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Abstract
Credit risk plays a key role in financial modeling, and financial institutions are required to
incorporate it in their pricing, as well as in capital requirement calculations. A common
manner to extract credit worthiness information for existing and potential counterparties is
based on the Credit Default Swap (CDS) market. Nonetheless, not all counterparties of a
financial institution have (liquid) CDSs traded in the market. In this case, financial insti-
tutions shall employ a proxy methodology to estimate the default probabilities of these
counterparties. Starting from the intersection methodology for credit curves, in this article
we investigate whether it is possible to construct proxy credit curves from CDS quotes by
means of (weighted) Wasserstein barycenters. We show how, under simple and common
assumptions, this revised methodology leads to elementary and intuitive formulae to calcu-
late distances between CDS-implied default probability distributions. Further, we illustrate
how to use this information to construct proxy CDS quotes.

Keywords Credit default swap · Harmonic mean · Hazard rate · Proxy credit curve ·
Wasserstein barycenter · Wasserstein distance

1 Introduction

In this article we investigate an alternative approach to construct proxy credit curves starting
from Credit Default Swaps (CDSs) market data. In particular, we revise the intersection
methodology by calculating the (weighted)Wasserstein barycenter of the implied CDS credit
curves considered as inputs. Under simple assumptions our new methodology results in
analytical formulae for the proxy CDS hazard rates with an intuitive interpretation.

Banks are required, for instance in valuation adjustment, risk limits and capital calcula-
tions, to account for credit risk as accurately as possible.Nonetheless, not for all counterparties
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credit-related information can be (easily) extracted from financial instruments traded in the
market. For instance, simple instruments used to strip default probabilities of given counter-
parties are CDSs. However, not all counterparties have liquid CDSs trading in themarket, and
many have no CDSs trading at all. Therefore, proxy methodologies should be employed, as
for instance the intersectionmethodology described in EBA (2013) (see also Chourdakis et al.
(2013a) and Sourabh et al. (2018) for further details). In this approach the proxy spread for
an illiquid entity with a given rating, region, sector, etc. is calculated as the average of all the
available liquid spreads of the entities with the same characteristics, i.e., rating, region, sector,
etc.1 In this article we investigate whether the Wasserstein square distance can be considered
as a tool to substitute the aforementioned average in the intersection model. In particular, we
show how using the Wasserstein distance allows, given some simple assumptions, to obtain
proxy CDS curves in a simple way.

The modeling of the default time of a counterparty within the risk-neutral framework can
be easily embedded in pricing and hedging equations; see Jarrow and Turnbull (1995) and
Ammann (1999, Sect. 5), amongst others. However, this is based on the implicit assumption
that faithful credit data is available. Unfortunately, this is not necessarily guaranteed in
practice. In fact, see Green (2016, Sect. 4.6), the number of counterparties worldwide for
which CDS quotes are available is in the order of a few thousand and, further, not all the
available quotes are liquid enough to be considered trustworthy. Therefore, it does not come
as a surprise that, for the most of the counterparties of financial institutions, no (liquid) CDSs
are available to imply the required default probabilities. From this, the need of using a CDS
proxy methodology to compensate for the lack of available (or reliable) data arises.

Despite the fact that financial institution can decide, provided approval is granted by
validators, auditors and regulators, for the methodology to be used to proxy CDS curves, the
literature is quite scarce. For instance, financial institutions can map the missing or unreliable
CDS data needed for given counterparties to that of other counterparties for which liquid
single-name CDS data is available, based on selection criteria such as rating, region, sector,
etc.; see Green (2016, Sect. 4.6.1). This has the advantage that, if the mapping selection
is done carefully, then the proxy curves would reflect the same rating-, region- and sector-
specific risks of the company whose CDS curve needs to be proxied. From a theoretical
perspective, this would allow to hedge the credit risk by taking positions in the mapped CDS.
However, this would not guarantee synchronicity of default or credit downgrades/upgrades
(if any) between the illiquid counterparty and its proxy. This might result in unexpected gains
or losses, as well as in potential re-hedging costs. Alternatively, see Green (2016, Sect. 4.6.2),
missing single-name CDS data can be mapped to given CDS indices. Notwithstanding, this
can lead to similar situations as the one highlighted in the single-name mapping case. A way
to construct proxy CDS curves that does not involve simply mapping missing CDS data to
that of other companies or indices is the so-called intersection methodology (EBA 2013).
This approach suggests to bucket liquid CDSs according to their rating, region and sector. By
averaging the CDS quotes in each bucket, one can then define proxy CDS quotes per bucket
and maturity (see also Chourdakis et al. (2013a) and Sourabh et al. (2018)). This approach
is very intuitive and easy to implement. Also, should one need to make the approach more
granular, then this could be easily achieved by considering a finer bucketing methodology.2

However, the intersection methodology has the disadvantage that, in some cases, not many

1 In principle, more granular bucketing can take place, but in this article we do not deal with the choice of the
bucketing methodology, and we consider it as given.
2 Therefore, from here onwards we will often not refer explicitly to the choice of the buckets as, from the
implementation angle, this does not matter. We will thus often use more general expressions such as, for
instance, “bucketing methodology”, for brevity.
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CDS names are available with a certain rating, region and sector, which might cause some
buckets to only contain a handful of quotes (or even to be empty). We also recall the so-called
cross-sectional methodology developed in Chourdakis et al. (2013a) (see also Chourdakis
et al. 2013b and Green 2016, Sect. 4.6.3). This methodology assumes that each CDS spread
can be decomposed in a number of factors, which are then calibrated to the available CDS
spreads by means of least-square regression. This approach has the advantage, as its name
suggests, of taking into account the cross-sectional information of CDS spreads arising from
different ratings, regions and sectors. The cross-sectional methodology of Chourdakis et al.
(2013a) has been extended in Sourabh et al. (2018) in order to potentially include equity
returns in the regression to further enhance the reliability and stability of the results.

