
Quantitative Finance, 2024
Vol. 24, No. 8, 1129–1156, https://doi.org/10.1080/14697688.2024.2390947

Neural network empowered liquidity pricing in a
two-price economy under conic finance settings

MATTEO MICHIELON*†‡, DIOGO FRANQUINHO §, ALESSANDRO GENTILE¶,
ASMA KHEDHER‡ and PETER SPREIJ ‡‖

†Quantitative Analysis and Quantitative Development, ABN AMRO Bank N.V., Gustav Mahlerlaan 10, Amsterdam,
1082 PP, The Netherlands

‡Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Science Park 105-107, Amsterdam, 1098 XG,
The Netherlands

§Department of Mathematics, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, 1049-001, Portugal
¶Energy Services B.V., Joan Muyskenweg 22, Amsterdam, 1096 CJ, The Netherlands

‖Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen, Huygens building,
Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands

(Received 9 February 2024; accepted 27 July 2024)

In the article at hand neural networks are used to model liquidity in financial markets, under conic
finance settings, in two different contexts. That is, on the one hand this paper illustrates how the
use of neural networks within a two-price economy allows to obtain accurate pricing and Greeks of
financial derivatives, enhancing computational performances compared to classical approaches such
as (conic) Monte Carlo. The methodology proposed for this purpose is agnostic of the underlying
valuation model, and it easily adapts to all models suitable for pricing in conic financial markets. On
the other hand, this article also investigates the possibility of valuing contingent claims under conic
assumptions, using local stochastic volatility models, where the local volatility is approximated by
means of a (combination of) neural network(s). Moreover, we also show how it is possible to gener-
ate hybrid families of distortion functions to better fit the implied liquidity of the market, as well as
we introduce a conic version of the SABR model, based on the Wang transform, that still allows for
analytical bid and ask pricing formulae.

Keywords: Bid-ask spread; Conic finance; Concave distortion; Liquidity; Neural network

JEL Classifications: C45, G12

1. Introduction

The article at hand investigates two methodologies, based
on neural networks, that allow valuing and risk managing
financial derivatives in markets with frictions.

With the constantly increasing complexity of valuation
models used within the financial industry, and the need for
high-performance calculations and versatile modeling frame-
works, machine learning is carving out more and more impor-
tance in this area. In this paper we propose two approaches,
based on neural networks, allowing to compute prices and
sensitivities of financial derivatives in a two-price economy,
i.e. an economy where prices are direction-dependent. We
assume that financial markets can be described according to
the conic finance paradigm of Cherny and Madan (2010). We

∗Corresponding author. Email: matteo.michielon@nl.abnamro.com

first illustrate how to use (vector-valued) neural networks
to jointly calculate bid and ask prices of contingent claims,
as well as their sensitivities. The methodology is shown to
be able to produce accurate results. Furthermore, within the
framework of local stochastic volatility (LSV) modeling we
extend the work of Cuchiero et al. (2020), which entails
approximating the local volatility component of a LSV model
by means of a (combination of) neural network(s), to mar-
kets with bid-ask spreads. The results made available in this
paper illustrate the advantages introduced by the two method-
ologies proposed, and thus support further developments in
the aforementioned areas.

The use of machine learning techniques has found appli-
cations in almost all disciplines (see, e.g. Johri et al. 2020
for an overview). And the financial industry has also, in the
last decade, proven to be a fertile ground for this subject,
with applications, e.g. in financial fraud detection (Awoyemi

© 2024 Informa UK Limited, trading as Taylor & Francis Group

https://crossmark.crossref.org/dialog/?doi=10.1080/14697688.2024.2390947&domain=pdf&date_stamp=2024-09-27
http://orcid.org/0009-0005-7258-5903
http://orcid.org/0000-0002-6416-6320
mailto:matteo.michielon@nl.abnamro.com

1130 M. Michielon et al.

et al. 2017, Sadgali et al. 2019) and anti-money launder-
ing (Chen et al. 2021, Domashova and Mikhailina 2021)
to name but two. And it is expected that financial model-
ing and quantitative analysis are not an exception in this
respect. In fact, different methodologies driven by machine
learning algorithms have flourished in the last years to ame-
liorate computational speed (almost) without compromising
accuracy; see, e.g. De Spiegeleer et al. (2018) and Davis
et al. (2021). We also recall (Liu et al. 2019a), where a data-
driven approach utilizing neural networks is used to calibrate
financial asset price models in high dimensional stochas-
tic volatility settings. Additionally, in Liu et al. (2019b) a
framework to value options and calculate implied volatili-
ties, aiming to accelerate numerical methods is presented,
achieving a significant reduction in computing time across
various solvers. We also mention (Buehler et al. 2019), which
entails hedging derivative portfolios in markets with frictions,
employing deep reinforcement learning methods, and capa-
ble of accurately approximating optimal solutions. However,
to the best of our knowledge, there is currently no litera-
ture addressing how to perform accurate and efficient bid-ask
pricing in financial markets under conic settings by means
of machine learning techniques. This article proposes two
methodologies, both employing neural networks, aiming to
provide novel contributions in this area.

We point out that one could look at applications of neu-
ral networks in the area of derivatives pricing from two
main perspectives. On the one hand, one could use a neural
network as a parsimonious parametric model calculator aim-
ing to replicate model prices generated by a chosen model.
On the other hand, one could use a neural network as a
non-parametric model builder aiming to infer the hidden rela-
tionships between contract prices, through time. And each
of these two points of view can be used with a different
goal. In the first case one could use neural networks (or
any other machine learning technique deemed appropriate)
to value complex financial products as done in Ferguson and
Green (2018) for basket options. On the other hand, in the
second case one could attempt to use different machine learn-
ing techniques to exploit statistical arbitrage opportunities in
financial markets, as done in Krauss et al. (2017) in the case
of the S&P 500 index.

The idea of this paper to adopt neural networks as model-
building tools is driven by several factors. To start with, neural
networks offer a high degree of architectural flexibility. Fur-
ther, due to their common usage in fields such as image
recognition (and related areas), which require processing bil-
lions of pixels at an exceptionally high speed, neural network
implementations naturally allow for GPU acceleration fea-
tures, which enable to significantly speed up calculations
compared to CPU architectures (Oh and Jung 2004, Nasse
et al. 2009). Moreover, neural networks allow for easy multi-
valued regression implementations (Borchani et al. 2015),
which is one possible way of interpreting bid-ask pricing.
Last but not least, the choice of using neural networks is fur-
ther supported by the literature; see, e.g. Morelli et al. (2004),
amongst others. However, as far as conic finance is concerned,
at the time of writing (Chopra 2020) seem to represent one of
the few attempts to use machine learning in a conic economy.
Nevertheless, the research conducted therein mainly applies

to pairs trading and index performance tracking, which are
outside the domain we are dealing with in this paper. Lastly,
we also mention (Madan and Sharaiha 2020), where machine
learning strategies based on Gaussian processes and least
squares regressions are compared and generalized by means
of distorted expectations, leading to their distorted counter-
parts.

This article aims to connect the use of neural networks
with pricing and risk-managing contingent claims in mar-
kets governed by the conic finance paradigm of Cherny and
Madan (2010) and results in five contributions. In particu-
lar, we (i) provide an accurate, fast, model-agnostic, and fully
neural network-based architecture for direction-dependent
derivative pricing consistent with Cherny and Madan (2010),
and we (ii) generalize it to compute sensitivities as well. Addi-
tionally, in the area of LSV modeling we (iii) extend the
work of Cuchiero et al. (2020) to incorporate bid-ask pricing
through conic Monte Carlo simulations. As a supplementary
endeavor, we also (iv) introduce a conic version of the SABR
model (Hagan et al. 2014), based on the Wang distortion
(Wang 2000), which still allows for analytical bid and ask
pricing formulae. Lastly, we (v) provide simple techniques to
generate arbitrary families of hybrid distortion functions to be
used in bid-ask calibration routines.

The manuscript is organized as follows. Section 2 pro-
vides the necessary tools and essential notions related to conic
pricing under the paradigm of Cherny and Madan (2009). In
particular, therein we recall how to perform bid-ask valua-
tion using the Wang transform (Wang 2000) and introduce the
conic SABR model, as well as we delineate a simple method-
ology to generate arbitrary families of distortion functions.
The two modeling approaches investigated in this paper are
presented in sections 3 and 4. In particular, in section 3 we
illustrate how to perform bid and ask pricing by means of a
(vectorized) neural network regression. On the other hand, in
section 4 our work related to LSV modeling can be found.
Therein we outline how it is possible to approximate the local
volatility component of a LSV model by means of (a combi-
nation of) neural network(s) following the work of Cuchiero
et al. (2020), and extend the aforementioned technique to
a two-price economy by means of conic Monte Carlo. In
both sections 3 and 4 we provide a selection of real-world
illustrative examples. Section 5 concludes.

2. Bid-ask pricing with distorted expectations: an
intuitive introduction

We start by considering a probability space (!,F , Q), where
Q denotes a chosen pricing (i.e. risk-neutral) probability mea-
sure. Furthermore, we consider a contingent claim, paying out
at a given (known) future time, represented with a random
variable X. For simplicity, and for the ease of notation as well,
from here onwards (and without loss of generality) we will
always assume the time value of money to be zero (otherwise,
discounted prices could be considered, instead).

If the contingent claim X trades under the law of one price
(still dependent on the probability measure Q), then it can be
bought or sold for the same amount EQ(X) =

∫
!

X dQ, which

Neural network empowered liquidity pricing 1131

can be rewritten as

EQ(X) =
∫ 0

−∞
(Q(X ≥ x)− 1) dx +

∫ +∞

0
Q(X ≥ x) dx,

(1)

whenever the two integrals in (1) are not both infinite of
opposite signs.

Assume now that a concave (distortion) function ψ :
[0, 1]→ [0, 1] such that ψ(0) = 0 and ψ(1) = 1 is avail-
able. One can then note, after re-weighting the Q-probabilities
in (1) by means of ψ(·), that

∫ 0

−∞
(ψ(Q(X ≥ x))− 1) dx +

∫ +∞

0
ψ(Q(X ≥ x)) dx

≥ EQ(X). (2)

Therefore, the left-hand-side of (2), named (asymmetric) Cho-
quet integral of X with respect to the distorted probability
measure ψ ◦Q (see Denneberg 1994, Sec. 5), can be natu-
rally interpreted as an ask price for X. This is because, via (2),
higher (lower) weights are given to the high (low) realizations
of X. From here onwards we will denote the left-hand-side
of (2) as (C)

∫
!

