P(eiω)+P∗
(eiω), (57)

where

P(eiω) = 2π

(
0 0

−E�
lf e

−iωgβ−�(e−iω)�−1
β−1(eiω)α(eiω) E�

lf e
−iωgβ−�(e−iω)�−1

β−1(eiω)γ (eiω)

)
.

Insertionof (56) and (57) in (51) is thenext step.We remind theproperty thatwhen the squarematrices

A1,A2, . . . ,An which do not necessarily have the same dimensions, constitute the main diagonal of a

square matrix, then

Tr

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1

. . .
. . .

. . .

. . . A2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . An

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Tr A1 + Tr A2 + · · · + Tr An.
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Representation (51) for the (γ , γ ) block is given by

(Fγ γ (ϑ))
d,g
i,j,l,f

= − 1

4π

∫ π

−π
Tr

⎛
⎝�fξ (eiω)

�γ (d)
ij

�f−1
ξ (eiω)

�γ (g)
lf

⎞
⎠dω (58)

= 1

4π

∫ π

−π
Tr(Eije

iωdRx(e
iω)E�

lf e
−iωgβ−�(e−iω)�−1

β−1(eiω))dω (59)

+ 1

4π

∫ π

−π
Tr(Rx(e

iω)E�
ij e

−iωdβ−�(e−iω)�−1
β−1(eiω)Elf e

iωg)dω. (60)

Since expression (59) is the complex conjugate transpose of (60) we have by virtue of (55) that (58)

becomes for z = eiω

1

2π i

∮
|z|=1

zd−gTr{β−1(z)EijRx(z)(β
−1(z)Elf )

∗�−1}dz
z
,

which is equal to (26).

A similar approach is applied to the remaining submatrices of the Fisher information matrix. A

summary is therefore given. The (α, γ ) block is

(Fαγ (ϑ))
k,g
i,j,l,f

= − 1

4π

∫ π

−π
Tr

⎛
⎝�fξ (eiω)

�α(k)
ij

�f−1
ξ (eiω)

�γ (g)
lf

⎞
⎠dω (61)

= − 1

4π

∫ π

−π
Tr(β−1(eiω)Eije

iωkα−1(eiω)γ (eiω)

× Rx(e
iω)E�

lf e
−iωgβ−�(e−iω)�−1

)dω (62)

− 1

4π

∫ π

−π
Tr(Rx(e

iω)γ�(e−iω)α−�(e−iω)E�
ij e

−iωk

× β−�(e−iω)�−1
β−1(eiω)Elf e

iωg)dω. (63)

Since expression (62) is the complex conjugate transpose of (63), we have by virtue of (55) that (61)

becomes for z = eiω

− 1

2π i

∮
|z|=1

zg−kTr{β−1(z)Elf Rx(z)(β
−1(z)Eijα

−1(z)γ (z))∗�−1}dz
z
, (64)

which is equal to (22).

The integrand in the (γ ,α) block integral expression, given by

(Fγα(ϑ))
d,v
i,j,l,f

= − 1

4π

∫ π

−π
Tr

⎛
⎝�fξ (eiω)

�γ (d)
ij

�f−1
ξ (eiω)

�α(v)
lf

⎞
⎠dω (65)

is the complex conjugate transpose of the integrand in (64), we then have

− 1

2π i

∮
|z|=1

zv−dTr{α−1(z)γ (z)Rx(z)(β
−1(z)Eij)

∗�−1
β−1(z)Elf }

dz

z
,

which is equal to (23).

We now proceed with the (α,α) block which can be written as

(Fαα(ϑ))
k,v
i,j,l,f

= − 1

4π

∫ π

−π
Tr

⎛
⎝�fξ (eiω)

�α(k)
ij

�f−1
ξ (eiω)

�α(v)
lf

⎞
⎠dω (66)

= 1

4π

∫ π

−π
Tr(Eije

iωkα−1(eiω)

× β(eiω)�β�(e−iω)α−�(e−iω)E�
lf e

−iωvβ−�(e−iω)�−1
β−1(eiω))dω (67)
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+ 1

4π

∫ π

−π
Tr(Eije

iωkα−1(eiω)γ (eiω)Rx(e
iω)γ�(e−iω)α−�(e−iω)

× E�
lf e

−iωvβ−�(e−iω)�−1

× β−1(eiω))dω (68)

+ 1

4π

∫ π

−π
Tr(α−�(e−iω)E�

ij e
−iωkα−�(e−iω)E�

lf e
−iωv)dω (69)

+ 1

4π

∫ π

−π
Tr(α−1(eiω)Eije

iωkα−1(eiω)Elf e
iωv)dω (70)

+ 1

4π

∫ π

−π
Tr(α−1(eiω)β(eiω)�β�(e−iω)α−�(e−iω)

× E�
ij e

−iωkβ−�(e−iω)�−1
β−1(eiω)Elf e

iωv)dω (71)

+ 1

4π

∫ π

−π
Tr
(
α−1(eiω)γ (eiω)Rx(e

iω)γ�(e−iω)α−�(e−iω)

× E�
ij e

−iωkβ−�(e−iω)�−1
β−1(eiω)Elf e

iωv
)
dω. (72)

Expression (67) is the complex conjugate transpose of (71), (68) is the complex conjugate transpose of

(72) andexpression (69) is the complex conjugate transpose of (70). Expression (70) canbe represented

for z = eiω as

1

2π i

∮
|z|=1

zv+k−1Tr(α−1(z)Eijα
−1(z)Elf )dz. (73)

The scalar equation det(α(z)) = 0 has all its roots outside the unit circle and the smallest values of

the integers v and k is one. Consequently, there are no poles within the unit circle and so the integral

(73) is equal to zero. This implies that the integral expressions (69) and (70) vanish, by virtue of (55).

