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Abstract

In thispaper we consider an Ornstein-Uhlenbeck (OU) process (M(t))t>o whose

parameters are determined by an external Markov process (X(í))ř>o on a finitestate
space {1, . . . ,d}' thisprocess is usually referred toas Markov-modulated Ornstein-
Uhlenbeck. We use stochastic integration theory to determine explicit expressions for
themean and variance of M(t). Then we establish a system of partial differential

equations (PDEs) fortheLaplace transform ofM (t) and thestate X (t) of thebackground
process, jointly fortime epochs t = t' , . . . ,tK• Then we use thisPDE toset up a
recursion thatyields all moments of M(t) and itsstationary counterpart; we also findan
expression forthecovariance between M(t) and M(t + u). We then establish a functional
central limit theorem forM (t) forthesituation thatcertain parameters of theunderlying
OU processes are scaled, in combination with themodulating Markov process being
accelerated; interestingly, specific scalings lead to drastically differentlimiting processes.
We conclude thepaper by considering thesituation of a singleMarkov processmodulating
multiple OU processes.

Keywords: Ornstein-Uhlenbeck process; Markov modulation; regime switching; central
limit theorems; martingale techniques
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1. Introduction

The Ornstein-Uhlenbeck (OU) process is a stationary Markov-Gauss process, with the
additional feature that iteventually reverts to its long-term mean; see the seminal paper [37], as
well as [26] for a historic account. Having originated from physics, the process has now found

widespread use in a broad range of other application domains: finance, population dynamics,
climate modeling, etc. In addition, itplays an important role in queueing theory, as itcan
be seen as the limiting process of specific classes of infinite-server queues under a certain
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236 G. HUANG ETAL.

scaling [34]. The OU process is characterized by three parameters (which we call a, y, and a2
throughout this paper), which relate to the process mean, convergence speed towards the mean,
and variance, respectively.

The probabilistic properties of the OU process have been thoroughly studied. One of the

key results is that its value at a given time thas a normal distribution, with amean and variance
that can be expressed explicitly in terms of the parameters a, y , and a2 of the underlying OU
process; see, e.g. [26, Equation (2)]. In addition, various other quantities have been analyzed,
such as the distribution of first-passage times or the maximum value attained in an interval of

given length; see, e.g. [1] and the references therein.

The concept of regime switching (or Markov modulation, as it is usually referred to in

the operations research literature) has become increasingly important over the past decades.
In regime switching, the parameters of the underlying stochastic process are determined by
an external background process (or modulating process) that is typically assumed to evolve

independently of the stochastic process under consideration. Often the background process is
assumed to be a Markov chain defined on afinite state space, say {1, . . . ,d}' in the context of
a Markov-modulated OU (MMOU), this means that when this Markov chain is in state i , the
process locally behaves as an OU process with parameters y¿, and a?.

Owing to its various attractive features, regime switching has become an increasingly popular
concept. In a broad spectrum of application domains itoffers a natural framework formodeling
situations in which the stochastic process under study reacts to an autonomously evolving
environment. In finance, one could identify the background process with the 'state of the

economy', for instance as a two-state process (that is, alternating between a 'good' and a 'bad'
state) to which, e.g. asset prices react. Likewise, in wireless networks the concept can be used
to model the channel conditions that vary in time, and to which users react.

In the operations research literature there is a sizeable body of work on Markov-modulated

queues; see, e.g. [4, Chapter XI] and [31], while Markov modulation has also been intensively
used in insurance and risk theory [5]. In the financial economics literature the use of regime
switching dates back to at least the late 1980s [22] ;various specificmodels have been considered
since then; see, e.g. [3], [15], and [16].

In this paper we present a set of new results in the context of the analysis ofMMOU. Here,
and in the sequel, we let M(t) denote the position of the MMOU process at time t,whereas M
denotes its stationary counterpart (the existence of which follows from [39, Theorem 3.1]). In
the firstplacewe derive explicit equations for themean and variance ofM (t) andMJointly with

the state of the background process, relying on standard machinery from stochastic integration
theory. In various special cases the resulting equations simplify drastically (for instance, when
it is assumed that the background process starts off in equilibrium at time 0, or when the

parameters are assumed uniform across the states i e {1, . . . ,d}).
The second contribution concerns the derivation of a system of PDEs for the Laplace

transform of M(t ); when equating to 0 the partial derivative with respect to time we obtain
a system of ordinary differential equations for the Laplace transform of M . This result is

directly related to [39, Theorem 3.2], with the differences being that there the focus was on

just stationary behavior, and that the system considered there had the additional feature of
reflection at a lower boundary (to avoid the process attaining negative values). We set up a
recursive procedure that generates all moments of M(t ); in each iteration a nonhomogeneous
system of differential equations needs to be solved. This procedure complements the recursion
for the moments of the steady-state quantity M, as presented in [39, Corollary 3.1] (in which
each recursion step amounts to solving a system of linear equations). In addition, we also
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Markov-modulated Ornstein-Uhlenbeck processes 237

set up a system of PDEs for the Laplace transform associated with the joint distribution of
. . . ,M(îk ), and determine the covariance cov(M(t, t+ w)).

A third contribution concerns the behavior of the MMOU process under certain parameter
scalings.

• A firstscaling thatwe consider concerns speeding up the jumps of the background process
by a factor N. Using the system of PDEs that we derived earlier, itis shown that the

limiting process, obtained by sending N -» oo, is an ordinary (that is, nonmodulated)
OU process, with parameters that are time averages of the individual a/, y¿,and of.

• A second regime thatwe consider scales the transition rates of the Markovian background
process by N, while the and of are inflated by a factor Nh for some h > 0; the

resulting process we call (t). We then center (subtract the mean, which is roughly
proportional to Nh) and normalize M^N,h^ (t), with the goal of establishing a central limit

theorem (CLT). Interestingly, the appropriate normalization depends on the value of h.

If h < 1 the variance of M^N,h't) is roughly proportional to the 'scale' at which the

modulated OU process operates, namely Nh , and as a consequence the normalization
looks like Nh¡2' at an intuitive level, the timescale of the background process is so fast

that the process essentially looks like an OU process with time-averaged parameters. If,

on the contrary, h > 1 then the variance of M^N'h't) grows like N2h~l, which is faster

than Nh; as a consequence, the proper normalization looks like Nh~1/2; in this case the

variance that appears in the CLT is directly related to the deviation matrix [13] associated
with the background process. Importantly, we do not just prove normality for a given
value of t > 0, but rather weak convergence (at the process level, that is) to the solution
of a specific limiting stochastic differential equation.