In this article we consider the intersection methodology as a starting point, and we look at
it from another angle. Assuming the available CDS quotes have been allocated according to a
given bucketing criterionwe investigatewhether, instead of averaging the quotes, it is possible
to create CDS curves in a different manner. In particular, we attempt to do so by means of
calculatingWasserstein square distances between theCDS-implied default probability curves
corresponding to the instruments allocated to the same bucket. We show that, under some
well-known approximations, this is possible. This leads to analytic formulae for the hazard
rates of the proxy CDSs, which are also intuitive from the interpretation angle.

This article is organized as follows. Section 2 provides the essential concepts on Wasser-
stein distances relevant for the methodology developed in this article, and it also outlines
the basic notions related to CDSs. In Sect. 3 the methodology to proxy CDS curves using
Wasserstein square distances is available. In Sect. 4 we comment on the possible use of some
alternative metrics between probability distributions for the purpose of proxying CDS curves
and further motivate our choice. In Sect. 5 two extensive examples of proxy CDS quotes
construction are provided. Section 6 concludes.

2 Background information

In this section we outline the basic notions which are needed throughout this article. In
particular, Sect. 2.1 provides the essential background concerning Wasserstein distances,
while Sect. 2.2 that on CDSs. In both Sects. 2.1 and 2.2 the interested reader will find
relevant references should more detailed and general information be needed.

2.1 A brief overview ofWasserstein distances

In this section,weprovide the essential notions concerningWasserstein distances as necessary
in the rest of the article. For an in-depth treatment of Wasserstein distances see Villani (2003,
Sect. 7, 2009, Sect. 6), or Panaretos and Zemel (2020, Sect. 1 and 2), where Wasserstein
distances are treated from a more general angle covering aspects that go beyond our needs
in this article.

The concept of Wasserstein distance finds its origin in the area of optimal transport. In
particular, it aims to measure the minimal work that is required to rearrange the probability
masses of one distribution in order to reconstruct a second distribution. This transportation
plan should be performed in order to minimize the cumulative “distance” that the various
probability masses have to go through.

Given any two probability measures on R
d denoted with P and Q, we indicate with

J (P,Q) the set containing all the joint distributions which have P and Q as marginals. For
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p ≥ 1, the p-Wasserstein distance between P and Q is defined as

Wp(P,Q):=
(

inf
J∈J (P,Q)

∫
Rd×Rd

‖x − y‖p J (dx × dy)

) 1
p

, (1)

where ‖ · ‖ denotes the Euclidean norm. The Wasserstein distance (1) is finite when the
distributions have finite moments of order p; see Panaretos and Zemel (2019). When p = 2,
(1) is referred to as Wasserstein square distance, which is the analogous in a probabilistic
sense of the Euclidean space distance. In the case of unidimensional random variables (1)
can be easily calculated via the relationship

Wp(P,Q) =
(∫ 1

0
|F−1

P
(u) − F−1

Q
(u)|p du

) 1
p

, (2)

where F−1
P

( · ) (F−1
Q

( · )) denotes the (pseudo-)inverse of the cumulative distribution function
of P (Q); see Panaretos and Zemel (2019). In the present article, we will be interested in the
unidimensional case only and, in particular, in the case when p = 2.

We recall now the concept of weighted Wasserstein barycenter, as it will be useful for an
analogy we will provide in Sect. 3. Given N probability measures P1, . . . ,PN with the char-
acteristics as above and positive weights w1, . . . , wN such that

∑N
i=1 wi = 1, a Wasserstein

barycenter, see Agueh and Carlier (2011), is any probability distribution P
∗ solution of

inf

{
N∑
i=1

wiW
2
2 (Pi ,P) : P has a finite second moment

}
. (3)

For practical applications, we recall that if the probabilities Pi ’s are absolutely continuous,
then both existence and uniqueness of the Wasserstein barycenter are guaranteed; see Agueh
andCarlier (2011).3 Often, the definition ofweightedWasserstein barycenter is providedwith
uniform weights, i.e., with wi := 1

N for every i . In that case, the dependence on w1, . . . , wN

can be then simply omitted.4

The popularity of Wasserstein distances has increased considerably in the last decade,
as well as the number of applications of Wasserstein distances in different fields. This is
due to some desirable properties Wasserstein distances exhibit, including, but not limited
to, their behavior along geodesics (see Ambrosio et al. 2008, Sect. 7), and to Wasserstein
distances incorporating the geometry of the ground space (see Panaretos and Zemel 2019).
We also recall the use of Wasserstein distances in statistical learning (Karimi et al. 2020),
auto-encoders (Zhang et al. 2021), martingale optimal transport (Guo and Obłój 2019), and
image labelling (Hühnerbein et al. 2018), to name but a few. For computational challenges
concerning Wasserstein barycenters see Altschuler and Boix-Adserà (2021a; 2021b), while
for an overview of optimal transport theory from a computational angle with applications in
machine learning see Peyré and Cuturi (2019).