X dψ ◦Q. By recognizing that buying X is
equivalent to sell−X , one than obtains that−(C)

∫
!
−X dψ ◦

Q can be interpreted as a natural candidate for the bid price of
X. This is because, in this case, lower (higher) weights are
assigned to high (low) payoffs of X.

However, the definitions just given for bid and ask prices
are not ‘operational’ yet. That is, one would need the distor-
tion function to depend on (at least) one parameter, in such
a way that changing the value(s) of the latter would allow to
replicate the bid and ask spread observed in the market (at
least in a least-squares sense should this not be possible in an
exact manner). To this purpose (Cherny and Madan 2009) pro-
pose to consider an increasing family of distortion functions
(ψγ)γ≥0 from [0, 1] to [0, 1] and such that ψ0(·) coincides
with the identity function (in this context the term ‘increasing’
should be interpreted in a pointwise sense). As a consequence,
one can then obtain a wide range of γ -dependent bid and ask
prices. From here on, whenever the symbol γ is used, it would
always refer to a distortion parameter ranging in [0, +∞). By
assuming the dynamics of the underlying under Q are fully
specified and known, one can then, by changing the values
of γ , attempt to calibrate the theoretical conic prices to their
market-observable counterparts by means of the relationships

askγ (X) = (C)

∫

!

X dψγ ◦Q (3)

and

bidγ (X) = −(C)

∫

!

−X dψγ ◦Q (4)

where, for clarity, we emphasize that in (3) and (4) the same
γ is used. We recall that the parameter γ and the Choquet
representations of bid and ask prices are strongly linked to
the concepts of acceptability indices and coherent risk mea-
sures. We refer the reader to Cherny and Madan (2009, 2010)
and Madan and Schoutens (2016, Sec. 4) for a more detailed
elucidation of the matter.

2.1. Conic pricing of European options with the Wang
transform

In the applications we provide in the article at hand great use
will be made of the Wang transform (see, e.g. section 3.2.1).
We highlight here the reason why this concave distortion func-
tion plays an important role in the valuation of contingent
claims in a direction-dependent trading environment.

The Wang transform was initially introduced in Wang
(2000) to value both financial and insurance risks using Cho-
quet expectations. In particular, in the framework outlined in
Wang (2000) it is shown how this distortion function allows
for an alternative construction of the Black–Scholes option
pricing model. In symbols, the Wang transform reads

ψγ (x) := $($−1(x) + γ), (5)

where $(·) denotes the cumulative distribution function of a
standard normal random variable, and $−1(·) indicates its
inverse. As it is clear from (5), the Wang transform shifts
the quantile of standard normal random variables by the pos-
itive amount γ . Note that in the context of conic pricing γ
is assumed to be non-negative (with the case γ = 0 reduc-
ing to the risk-neutral case). However, in other frameworks
the Wang transform can be also considered for negative val-
ues of the distortion parameter (note that for γ > 0 the Wang
transform is concave, while when γ < 0 it is convex).

Definition (5) (see also Madan and Schoutens 2016,
Sec. 4.7.5) is very useful in practice. In particular, the Wang
transform has the convenient property that, if a random vari-
able is lognormally distributed, then by compounding the
distribution function of the latter with the Wang transform,
still a lognormal distribution is obtained (with adjusted mean).
Similar considerations also hold for the normal case. In addi-
tion, it has been recently shown, see Michielon et al. (2021),
that this property still holds whenever a normal random vari-
able is transformed by means of a non-decreasing function.
Therefore, the use of the Wang transform has become very
popular in conic pricing, as it allows to still obtain analyti-
cal formulae for bid and ask prices of European options under
both Bachelier (see Michielon et al. 2021) and Black–Scholes
(see [Sec. 5.4] Madan and Schoutens 2016) settings (and,
of course, in all those situations where (log)normal distri-
butions relate to the relevant options pricing formulae; see,
e.g. Haug (2007, Sec. 1.3) for some examples). From this it
follows that the Wang transform is arguably the natural distor-
tion to be used in option pricing given that vanilla options are
often quoted in terms of their (lognormal or normal) implied
volatilities.

2.1.1. Interlude: conic SABR. The observations made in
section 2.1 concerning the Wang distortion allow us to make
some interesting considerations concerning the SABR model
(Hagan et al. 2002, 2014). This model is very popular in the
financial industry and it has applications in different asset
classes: mainly rates, but also applications of the SABR
model (potentially with adaptations) can be found for foreign-
exchange (van der Stoep et al. 2015) and equity (Overhaus
et al. 2007, Sec. 2.1.2) markets, amongst others.

1132 M. Michielon et al.

For an underlying process (Yt)t≥0, the standard SABR
specifications read






dYt = σtY
β
t dWt

dσt = ασtdZt

d〈Wt, Zt〉 = ρdt

, (6)

where α > 0, ρ ∈ [−1, 1] (i.e. the correlation coefficient
between the two standard Brownian motions (Wt)t≥0 and
(Zt)t≥0), and where β ∈ [0, 1]. In Hagan et al. (2014) it is
shown that, up to higher order effects, the SABR specifi-
cations (6) still allow to use the Black formula for pricing
European options, but this time with a ‘twicked’ implied
volatility dependent on a set of (calibrated) parameters and
strikes. Note that, in practice, the parameter β is often not cal-
ibrated but, instead, exogenously set equal to one (zero) in the
case of lognormal (normal) SABR specifications, or to 1

2 for
‘in-between’ dynamics. We denote, for a fixed maturity T and
for a given strike price K, the SABR volatility as σ SABR(K, T),
with

σ SABR(K, T) =

σ0

{
1 +

[
(1−β)2

24
σ 2

0
(Y0K)1−β

+ 1
4

ρβασ0
(Y0K)(1−β)/2 + 2−3ρ2

24 α2
]

T
}

(Y0K)(1−β)/2
[
1 + (1−β)2

24 ln2 (Y0
K

)
+ (1−β)4

1920 ln4 Y0
K

]
· z
χ(z)

,

(7)

where

z := α

σ0
(Y0K)(1−β)/2 ln

(
Y0

K

)
,

χ(z) := ln

(√
1− 2ρz + z2 + z− ρ

1− ρ

)

,

and with σ0 the initial value of the volatility.
By virtue of the properties of the Wang transform outlined

in section 2.1, we obtain that, under conic settings and SABR
risk-neutral model specifications, call and put option prices
can be still computed analytically. That is, for a given liquidity
level γ and having defined δ(= δ(K, T ; γ)) := γ σ SABR(K,T)√

T
, it

holds that

bidγ (C(K, T)) = Y0e−δT$(d1)− K$(d2), (8)

askγ (C(K, T)) = Y0eδT$(d1)− K$(d2), (9)

bidγ (P(K, T)) = K$(−d2)− Y0eδT$(−d1), (10)

and

askγ (P(K, T)) = K$(−d2)− Y0e−δT$(−d1), (11)

where

d1 :=
ln
(Y0

K

)
+
(
−δ + σ SABR(K,T)

2

)
T

σ SABR(K, T)
√

T
,

and

d2 := d1 − σ SABR(K, T)
√

T .

In formulae (8), (9), (10) and (11) C(K, T) (P(K, T)) denotes
the (γ -dependent) price of a European call (put) option with
strike K and expiry T.

2.2. Conic Monte Carlo

We now briefly describe how to perform bid and ask pricing
of financial derivatives, within the conic finance framework,
by means of simulations. This methodology will be used in
the numerical examples provided later on in this paper (see
sections 3 and 4).

Under risk-neutral settings, given a (potentially path-
dependent) contingent claim paying out at a fixed future time,
we assume that N scenarios ω1, . . . ,ωN have been sampled
to obtain the corresponding payoffs x1 := X (ω1), . . . , xN :=
X (ωN). One would just need to average the latter to obtain the
current value of the contract (again, up to discounting). This
is because each outcome is considered equally likely.

In a two-price economy, on the other hand, the realizations
of the contingent claim across the different states of nature
need to be weighted differently. Intuitively, giving more (less)
weight to high (low) payoffs allows to obtain an ask (a bid)
price for X (see beginning of section 2). That is, assume
that the outcomes x1, . . . , xN are, without loss of generality,
ordered in a non-decreasing way. To calculate the bid and ask
prices of X one needs to weight the sampled realizations in
an alternative fashion. Namely, for each i ∈ {1, . . . , N} and
given distortion parameter γ ∈ [0, +∞), the probability to be
assigned to xi to calculate the bid price of X equals

pbidγ
i := ψγ

(
i
N

)
− ψγ

(
i− 1

N

)
. (12)

Contrariwise, that to be used to compute its ask counterpart
should equal

paskγ
i := ψγ

(
N − i + 1

N

)
− ψγ

(
N − i

N

)
. (13)

Thus, denoting with x := (x1, . . . , xN), pbidγ := (pbidγ
1 , . . . ,

pbidγ
N) and paskγ := (paskγ

1 , . . . , paskγ
N), to value in a two-price

economy one just needs to compute bid and ask prices by
means of the scalar products

bidγ (X) = 〈x, pbidγ 〉 (14)

and

askγ (X) = 〈x, paskγ 〉, (15)

respectively. From (12) and (13) it is obvious that the case
whereψγ (·) equals the identity function the standard uniform
weighting case is retrieved. For the derivations of formu-
lae (14) and (15), which basically depend on a discretized
version of the Choquet integral (see Wang and Klir 2009,
Sec. 11.5), refer to Madan and Schoutens (2016, Sec. 5.2).

Neural network empowered liquidity pricing 1133

Figure 1. Graphical depiction of the Minmaxwang distortion given different levels of the distortion parameter γ , panel (a), and of the
continuous mapping H(· , ·) transforming the Minmaxvar distortion into the Wang distortion, panel (b).

2.3. Hybrid distortions

In practical applications, the choice of the distortion func-
tion is somehow arbitrary. For instance, as seen in section 2.1
(and section 2.1.1 therein), the Wang transform is often used
for European option pricing as it allows to obtain, under
normal or lognormal dynamics, analytical pricing formulae.
However, to the best of our knowledge, there is currently no
methodology available providing some rules of thumb for dis-
tortion function selection. And, further, the ultimate aspect
that a modeler is interested in is given by how well a given
distortion function allows to replicate the bid ask spreads
observed in the market. Thus, in this section, we propose
some simple techniques that allow to generate arbitrary fam-
ilies of distortions, generalizing the currently available ones,
and that can be used as test functions to choose whether one
distortion is better than another, or whether something ‘in-
between’ would fit even better. Therefore, one might seek to
combine the characteristics and specifications of different dis-
tortion families to introduce more flexibility to the modeling
framework. Here we provide some intuitive ways to do so.
Observe that all the hybrid distortion functions we are going
to define in this section will be dependent on a single distor-
tion parameter. This is because, from a practical angle, one
would be interested in quantifying liquidity risk by means of
a single parameter (as, for instance, one would do in the case
of implied volatility for options) and, more precisely, in terms
of liquidity delta.