The remaining integral expressions summarizing (66) are by virtue of (55) and for z = eiω , given by

1

2π i

∮
|z|=1

zk−vTr{Eijα−1(z)β(z)�(β−1(z)Elf α
−1(z)β(z))∗�−1

β−1(z)}dz
z

(74)

+ 1

2π i

∮
|z|=1

zk−vTr{β−1(z)Eijα
−1(z)γ (z)Rx(z)

×(β−1(z)Elf α
−1(z)γ (z))∗�−1}dz

z
. (75)

Representations (74) and (75) are equal to (21) and (20) respectively.

The (α,β) block can now be represented according to (51), to obtain

(Fαβ(ϑ))
k,s
i,j,l,f

= − 1

4π

∫ π

−π
Tr

⎛
⎝�fξ (eiω)

�α(k)
ij

�f−1
ξ (eiω)

�β(s)
lf

⎞
⎠dω (76)

= − 1

4π

∫ π

−π
Tr(Eije

iωkα−1(eiω)

× β(eiω)�E�
lf e

−iωsβ−�(e−iω)�−1
β−1(eiω))dω (77)

− 1

4π

∫ π

−π
Tr(β−1(eiω)Eije

iωkα−1(eiω)Elf e
iωs)dω (78)

− 1

4π

∫ π

−π
Tr(α−�(e−iω)E�

ij e
−iωsβ−�(e−iω)e−iωkE�

lf )dω (79)

− 1

4π

∫ π

−π
Tr(�β�(e−iω)α−�(e−iω)E�

ij e
−iωk

× β−�(e−iω)�−1
β−1(eiω)Elf e

iωs)dω. (80)
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Expression (78) is the complex conjugate transpose of (79) and expression (77) is the complex conju-

gate transpose of (80). Expression (78) can be represented for z = eiω according to

− 1

2π i

∮
|z|=1

zs+k−1Tr(β−1(z)Eijα
−1(z)Elf )dz. (81)

The scalar equations det(α(z)) = 0 and det(β(z)) = 0 have all their roots outside the unit circle and the

smallest values of the integers s and k is one. Consequently, there are no poles within the unit circle so

integral (81) is equal to zero, this implies that the integral expressions (78) and (79) vanish, by virtue of

(55). The remaining integral expressions summarizing (76) are by virtue of (55) and for z = eiω given by

− 1

2π i

∮
|z|=1

zs−kTr{�(β−1(z)Eijα
−1(z)β(z))∗�−1

β−1(z)Elf }
dz

z
. (82)

Considering the representations displayed in (12) and (13) when inserted in (82) yield (24).

The integrand in the (β,α) block integral expression, given by

(Fβα(ϑ))
c,v
i,j,l,f

= − 1

4π

∫ π

−π
Tr

⎛
⎝�fξ (eiω)

�β(c)
ij

�f−1
ξ (eiω)

�α(v)
lf

⎞
⎠dω (83)

is the complex conjugate transpose of (82), this yields

− 1

2π i

∮
|z|=1

zv−cTr{α−1(z)β(z)�(β−1(z)Eij)
∗�−1

β−1(z)Elf }
dz

z
,

which is equal to (25).

The (β,β) block can be represented according to (51), to obtain

(Fββ(ϑ))
c,s
i,j,l,f

= − 1

4π

∫ π

−π
Tr

⎛
⎝�fξ (eiω)

�β(c)
ij

�f−1
ξ (eiω)

�β(s)
lf

⎞
⎠dω (84)

= 1

4π

∫ π

−π
Tr(Eije

iωc�E�
lf e

−iωsβ−�(e−iω)�−1
β−1(eiω))dω (85)

+ 1

4π

∫ π

−π
Tr(Eije

iωcβ−1(eiω)Elf e
iωsβ−1(eiω))dω (86)

+ 1

4π

∫ π

−π
Tr(E�

ij e
−iωcβ−�(e−iω)E�

lf e
−iωsβ−�(e−iω))dω (87)

+ 1

4π

∫ π

−π
Tr(�E�

ij e
−iωcβ−�(e−iω)�−1

β−1(eiω)Elf e
iωs)dω. (88)

Expression (86) is the complex conjugate transpose of (87) and (85) is the complex conjugate transpose

of (88). Expression (86) can be represented for z = eiω accordingly, to obtain

1

2π i

∮
|z|=1

zc+s−1Tr(Eijβ
−1(z)Elf β

−1(z))dz = 0.

Using the same arguments as for (81) justifies this conclusion. Consequently, the terms (86) and (87)

vanish. The remaining integral expressions summarizing (84) are by virtue of (55) and for z = eiω given

by

1

2π i

∮
|z|=1

zc−sTr{Eij�(β−1(eiω)Elf )
∗�−1

β−1(eiω)}dz
z
,

which is equal to (27).
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