2.2 A brief overiew of CDSs

A CDS is a credit derivative contract involving two counterparties: a protection buyer and
a protection seller. In particular, by entering the transaction the protection buyer obtains

3 Note thatmore general conditions are sufficient for the existence and uniqueness of aWasserstein barycenter;
see Agueh and Carlier (2011). However, for our purpose of constructing proxy CDS curves we will be working
with absolutely continuous probability measures only.
4 For simplicity, from here onward we will refer to (3) simply as Wasserstein barycenter.
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protection against a contract-specific credit event (e.g., a credit rating downgrade or a default)
concerning a given reference entity. In exchange for holding the credit risk, the protection
seller expects the counterparty to pay a recurrent protection fee until either the contract
expires or a credit event occurs. CDSs are nowadays traded given an upfront premium and
a fixed coupon. The CDS market provides an important source of data that can be used to
estimate the default probabilities of different entities. These default probabilities can be then
employed in various areas related to credit risk modeling, including valuation adjustment
calculations.

The process of extracting default probabilities from CDS quotes can be performed in
different manners. A simple and effective way to do so is by means of reduced-formmodels,
which are based on the idea of assigning a given functional form for the default probability
function and to calibrate its parameters in order to reprice the available CDS contracts in
the market (for a detailed overview of several approaches concerning modelling default
probabilities see Bielecki and Rutkowski 2004). In particular, a simple manner to model
the default probability of an entity is that of assuming its (risk-neutral) default probability
function to be defined via the relationship

Q (τ ≤ t) :=1 − e− ∫ t
0 λ(s) ds . (4)

In (4), Q denotes the risk-neutral measure, τ the (random) default time of the entity, and
the (deterministic) function λ : (0,+∞) → (0,+∞) is named hazard rate (or default
intensity).5 Different specifications for the hazard rate function can be chosen: common ones
are flat, piecewise-constant, piecewise-linear and cubic spline.

We now recall some simple and well-known approximations for hazard rates, known as
credit triangles, which are often used in practice (see, amongst others, Berd 2005, 2011;
White 2014; Gambetti et al. 2018 and Spiegeleer et al. 2014, Sect. 10.4 for further details).
The CDS par spread is defined as the coupon of the fixed leg that would make the CDS
contract trade at par. This used to be the standard way of quoting CDSs. Having denoted the
recovery rate of a given CDS as R6 and its par spread as s, assuming the hazard rate function
in Eq. (4) is flat, one can then approximate the constant hazard rate in (4) via7

λ ≈ s

1 − R
. (5)

This means that the distribution of the default time τ is modeled by means of an exponential
distribution with rate parameter λ. Note that, as a consequence of the CDS standardization
process that took place after the credit crisis (see, amongst others,Markit 2009a, b), nowadays
it is market practice to quote CDSs is by means of a standard coupon and an upfront payment.
In this case, the credit triangle relationship would read λ ≈ (c + PUF/T )/(1− R), where c
denotes the standard coupon of the CDS, PUF the points up-front, i.e., the upfront payment
quoted as percentage of the notional, while T the time tomaturity of the contract considered.8

The simplifying assumption of a constant hazard rate is often used in practice to convert
from one quoting convention (i.e., points upfront and standard coupon) to the other (i.e., par
spread); see White (2014).

5 Note that we have excluded the case where λ(t) = 0 as this corresponds to the (instantaneous) default-free
case.
6 The recovery rate R is assumed exogenously given. Further details can be found in Das and Hanouna (2008).
7 For a derivation of the credit triangle relationship see, for instance, White (2014).
8 Also in this case, the derivation of the credit triangle relationship can be found in White (2014).
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3 CDS proxy curves usingWasserstein square distances

Assume we have grouped liquid CDS quotes given some bucketing criteria (e.g., their sector,
region, etc.), and that one bucket for which we want to extract a proxy CDS curve has been
selected. For each of the CDSs in the group we have a set of maturities. We choose a maturity
amongst the ones available, as the process can be performed for each maturity separately. We
assume that N ≥ 2 par spreads are available (see Sect. 2.2), andwe denote them as s1, . . . , sN
(we could follow a similar approach if we decided to start from upfront premia instead of
from par spreads; again, see Sect. 2.2). Thus, for each of the CDS quotes in this group (recall
thematurity is fixed) we have a par spread. For each CDSwe now compute the flat hazard rate
via the credit triangle relationship (5). The approximation of having a flat hazard rate per CDS
basically says that, once a CDS is considered, this CDS belongs to an economy composed
by the risk-free bond and the CDS itself. Thus, the easiest way to calculate a hazard rate is by
assuming it flat, as done in Sect. 2.2. This assumption is a simplifying one, as it does not take
into account the term structure of the hazard rates for different CDS maturities. However, it
is a common approximation used in practice, as for instance credit triangles are based on this
assumption; see (5). For our group of N CDSs, we use the assumption of a constant hazard
rate, and thus for each par spread si we can calculate a flat hazard rate λi . This approximation
based on a constant hazard rate assumption is the same used to perform the conversion
between upfront payments and related par spreads; see White (2014). This approximation
is also used, for instance, in Madan (2014) in the context of measuring risk acceptability
within the CDS market. The reason why we propose to use this simplifying assumption is
that it allows to exactly calculate proxy hazard rates. More precisely, this is because having
a constant hazard rate per maturity allows to analytically calculate Wasserstein distances
between CDS-implied distributions, as shown in Theorem 1. The distribution function of the
default time implied from the i th CDS is denoted as FQi (t):=Q(τi ≤ t), with τi indicating
the default time of the i th reference entity. For the i th CDS, we can calculate the inverse of
the default probability distribution explicitly, i.e., F−1