First of all, given N (γ -dependent) distortion functions
ψ1
γ (·), . . . ,ψN

γ (·), observe that any convex linear combina-
tion of them is still a concave distortion function. This means
that, if we consider the combined distortion

ψ̃γ (x) :=
N∑

i=1

αiψ
i
γ (x) (16)

such that, for every i ∈ {1, . . . , N}, αi ≥ 0 and with
∑N

i=1 αi =
1, we still obtain a concave distortion. Furthermore, it trivially
follows that the family (ψ̃γ)γ≥0 is increasing with respect to γ
and that ψ̃0(·) coincides with the identity function on [0, 1].

As an illustration of this, we take into account the Minmax-
var distortion, defined as ψMinmaxvar

γ (x) := 1− (1− x
1

x+1)γ+1

(see Cherny and Madan 2009), and the Wang distortion.
I.e. we set N = 2 and assume that ψ1

γ (·) := ψMinmaxvar
γ (·),

and that ψ2
γ (·) := ψ

Wang
γ (·), with α1 := 1− t and α2 :=

t (for t ∈ [0, 1]). Intuitively, this way we have created
a family of distortions that, continuously, transforms the
Minmaxvar distortion into the Wang distortion (and the
other way round). That is, we are simply considering the
straight-line homotopy between ψMinmaxvar

γ (·) and ψWang
γ (·),

i.e. the map H : [0, 1]× [0, 1]→ [0, 1] given by H(t, x) :
= (1− t) · ψMinmaxvar

γ (x) + t · ψWang
γ (x) such that H(0, x) =

ψMinmaxvar
γ (x), while H(1, x) = ψ

Wang
γ (x). In particular, we

name the ‘average’ distortion, obtainable when t = 0.5, from
here onwards, Minmaxwang, for the ease of terminology (and
t-Minmaxwang when t -= 0.5). The Minmaxwang distortion
is illustrated in figure 1(a), while the homotopy H(· , ·) in
figure 1(b).

The advantage of considering combined distortions as pro-
posed here is that it makes it possible to have one (or more,
if additional distortions are also considered) ‘helper parame-
ter’ that allows for more flexibility in the calibration routine.
Given that every distortion function on the right-hand-side
of (16) can be obtained by setting the appropriate parameters
to zero, then it is guaranteed that (16) will never worsen the
calibration results for any set of distortion functions initially
chosen.

Remark 2.1 With reference to Madan and Schoutens (2016,
Sec. 4.7), we recall that two desirable properties of a distortion

1134 M. Michielon et al.

function are, for γ > 0, that

lim
x→0+

ψ ′γ (x) = +∞, (17)

and that

lim
x→1−

ψ ′γ (x) = 0. (18)

One can then trivially observe that, for (17) to be verified by
ψ̃γ (·), then it is enough that one of the distortion functions
ψ1
γ (·), . . . ,ψN

γ (·) is such that (17) holds. On the other hand,
in order for condition (18) to be verified for ψ̃γ (·), then (18)
needs to be verified for all the distortions ψ1

γ (·), . . . ,ψN
γ (·).

We now propose another way of generating hybrid dis-
tortions. That is, we observe that the composition of the N
distortion functions ψ1

γ (·), . . . ,ψN
γ (·) is still a valid distor-

tion function. Therefore, if we start by taking into account,
as done above, the Minmaxvar and Wang distortions, then
we can define the Minmaxvar-Wang distortion as ψWang

γ ◦
ψMinmaxvar
γ (·). However, note that defining distortions using

the methodology just highlighted is not a commutative oper-
ation. Therefore, we could also opt for the Wang-Minmaxvar
distortion by inverting the order of the composition, i.e. by
taking into account ψMinmaxvar

γ ◦ ψWang
γ (·) and thus define the

Wang-Minmaxvar function.

Remark 2.2 Let us consider here the simple case given by
the combination of two distortion functions, i.e. let

ψ̂γ (·) := ψ1
γ ◦ ψ2

γ (·).

It then results, for x ∈ [0, 1], that

ψ̂ ′γ (x) = (ψ1
γ)
′(ψ2

γ (x)) · (ψ2
γ)
′(x).

By definition, both ψ1
γ (·) and ψ2

γ (·) map zero to zero and
one to one. Therefore, we obtain that condition (17) is satisfied
whenever one of the derivatives of ψ1

γ (·) or ψ2
γ (·) diverges

at zero (provided that the other, if any, is non-zero). Similarly,
condition (18) is verified whenever one of the derivatives of
ψ1
γ (·) or ψ2

γ (·) tends to zero at one (provided that the other,
if any, is finite).

3. Conic neural networks: liquidity pricing and hedging
with vector-valued neural networks

In this section, we illustrate a methodology that allows to
computation of bid and ask prices in a two-price econ-
omy under the conic finance paradigm of Cherny and
Madan (2010). In particular, we outline how neural net-
works can be used for bid-ask calibration purposes. From here
onwards we will call every neural network to be used to pro-
duce prices of contingent claims in a two-price economy a
conic neural network, and we will denote it with the acronym
CNN (not to be confused with the acronym for a convolutional
neural network).

3.1. A motivating example

We first start by taking into account a simple example to
provide a step-by-step illustration of how to calibrate (and,
therefore, price) in a two-price economy under conic finance
settings by using CNNs. We consider an economy such that,
in a risk-neutral context, the dynamics of a selected (non-
dividend paying) underlying asset of interest follow the spec-
ifications of the Black–Scholes model. We assume that, for
the underlying chosen, a set of European call options, all with
the same maturity, are quoted. Furthermore, we also hypoth-
esize that the bid and ask prices of these quoted options
under these simplistic settings are consistent with the conic
paradigm. That is, we assume that they can all be obtained,
starting from their risk-neutral prices, by means of apply-
ing the Wang distortion (Wang 2000) (see also section 2.1)
with the same constant distortion parameter. Thus, we are
in a simple economy where both risk-neutral and bid-ask
prices can be obtained by means of analytical formulae
(Madan and Schoutens 2016, Sec. 5.4) (see also section 2.1.1).
Besides, assume that the underlying price Y0 = 10, that the
time to maturity T = 1, that the constant volatility parame-
ter σ = 25%, and that the distortion parameter γ = 12.5%.
Also, it is supposed that the discount rate is zero and that
the strike prices K1, . . . , K11 of the quoted options belong
to {7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5}, i.e. that they
correspond to the 75% to 125% option moneyness levels
(equally spaced by 0.5 currency units). We denote the risk-
neutral option prices as C1, . . . , C11, while their corresponding
bid and ask prices as b1, . . . , b11 and a1, . . . , a11, respec-
tively. In this case, b1, . . . , b11 and a1, . . . , a11 represent our
(synthetic) market dataset.

In order to train the neural network that will be used for
model calibration, one needs to proceed per steps (we assume
here that the market data, i.e. the underlying price Y0 and the
zero risk-free rate are fixed and static, for illustration pur-
poses). Note, however, that this assumption is not restrictive,
as it would be sufficient to enlarge the training dataset of the
CNN by considering different values for the underlying and
for the discount rate. First of all one needs to select large-
enough intervals where the (to-be-estimated) volatility and
liquidity parameters are assumed to belong. In this case, we
consider [0, 50%] for the volatility, and [0, 25%] for the dis-
tortion. We also consider the range [7, 13] for the strike price.
One can then specify a grid 0 =: σ1 < · · · < σN := 50% for
the volatility parameter, 0 =: γ1 < · · · < γN := 25% for the
distortion parameter, and K̃1 := 7, . . . , K̃N := 13 for the strike
price (with respect to this example we select 125 equally-
distant points in all the cases considered, that is, N = 100).
Here we use the tilde superscript for the training grid in the
strike direction to distinguish this dataset from the ‘market-
observables’ K1, . . . , K11. We remark that, in principle, also
considering (random and) uniformly distributed parameters is
a possible choice, as well as considering a different amount of
training points for the volatility compared to that of the distor-
tion parameter or to that of the strike price. Decisions should
always be made on the base of experimentation depending
on the model specifications considered. Note, however, that
as far as the distortion parameter is concerned, zero should
always belong to the grid, as needed for the preliminary

Neural network empowered liquidity pricing 1135

risk-neutral calibration as it will be shown later. For each
pair (σi, γj, Kk) (here, i, j and k all range in {1, . . . , 100})
one can then generate the corresponding theoretical bid and
ask prices by using the analytical bid and ask option pricing
formulae of Madan and Schoutens (2016, Sec. 5.3). After-
wards, the training of the CNN takes place. In this case,
therefore, we are training a neural network which attempts
to approximate the function, from [0, +∞)3 to [0, +∞)2,
such that (σ , γ , K) /→ (bidγ (C(σ , K)), askγ (C(σ , K))), where
bidγ (C(σ , K)) (askγ (C(σ , K))) represents the bid (ask) price
of a call option C with, under conic Black–Scholes settings,
an implied volatility of σ , a distortion parameter of γ , and
a strike price equal to K. Therefore, the first component
of the neural network, i.e. CNN(· , · , ·)1, denotes the bid
price, while the second one, i.e. CNN(· , · , ·)2, the ask price,
instead.

Once the training of the neural network has terminated,
our model approximator is ready for the calibration phase.
Thus, we first consider CNN(· , 0, ·) and perform the first
minimization

min
σ≥0

11∑

i=1

(
Ci −

1
2
(CNN(σ , 0, Ki)1 + CNN(σ , 0, Ki)2)

)2

.

(19)

Note that in (19) we have considered the average of the
bid and the ask prices, calculated using the CNN, after hav-
ing set the distortion parameter equal to zero. Observe that,
theoretically speaking, both of them should coincide with
the corresponding risk-neutral prices of the options taken
into account. Thus, in practice, for σ and K given, one
could have just considered CNN(σ , 0, K)1 or CNN(σ , 0, K)2,
instead of their average. However, due to numerical approxi-
mations, CNN(σ , 0, K)1 and CNN(σ , 0, K)2 are never exactly
the same, so for instance one could choose to approximate
the risk-neutral price with the average 1

2 (CNN(σ , 0, K)1 +
CNN(σ , 0, K)2). Figure 2 illustrates how CNN(· , 0, ·)
approximates the synthetic risk-neutral prices C1, . . . , C11.
Observe that, as far as the liquidity parameter is concerned, for
the CNN zero is the left-most point that belongs to the train-
ing dataset. Therefore, one could also argue that considering
the average 1

2 (CNN(σ , ε, K)1 + CNN(σ , ε, K)2) for ε small
would likewise be an appropriate choice to be sure that the
approximated risk-neutral price belongs to the interpolation
area of the CNN. However, from the practical experiments
we have performed, it seems that both choices perform well
enough with marginal and negligible differences.