The last contribution focuses on the situation that a single Markovian background process
modulates multiple OU processes. This, for instance, models the situation in which different

asset prices react to the same 'external circumstances' (that is, state of the economy), or the

situation in which different users of a wireless network react to the same channel conditions.
The probabilistic behavior of the system is captured through a system ofPDEs. It is also pointed
out how the corresponding moments can be found.

Importantly, there is a strong similarity between the results presented in the framework of
this paper and corresponding results for Markov-modulated infinite-server queues. In these

systems the background process modulates an M/M/oo queue, meaning that we consider an
M/M/oo queue of which the arrival rate and service rate are determined by the state of the

background process [14], [18]. For these systems, the counterparts of our MMOU results have
been established: the mean and variance have been computed in, e.g. [12], [32], (partial)
differential equations for the Laplace transform of M(t), as well as recursions for higher
moments can be found in [9], [12], [32], whereas parameter scaling results are given in [9],
[12], and, for a slightly different model, in [10]. Roughly speaking, any property that can be
handled explicitly for the Markov-modulated infinite-server queue can be explicitly addressed
for MMOU as well, and vice versa.

This paper is organized as follows. In Section 2 we define the model and present preliminary
results. Then Section 3 deals with the system's transient behavior in terms of a recursive
scheme that yields all moments of M{t ), with explicit expressions for the mean and variance.
In Section 4 we present a system of PDEs for the Laplace transform of M (t). In Section 5 the

parameter scalings mentioned above are applied (resulting in a process Mw(ř)), leading to
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238 G. HUANG ETAL.

a functional CLT for an appropriately centered and normalized version of The last
section considers the setting of a single background process modulating multiple OU processes.

2. Model and preliminaries

We start by giving a detailed model description of the MMOU process. We are given a
probability space (Q, F ,P) on which a random variable Mo, a standard Brownian motion

(B(t))t>o, and an irreducible continuous-time Markov process (X (t))t>o with finite state space
are defined. It is assumed that Mo, X, and B are independent. The process X is the so-called

background process; its state space is denoted by {1, . . . ,d}.
The idea behind MMOU is that the background process X(-) modulates an OU process.

Intuitively, this means that while X (•) is in state i e {1, . . . ,d], the MMOU process (M(ř))r>o
behaves as an Ornstein-Uhlenbeck process £//(•) with parameters <x¡, , and ai,which evolves

independently of the background process X (•); itis assumed that for all i , > 0, and y¿> 0
(with at least for one i a strict inequality). More formally, M() obeys the stochastic differential

equation (SDE)
dM (t) = (ax(t) - Yx{t)M(t)) dt+ oX{t) dB(t). (2.1)

We call a stochastic process (M(t))t>o an MMOU process with initial condition M(0) = Mo
if

M(0 = M0 + / (aX(S) - yx(s)M(s))ds + / crX(S)dB(s).
Jo Jo

The following theorem provides basic facts about the existence, uniqueness, and distribution
of an MMOU process. For proofs and additional details; see [25, Section A]. As mentioned in

the introduction, specific aspects ofMMOU have been studied earlier in the literature; see, e.g.
[39].

Theorem 2.1. Define T(ř) := yx{s) ds. Then the stochastic process (M(t))t>o given by

M(t) = Moe~r(ř) + f e~(r^~r^ax(s)ds + f c~^r^~r^ax(S)dB(s)
Jo Jo

is the unique MMOU process with initial condition Mo. Conditional on the process X, the

random variable M (t) has a normal distribution with random mean

ß(t) = M0 exp(-r(/)) + f exp(-(r(ř) - r(s)))aX(s) ds
Jo

and random variance

v{t) = exp(-2(r(i) - r(i)»o£(J) di.

This result is analogous with the corresponding result for the Markov-modulated infinite-

server queue in [12] and [14]: there itwas shown that the number of jobs in the system has a
Poisson distribution with random parameter.

For later use, we now recall some concepts pertaining to the theory of deviation matrices of
Markov processes. For an introduction to this topic, we refer the reader to standard texts such
as [29], [30], and [36]. For a compact survey, see [13]. Let the transition rates corresponding
to the continuous-time Markov chain (X(/))r>o be given by qij > 0 for i ^ j and qi :=
-qu := Qij ' they define the intensity matrix or generator Q. The (unique) invariant

distribution corresponding to Q is denoted by (the column vector) n ,that is, itobeys jtt Q = 0
and eTjt = 1,where e is a ¿/-dimensional all- Is vector.
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Markov-modulated Ornstein-Uhlenbeck processes 239

Let n := eJtT denote the ergodic matrix. Then the fundamental matrix is given by F :=
(FI - Q)~l, whereas the deviation matrix is defined by D := F - n. Standard identities are

QF = FQ = F1-/, aswell as FID = DU = 0 (here 0 is to be read as an all-Os J x J matrix) and
Fe = e. The (/,j)thentry of the deviation matrix, with /,j e {1, . . . ,d], can be alternatively
computed as D¡j = f£°(Pij(t) - 7tj) dř,where pij{t) := F(X(t) = j ' X(0) = /), which in

matrix form can be expressed as

/•OO
D = I (exp (Qt) - e7iT)dt.

Jo

3. Transient behavior: moments

In this section we analyze the moments of M(t) using stochastic integration theory. First

considering the mean and variance in the general situation, we then concentrate on more specific
cases in which the expressions simplify greatly (that is, equal y¿s with X(t) starting off in

equilibrium at time 0, and in the steady-state regime). The section is completed by deriving
an expression for the covariance between M{t) and M(t + u) (for ř,u > 0), and an Itô-based
recursive procedure to determine all moments.

3.1. Mean and variance: general case

Let Z {t) e {0, '}d be the vector of indicator functions associated with the Markov chain

(X(ř))í>o> that is, we let Z/(ř) = 1 if X{t) = i and 0 otherwise. Let pt denote the vector of
transient probabilities of the background process, that is, (P(X(ř) = 1), . . . ,P(X(f) = d))T
(where we have not specified the distribution of the initial state X(0) yet). We subsequently
find expressions for the mean ļit := EM (t) and variance vt:= var M (t).