Qi
(u) = − ln(1−u)

λi
by inverting (4). We

can consider an additional CDS (i.e., the proxy CDS) which, under the same assumptions of
constant hazard rate, defines the quantile function F−1

Q∗ (u) = − ln(1−u)
λ

for a given constant
λ to be determined. We can then calculate the weighted square error in Wasserstein square
distance between the distribution of the proxy CDS Q

∗ and those of the other N CDSs
Q1, . . . ,QN , i.e.,

wse(λ):=
N∑
i=1

wiW
2
2 (Qi ,Q

∗), (6)

where
∑N

i=1 wi = 1 and with wi > 0 for every i .9 By minimizing (6) with respect to λ

we can then obtain the optimal hazard rate. Note the similarity of (6) with the definition of
Wasserstein barycenter (3): it is clear how (6) represents the Wasserstein barycenter between
the probabilitiesQi ’s after a functional form for the barycenter itself has been chosen. There-
fore, the probability measureQ∗ in (6) can be interpreted as a pseudoWasserstein barycenter
for the default distributions we have considered.

9 Note that, in the case of uniform weights, the weights would be redundant. For completeness, however,
we explicitly consider the weights in (6). This is because, in practice, if a bucket only contains a handful of
names, then the modeler might want to add to the bucket some other CDSs (for instance with the same sector
and rating but belonging to a different region) and assign them a small weight to have more stable results.
However, as mentioned in the beginning of the section, in this article a bucketing methodology is assumed
as given. We provide the formulation (6) (as well as that of weighted Wasserstein barycenter (3)) as they are
slightly more general than the uniform case, allowing thus for more flexibility.
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We now provide an analytical expression for the optimal hazard rate in Theorem 1, which
illustrates how the optimal hazard rate is actually the weighted harmonic mean of the hazard
rates λi ’s. Note that, from here onward, the index i will be always assumed to range in
{1, . . . , N }, for ease of exposition.
Theorem 1 Let Q1, . . . ,QN be exponential distributions where, for every i , Qi has rate
parameter λi . Further, let Q∗ be another exponential distribution with rate parameter

λ∗:= 1∑
i

wi
λi

. (7)

Then, λ∗ is the unique minimizer of wse( · ).
Proof Recalling that the quantile function of an exponential distributionQwith rate parameter
λ is given by F−1

Q
(u) = − ln(1−u)

λ
, it results that

W 2
2 (Qi ,Q) =

∫ 1

0

(
ln(1 − u)

λi
− ln(1 − u)

λ

)2

du = 2

(
1

λi
− 1

λ

)2

. (8)

Let x := 1
λ
. It is sufficient to consider the function

f (x):=
∑
i

wi

(
1

λi
− x

)2

and to observe that d
dx f (x) = 0 when x = 1

λ∗ , while d2

dx2
f (x) ≡ 2 due to the weights wi ’s

summing up to one. ��
Note that themean ofQi equals 1

λi
. Thus, due to Theorem1 the reciprocal of the proxy hazard,

i.e., 1
λ∗ can be interpreted as the weighted average expectation of the N default probability

distributions considered. This means that the weighted harmonic mean of the λi ’s is actually
the correct way of averaging them, as they can be interpreted as rates.

We highlight that using flat hazard rates is the key simplifying hypothesis that guarantees
the simple formula of the optimal hazard rate (7) to hold. If this assumptionwere to be dropped
and a more elaborate functional form for the hazard rate term structure were to be chosen,
then a closed form for computing the optimal (weighted sum of) Wasserstein distance(s)
(6) would not be available. Instead, it would require to solve a minimization problem in
several unknowns (i.e., one per CDS maturity available), making the whole procedure more
complicated and computationally expensive. More precisely, given N CDS names available
per maturity, let M denote the total number of quoted CDS maturities (M , in many case
would be equal to 11, as ideally CDS quotes are available for the 6M, 1Y, 2Y, 3Y, 4Y, 5Y, 7Y,
10Y, 15Y, 20Y and 30Ymaturities). Assume that default probabilities were to be modeled by
means of (4) in a more elaborate manner such as piecewise-constant or piecewise-linear.10

Denote with λ
j
i the hazard rate corresponding to the i th CDS name and to the j th maturity.