Once an optimal σ has been estimated as described in the
former step (which we denote with σ̄), the bid-ask calibra-
tion routine can finally take place. This means that the second
minimization step that aims to calculate the implied liquidity
parameter can start. That is, the minimization

min
γ≥0

11∑

i=1

(
(bid(Ci)− CNN(σ̄ , γ , Ki)1)

2

+
(
(ask(Ci)− CNN(σ̄ , γ , Ki)2)

2) (20)

should be performed. Once an estimate for the optimal dis-
tortion parameter, denoted with γ̄ , has been found, then the

Figure 2. Synthetic risk-neutral prices approximated by
CNN(· , 0, ·) by means of 1

2 (CNN(· , 0, ·)1 + CNN(· , 0, ·)2).

Figure 3. Synthetic bid and ask prices approximated by
CNN(σ̄ , γ̄ , ·).

two-price model has been calibrated, and it can thus be used
for valuation and sensitivity calculation purposes. A graphi-
cal depiction of the calibrated bid and ask prices computed
by means of the CNN has been provided in figure 3, which
shows how the prices obtained by means of the CNN basically
overlap with those of the synthetic market data set.

Please note that, as far as the distortion parameter is con-
cerned, in practice one would need to estimate a different
distortion parameter per strike (similar to what is done in
practice with implied volatilities, which are computed in a
strike-dependent manner). I.e. one would need to perform, for
every i, the minimization

min
γ≥0

(
(bid(Ci)− CNN(σ̄ , γ , Ki)1)

2

+ ((ask(Ci)− CNN(σ̄ , γ , Ki)2)
2) ,

given that implied liquidity amounts are, in general, not
constant across the strike direction. This will be shown in

1136 M. Michielon et al.

section 3.2. In principle, one could also separate the calibra-
tion in two parts and determine a γ for the bid by minimizing
(bid(Ci)− CNN(σ̄ , γ , Ki)1)

2, and one for the ask by mini-
mizing (ask(Ci)− CNN(σ̄ , γ , Ki)2)

2. However, this would be
slightly inconsistent, from a theoretical perspective, with (3)
and (4), which state that the same value of the distortion
parameter γ should be considered for the bid and the ask
prices of the same contingent claim.

3.2. CNNs in use

In this section, we provide relevant applications of the idea
concerning CNNs proposed in section 3.1. That is, we will
highlight how the use of neural networks in quantitative anal-
ysis expresses its best in situations where more standard
procedures still require a considerable amount of time to pro-
vide the desired results. This is particularly true in the case
of Monte Carlo methods which, despite different techniques
that can be adopted to improve their performances remain,
generally speaking, computationally expensive.

From here onwards we will always assume, unless differ-
ently specified, that a given CNN has been previously trained.
As already done in section 3.1, without loss of generality we
will consider the training with respect to a set of parameters
(generically denoted θ), the distortion γ , as well as the strike
price given that, in this article, we are dealing with options.
However, extending the methodology to the case where the
training step is performed with respect to different market data
sets (and/or parameters) is similar. Thus, the steps listed here
should not be viewed as limiting in any way.

Given θ := (θ1, . . . , θN) ∈ RN we consider M possible val-
ues for θ1, as well as for the remaining N −1 parameters
in θ , M possible values for the distortion parameter γ , and
M possible values for the strike price K. That is, we con-
struct a grid of points {θ1

1 , . . . , θM
1 } for θ1, until {θ1

N , . . . , θM
N }

for θN , together with M points for the distortion parameter
{γ 1, . . . , γM } and for the strike price {K1, . . . , KM } too. In this
case, we have chosen an equal number of points per variable.
However, in principle this is not a strict requirement. Further-
more, one can also choose whether to consider equally-spaced
grids or not. One important remark is that γ 0 should always be
equal to zero, as this is necessary due to the fact that training
in a conic framework first requires calibrating under risk-
neutral settings, a circumstance that can be retrieved when
γ 0 = 0. For each of the (N + 2)M possible parameter com-
binations (θ i1

1 , . . . , θ iN
N , γ iN+1 , KiN+2), where i1, . . . , iN+2 range

in {1, . . . , M }, one should generate option prices with a given
chosen model. The CNN can be then trained following the
step-by-step procedure described in section 3.1. As already
mentioned, note that the CNN is agnostic of the technique
used to produce contract payoffs, so the latter can therefore
be chosen at will.

The modeling framework introduced by the motivating
example of section 3.1 (and that will be specified further in
the remainder of the current section) aims to construct a neu-
ral network able to replicate bid and ask prices generated by a
given model under conic settings in a parsimonious way from
a computational perspective. That is, we aim to construct a
(model dependent) neural network that is able to replace a

given computationally-expensive model with a ‘clone’ that is
numerically more efficient. This means that the CNN will be
a model surrogate used exactly as the initial chosen model
was supposed to be used. For instance, the CNN would be re-
calibrated (but not re-trained) every time the market moves if
the aim was that of using the CNN for live pricing, exactly as
it would be the case for any pricing model. As the CNNs we
are going to build aim to understand the relationship between
model inputs and model outputs without knowing the func-
tional form of the model considered, we say that CNNs are
model-agnostic. We point out that the CNNs we introduce in
this paper are trained given a set of parameters, and that this
step needs to be performed only once (assuming the parameter
range is wide enough). We also empathize that one might use
neural networks to price (and risk manage) financial contracts
in a different way. That is, one could train the neural network
given (quoted bid and ask) prices directly. This way one could
use a purely data-driven approach which would then be, as
not dependent on any stochastic process for the underlying
asset(s), model-free (up to the model choices related to the
specifications of the neural network used). A similar exam-
ple to this last possibility, within the area of LSV modeling,
is that of avoiding assuming a specific functional and para-
metric form for the local volatility function but, instead, using
a neural network to indirectly infer it, as done in Cuchiero
et al. (2020) (see also section 4).

3.2.1. A fully-fledged arbitrage-free calibration routine
with CNNs: an illustration. We highlight here an approach
to perform bid and ask calibration of European call options
by means of vector-valued neural networks (the case of put
options would be analogous).

To begin with we assume, given a fixed maturity T, that
L call options C1, . . . , CL, with strike prices K1 < · · · < KL,
respectively, are quoted in the market for a given underlying.
We denote the value of the underlying asset, at the current
time, by Y0. We denote with b1, . . . , bL and with a1, . . . , aL the
corresponding bid and ask option prices quoted in the market.
We now illustrate the procedure to be followed.†

(i) Foremost, recall that calibrating to bid and ask quotes
under conic finance settings first requires to perform
a risk-neutral calibration as initial mandatory step.
We highlight that, if for a given option bid and ask
prices are quoted, then (any of) their risk-neutral prices
would lie in-between them, but would not necessar-
ily coincide with the mid price. As a common way to
compare and quote European options is by means of
their implied volatilities, we consider here the frame-
work introduced in Michielon et al. (2021). That is,
for each of the quoted options, we compute the cor-
respondent liquidity-free implied volatility and related
distortion parameter. This means that, in symbols, for

† From here onwards, for brevity and convenience, the index i will
be always assumed to be ranging in {1, . . . , L}.

Neural network empowered liquidity pricing 1137

the ith option we solve the system
{

bidBS
γi

(σi, Ki) = bi

askBS
γi

(σi, Ki) = ai

(21)

numerically with respect to σi and γi. In (21),
bidBS

γi
(· , ·) and askBS

γi
(· , ·) denote the conic Black–

Scholes bid and ask functionals, assuming the Wang
transform is used. Further, σi and γi represent
the Black–Scholes implied volatility and the Wang
implied distortion values for the option considered,
respectively. The non-linear system in two equations
and two unknowns (21) is guaranteed (under almost-
always satisfied assumptions) to have a unique solu-
tion. We denote the so-calculated implied volatility and
liquidity amounts with σ̄i and γ̄i, respectively;

(ii) Once we have successfully managed to com-
pute the liquidity-free implied volatilities σ̄1, . . . , σ̄L,
we can then calculate their corresponding risk-
neutral Black–Scholes prices, which we denote as
BS(σ̄1, K1), . . . , BS(σ̄L, KL), respectively;

(iii) Observe that, at risk-neutral level, the call prices
BS(σ̄1, K1), . . . , BS(σ̄L, KL) are not automatically gua-
ranteed to be arbitrage-free. Therefore, for the relevant
arbitrage-free conditions to be satisfied, we apply the
option data pre-processing filtering methodology pro-
posed in Moussa (2018), which provides an approach
for adjusting option data when no-arbitrage conditions
are violated. This means that option prices, when no-
arbitrage conditions are infringed, get updated in an
arbitrage-free manner with respect to the other options
taken into account in the dataset until no-arbitrage
bounds hold again. Observe that applying this proce-
dure, and therefore updating risk-neutral prices when-
ever necessary, is both theoretically and practically
justified. This since risk-neutral prices are neither trad-
able nor observable. Therefore, as soon as they lie
within their corresponding bid and ask counterparts
in an arbitrage-free way, applying (Moussa 2018) is a
legitimate step;

(iv) After the filtering procedure has been applied, the
actual calibration can take place. Firstly, we assume
a distortion parameter of zero as, under these cir-
cumstances, the calibration needs to be performed at
risk-neutral level first. That is, one needs to perform
the minimization procedure

min
θ∈.

L∑

i=1

(
BS(σ̄i, Ki)−

1
2
(CNN(θ , 0, Ki)1

+ CNN(θ , 0, Ki)2)

)2

,

where . indicates a large-enough set containing the
‘true’ risk-neutral model parameters. In order to find
a good estimate for the optimal parameters in . one
can for instance use a direction set method (Press
et al. 2007, Sec. 10.7) or a (quasi-)Newton method
(Press et al. 2007, Sec. 10.9), depending on the cir-
cumstances, after having estimated the initial guess

by means, e.g. of a genetic algorithm as per (Kaelo
and Ali 2007). We denote the risk-neutral parameters
estimated as just described by θ̄ ;

(v) Now that θ̄ has been estimated and thus the CNN is
calibrated under risk-neutral settings, the bid-ask cali-
bration routine begins. That is, for each i, the implied
liquidity parameter is computed by performing the
minimization

min
γi≥0

((
bi − CNN(θ̄ , γi, Ki)1

)2

+
(
ai − CNN(θ̄ , γi, Ki)2

)2
)

. (22)

By experimenting we observe that, at least as far as
the Wang transform is concerned, using 1

2 σ̄i as initial
guess for a local minimization routine seems to work
well enough.