• The mean can be computed as follows. We consider the mean of M(t) jointly with the

state of the background process at time t. To this end, we define Y (t) := Z(t)M(t ), and

vt:= EF (ř). It is clear that

dZ(t) = QTZ(t) dt + dK(t) (3.1)

for a ¿/-dimensional martingale K(t). With Itô's rule we obtain, with the strictly diag-
onally dominant, and hence invertible [23, Theorem 6.2.27]), matrix Qy defined by

öT-diag{y},

dY(t) = M(t)(QTZ(t) dt + dK(t)) + Z(t)((aTZ(t) - yTF(ř)) dt + aTZ(t) dB(t))
= (Qry(t ) + diag(a)Z(t)) dt + diag(*}Z(t) dB(t) + M(t) d*(/); (3.2)

here we use identities such as Z(t)yTY(t) - diag{y}F(/) and Z{t)a 1Z(t) =
diag [<x}Z(t), which follow due to Z¡(t) - (Z,(ř))2 and Z¡(t)Zj(t) = 0 for i / j.
Taking expectations of both sides in (3.2), we obtain the system v[ = Qy vt+ diag[ot}pt .
This is a nonhomogeneous linear system of differential equations that is solved by

vt= e@ytvo + f e^y(ř-5)diag{cc}ps ds ;
Jo

then ļit = eTvt. Realize that vo = moPo, as we assumed that M(0) equals mo-
The equations simplify drastically if the background process starts off in equilibrium
at time 0; then evidently pt = n for all t > 0. As a result, we find that vt =
qQyívo _ Q~l(I - e0yř)diag{a};r.
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240 G. HUANG ETAL.

We now consider the steady-state regime (that is, t -►oo). From the above expressions,
itimmediately follows that

»00 = -Qy1diag{a}jr, ßoo -eTVoo- -eTQ~ldiag{a}jr.

We further note that y = - (g- diag{y})e, and, hence, yT QZX - - eT, sothatyTv<x> =
T1nT1a .

• The variance can be found in a similarway. DefineF(ř) := Z(t)M2(t),andwt := EÝ(t).
Now our starting point is the relation

d(M(t) - n,) = (aT(Z(t) - pt) - yJ(Y(t) - v,)) di + aTZ(t) dB(t),

so that

d (M(t) - ĻL,)2 = 2 (M(t) - M,)(aT(Z(/) - pt) - yT(F(i) - v,))d/

+ 2 (M(t) - fit)aTZ(t) dB{t) + aTdiag[Z(t)}a di.

Taking expectations of both sides, we obtain

v' - 2aT vt- 2¡jLt0LTpt - 2yTwt + 2iityTvt + aTdiag{př}o'

Clearly, to evaluate this expression, we firstneed to identify wt. To this end, we set up
an equation for dy (t) as before, take expectations so as to obtain

w't= QiyWt + 2diag{a}v, + diag{or2}pt;

here a2 is the vector (erf, . . . ,cr¿)J . This leads to

wt=e®2ytwo+ f Q^2y^~s'2áiãg{a}vs + diag{<r2}ps)ds, (3.3)
Jo

so that vt= eTwt- ¡jl2. Observe that wo = mlPo-
Again, simplifications can be made if po = n (and hence pt = it for all t > 0). In
that case, we had already found an expression for vsabove, and as a result (3.3) can be

explicitly evaluated.
For the stationary situation (t oo, that is), we obtain

Woo = -Qzy(2diag{a}voo + diag{or2}jr), Voo= <?Tw>oo- ßlo-

We consider now an even more special case: y¿= Y f°r aH * 0n addition to pt = it '
we let t > 0). It is directly seen that ¡Xqq = jtTa/y. Since yTQ~l = -eT implies that

eT Q~ll = -8~leT for any 8 > 0, itfollows that

Voo= eTWoo - lĄo

řTdiag{a}voo xT<r2 /nTa'2
y

+
2y [ r /

_ eTdiag{a }Q~'diag{a} jt nTa2 /nTa'2~_
Y

+
2y ' y )

'
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Markov-modulated Ornstein-Uhlenbeck processes 241

Now observe that, with D¡j(y) := /0°°pij(v)e~yv dv for y > 0, integration by parts yields

rOO
QD(y ) = / QP(v)e~yvdv

Jo

poo= / P' (v)e~yvdv
Jo

/»00
= - /+ / yP(v)e~yv dv

Jo

= -I + YĎ(y).

As a consequence, - (Q - yI)D(y ) = /,so that

ktg2 1 T v / jrTa'2 JtTcr2 1 TVoo= - h-a Tdiag{^}D()/)a = ( )
- h-a T

diag{;r}D()/)a, (3.4)
2y y ' y J 2y y

using Dij(y ) := f£°(Pij(v) - 7Tj)t~yv dv = D¿j(y) - nj/y. In the next section we further

study the case in which the yis are equal, that is, y¡= y, and the background process is in a
steady state at time 0, that is, and pt = jr. As itturns out, under these conditions the mean and
variance can also be found by an alternative elementary, insightful argument.

3.2. Mean and variance: special case of equal y , starting in equilibrium
We now consider the special case y¡ = y for all i, while X(t) is assumed to start off in

equilibrium at time 0 (that is, P(X(f) = i) = P(X(0) = i) = tii for all t > 0), allowing an

explicit evaluation of ¡it and vt,particularly when specific scalings are imposed (one of which

plays a key role later in the paper).
We firstconcentrate on computing the transientmean ¡it .We denote by X the path (X (s) ,s g

[0, /]). Now using the representation of Theorem 2.1 and recalling the standard fact that ļit
can be written as E(E(Af (ř) | X)), itis immediately seen that ¡xtcan be written as a convex
mixture ofmo and nTa/y'

lit = moe~yt + e~yt
j

cys
ds^^7T;a/^

= moe~yt + ^-^(1 - e~yt);

using the fact that (X(t))t>o started off in equilibrium at time 0. This expression converges as
t ->►ex), to the stationary mean jtTct/y ,as expected.

The variance vtcan be computed similarly, relying on the so-called law of total variance,
which says that var M(t) - E(var(M(í) | X)) + var(E(M(ř) | X)). Regarding the firstterm,
itis seen that Theorem 2.1 directly yields that E(var(Af (ř) | X)) can be expressed as

E(í' ds)
=
i

^ = è-

Along similar lines, var(E(M(ř) | X)) can be expressed as

Var(/ e~Y('~S)oix^ds^
=
j0 j0 co'(e~yU~s)ax(s),e~Y('~u)ax(u))duds

= e~2rt f f erU+u) co'(ccX(s),<xx(u))duds.
Jo Jo
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242 G. HUANG ETAL.