Also, denote with F−1
Qi

(λi1, . . . , λ
i
M ; · ) the quantile function implied from the i th CDS, and

with F−1
Q∗ (λ1, . . . , λM ; · ) the quantile function generated by the (unknown) proxyCDSyet to

be estimated. One would then need to find a solution, via (2), of the constrained optimization

10 Note that, in principle, also other parametrizations of the hazard rate functions are possible, such as cubic
spline.
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problem

min
λ1,...,λM

∑
i

∫ 1

0

(
F−1
Qi

(λi1, . . . , λ
i
M ; u) − F−1

Q∗ (λ1, . . . , λM ; u)
)2

du, (9)

where each λi is required to be positive. First of all, it is not guaranteed that, for arbitrary
choices of the hazard rate function, a unique solution exists. Furthermore, the integrand in
(9) cannot be, in general, integrated analytically, and the relatively high number of degrees
of freedom (i.e., M), together with the potentially high number of CDSs in the bucket con-
sidered, would make the problem very expensive from the computational angle. Thus, these
observations tip the balance in favor of a simpler approach, as the one we have adopted
involving a constant hazard rate.

We now provide a second intuitive result highlighting some relationship between the
observed hazard rates (implied default distributions) and its optimal counterpart. Its proof is
trivial, and it directly follows from the interpretation of the optimal hazard rate λ∗ as an har-
monic mean and from the (strict) monotonicity of the distribution function of an exponential
random variable with respect to the rate parameter. For ease of readability, we denote with
λmin:=mini λi and with λmax:=maxi λi , while with imin and imax the corresponding indices,
i.e., such that λimin = λmin and λimax = λmax.

Corollary 1 Under the assumptions of Theorem 1 it holds that

λmin ≤ λ∗ ≤ λmax. (10)

Furthermore, for every t ∈ [0,+∞) it results that

FQimin
(t) ≤ FQ∗(t) ≤ FQimax

(t). (11)

So far, we have defined the probability distribution Q
∗ as the pseudo-barycenter gener-

ated by considering Q1, . . . ,QN . We now show that Q∗ represents the actual Wasserstein
barycenter of the probability distributions considered.

Theorem 2 Under the assumptions of Theorem 1 it holds that

∑
i

wiW
2
2 (Qi ,Q

∗) = min

{∑
i

wiW
2
2 (Qi ,Q) : Q has a finite second moment

}
. (12)

Proof We denote with F−1
Q

( · ) the quantile function of a given probability distribution Q

with finite second moment, and define

ΔQ:=
∑
i

wiW
2
2 (Qi ,Q) =

∑
i

wi

∫ 1

0

(
F−1
Qi

(u) − F−1
Q

(u)
)2

du. (13)

By adding and subtracting F−1
Q∗ ( · ) inside the brackets in the third member of (13) it results

that

ΔQ =
∑
i

wi

∫ 1

0

(
F−1
Qi

(u) − F−1
Q∗ (u)

)2
du +

∫ 1

0

(
F−1
Q∗ (u) − F−1

Q
(u)

)2
du

+ 2
∑
i

wi

∫ 1

0

(
F−1
Qi

(u) − F−1
Q∗ (u)

) (
F−1
Q∗ (u) − F−1

Q
(u)

)
du.
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Observe that, by definition of the optimal hazard rate λ∗, the quantity
∑

i wi (F
−1
Qi

(u) −
F−1
Q∗ (u)) equals zero. From this it follows that

ΔQ =
∑
i

wiW
2
2 (Qi ,Q

∗) +
∫ 1

0

(
F−1
Q∗ (u) − F−1

Q
(u)

)2
du ≥

∑
i

wiW
2
2 (Qi ,Q

∗).

From the arbitrariness of Q and from Theorem 1, equality (12) follows. ��

For a given group of CDSs one can calculate, for each maturity, the optimal hazard rate
λ∗ minimizing the squared error in the Wasserstein square distance (6). The corresponding
“optimal” par credit spreads, permaturity, can then be implied. This can be done, for instance,
by again employing the credit triangle relationship (5), and by assuming a recovery rate equal
either to a prespecified value or calculated as the average (e.g., arithmetic or harmonic) of
the recovery rates of the CDSs belonging to the same bucket.

Assume now, for simplicity, that for all the CDSs in a given bucket the recovery rate is
constant.11 If we define the proxy recovery rate as the average (arithmetic or harmonic) of
the observed recovery rates and compute the proxy par spread by inverting (5), it then still
follows that this CDS par spread equals the harmonic mean of the CDS spreads of the single
contracts in the bucket. We recall that the harmonic mean of a set of (non-zero) numbers is at
most equal to its arithmetic counterpart due to Jensen’s inequality.While the arithmetic mean
equally averages all the data points, which makes it give less importance to observations with
very small magnitude, by considering the harmonic mean higher weights are given to those
observations. Hence, it then follows that, under the constant recovery rate assumption, the
methodology proposed here is less conservative than simply averaging the observed CDS
quotes, as well as less (more) sensitive to large (small) outliers.

From a computational perspective, the methodology highlighted in the present article is
simple. As Theorem 1 shows, calculating the optimal hazard rates only requires the compu-
tation of a weighted harmonic mean. This also allows to interpret the proxy CDS curves in
terms of Wasserstein barycenters in virtue of Theorem 2. However, we provide the following
remark concerning the interpretation of the techniquewe have used in this article. Calculating
the proxy spread by simply averaging the relevant CDS quotes is an elementary methodol-
ogy, which very simple to apply and very intuitive. However, calculating the average of the
observed spreads is a procedure that is only based on the magnitude of the observations and
that does not take into account how the implicit default distributions implied from the differ-
ent observations interact with each other. On the other hand, the approach we have proposed
here bases the construction of the proxy quotes on the implicit distributions arising from
the different quotes. This is done by means of finding a new distribution that is as close as
possible to the observed ones from an optimal transportation perspective. This gives a fresh
view to credit curve proxy methodologies by means of attempting to tackle the problem not
from a data perspective but, instead, by involving metrics between probability distributions.