Now all the parameters of the CNN have been estimated
in such a way that the CNN is capable of pricing back (in
a least-square sense) the quoted options. This makes it suit-
able for pricing and risk-management purposes. In particular,
bid and ask prices of non-quoted options can be calculated by
feeding the CNN with the appropriate strike and liquidity lev-
els (the liquidity levels of the market can be interpolated from
the implied ones, for instance linearly or by using a monotonic
interpolation Fritsch and Carlson 1980).

3.2.2. A real-world example. For illustrative purposes, we
will perform experiments concerning options pricing based
on the rough Bergomi (rBergomi) model (Bayer et al. 2016).
Rough volatility models are becoming more and more popu-
lar in equity volatility modeling. However, they are in general
expensive to simulate. In our tests we take into account
the rBergomi model as (i) rough volatility modeling is still
a relatively new framework in financial engineering. Thus,
we believe that considering an up-to-date financial model-
ing environment as a benchmark adds value to the analysis
provided here. Further, this choice (ii) provides a valuable
example to illustrate the computational advantage coming
from the use of neural networks for valuation and sensitiv-
ities calculation purposes in a market with frictions. And
besides, (iii) to the best of our knowledge no examples of
conic Monte Carlo combined with rough volatility modeling
are available in the literature at the time of writing. There-
fore, we believe this is a fit-for-purpose choice to illustrate
the methodology described in the article at hand. We want to
highlight, as already mentioned in section 1, that the method-
ology proposed in this article is model-agnostic. I.e. if another
model were to take the place of the rBergomi model, then the
methodology could be applied in a similar manner. Further,
the same considerations hold as far as the payoffs are con-
cerned, as well as for the pricing technique chosen (as soon as
compatible with the conic finance paradigm). Therefore, the
choice made here is neither restrictive nor specific.

In this example, we provide an illustration of the cali-
bration routine described in section 3.2.1. In particular, we
follow the modeling framework of Buehler (2010), given that
we consider, in our example, equity options on potentially

1138 M. Michielon et al.

dividend-paying underlying assets. That is, we start by assum-
ing that a given underlying asset (Yt)t≥0 pays (cash) dividends
at the dividend dates τ1 < · · · < τD; we denote these amounts
as d1, . . . , dD.† We denote with Dt the sum

∑
j:τj>t dj. From

Buehler (2010) it follows, under the same pricing measure
used for valuation purposes, that

Yt = (Ft − Dt)× Ut + Dt, (23)

where in (23) (Ut)t≥0 is a non-negative local martingale
(under the same pricing measure) starting at one, and where
Ft := Yt × (

∑
j:0<τj≤t dj). To evaluate a call option with matu-

rity T one would need to compute the amount

CY (K, T) = (FT − DT)× CU

(
K − DT

FT − DT
, T
)

, (24)

where CY (K, T) indicates that the option with strike price K
and maturity T should be considered as having (Yt)t≥0 as
underlying. The amount CU (K−DT

FT−DT
, T) should be interpreted

as an option on (Ut)t≥0, with the same maturity as the former
but, this time, with an appropriately adjusted strike price.

As far as the rBergomi model (Bayer et al. 2016) is con-
cerned, we recall here its functional form. Given relation-
ship (24), the rBergomi model can be then used to describe
the dynamics of the process (Ut)t≥0 (U0 = 1). That is, the set
of equations






Ut = E
(∫ t

0

√
νu dWu

)

νu = σ × E
(
η
√

2H
∫ u

0
(u− s)H− 1

2 dZs

)

d〈Wt, Zt〉 = ρdt

(25)

should be used, with σ > 0, η > 0, H ∈ (0, 1
2) the Hurst

exponent, ρ ∈ [−1, 1] the correlation between the two Brow-
nian motions (Wt)t≥0 and (Zt)t≥0, and with E(·) denoting
the stochastic exponential. Observe that the second equation
in (25) includes a Volterra process, which involves a frac-
tional Brownian motion (Mandelbrot and van Ness 1968). For
performing path-wise simulations under rBergomi dynam-
ics (in a risk-neutral environment), a popular choice is that
of discretizing the integral related to the Volterra process
within the second equation in (25) by means of the hybrid
scheme (Bennedsen et al. 2017) (see also McCrickerd and
Pakkanen 2018 for additional details).

We now present some results with the aim of illustrat-
ing how CNNs perform in practice. In particular, we con-
sider (European) equity options maturing in one year on a
dividend-paying asset and, therefore, we follow the model-
ing approach (24). As far as the strike range is concerned,
we take into account all the available options with a money-
ness level in between the 75% and 125% range (in line with
the example provided in section 3.1). The reason for this is
given by the fact that, for deeply in-the-money or out-of-the-
money options, often only bids or asks are quoted, depending

† Recall that, throughout this article, for simplicity and without
loss of generality we assume the time value of money to be zero
(otherwise, discounted prices could be considered, instead).

Table 1. Hyperparameter specifications for neural
networks used to produce the results available in this

section.

Parameter Value

Hidden layers 1
Neurons 30
Activation Sigmoid
Dropout rate 0.0
Batch-normalization No
Initialization Xavier uniform
Optimizer Adam
Learning rate 10−3

Batch size 104

Loss Mean squared error

on whether the market trend is that of shorting or longing spe-
cific option positions. Therefore, we focus our analysis on the
moneyness area where, given the data available, the observ-
able market information is more reliable. We note, however,
that this choice is by no means restrictive, as considering more
(or fewer) options would just require feeding the CNN with
an extended (shrinked) dataset. Everything else would work
exactly the same manner. In order to train the CNN we con-
sider as input ranges those that can be obtained by taking
into account the calibrated parameters of the original model
to which a buffer of ±100% (relative) is added. For each
of the chosen intervals, the CNN is trained by taking into
account a different number of points. That is, each CNN has
been trained by taking into account, for each parameter range,
a fixed number of equidistant points as done in section 3.1
(from here onwards, for simplicity we will use expressions
like ‘number of points’ to refer to the fineness of the uniform
discretization grid for each model parameter’s range). This
is in order to show how, when a sufficiently high number of
inputs in the training dataset is considered, the CNN allows to
accurately replicate the quantities of interest, either implied or
market-observable. In this section, we have taken into account
a feed-forward neural network with a single hidden layer with
characteristics and specifications as per table 1.

We start by taking into account the replication of the
(calibrated) model prices given the input dataset. This is illus-
trated in figure 4(a–d). In particular, these illustrations show
how the CNN, by increasing the number of training inputs,
smoothly and accurately replicates the option prices quoted in
the market and the respective model prices computed with the
(calibrated) conic rBergomi model.

As figure 4(a–d) illustrate, the conic rBergomi model can
be accurately replicated by the CNN. In particular, in implied
volatility terms, with a 15-point (or finer) grid per model
parameter’s range it is possible to replicate bid and ask prices
generated by the conic rBergomi model with errors smaller
than a basis point. However, by considering even finer grids,
this amount can be further decreased.

We now introduce another important concept in conic pric-
ing, i.e. the notion of implied liquidity coined in Corcuera
et al. (2012). To intuitively explain this concept recall that
the implied volatility is some sort of forward-looking fore-
cast measure of the expected volatility of a given underlying
that can be ‘implied’ from option quotes. That is, it somehow

Neural network empowered liquidity pricing 1139

Figure 4. Replication of quoted bid and ask option prices, as well as their risk-neutral counterparts, using the conic rBergomi model and
its CNN extension. Risk-neutral prices have been calculated by considering γ = 0. Panel (a) corresponds to a CNN trained given an input
dataset where each model parameter’s range has been discretized into a uniform grid with 5 evenly spaced points, while in panels (b), (c)
and (d) this number has been increased to 10, 15 and 20, respectively.

represents and quantifies the market’s overall expectation of
the variability of the underlying within a given horizon. Sim-
ilarly, the implied liquidity (also known as implied distortion
given its definition in mathematical terms, see (20) and (22))
for a given option represents, assuming market agents trade
options according to the conic finance paradigm (Cherny and
Madan 2010), the implicit willingness to trade a given con-
tract. This amount is, therefore, essential as far as hedging
considerations are concerned and therefore must be taken into
account in markets with frictions. Graphical depictions of
how implied liquidity parameters for different strikes can be
replicated using the CNN are available in figures from 5(a)
to 6(b).

As figures 5(a) to 6(b) illustrate, the implied liquidity
parameters produced by the conic rBergomi model can be
accurately replicated by their CNN counterparts, in a sim-
ilar manner it was observed in the case of (bid, ask and
risk-neutral) option prices as per figure 4(a–d). That is, as
soon as enough input points are considered in the training
set, implied liquidity parameters can be replicated with very

good accuracy. In the case of a 20-point grid, implied liq-
uidity parameters between the conic rBergomi model and its
corresponding CNN differ for less than one basis point.

We recall here the definitions of mean squared error (MSE),
of root mean squared error (RMSE), and of mean average
percentage error (MAPE). These error metrics will be used,
from here onwards, throughout this article. That is, given a set
of J data points y1, . . . yJ and their corresponding predictions
ŷ1, . . . , ŷJ , we recall the following definitions:

• MSE := 1
J

∑J
j=1(yj − ŷj)

2;
• RMSE :=

√
MSE;

• MAPE := 100
J

∑J
j=1 | yj−ŷj

yj
|.

The parameters specifying the CNN used for the tests per-
formed in the current section are based on experimentation,
and we now want to briefly comment on the choice of the acti-
vation function we made to support our choice (for a study
concerning the comparison of activation functions in (deep)
neural networks we refer the reader, e.g. to Szandała 2021).

1140 M. Michielon et al.

Figure 5. Replication of implied liquidity amounts computed using the conic rBergomi model by means of its CNN extension. Panel (a)
corresponds to a CNN trained on an input dataset where each model parameter’s range has been discretized into a uniform grid with 5 evenly
spaced points, while in panels (b), (c) and (d) this number has been increased to 10, 15 and 20, respectively.

For this purpose, given the generated training datasets com-
puted using 5, 10, 15 and 20 points per parameter we compute,
for different activation functions, the MSE resulting from the
training of the CNN. We report the results in table 2 we pro-
vide a detailed quantification of the MSEs resulting from the
training of the CNN.