The latter integral expression can be made more explicit. Using the fact that X(0) has
distribution n, we have

2e~lyt f f eY(s+u) co'(ax(s),ax(u))duds
Jo Jo

ns
eY(s+u) EE

d d

eY(s+u) EE UiCtj7Ti(pij{s - U) - 7Tj) duds

= f (e~yv - e~Y(2t~v))7Ti(pij(v) - Kj)dv
y /=1 j= i Jo

(where the last equation follows after changing the order of integration and some elementary
calculus). We have thus found that

v- 2Íl-e~2rt'I I v-v- f /c-yv -e-YW-v)'
V,= v- I

'
- -

y

-
/
I + 2_,2^aiCCj

v-v-
jo/ (' y /

UiiPij(v) - lij) dv.
/=1 ' y / i=i j=x jo ' y /

We conclude this section by considering two specific limiting regimes, to which we return

in Section 5, where we will derive limit distributions under parameter scalings.

• Specializing to the situation that t -> oo, we recover, after some algebra, (3.4).

• Scale a '-+ Nha, a2 h* Nha 2, and Q i-> NQ for some h > 0. We find that var M(t)
can be expressed as

d d pf/Q-yv _ ç-y(2t~v)'+ n2H ^2^2a'aj J°/ ('

_

y )7īi(pij(vN)-7īj)dv,'
i=1j=1 J° ' y '

which for large N behaves as, with D := -D(O), the deviation matrix introduced in

Section 2,
/ 1_ ' / d d d v

(
/

V

1_
J'K /

'
) 'nH
/

¿ W + 2n2H~X ¿ ¿ «'«Fi DU/)V K / ' /=1 /=1j= i /

/ 1- e~2yt '= í
-
-

j(NhJtT<T2
+ 2N2h-laTdiag{n}Da). (3.5)

We observe an interesting dichotomy: for h < 1 the variance is essentially linear in the

'scale' of the OU processes Nh ,while for h > 1 itbehaves superlinearly in Nh (more
specifically, proportionally to N2h~l). It is this dichotomy that also featured in an earlier
work on Markov-modulated infinite-server queues [2], [9], and that we further explore
in Section 5.
The intuition behind the dichotomy is the following. If h < 1 then the rimescale of
the background process systematically exceeds that of the d underlying OU processes
(that is, the background process is 'faster'). As a result, the system essentially behaves
as an ordinary (that is, nonmodulated) OU process with 'time-averaged' parameters
aœ := jtTa , y , and := nTcr2. If h > 1,on the contrary the background process
jumps at a slow rate, relative to the typical rimescale of the OU processes; as a result, the
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Markov-modulated Ornstein-Uhlenbeck processes 243

process (M(t))t>omoves between multiple local limits (where the individual 'variance
coefficients' of do not play a role).

Note that itfollows from (3.5) that diag{7r}D is a nonnegative definite matrix, although
singular and nonsymmetric in general; more precisely, itis a consequence of the fact that (3.5)
is a variance and hence nonnegative, in conjunction with the fact the we can pick o2 = 0.
Below we state and prove the nonnegativity by independent arguments; cf. [2, Proposition 3.2].

Proposition 3.1. The matrix DTdiag{;r} + ámg{jt}D is symmetric and nonnegative definite.

Proof. First we prove the claim that the matrix ßTdiag{jr }+ diag{ jt }Q is (symmetric and)
nonpositive definite. To that end we start from the semimartingale decomposition (3.1) for Z .
By the product rule we obtain, collecting all the martingale terms in dM(t),

d(Z(í)Z(í)T) = QtZ(t)Z(t)T dt + Z(t)Z(t)TQât + d (Z), + dM(t).

As the predictable quadratic variation of Z is absolutely continuous and increasing, we can
write d(Z)t = Ptdt, where Pt is a nonnegative definite matrix. Next we make the obvious
observation that Z(t)Z(t)T = diag{Z(ř)}. Hence, by combining (3.1) and the above display,
we have

diag{ßTZ(/)} = ßTdiag{Z(i)} +diag{Z(i)}ß + Pt.

Taking expectations with respect to the stationary distribution of Zt and using QTn = 0, we
obtain 0 = (2Tdiag{7r} + diag{;r}(2 + EPř, from which itfollows that gTdiag{7r} + diag{;r}(2
is (symmetric and) nonpositive definite.

This in turn implies that - DT(ßTdiag{7r} + diag{7r}ß)^ is symmetric and nonnegative
definite. Recall now that FQ = TI - I and, hence, DQ = Yl- I . Then DTgTdiag{;r}D =
- (diag{jr} - 7TJTT)D. But nTD = 0, so DT QTćimg{n}D = - diag{7r}D. The result now
follows. □

3.3. Covariances

In this section we point out how to compute the covariance c(ř, u) := cov (M(ř), M(t + u))
for ř,u > 0. To this end, we observe that by applying a time shift, we firstassume in the

computations to follow that t= 0, and we consider c(t) := cov(M(t ), M(0)). Below we make

frequent use ofthe additional quantities C(t) = co M(0)) and/?(ř) = cov(Z(ř), M(0)).
Note that c(t) = eTC(t). Multiplying (3.1) and (3.2) by M(0), we obtain upon taking expec-
tation the following system of ODEs, with initial conditions £(0) = cov(Z(0), M(0)) and

C(0) = cov(y(0), M(0)):

írÍ!Í=*í?/iV'C (t)J
where R := ( °] x QyJ'C(t)J

9 ) (JJ'A .
'C (t)J

:=
ydiagta)x QyJ'C(t)J

In a more compact and obvious notation, we write A'(t) - RA(t), and hence A{t) =
exp(Rt)A(0). Likewise, we can compute

A(ř, «) := 'cov(Y(tM2« !+ m),"i' TÜM {t)) )
- «P(*«) ícovíí!ří' M(t))TÜ )

■
'cov(Y(t + m), M {t)) )

«P(*«)
ycov(F(0, M(t)) )

It remains to derive an expression for the last covariances. For cov(Z(ř), M(t)) we need
EM(t)Z(t) = EF(ř), EM(t), and EZ(f). For cov(Y(t), M(t)) we need EM(t)Y(t) =
EM(/)2Z(0, EF(ř), and EM(t). All these quantities were obtained in Section 3.1.
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244 G. HUANG ETAL.

3.4. Recursive scheme for higher-order moments

The objective of this section is to set up a recursive scheme to generate all transientmoments,
that is, the expected value of M(t)k for any k e {1,2,...}, jointly with the indicator function

l{X(r)=*'}- To that end we consider the expectation of (M{t))kZ{t ). First we recast (2.1) in

the form dM(t) = (aTZ(t) - yTZ(t)X(t)) dt + Z(t) dB(t). Applying Itô's lemma to this

SDE, we obtain

d (M(t))k = k(M(t))k-l(aTZ(t ) - yTZ(t)X(t))dt + k(M(t))k~laTZ(t)áB(t)
+ 'k{k - l)(A/(/))*_2ffTdiag{Z(í)}<rdí.