11 In principle, recovery rates can vary. However, in many cases fixed values for recovery rates are used; see
Das and Hanouna (2008).
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(a) (b)

Fig. 1 Example of geodesics between probability density functions. In particular, panel a represents the
geodesic in Wasserstein square distance between a normal density function with mean parameter μ0 = 0
and standard deviation σ0 = 1 (denoted with n0( · )) and a normal density function with mean parameter
μ1 = 10 and standard deviation σ1 = 2 (denoted with n1( · )). For each t ∈ [0, 1] the geodesic can be
explicitly calculated (see Malagó et al. 2018), and its density (denoted with nt ( · )) corresponds to that of a
normal distribution with mean μt :=(1− t)μ0 + tμ1 and standard deviation σt :=(1− t)σ0 + tσ1. Note how
the geodesic is shape-preserving. On the other hand, the geodesic in the Euclidean space is illustrated in panel
b by means of calculating, for t ∈ [0, 1], the density function nt ( · ):=(1− t)n0( · )+ tn1( · ) (i.e., the segment
joining n0( · ) and n1( · )), which is clearly not shape-preserving

4 Suitability of other metrics between probability distributions to
proxy CDS curves

In Sect. 2.1 we have recalled how Wasserstein distances have become popular due to some
intuitive properties they guarantee. In particular, geodesics defined by means of Wasserstein
distances are shape-preserving, as Fig. 1 illustrates.

Geodesics are shape-preserving due to the fact that, in some sense, theWasserstein distance
accounts for the form of the underlying distribution. For instance, if one considers three con-
tinuous uniformdistributionsU1,U2 andU3 on [0, 1], [1, 2] and [100, 101], respectively, then
by (2) it results that W2(U1,U2) = 1 while W2(U1,U3) = 10. Therefore, distributions with
“similar” densities are “close”, according to the (square)Wasserstein distance,while this is not
the case if densities are “far” from each other. Note that othermetrics between probability dis-
tributions would not be sensitive to “geometrical” similarities. For instance, we recall that the
total variation distance (see Villani 2009, Sect. 6) between two (absolutely continuous) prob-
abilitymeasuresP andQwith densities fP( · ) and fQ( · ), respectively, denoted as T V (P,Q),
can be computed as 1

2

∫ ∞
−∞ | fP(x)− fQ(x)| dx . Additionally, the (square) Hellinger distance

(see Le Cam 1986, Sect. 4) between P and Q, denoted as H2(P,Q), can be calculated as∫ ∞
−∞(

√
fP(x) − √

fQ(x))2 dx . It then results that T V (U1,U2) = T V (U1,U3) = 1 and,
similarly, that H2(U1,U2) = H2(U1,U3) = 1. The intuitive fact that Wasserstein distances
take into account the shape of the probability distributions makes them attractive from the
geometrical perspective as well.

As far as exponential distributions are concerned, which are the ones used in this arti-
cle, we observe that given two exponential distributions with parameters λ and μ (assume

λ < μ), their total variation distance equals
(

μ
λ

)− μ
μ−λ − (

μ
λ

)− λ
μ−λ . Further, their (square)

Hellinger distance equals
(
√

μ−√
λ)2

λ+μ
. Thus, the expressions just provided would make the

problem of finding the optimal hazard rate with respect to the total variation and (square)
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Hellinger distances more complicated. We also recall that the Kullback-Leibler divergence
(Kullback and Leibler 1951) between two (absolutely continuous) probability distribu-
tions P and Q with densities fP( · ) and fQ( · ), respectively, is defined as K L(P,Q) =∫ ∞
−∞ fP(x) ln

(
fP(x)
fQ(x)

)
dx . Thus, the Kullback-Leibler divergence is not symmetric. Given

P and Q exponentially distributed as before (i.e., with rate parameters equal to λ and μ,
respectively), we obtain that K L(P,Q) = − log μ

λ
−1+ μ

λ
. If in (6)W 2

2 (Qi ,Q
∗) were to be

substituted with K L(Qi ,Q
∗) for every i , then the optimal hazard rate would still coincide

with the weighted harmonic average (7). On the other hand, if W 2
2 (Qi ,Q

∗) were to be sub-
stituted with K L(Q∗,Qi ), then the optimal hazard rate would coincide with the weighted
arithmetic average of the λi ’s. As the λi ’s can be interpreted as rates, then the natural way
of averaging them is that of considering their (weighted) harmonic mean rather than their
(weighted) arithmetic one.

The examples and considerations provided above illustrate how Wasserstein distances
are very suitable tools to measure, in an intuitive manner, distances between probability
distributions. This makes them suitable tools to be employed for the purpose of computing
distances between default probability distributions as proposed in this article, as opposed to
some other well-known metrics.