What can be easily observed from the numbers provided in
table 2 is that all the choices considered here result in an MSE
of the order of 10−4 or 10−5, except for the ReLU activation
function, which has an error up to two orders of magnitude
larger.

However, in the context of option pricing, models depend
on a series of input parameters which are, often, positive. For
instance, in the case of the rBergomi model (25) all the param-
eters except the correlation between the two model Brownian
motions are positive. Furthermore, option premia are positive
quantities and, besides, Choquet integrals are highly non-
linear functionals. Therefore, in order to obtain good model
replication, the neural network considered should be ‘signifi-
cantly nonlinear’ in the input parameters. Given however that
model and market parameters are, in this situation, mainly

non-negative, one would expect the ReLU function not to per-
form as well as in other applications. For completeness, we
have calibrated the CNN using the ReLU function as a neuron
activation function and provided the sub-optimal outcomes in
figure 7(a,b).

By using the Sigmoid activation function and 20 input
points for bid (ask) prices we obtain a calibration error
of 5.88 · 10−5 (4.26 · 10−5), 7.67 · 10−3 (6.52 · 10−3), and
3.02× 10−2 (1.65× 10−2) in terms of MSE, RMSE, and
MAPE, respectively. The corresponding calibrated parame-
ters are σ = 0.26, ν = 0.11, H = −0.17, and ρ = 0.21.

3.2.3. Performance analysis. In this section, we provide
some details concerning the time performance of a CNN com-
pared to conic Monte Carlo given the examples considered
in section 3.2.2. All the calculations and measurements pre-
sented here have been performed using a laptop equipped with
an Intel® CoreTM i7-13620H processor (2.40GHz CPU), with
10 (16) physical (logical) cores, 32GB RAM, a 500GB hard
drive, and with an NVDIA RTX 4050 Laptop GPU. We report

Neural network empowered liquidity pricing 1141

Table 2. MSEs as a function of the number of points in the uniform
discretization grid of each model parameter’s range.

points

Act. Fun. 5 10 15 20

Exponential 1.71 · 10−1 1.96 · 10−2 1.11 · 10−2 4.28 · 10−4

GeLU 1.60 · 10−2 1.80 · 10−2 3.61 · 10−4 2.23 · 10−4

ReLU 8.47 · 10−2 5.50 · 10−2 4.90 · 10−2 4.63 · 10−2

Sigmoid 1.79 · 10−2 1.20 · 10−3 1.16 · 10−4 2.75 · 10−5

Softplus 2.89 · 10−2 2.50 · 10−3 3.54 · 10−4 2.09 · 10−4

Softsign 2.32 · 10−2 1.10 · 10−3 1.42 · 10−4 8.52 · 10−5

Swish 3.84 · 10−2 2.50 · 10−3 7.33 · 10−4 3.00 · 10−4

Tanh 2.05 · 10−2 1.50 · 10−2 1.73 · 10−4 9.45 · 10−5

Figure 6. Replication of model prices, panel (a), and implied liquidity amounts, panel (b), by means of a CNN with ReLU activation function.
In both cases the CNN has been trained given an input dataset where each model parameter’s range has been discretized into a uniform grid
with 20 evenly spaced points.

Table 3. Average time to generate the training dataset and
train the CNN of section 3.2.2 based on 10 runs and 10,000

simulations.

points
Dataset generation

time (hours)
Training time

(seconds)

5 1.28 · 10−2 21.2
10 2.79 · 10−1 41.6
15 2.07 95.9
20 8.75 148.2

Note: The number of points refers to the fineness of the
uniform discretization grid of each model parameter’s range.

in table 3 the (average) amounts of time necessary for gener-
ating the dataset and for calibrating the CNN. The generation
of the training datasets has been implemented in a parallelized
manner taking advantage of the multi-processing capabilities
of the machine.

We now report some performance metrics, from a pric-
ing perspective, in figure 8. We note that the advantage of
performing valuation using a CNN is that, once calibrated,
it provides constant computational time, independent of the
maturity (approx. 16 milliseconds). Also, the time remains
(almost) constant when sensitivities are computed, while this

would require double (triple) the effort in the case the latter
are calculated by forward (central) finite difference approxi-
mations using (conic) Monte Carlo.

3.2.4. A no-arbitrage test. The model we consider as base
risk-neutral one in section 3.2.2 (i.e. the rBergomi model
described in (25)), as well as its conic extension, are by con-
struction arbitrage-free. Given three strikes KL < KM < KH ,
one could buy a call option struck at KL, sell KH−KL

KH−KM
calls

with strike KM , and again buy KM−KL
KH−KM

calls with strike KH

(we assume here that the maturity T is fixed). One would
then obtain (see Madan and Schoutens 2016, Sec.1.7.2) that
inequality (26) would hold:

C(KL, T)− C(KM , T)

KM − KL
≥ C(KM , T)− C(KH , T)

KH − KM
. (26)

However, as in practice risk-neutral prices are not tradable
(an, thus, not observable in the market), one would need to
consider a different version of (26) where the risk-neutral
prices of the bought (sold) call options are then replaced by

1142 M. Michielon et al.

Figure 7. Average speed enhancement when pricing European
options (one to five years to maturity) while approximating the rBer-
gomi model by means of a CNN. Lighter (darker) colors correspond
to higher (lower) speed improvements. Numbers are based on ten
runs.

their ask (bid) counterparts, which reads

ask(C(KL, T))− bid(C(KM , T))

KM − KL

≥ bid(C(KM , T))− ask(C(KH , T))

KH − KM
. (27)

For puts, similar versions of inequalities (26) and (27) hold. In
particular, if put options are considered, (26) and (29) would
read

P(KH , T)− P(KM , T))

KH − KM
≥ P(KM , T)− P(KL, T)

KM − KL
(28)

and

ask(P(KH , T))− bid(P(KM , T))

KH − KM

≥ bid(P(KM , T))− ask(P(KL, T))

KM − KL
, (29)

respectively. By taking into account the rBergomi model, one
expects to obtain that, for any choice of the three strikes KL,
KM , and KH , inequalities (26) and (28) would hold at risk-
neutral level. Furthermore, by computing bid and ask prices
by means of distorted risk-neutral prices at a given level of
γ , inequalities (27) and (29) should also hold. The question
that it is natural to attempt to answer is therefore whether, if
risk-neutral, bid and ask prices are approximated by means of
a CNN, inequalities (26), (27), (28) and (29) would be still
valid.

We therefore perform the following test after having taken
into account the calibrated neural networks of section 3.2.2
for the rBergomi model based on 5, 10, 15 and 20 grid points
per input parameter (see figure 4(a–d), respectively). Given
that in the calibration step we have taken into account the
75%–125% moneyness level, we consider a grid (in the mon-
eyness dimension) five times finer for each case (still given by

Table 4. In-sample bid calibration MSEs, RMSEs, and MAPEs
given the example of in section 3.2.2.

points

Error 5 10 15 20

MSE 2.06 · 10−2 1.10 · 10−3 2.13 · 10−4 1.14 · 10−4

RMSE 1.44 · 10−1 3.31 · 10−2 1.46 · 10−2 1.07 · 10−2

MAPE 1.15 · 10−1 2.45 · 10−2 1.07 · 10−2 8.13 · 10−3

Note: The number of points refers to the fineness of the uniform
discretization grid of each model parameter’s range.

equidistant points). That is, we consider a grid of 25 points in
the first case, of 50 in the second case, of 75 in the third and of
100 in the last case. We fix the distortion parameter γ to 0.05
for testing purposes (note that this value is reasonable given
that it belongs to the range of the implied distortions observed
in figures 5(a,b) and 6(a,b)). We first count, for each calibrated
CNN and for each of the correspondent grids constructed, the
number of violations of inequality (26). The number of viola-
tions at the risk-neutral level equals to two in the case of the
25-point grid, while no violations are observed for the case the
considered testing grid contains 50, 75 or 100 points. After-
wards, we perform a similar exercise and count the number of
violations of inequality (27) at bid-ask level. We observe one
violation in the case 25 points are considered, while zero vio-
lations for finer grids. Furthermore, in order to test the number
of violations for put options we construct a synthetic dataset
as follows. We interpolate linearly the (relative with respect
to the mid-price) bid-ask spreads of the call options used in
the calibration step and, for each put option with a money-
ness level of 1 + m (m ∈ [−0.25, 0.25]) we apply the bid-ask
spread corresponding to the call option with moneyness equal
to 1−m. We then re-perform the calibration exercise (this
time with respect to the synthetic put options) and construct
four auxiliary grids the same way we did in the case of the
call options. Finally, we again count the number of violations
of inequality (28) at the risk-neutral level and of (29) in a
two-price economy. We observe three violations in the first
case (both at risk-neutral and bid-ask levels) when a grid of
25 points is considered, and no violations for finer (calibra-
tion) grids. This illustrates that, as soon as the number of input
training points is large enough, the CNN approximates both
risk-neutral and bid-ask prices well enough not to allow for
butterfly spread arbitrages, and this holds both at risk-neutral
as well as at the bid-ask level.

3.2.5. Training validation. We consider the error metrics
introduced in section 3.2.2 for each of the cases considered
in section 3.2.2 (i.e. figure 4(a–d))i.e. the bid and ask in-
sample MSEs, RMSEs and MAPEs the in-sample MSEs,
RMSEs and MAPEs of bid-ask prices are used to quantify
the error observed after model calibration using the procedure
of section 3.2.2. The results are reported in tables 4 and 5.

Similarly to what is proposed in Spiegeleer et al. (2018), for
each of the parameter ranges considered we take into account
uniformly distributed points therein. For example, in the case
the CNN was calibrated using 5 points per input parameter,

Neural network empowered liquidity pricing 1143

Figure 8. Replication of implied liquidity delta amounts computed using the rBergomi model by means of its CNN extension. Panel (a)
corresponds to a CNN trained on an input dataset where each model parameter’s range has been discretized into a uniform grid with 5 evenly
spaced points, while in panels (b), (c) and (d) this number has been increased to 10, 15 and 20, respectively. Liquidity delta amounts have
been multiplied by 1%, in line with what is often done in risk monitoring, e.g. for vega calculations.