Then we apply the product rule to M{t)kZ{t), together with the just obtained equation and (3.1)
to obtain

d((M(í))*Z(í)) = ¿(M(í))*_1(diag{a}Z(0 - diag{y}Z(f)M(í)) dt

+ k(M{t))k~ìàmg{o}Z{t) dB(t) + 'k(k - l)(M(í))*~2diag{or2}Z(f)df

+ (M(t))k(QTZ(t)dt+ dK(t)).

All martingale terms on the right-hand side are genuine martingales and thus have expectation 0.

Putting Hjc(t) := EM(t)kZ(t), we obtain the following recursion in ODE form:

-^-Hk(t) = ¿diag{a}ff*-l(0 - kdmg{y}Hk(t) + ]rk(k - l)diag{<r2}fl¿fc_2(0 + QTHk{t)
at I

= QkyHjcit) + kdmg{a}Hk-'(t) + 'k{k - l)diag{<r2}tf*-2(0.

Stacking //o(0, • • • ,Bn(t) into a single vector Hn(t ), we obtain dHn{t)/ dt = with

An e denoting a lower block triangular matrix whose solution is Hn(t) =
exp (Ant)Hn(0). Then hk(t) := EM(t)k = eTHk(t). For k = 1,2 the results of Section 3.1
can be recovered.

For the stationary version M, the above procedure becomes a normal recursion; existence
of all moments can be established as in [39].

4. Transient behavior: PDEs

The goal of this section is to characterize, for a given vector t e RK (with K e N) such that

0 < t' < • • • < tK, the Laplace transform of (M(t + t'), . . . ,M(t + ík)) (together with the

state of the background process at these time instances). More specifically, we set up a system
of PDEs for

gt(ů, t) := Ee-(»|M('l+ř)+-+»*AÍ(,«+'» l(x(,,+,)=«, *(*+»)=,•,);

here t > 0, i e {1, . . . ,d}K , and ů e RK . The system of PDEs is with respect to t and i up
to ůk •We firstpoint out the line of reasoning for the K = 1case, and then present the PDE for

K = 2. The K g {3,4,.. .} cases can be dealt with fully analogously, but lead to notational
inconveniences and are therefore left out.

It is noted that the stationary version of the result below (that is, t -> oo) for the special case
K - 1has appeared in [39] (where we remark that in [39] the additional issue of reflection

at 0 was incorporated). For K = 1,the object of interest is g¡(ú, t) := Ee~ŮM^Zi(t) for

1= 1, . . . ,d; realize that, without loss of generality, we have taken t' = 0. For amore compact
notation we stack the g¡ in a single vector g, so g(ů, t) = Ee~ŮM^Z(t). Replacing in this

expression ů by -im for mg M gives the characteristic function of M(t) jointly with Z(t).
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Markov-modulated Ornstein-Uhlenbeck processes 245

Theorem 4.1. Consider the case K = 1 and t' = 0. The Laplace transforms g(ů, t) satisfy
thefollowing system ofPDEs :

9 / 1 ' 9-9 g(ů, t) - Í
/
QT - tfdiag{a} + -tf2diag

1
{a2}Jg(ů,

'
t) - iMiagly} -

9
g(ů, t). (4.1)

The corresponding initial conditions are g(0, t) = pt and g(ů, 0) = e po.

Proof The proof mimics the procedure used in Section 3.4 to determine the moments

of M (t). Letting f(ů,t) := q~ům^' applying Ito's formula to

dM(t) = (aTZ(t ) - yTZ(t)X(t)) dt+ aTZ(t) dB(t)

yields
df(ů, t) = -ůf(ů, t)((aTZ(t) - yTZ(t)M(t)) dt+ aTZ(t) dB(t))

+ 'ů2f{ů, ř)diag{w2}Z(ř) dř.

We then apply the product rule to f{ů, t)Z(t), using the just obtained equation in combination
with (3.1). This leads to

d (/(£, f)Z(O) = 0((diag{a}Z(ř) - diag{y}Z(t)M(t)) dt+ diag{or}Z(í) dB(t))

+ 'ů2f(ů, r)diag{<r2}Z(/) dř + f(ů, t)(QrZ(t) dt + dK(t)).

Taking expectations, recalling that g(ů, t) = E/(#, t)Z(t) and that the martingale terms have

expectation 0, we obtain (4.1); realize that dg/dů = -E (f(ů, t)M(t)Z(t)). □

In [25, Section 4.2] we have included explicit expressions relating to the case K = 1 and
d = 2.

It is remarked that the above system (4. 1) of PDEs coincides for t -> oo, with the stationary
result of [39] (where itis mentioned that in [39] the feature of reflection at 0 was incorporated).
In addition, itis noted that this system can be converted into a system of ordinary differential

equations, as follows. Let T be exponentially distributed with mean r-1, independent of all
other random features involved in the model. Defintg(ů) := Ee~^M(r)Z(ř). Nowmultiply the

PDE featuring in Theorem 4.1 by re-Tř and integrate over t e [0, oo) to obtain (use integration

by parts for the left-hand side)

Hg($) - e~ům°Po) = QTg(&) - (tfdiag{a} - 2#2diag{<r2})g(tf)
- iMiag{y}

All the above results are related to the ĀT= 1 case. For higher values of K the same

procedure can be followed; as announced we now present the result for K - 2. Let i,k be
elements of {1, . . . ,d}, and ů = (ů', Ů2) GR2. We obtain the following system of PDEs:

d
d d

-r-gi,k{V> 0 = gjA# ' 0 + ^qekgi,e(& ,f)
j=1 e=i

-
^ia/

+ #2oik- -
^ů2ak^g'M&<

t) -
V'Yi-¡^gi,k(&>

0

a- #2
YkjĶgi,k(V,t),
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246 G. HUANG ETAL.

or in self-evident matrix notation, suppressing the arguments ů and t,

dG- = QJG + GQ- i?idiag{a}G - i?2Gdiag{a}
ot

1 O ry lo 9+ -ůfdiag[a
O ry

}G + -#fGdiag{a2}
9 - i?idiag{y}- - #2- diag {y}.

The initial conditions follow directly from the K = 1 case; taking without loss of generality
t{ = 0, we have that the (/,A:)thentry of G(0, t) equals P(X (ř) = /,X(t + ti) = k), whereas
the (/,k)th entry of G(ů ,0) equals e~^im°Ee~1>2M('2)

l{X(0)=l,A-(ř2)=fc} •
This matrix-valued system of PDEs can be converted into its vector-valued counterpart.