5 Examples

In this section we apply the methodology described in this article to two different datasets.
We compare the results to those obtained by applying the intersection methodology when
the proxy CDS par spread for a given bucket is defined as the arithmetic average of the CDS
spreads therein allocated. For the sake of clarity and brevity, in this section we will often
refer to the methodology outlined in this article as the Wasserstein methodology, while we
will refer to the intuitive procedure of arithmetically averaging CDS spreads as the average
methodology. In both examples considered here we take into account the time period span-
ning from September 2019 to September 2021. As far as the tenor of the CDS contracts is
concerned, we focus our analysis on the 5Y tenor, which is in general the most liquid.

As a first examplewe take into account the bucketwhere the region is “NorthAmerica”, the
sector “financials”, the rating “A”, and the seniority “senior unsecured debt”. In this bucket,
for the time period and the tenor considered, the number of entities oscillates between a
minimumof55 and amaximumof62. Figure 2a displays the 5YproxyCDSspreads computed
using theWasserstein methodology and those computed using the average one. It is clear that
calculating proxy CDS spreads bymeans ofWasserstein barycentres produces results that are
consistently below their average counterparts. In particular, we observe differences of at least
15–20bps and, during one of the peaks of the Covid-19 pandemic (i.e., in the neighbourhood
of the second quarter of 2020), the magnitude of the discrepancies observed reaches values
higher than 40bps. The differences observed here are therefore reflected in the associated
implied survival probabilities. In fact, as Fig. 2b shows, arithmetically averaging the CDS
spreads in the bucket largely underestimates (overestimates) the proxy survival (default)
probabilities. In particular, Fig. 2b highlights how, given a 5Y horizon, survival probabilities
implied from the averaged CDS quotes differ by at least 1.5–2% from those implied using
the Wasserstein methodology, with peaks between 3 and 3.5% during the Covid-19 period
mentioned above.

The reasons why simply averaging CDS spreads overestimates their proxy counterparts
(and therefore, overestimates default probabilities) is due to the fact that, often, recovery rates
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(a) (b)

Fig. 2 5Y CDS proxy par spreads and survival probabilities for the bucket with region “North America”,
sector “financials”, rating “A” and seniority “senior unsecured debt”; see panels a and b, respectively. The
proxy CDS par spreads depicted in panel a labelled with s∗ (s̄) have been computed using the Wasserstein
(average) methodology. Similarly, the 5Y proxy survival probabilities of panel b labelled with λ∗ (λ̄) are based
on the hazard rate calculated with the Wasserstein (average) methodology

for CDSs are set equal (or close) to some standard values (see Sect. 3 and Das and Hanouna
(2008)). Therefore, CDSs with similar characteristics in terms of sector, region, rating, etc.
often share similar recovery rates. In particular, frequently recovery rates are set equal to (or
neighbouring) 40%. This is illustrated by Fig. 3a, which shows that the average recovery rate
for this bucket often lies between 39.5 and 40.5%, and that it has a small standard deviation.
In Sect. 3 we have observed that, if the recovery rates in a given bucket are all equal, then
by inverting (5) the resulting proxy CDS par spread equals the harmonic mean of the CDS
spreads in the bucket (if all recovery rates are equal and the proxy recovery rate equals their
average). Due to the small standard deviation of the recovery rates observed, it results that all
the recovery rates for the CDSs in the bucket are roughly equal to each other. Therefore, by
inverting (5), the proxy CDS spread for this bucket is approximately equal to the harmonic

(a) (b)

Fig. 3 Panel a illustrates the 5Y CDS average recovery rates for the bucket with region “North America”,
sector “financials”, rating “A” and seniority “senior unsecured debt”. In particular, R̄ denotes the arithmetic
average of the recovery rates of the CDSs in the chosen bucket, while R̄+ (R̄−) denotes the arithmetic average
of the recovery rates of the CDSs in the chosen bucket plus (minus) their standard deviation. Panel b displays
the 5Y proxy survival probabilities for this bucket calculated with the Wasserstein methodology. The label
s∗ (s̃) indicates that the proxy recovery rate has been calculated as the arithmetic (harmonic) average of the
recovery rates of the CDSs in the bucket considered
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(a) (b)

Fig. 4 Density and distribution functions implied from the 5Y CDSs with region “North America”, sector
“financials”, rating “A” and seniority “senior unsecured debt”, as well as their proxy counterparts (thick red
lines) computed using the Wasserstein methodology as of 1-Sep-2021; see panels a and b, respectively

average of the observed CDS spreads, which is smaller than its arithmetic counterpart. Note
that, given the dataset considered, if we compute the proxy recovery rate as the harmonic
mean of the observed recovery rates, then results do not change significantly as recovery
rates are stable through time; see Fig. 3b. This shows that the methodology is robust with
respect to the definition of the proxy recovery rate.

For completeness, we also illustrate how the density and distribution functions for the
default times as of 1-Sep-2021 look like in this specific case, and compare them with their
proxy counterparts computed using the Wasserstein methodology; see Fig. 4a and b, respec-
tively.