Table 5. In-sample ask calibration MSEs, RMSEs, and MAPEs
given the example of section 3.2.2.

points

Error 5 10 15 20

MSE 2.07 · 10−2 2.03 · 10−3 2.16 · 10−4 1.06 · 10−4

RMSE 1.44 · 10−1 4.51 · 10−2 1.47 · 10−2 1.03 · 10−2

MAPE 1.16 · 10−1 3.36 · 10−2 1.09 · 10−2 7.68 · 10−3

Note: The number of points refers to the fineness of the uniform
discretization grid of each model parameter’s range.

we randomly generate the same amount of points per input
parameter and calculate the MSE, RMSE and MAPE for both
bid and ask prices. The procedure is repeated for the cases
with 10, 15 and 20 points per model parameter’s range. We
report the results in tables 6 and 7, respectively.

By comparing the error metrics considered in this section
for in- (tables 4 and 5) and out-of-sample (tables 6 and 7)

Table 6. Out-of-sample bid calibration MSEs, RMSEs, and
MAPEs given the example of section 3.2.2.

points

Error 5 10 15 20

MSE 7.37 · 10−3 7.49 · 10−4 2.86 · 10−4 1.45 · 10−4

RMSE 8.59 · 10−2 2.74 · 10−2 1.69 · 10−2 1.20 · 10−2

MAPE 7.08 · 10−2 2.11 · 10−2 1.16 · 10−2 8.83 · 10−3

Note: The number of points refers to the fineness of the uniform
discretization grid of each model parameter’s range.

CNN values we observe that in-sample and out-of-sample
errors are, overall, of the same magnitude, with out-of-sample
errors in some cases being smaller than their in-sample coun-
terparts. This phenomenon is also observed in Spiegeleer
et al. (2018). From the results it is apparent that, in relative
terms (i.e. in APE terms), with 10 input points per parame-
ter, average in-sample and out-of-sample errors are between

1144 M. Michielon et al.

Table 7. Out-of-sample ask calibration MSEs, RMSEs, and
MAPEs given the example of section 3.2.2.

points

Error 5 10 15 20

MSE 1.01 · 10−2 9.51 · 10−4 2.73 · 10−4 1.33 · 10−4

RMSE 1.01 · 10−1 3.08 · 10−2 1.65 · 10−2 1.15 · 10−2

MAPE 8.31 · 10−2 2.35 · 10−2 1.14 · 10−2 8.44 · 10−3

Note: The number of points refers to the fineness of the uniform
discretization grid of each model parameter’s range.

two and three basis points, which further decrease to one
basis point when 15 input points per parameter are consid-
ered. With 20 input points, all relative errors observed (both
in- and out-of-sample) are below one basis point, indicating
the high accuracy and robustness of the calibrated CNN.

3.3. Sensitivities: learning (the) Greek(s)

We now discuss how to calculate Greeks using CNNs. That
is, the approach provided in this section shows how to cal-
culate Greeks of bid and ask prices by training the CNN, at
the same time, at ‘learning the Greeks’ as well. Also here the
methodology outlined is general and, again, model-agnostic.
In particular, as the research proposed in this article relates
to the conic finance paradigm (Cherny and Madan 2010),
we will focus our attention on the computations of liquid-
ity Greeks (i.e. liquidity deltas in this case). We have chosen
to take into account liquidity delta sensitivities only because,
to the best of our knowledge, research developments in liq-
uidity management using distorted expectations are still in
an embryonic phase. Therefore, from a practical perspective
being able to account for first-order sensitivities in this respect
should suffice. We bring to the forefront the fact that not only
can this methodology be extended to higher-order liquidity
Greeks, but that the same would also for any other (poten-
tially high-order) Greek. This can be easily achieved as soon
as the training framework is rich enough. This means that the
considerations and the approach described here easily allow to
be generalized. However, this would make the notation glut-
ted and saturated, which we aim to avoid for the sake of clear
and concise exposition.

In sections 3.1 and 3.2, we illustrated how using CNNs
requires approximating, by means in this case of a vector-
valued neural network, a function such that (θ , γ , K) is
mapped to (bidγ (θ , K), askγ (θ , K)). However, one might
want to extend the aforementioned considerations to the cal-
culations of sensitivities as well. This will be now illustated.
Note that here, for the sake of exposition, we will show how
to calculate Greeks of the first order only. The methodology
can be easily extended to higher-order sensitivities as well.

Having said that, the steps are the following. Once set

∇bidγ (θ , K) :=
(
∂bidγ (θ , K)

∂θ1
, . . . ,

∂bidγ (θ , K)

∂θN
,

∂bidγ (θ , K)

∂γ

)

and, similarly,

∇askγ (θ , K) :=
(
∂askγ (θ , K)

∂θ1
, . . . ,

∂askγ (θ , K)

∂θN
,

∂askγ (θ , K)

∂γ

)
,

we consider the map

(θ , γ , K) /→ (bidγ (θ , K), askγ (θ , K),

∇bidγ (θ , K),∇askγ (θ , K)). (30)

By performing the training of the CNN as illustrated in
section 3.2 (in this case the derivatives above can be com-
puted, e.g. by means of finite differences) one can then obtain
a CNN that also allows to compute sensitivities, simultane-
ously. In the case of the (conic) rBergomi model, we provide
some examples in figure 9(a–d). As the graphs illustrate, in
the case of delta computations a lower number of points per
model parameter’s range seems enough to produce a satisfac-
tory accuracy in contrast to the case of option prices (compare
with figure 4(a–d)) and implied liquidity parameters (compare
with figures 5(a) to 6(b)). The reason for this is given by the
fact that, contrary to the former two cases (i.e. market val-
ues and implied distortions), here we calculate ‘differences in
market values’. Therefore, if the valuation of the CNN slightly
overestimates (underestimates) a specific quantity, it is natural
to expect that these misalignments tend to somehow compen-
sate each other, resulting in acceptable approximation errors
for the deltas. This is evident from figure 9(a–d).

For analysis and comparison purposes, we want to further
comment on the methodology. In fact, one might observe that
the majority of the neuron activation functions are infinitely
differentiable. To be precise, note that some activation func-
tions are infinitely differentiable almost everywhere, such as
the ReLU or the softsign activation functions (amongst oth-
ers). That is, these examples of activation functions, which
are very popular in practical applications, are only not differ-
entiable at zero. For this reason, therefore, we compare the
two approaches. We observe that one could compute liquidity
deltas by means of the CNN using a simple finite differ-
ence approach. For this reason, to compare the two possible
approaches we consider in this case the liquidity delta com-
puted this time using the CNN where a first-order forward
finite difference scheme is applied; see figure 10(a,b) for an
illustration.

As figure 10(a,b) show, applying a finite difference scheme
to the neural network directly does not provide results as accu-
rate as those generated using the methodology provided in
this section; see figure 9(a,b). It is clear how performing sen-
sitivity calculations by means of finite differences requires
more points in the training set to obtain the desired accu-
racy. The underlying reason for this phenomenon is given
by the fact that if two functions are close, in some sense,
their derivatives are not necessarily so. This leads to the
differences observed. Therefore, the comparison performed
clearly provides supporting evidence to justify the approach
proposed.

An additional benefit this approach is the fact that com-
puting Greeks by a finite difference approach requires double

Neural network empowered liquidity pricing 1145

Figure 9. Attempt to replicate liquidity delta amounts computed using the rBergomi model by means of its CNN extension where finite
differences are used. Panel (a) corresponds to a CNN trained on an input dataset where each model parameter’s range has been discretized
into a uniform grid with 5 evenly spaced points, while in panel (b) this number has been increased to 10. In both panels (a) and (b) the label
‘model bid (ask)’ refers to the liquidity delta amounts computed using the conic rBergomi model, while the label ‘CNN bid (ask) fd’ to their
counterparts calculated using the CNN where sensitivities are computed by means of (forward) finite differences. Liquidity delta amounts
have been multiplied by 1%, in line with what is often done in risk monitoring, e.g. for vega calculations.

Figure 10. Replication of bid and ask (daily averaged) Asian call option prices, as well as their risk-neutral counterparts, using the Black-
–Scholes model and its CNN extension, panel (a), and (aggregate) bid-ask MSEs as a function of σ and γ (i.e. out-of-sample MSEs), panel
(b). In panel (b), to lighter (darker) colors corresponds higher (lower) errors. Calculations based on 10 000 simulations.

(triple) the time when forward (central) differentiation is used
compared to that of pricing an option. In contrast, only a
marginal increase in the computational overhead is observed
in the case a CNN is used, at the extra of a sensitivity-
augmented data set. Notwithstanding, the augmented dateset
needs to be generated once only.

We remark that, from a computational perspective, an anal-
ogous approach can be adopted. I.e. instead of constructing
the multi-output as per (30), one could first train the CNN
to bid and ask price, and afterward train a second neural net-
work, to perform sensitivity analysis, by means of considering

the auxiliary map given by

(θ , γ , K) /→ (∇bidγ (θ , K),∇askγ (θ , K)). (31)

In terms of performance, we observe that both approaches
require the same amount of time to generate the training set(s).
From the tests considered in this paper, we observe that train-
ing a single CNN with multi-output as per (30) is between
12% and 16% faster than training two neural networks. How-
ever, the training dataset is the same for both procedures
and has to be generated independently from the training step

1146 M. Michielon et al.

(a least in the case of a fixed grid). Therefore, if it is possi-
ble to run the pricing and sensitivity training tasks in parallel,
then considering multiple CNNs might be more efficient than
considering a single one.

3.4. Some concluding remarks on training CNNs

The numerical results provided in sections 3.2 and 3.3 have
been obtained with a consumer-grade personal computing
device, whose characteristics and specifications are provided
in section 3.2.3. However, the infrastructure needed to facil-
itate the robust implementation of these techniques in a real-
world environment would require (the integration of) massive
parallel, concurrent and distributed calculations to achieve
optimal performance and scalability (Wang et al. 2019, Robey
and Zamora 2021, Hwu et al. 2022). The CNN approach
developed here, as, e.g. Spiegeleer et al. (2018), are based
on training a machine learning model on a (potentially non-
uniform) multidimensional grid set a priori. The objective of
this paper does not entail an examination of the hardware
architecture needed for implementing CNNs on a larger scale.

Two common techniques employed to enhance the effi-
ciency of neural network training procedures are data prun-
ing (Sorscher et al. 2022) and data distillation (Hinton
et al. 2010). In particular, the first set of strategies aims
to remove ‘redundant’ elements from the dataset(s) utilized
for training a given neural network model. Data pruning
techniques typically involve the systematic elimination of
noisy (or less informative) data elements while aiming to
preserve the essential characteristics necessary for effective
model learning and inference; for a survey refer to Sachdev
and McAuley (2010). On the other hand, data distillation
methodologies strive to generate concise yet comprehensive
representations of datasets by extracting crucial information.
These distilled representations are meticulously optimized to
function as efficient substitutes for the original datasets in
various data-driven applications, including model training,
inference, and architecture exploration. For instance, knowl-
edge distillation, a widely adopted technique, aims to transfer
knowledge from a larger neural network, often referred to
as the teacher network, to a smaller one, termed the student
network. This process aims to enhance the performance and
accuracy of the smaller model by leveraging the guidance pro-
vided by the larger network; see Vadera and Ameen (2021) for
a survey.