Define the J2-dimensional vector g(ů ,t) := vec (G(ů, t)). Recall the definitions of the Kro-
necker sum (denoted by '0') and the Kronecker product (denoted by '0'). Using the relations

vec (ABC) = (CT 0 A)vec(Z?) and A02? = A®/ + /®£, for matrices A, B , and C of

appropriate dimensions, we obtain the vector-valued PDE, again suppressing the arguments ů
and ř,

TT = (ÔT ® ÔT)£ _ <8>diag{ce})¿ - #2(diag{a) <8>I)ģ + ^-(/ i8>diag{a2})gÓt ¿

+ ^-(diag{<r2}2
(8)I)g -ůi (/ <g>diag{y})^|- - i?2(diag{y) (8)

2 aí/i dí/2

It is clear how this procedure should be extended to K € {3, 4, . . .}, but, as indicated, we do
not include this because of the cumbersome notation needed; the initial conditions follow from

the K = 1case.

5. Parameter scaling

So far we have characterized the distribution ofM(t) in terms of an algorithm to determine

moments and a PDE for the Fourier-Laplace transform. In other words, so far we have not

presented any explicit results on the distribution of M(t) itself. In this section we consider

asymptotic regimes in which this is possible; these regimes can be interpreted as parameter
scalings.

More specifically, in this sectionwe consider the following two scaled versions of theMMOU
model.

• In the firstwe (linearly) speed up the background process (that is, we replace Q NQ
or, equivalently, X(t) i-> X(Nt)). Our main result is that, as N -►oo, the MMOU
essentially experiences the time-averaged parameters, that is, aoo := ttta, yœ := nTy,
and cr^Q:= 7TTa2. As a consequence, itbehaves as an OU process with these parameters.

• The second regime considered concerns a simultaneous scaling of the background process
and the OU processes. This is done as in Section 3.2: Q on the one hand, and a and a2
on the other hand are scaled at different rates: we replace a '-> Nhot and a1 t-^ Nha2,
but Q NQ for some h > 0). We obtain essentially two regimes, in line with the

observations in Section 3.2.

As mentioned above, we are particularly interested in the limiting behavior in the regime that N
grows large. It is shown that the process M(t ), which we now denote as Mm(t) to stress the

dependence on N, converges to the solution of a specific SDE. Importantly, we establish weak
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Markov-modulated Ornstein-Uhlenbeck processes 247

convergence,that is, in the sense of convergence at the process level; our result can be seen as
the counterpart of the result for Markov-modulated infinite-server queues in [2].

We consider sequences ofMMOU processes, indexed by N, subject to the following scaling:
Q h» NQ' a h* Nha; a '-^ Nh/2cr, where h > 0. Note that by appropriately choosing h

we enter the two regimes described above as we let N grow large (see Corollaries 5.1 and 5.2).
The definitions of M(t ), Z(ř), and K(t) (the latter two having been defined in Section 3) then
take the following form (where superscripts are being used to make the dependence on N and h

explicit):

dM[N'h](t) = (Nha - yM[N-h](t))TZ[N](t)ât + Nh,2oTZ[N](t)âB{t),
dZlN](t) = NQTZlN](t)dt + dKlN](t).

We keep the initial condition M^N,h'0) at a fixed level M{0). Let, with the definitions
of doo, Yoo, and given above, the 'average path' Q(t) be defined by dg>(r) = -

Xooe(0)di with e(0) = l(ň=0) Ai(0), such that g(t) = e~y°°'Q(0) + ((WKoo) (1 - e-''00')-
It is possible to show that g(t) coincides with N~hEM^N,h't)-, in particular g(0) =
limw^oo N~hEM(0) = l[h=0] M(0).

We can now state the main theorem of this section.

Theorem 5.1. Under the scaling <3 iVß; a h- Nha ; a Nh^a, itfollows that the
scaled and centeredprocess M^N,h't)f as defined through

:= N~ß(MlNM(t) - NhQ(t)),

converges weakly to the solution of thefollowing SDE:

dM(t) - -KoüM(í) di + +V'(t) 1{Ä>1, dB(t), M (0) = 0,

where ß := max{/*/2, h -
^}, B a Brownian motion, and

V(t) := f (a- yeCs))T(diag{;r}D + DTdiag{7r})(a - yç(s))ds. (5.1)
Jo

Before proving this result, we observe that the above theorem provides us with the limiting
behavior in the two regimes described at the beginning of this section. In the firstcorollary we
simply take h = 0.

Corollary 5.1. Under the scaling Q i-> AfQ, with a and crkept at their original values, it
follows that M^N,0't) converges weakly to a process M'(t), which is an (ordinary, that is,

nonmodulated) OUprocess with parameters («oo, Voo»^oo), defined through the SDE

dM'(t) = (û?oo- YooM.'(t))àt + OoodB(t).

The second corollary describes the situation in which both the background process and the
OU process are scaled, but at different rates. As itturns out, there are three regimes.

Corollary 5.2. Under the scaling Q i-> NQ; a h* Nhct ; a '-> Nh^a, itfollows that

M^Nļh't) converges weakly to a process defined through one of thefollowing SDEs:
if 0 < h < 1 then

àM2(t) = ~YooM2(t) dt+ croodB(t);
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248 G. HUANG ETAL.

ifh = l then

dM2(t) = -Y00M2U) dt + + v'(t) dBity,

ifh>' then

dM2{t) = -YooM2(t) dt+ y/V'(t) dB(t).

These corollaries are trivial consequences of Theorem 5.1, and therefore we direct our
attention to the proof of this main theorem itself. We remark that Corollary 5.2 confirms an
observation wemade in Section 3. For h < 1the system essentially behaves as a nonmodulated
OU process, while for h > 1the background process plays a role through its deviationmatrix D .

In the proof of Theorem 5.1 we need an auxiliary result, which we present first.

Lemma 5.1. Let the d-dimensional row vectors be a sequence ofpredictable processes
such that ^N't) ^(i) in probability uniformly on compact sets, that is, as N 00,

suplico -*(01 -* 0
t<T

in probability for every T > 0; here W is deterministic, satisfying /q ^ (s)ty(s )T ds < 00

for every t > 0. Furthermore, let be continuous semimartingales that converge weakly
to a d-dimensional scaled Brownian motion B with quadratic variation (B)t = Ct (where
C e Rdxd). Then, as N -►00, the stochastic integrals

f'^N's)dXW(s)
Jo

converge weakly to the time-inhomogeneous Brownian motion B* := f0^(s) dB(s) with

quadratic variation

(B*)t= f V(s)CV(s)T ds.
Jo

The claim of Lemma 5.1 essentially follows from [27, Theorem VI.6.22]. To check the

condition of the cited theorem, one needs weak convergence of the pair but this

is guaranteed by the uniform convergence in probability of the ^N't).
We now proceed with the proof of Theorem 5.1.