We now consider a second example where the selected CDS bucket is identified by the
“Europe” region, “industrials” sector, “BBB” rating and “senior unsecured debt” seniority.
The number of constituents for this bucket varies, throughout the period taken into account,
between a minimum of 27 and a maximum of 38. We have chosen this bucket as, during
the time period considered for the analysis, the dataset shows some outliers. Therefore, this
allows to test the robustness of the proposedmethodology in these circumstances compared to
the standard intersectionmethodology. As Fig. 5a illustrates, the proxyCDSquotes computed
bymeans ofWasserstein barycentres are, as in the previous example, consistently below their
counterparts computedusing arithmetic averages.Differences are, for themajority of the dates
considered, of the order of magnitude between 20 and 25bps. This is clearly reflected by the
related implied survival probabilities, where those implied from arithmetically averagedCDS
spreads are underestimated; see Fig. 5b.We observe how, between June and September 2020,
the dataset considered displays a peak in the proxy spread (and survival probabilities) in the
case proxy CDS spreads are calculated using the average methodology due to some outliers
(some other minor peaks are also present in the time frame we consider in this example, but
with smaller magnitude). We clearly see, as Fig. 5a and b illustrate, that computing proxy
CDS spreads by means of Wasserstein barycentres, results are much more stable. The peak
observed in the case the average methodology is used results in a difference in the proxy
CDS spread (5Y survival probability) of the order of more than 250bps (15%) compared to
the Wasserstein methodology case.

Also in this case we observe that, as expected, for the CDSs in the chosen bucket recovery
rates do not vary much, with a few exceptions; see Fig. 6a. Therefore, also in these cir-
cumstances the same rationale as outlined in the former example can be followed to explain
why proxyCDS spreads calculatedwith the averagemethodology (and corresponding default
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(a) (b)

Fig. 5 5Y CDS proxy par spreads and survival probabilities for the bucket with region “Europe”, sector
“industrials”, rating “BBB” and seniority “senior unsecured debt”; see panels a and b, respectively. The proxy
CDS par spreads depicted in panel a labelled with s∗ (s̄) have been computed using the Wasserstein (average)
methodology. Similarly, the 5Y proxy survival probabilities of panel b labelled with λ∗ (λ̄) are based on the
hazard rate calculated with the Wasserstein (average) methodology

(a) (b)

Fig. 6 Panel a illustrates the 5Y CDS average recovery rates for the bucket with region “Europe”, sector
“industrials”, rating “BBB” and seniority “senior unsecured debt”. In particular, R̄ denotes the arithmetic
average of the recovery rates of the CDSs in the chosen bucket, while R̄+ (R̄−) denotes the arithmetic average
of the recovery rates of the CDSs in the chosen bucket plus (minus) their standard deviation. Panel b displays
the 5Y proxy survival probabilities for this bucket calculated with the Wasserstein methodology. The label
s∗ (s̃) indicates that the proxy recovery rate has been calculated as the arithmetic (harmonic) average of the
recovery rates of the CDSs in the bucket considered

probabilities) overestimate their counterparties computed following theWasserstein method-
ology. We also show, see Fig. 6b, that the Wasserstein methodology is robust with respect to
the averaging type used to compute the proxy recovery rate (i.e., arithmetic or harmonic).

Again, for completeness we also illustrate how the density and distribution functions for
the default times as of 1-Sep-2021 look like in this second example as well, and how they
compare with respect to their proxy counterparts computed by means of the Wasserstein
methodology; see Fig. 7a and b, respectively.

We have provided a comparison between a common way to compute proxy CDS spreads
and related credit curves (i.e., intersection approach with average methodology) and those
computed following the approach proposed based on Wasserstein distances. We have shown
how, by considering real market scenarios, the differences in default probabilities produced
using the two methodologies are non-marginal. In particular, given the examples taken into
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Fig. 7 Density and distribution functions implied from the 5YCDSswith region “Europe”, sector “industrials”,
rating “BBB” and seniority “senior unsecured debt”, as well as their proxy counterparts computed using the
Wasserstein methodology as of 1-Sep-2021 (thick red lines); see panels a and b, respectively

account, we have shown how proxying CDS spreads by means of the average methodology
consistently overestimates the resulting implied survival probabilities. This means that sim-
ply arithmetically averaging CDS spreads can produce unjustifiably conservative survival
probabilities. This is due to the fact that, despite simple and intuitive, this approach lacks of
adequate theoretical foundations. As proxy survival probabilities are often used by financial
institution to compute Credit Valuation Adjustment (CVA), using the intersection approach
with the average methodology given the datasets considered here would result in excessively
conservative CVA charges compared to those calculated using proxy survival probabili-
ties computed using the Wasserstein methodology. Thus, under market circumstances for
which the examples taken into account here can be considered representative, the Wasser-
stein methodology would result in more aggressive CVA charges than those computed when
the average methodology is used.

6 Conclusion

In this article we have investigated an alternative way of estimating proxy CDS curves
starting from the intersection methodology. In particular, instead of simply averaging the
different CDS quotes belonging to the given buckets, we have constructed, under some simple
assumptions, a proxy CDS curve by means of an optimal transportation problem. That is,
after having specified a given functional form for the CDS proxy curve to be estimated,
we have provided simple formulae that allow to calculate the proxy hazard rates (and, thus,
proxy par spreads) by simplyminimizing theWasserstein square distances between the proxy
curve and the other curves belonging to the chosen bucket. The approach we have adopted is
simple and relies on basic assumptions concerning CDSs that are often employed in practice.
It also provides a simple interpretation of the proxy CDS default distribution as the actual
Wasserstein barycenter of the observed default probability distributions.
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