ProofofTheorem 5.1. The proof consists of four steps.

Step 1. We describe the dynamics of the process M^N,h't) through

dM[NM(t) = Nh~ß(a - p(t)y)T (ZlN't) -n)dt + Nh/2~ß<rT Z[,N] dB{t)

-YTz'mM^'h't)dt
=: Nh-ß-l'2dG^'t) + Nh'2-UB^'t) - YTzlN]M^'h't)dt.

Defining £^(/) := Z^(,s)ds and Y^N'h't) eyT^[N](-^M^N'^(t), we obtain

dY^h't) = N"-ß-W2ey^r dGW(t) + N dB[Ař](í). (5.2)

In the next two steps we analyze the two terms in the right-hand side of (5.2).
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Markov-modulated Ornstein-Uhlenbeck processes 249

Step 2. We firstconsider the firstterm on the right-hand side of (5.2). To analyze it,we need
the functional CLT for the martingale k[n1:= K^/y/Ñ. From the proof of Proposition 3.1,
we know that

= />,(diag{ôTZ'AÍ'(í)} - ßTdiag{Z[Af](s)} - diag{Z[Ař](.s)}g) di,w Jo

which by the ergodic theorem [4, Section VI.3] converges to - (ßTdiag{;r} + diag{;r}ß)i. As
the jumps ofKl ^are of order O (1/V^V), the martingale CLT (see, e.g. [27, TheoremVIII.3. 11]
or [17, Theorem 7. 1.4]) gives theweak convergence of to a d-dimensional scaled Brownian
motion B0 with

{B0), = - (<2Tdiag{7r} + diag{jr}ß)/.

Moreover, we then also deduce the weak convergence of the process

ZlN'Q] :=VÑÍ QTZm(s)às
Jo

to -B0, and, hence, to B0 as well.

• We firstapply Lemma 5.1, with ^N't) := -(a - p(t)y)TDT andX^ := to

G[N] = VÑ [ (ct-p(s)y)T(ZlN](s)-n)ds
Jo

= -VÑ f (a-p(s)y)T(QD)TZ[N](s)ds ,
Jo

where the last equality follows from QD = ejtT - I (see the proof of Proposition 3.1).
Note that (t) = ^ (t) for all N, and therefore itis immediate that the weak limit can
be identified as a continuous Gaussian martingale G, where itturns out that (G)t = V (t)
with V(t) defined in (5.1), which again follows from the proof of Proposition 3.1.

• In the next step we consider the processes /0 ^N's) dG^N's) with ^N's) :=
exp(yT(W (s)). As these processes are increasing, we have the almost sure convergence
of

sup Iexp(yT(^(s)) - exp(yT^,s)| 0 as TV oo,
s<T

by combining the ergodic theorem with [27, Theorem VI.2. 15(c)] (which states that

pointwise convergence of increasing functions to a continuous limit implies uniform con-

vergence on compacts). As an immediate consequence of the above and Lemma 5.1, we
obtain the weak convergence of f0 exp(yTÇm(s)) dG^N's) to /0 exp(yT;r s) dG(s) =
/o exP(X<x>s ) dG (s).

Step 3. We now consider the second term on the right-hand side of (5.2). For the Brownian
term B^ ,we have by the martingale CLTweak convergence to the Gaussianmartingale B with

quadratic variation (B)t = a^t. The convergence of f0 exp (yTÇ^N's)) dB^N's) can be han-
dled as above to obtain weak convergence to the Gaussian martingale f0 exp(yTjts) dB(s) =
/Oexp(yoo5)d¿(5).

Step 4. In order to finally obtain the weak limit of Y^N,h' we use

=
' min^h -

'
- ß = ' minU - °}-
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250 G. HUANG ETAL.

Clearly, for h < 1we have convergence of Y ^ ^ to /0 exp(yTjr,s) dB (s), whereas for h > 1
we have convergence to f0 exp(yTjts) dG(s). For h = 1,we obtain weak convergence to the

sum ofthese. To see this, recall that theweak convergence of the was based on properties of
the Markov chain, whereas the convergence of the B resulted from considerations involving
the Brownian motion B , and these basic processes are independent. Furthermore, note that

y[N,Ä](o) = N~PM(0) - Nh~P 1{/ï=o} M(0) 0. Combining these results, we find that

y[NM converges to a Gaussian martingale Y given by

Y {t) = f eyooS(l{h<'} dB(s) + l{Ä>i} dG(s)),
Jo

and hence the ÁfWM converge weakly to the limit M given by M(t) = e~YootY(t ), and this

process satisfies the SDE

dM(t) = -yœM (t)dt + (l{^<ij dB(t) + l{^>i} dG(/)).

In this equation the (continuous, Gaussian) martingale has quadratic variation l{h<i) cr^t +
1{A>1) ^(0- Hence, we can identify its distribution with that of

ļ yi{*<i}°¿, + l|A>i) V'(*)dß(i),

where B is a standard Brownian motion. This completes the proof. □

6. Multiple MMOU processes driven by the same background process

In this section we consider a single background process X, taking as before values in

{1, . . . ,d], modulating multiple OU processes. Suppose that there are J eN such processes,
with parameters (a(1' <r(1)) up to a^). It is further assumed that the OU
processes are driven by independentBrownianmotions #i(-), . . . ,Bj(-). Combining the above,
this leads to the J coupled SDEs

dMj (t) = (agř)
-

Yx}U)Mj (ř)) di + a(xJļt)dBj (t) for j = 1, . . . ,J.

We call the process a J -MMOU process.
Interestingly, this construction yields J components that have common features, as they react

to the same background process, as well as component-specific features, as a consequence of

the fact that the driving Brownian motions are independent. This model is particularly useful
in settings with multidimensional stochastic processes whose components are affected by the

same external factors.
An example of a situation where this idea can be exploited is that of multiple asset prices

reacting to the (same) state of the economy, which could be represented by a background process
(for instance with two states, that is, alternating between a 'good' and a 'bad' state). In this way
the dependence between the individual components can be naturally modeled. In mathematical

finance, one of the key challenges is to developmodels that incorporate the correlation between
the individual components in a sound way. Some proposals were too simplistic, ignoring too

many relevant details, while others correspond with models with overly many parameters, with

its repercussions in terms of the calibration that needs to be performed. Another setting in which
such a coupling may offer a natural modeling framework is that of a wireless network. Channel
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Markov-modulated Ornstein-Uhlenbeck processes 25 1

conditions may be modeled as alternating between various levels, and users' transmission rates

may react in a similar way to these fluctuations.

Many of the results derived in the previous sections covering the J = 1 case, can be

generalized to the situation of 7-MMOU processes described above. To avoid unnecessary
repetition, we restrict ourselves to a few of these extensions. In particular, we present

(i) the counterpart of Theorem 2.1, stating that M(t) is, conditionally on the path of the

background process, multivariate normally distributed;

(ii) some explicit calculations for the means and (co-)variances for certain special cases;

(iii) the generalization of the PDE of Theorem 4. 1;

(iv) explicit expressions for the steady-state (mixed) moments.

Neither procedures for transient moments nor scaling results (such as a /-dimensional CLT)
are included in this paper, but can be developed as in the single-dimensional case.

Conditional normality. Evidently, conditioning on (X(s), s e [0, /]) the individual compo-
nents ofM(t) are independent. The following result describes this setting in greater detail.

Proposition 6.1. Define r^'t) := /q Yx¿) for J = 1,- -,J-Then the J -dimensional
stochastic process (M(t))t>o given by

MU't) = M0ü)e-rü)<'> + jf e-<rü,<í>-r0',<*»aj/>t) ds + jf
dB(s)

is the unique J-MMOU process with initial condition Mq. Conditional on the process X, the

random vector M(t) has a multivariate normal distribution with, for j = 1,. . . ,J, random
mean

ß(j}U) = M(0j) exp(-r0)(0) + J exp(-(r(;>(í) - r °')(S)))«^(J) di

and random covariance v^'k't) = 0 if j ^ k,and

vUJHt) =
jf

exp(-2(rü>(f) - r^sma^Ýás.

Mean and (co-)variance. The mean and (co-)variance of M(t) for a /-MMOU can be

computed relying on stochastic integration theory, with a procedure similar to the one relied on
in Section 3; we do not include the resulting expressions.

We consider in greater detail the special case that for all i e {1, . . . ,d} (as
in Section 3.2) because in this situation expressions simplify. The means and variances can
be found as in Proposition 2.1; we now point out how to compute the covariance v^,k^ :=
cov(Af^(f), M^k't)) (with j k ), relying on the law of total covariance. We write, in
self-evident notation,

v'}-k) =E(co IX))+cov(E(M0)(ř) | X),E{M(k't) ' X)).
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The firstterm obviously cancels (cf. Proposition 6.1), while the second reads

Zwhmií:y
è«!,"«?1

y ', =1,2=1 1/0

« ŹŹ"!S? J0 -^)d»).
'1=1 /2-1

J0 '

As before, this expression further simplifies in particular asymptotic regimes, as pointed out
in [25, Section 6.2]; in [25, Example 6.2] the case of d = 2, J = 2 is explicitly analyzed for

t -> oo.
Transient behavior: PDEs. In order to uniquely characterize the joint distribution ofM(i),

we now set up a system of PDEs for the objects g(ů ,t) := Eexp(^y=1 ůjM^'t))Z(t) with

i e { 1, . . . ,d}. Relying on the machinery used when establishing the system ofPDEs featuring
in Theorem 4.1, we find that 3g(ů, t)/dt can be expressed as

[qT
-
J^tf,-diag{a0)}

-
^#?diag{(o-0))2}^£(tf

, í) -
^ ůjáiag[yij)}^-g(ů, t).

Recursive scheme for higher-order moments. The above system of PDEs can be used to

determine all (transient and stationary) moments related to the 7-MMOU.We restrict ourselves
to the stationary moments here. Define hk = (h i,*, . . . ,hd¿)T ,where

hiM := E((-l)^y=' *;(M(1))*' • • • l{x=/)).

Observe that = it. With techniques similar to those applied earlier, Uj e RJ denoting the

y'thunit vector, we obtain the recursion

hk = ^ÖT-X]^diag{>'0)^ ^^^^diag{a0)}Ät_M;-^Y^-diag{(<r('/))2}Äfc_2Hj^.

This procedure allows us to compute all mixed moments, thus facilitating the calculation of
covariances as well. In the situation of J = 2, for instance, we find that, with Äo,i and h i,o as
in Section 3.4,

= e(QT - diag{y(1)} - diag{y(2)})_1(diag{a(1)}Äo,i + diag{a(2)}^i,o).

Remark 6.1. The model proposed in this section describes a /-dimensional stochastic process
with dependent components. In many situations, the dimension d can be chosen relatively
small (see, e.g. [6], [19]), whereas J tends to be large (e.g. in the context of asset prices).
Importantly, the ^7(7 + 1) = O (J2) entries of the covariance matrix ofM(t) (or its stationary
counterpart M) are endogenously determined by the model and need not be estimated from

data. Instead, this approach requires the calibration ofjust the d (d - 1) entries of the ß-matrix,
as well as the 3dJ parameters of the underlying OU processes, totaling O (J) parameters. We
conclude that, as a consequence, this framework offers substantial potential advantages.
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7. Discussion and concluding remarks

In this paperwe have presented a set ofresults onMMOU processes, ranging from procedures
to computemoments and a PDE for the Fourier-Laplace transform, toweak convergence results
under specific scalings and a multivariate extension in which multiple MMOUs are modulated

by the same background process. Although a relatively large number of aspects is covered,
there are many issues that still need to be studied. One such area concerns the large-deviations
behavior under specific scalings, so as to obtain the counterparts of the results obtained in, e.g.
[7], [8], and [1 1], for the Markov-modulated infinite-server queue.

In this paper we have assumed that yř> 0, with strict inequality for at least one i e
{ 1, . . . ,d], so as to make sure the stationary version M exists, but one can actually do with less.
It is sufficient [20] to require < 0 (also if X(t) corresponds to a real-valued process); see
also [40, Example 5.1].

It is further remarked that in this paper we looked at an regime-switching version of the OU
process, but of course we could have considered various other processes. One option is the

Markov-modulated version of the so-called Cox-Ingersoll-Ross process:

dM (t) = (io¿x(t ) - Yx{t)M(t)) dt+ ox{t)y/M{t) dB(t).

Some results we have established for MMOU processes have their immediate MMCIR coun-

terpart, while for others there are crucial differences. It is relatively straightforward to adapt the

procedure used in [25, SectionA] to set up a system ofPDEs for the Fourier-Laplace transforms

(essentially based on Ito 's rule). Interestingly, the recursions needed to generate all moments
are now one-step (rather than two-step) recursions. A further objective would be to see to what
extent the results of our paper generalize to more general classes of diffusions; see, e.g. [24].
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