However, these two classes of techniques are applicable up
to a certain extent in the framework we have defined. This
is because in our case the training dataset is not given but,
instead, needs to be generated by means of a chosen pric-
ing model. Therefore, instead of generating a full dataset as
a starting point and performing selection operations on it,
intuitively one might want to investigate the possibility of per-
forming iterative training on a CNN, instead, and to stop the
training routine when a certain criterion is met. In Okanovic
et al. (2023) a novel approach is proposed, where subsets of
training data are randomly sampled for each epoch of model
training procedure. Inspired by this, we provide a method-
ology that can be considered when calibrating a CNN in
real-word circumstances. We also provide an example, based

on the model of section 3.1, of how this methodology would
potentially work.

In Okanovic et al. (2023), using notation and terminology
that are appropriate for the use case considered here, N (poten-
tially multidimensional) input data points x1, . . . , xN and
their corresponding (potentially multidimensional) ground-
truth outputs y1, . . . , yN are considered. In our case, the xi’s
represent model inputs and parameters, while the yi’s bid and
ask model prices. In Okanovic et al. (2023) it is proposed
to randomly sample (with or without replacement) a certain
subset of size smaller than N from {(xi, yi)}N

i=1, and to iter-
atively train a neural network for a given number of rounds
set a priori. This is done instead of performing the training
of the neural network on X :− {(xi, yi)}N

i=1 in a single pass
directly. As it is clear from our CNN framework, adopting the
aforementioned approach as is would first require to generate
a full training dataset, and then to proceed with batch train-
ing. Conversely, one could generate small training batches
on-the-fly, to be then fed to the in-training CNN. The process
could then can be stopped once a given condition is met, rather
than relying on a pre-specified number of training iterations.
Therefore, we propose now a simple variation of the afore-
mentioned approach that better fits our purpose. In particular,
we denote with batch_size the number of training points to be
fed to the CNN at each training step, with max_iter the maxi-
mum number of training iterations to be performed (to avoid
endless training in the case of poor learning convergence), and
with iter the index representing the training iteration step.

The idea is that of generating, at each training step, a ran-
dom batch of size batch_size and to calculate the training
error on that batch before feeding the former to the CNN.
The choice of calculating the error given a batch before using
it for training has been made to avoid the neural network
computing errors on data already used for training (i.e. we
are basically calculating out-of-sample errors instead of in-
sample ones). If, over a defined sequence of consecutive
training iterations max_count the training error consistently
remains below a predetermined threshold or tolerance level
tol, it may be deemed appropriate to conclude the training pro-
cess of the CNN. The outlined methodology is encapsulated
in Algorithm 1 through the use of pseudo-code notation.

We now provide an example of how Algorithm 1 works in
practice. For the ease of implementation and data visualiza-
tion, we take into account the same framework as considered
in section 3.1. This choice has been made as having two
unknown model parameters only (i.e. the volatility σ and
the distortion parameter γ) facilitates clear graphical depic-
tion and enhances the interpretability of the findings. We
also want to point out that in the results coming from the
analysis provided in section 3.2, no special computational
architecture was needed, as the training set(s) could be eas-
ily generated a priori. However, should the scope of this study
extend to larger-scale implementations, the adoption of dis-
tributed training setups with asynchronous data loading from
multiple data generation processes would become imperative.
This would be a consequence of computing large batches of
bid and ask prices on-the-fly as required by Algorithm 1,
which would considerably slow down the training process
given the specifications of the machine used in section 3.2.

Neural network empowered liquidity pricing 1147

input : batch_size, max_count, max_iter, tol;
output: trained CNN;

1 initialize CNN0;
2 iter← 1;
3 count← 0;

4 while iter ≤ max_iter do
5 Xiter ← generate random batch of size batch_size;
6 εiter ← training error of CNNiter−1 given Xiter;
7 if εiter < tol then
8 count← count + 1;
9 else

10 count← 0;
11 end
12 if count = max_count then
13 break;
14 end
15 CNNiter ← CNNiter−1 trained on Xiter;
16 iter← iter + 1;
17 end
18 return CNNiter;

Algorithm 1: Pseudo-code that can be used to train a
CNN on random batches.

A detailed discussion of these software engineering tech-
niques that would be needed to upscale techniques such as
Algorithm 1 falls beyond the purview of this paper.

Taking into account the same Black–Scholes framework of
section 3.1 on a given underlying asset with current value
Y0 = 10, we assume the volatility parameter to range within
the interval [0, 50%] while the distortion parameter (of the
Wang transform) within [0, 25%]. We assume that the range
of possible strike prices is [7, 13]. We consider an arithmetic
Asian call option with daily averaging and having time to
maturity T = 1 and use Monte Carlo simulations. We select
the batch size to be equal to 125 (i.e. 5 points per parame-
ter), consider a tolerance error equal to 5 · 10−3 (i.e. half a
cent), a constant learning rate of 10−4, and set the convergence
counter to 102. After having run Algorithm 1, we depict some
illustrative results in figure 11(a,b).

In particular, in figure 11(a) we have depicted, assuming
the ‘real’ volatility σ and distortion parameter γ equal 25%
and 12.5%, respectively, how the CNN is able to reproduce
bid and ask prices, as well as their risk-neutral counter-
parts. Moreover, in figure 11(b) we show, after having set
the strike price equal to Y0 to reduce the problem to a two-
dimensional one, the (aggregate) bid-ask square error given a
deterministic grid, as a function of σ and γ (i.e. out-of-sample
error). As expected, overall errors are below the threshold
we set and, in particular, they are slightly higher in prox-
imity of γ = 0 (i.e. risk-neutral area). This is because there
bid and ask prices in principle coincide, leading to negligible
errors by construction. Therefore the CNN tends to ‘priori-
tize’ error minimization outside that neighborhood. Note that,
as expected, as we generate a new grid (not used for train-
ing) to calculate bid-ask squared errors between the CNN and
the Monte Carlo model, the maximum error observed slightly
exceeds the threshold set a priori by a marginal quantity. This

Figure 11. Average speed enhancement when pricing European
Asian options (one to five years to maturity) while approximating
the Black–Scholes model by means of a CNN. Lighter (darker) col-
ors corresponds to higher (lower) speed improvements. Numbers are
based on ten runs.

is expected as figure 11(b) depicts post-training out-of-sample
errors.

For completeness, we report the speed improvements
achieved by pricing bid and ask Asian call options (with daily
averaging) using a CNN rather than Monte Carlo simulations
under Black–Scholes assumptions; see figure 12. Even if the
model chosen is (one of the) simplest possible, performance
improvements are still noticeable.

4. Neural network-driven LSV calibration in a two-price
economy

In financial mathematics LSV models have become increas-
ingly popular to capture the complex dynamics of financial
markets. LSV modeling provides an hybrid framework allow-
ing to embed the advantages of both local and stochastic
volatility, as the name obviously suggests.

Local volatility modeling makes it possible to replicate
vanilla option prices by assuming that the volatility of the
underlying asset is a deterministic function of both strike and
time to expiry; see Dupire (1994). However, practical evi-
dence suggests that local volatility models produce forward
skews which are mostly flat. This, therefore, might result in
price misestimation for some financial securities. On the other
hand, stochastic volatility models, see, e.g. Heston (1993),
form a class of financial models attempting to capture the
erratic nature of the volatility. This is achieved by supposing
that the volatility is a random process itself, varying over time.
However, this does not guarantee that pure stochastic volatil-
ity models are always able to reproduce the term structure
of the volatility smile accurately enough. It is worth point-
ing out that, despite many stochastic volatility models allow
to closely replicate quoted vanilla prices in an almost indis-
tinguishable manner, they might result in very different prices
should exotic derivatives be taken into account (see Schoutens

1148 M. Michielon et al.

et al. 2004). This can therefore be a non-negligible source of
model risk. By combining the two aforementioned approaches
at the same time, LSV models allow for a more accurate
representation of forward smile risk risk compared to their
local volatility counterparts; see Mazzon and Pascucci (2016).
LSV models have been successfully used in a wide range of
applications, including option pricing, hedging, and risk man-
agement. They have been particularly useful in pricing exotic
options, which are often difficult to be valued accurately using
more simplistic models. For this reason, LSV modeling has
found applications in different asset classes such as equities
and foreign exchange, to name but two.

The popularity of LSV models in the financial industry,
as well as the continuously-growing interest of researchers
in applications of machine learning for quantitative analysis
purposes, have driven research aiming to improve volatil-
ity modeling by means of neural networks. However, to the
best of our knowledge, at the time of writing, no literature
investigating the applications of neural networks within LSV
modeling in markets with frictions in the sense of Cherny and
Madan (2010) seems to be available. Therefore, this section
aims to investigate this new research direction. In particular,
we consider the approach of Cuchiero et al. (2020), where it
is proposed to approximate the local volatility component of a
LSV model by means of a (combination of) neural network(s)
and illustrate, by means of numerical examples, the benefits
coming from this approach in combination with conic Monte
Carlo. We recall that, in this paper, for simplicity and with-
out loss of generality, the risk-free rate is assumed to be zero.
Also, underlying prices will be always interpreted as cleansed
from dividends, and all the calculations will be intended under
a given pricing (i.e. risk-neutral) measure Q.

4.1. Leverage function: a neural network approximation

A LSV model for an underlying process (Yt)t≥0 can be defined
by means of

dYt = σtL(Yt, t)YtdWt, (32)

with (σt)t≥0 a stochastic process for the volatility, and with
with the factor L(· , ·), often named leverage function, aiming
to represent the local volatility component of the model. It
can be shown, see Guyon and Henry-Labordère (2012), that
in order to match quoted (European) call option prices, the
leverage function needs to satisfy the relationship

L(k, t) = σDupire(k, t)
√

EQ(σ 2
t |Yt = k)

, (33)

with σDupire(k, t) the Dupire’s local volatility function
(Dupire 1994) evaluated at the point (k, t) given by

σDupire(k, t) :=

√√√√
∂C(k,t)
∂t

1
2 k2 ∂2C(k,t)

∂k2

, (34)

where in (34) C(k, t) denotes the call price of an European
option with strike k expiring in t years. Equation (34) can also
be expressed in terms of implied volatilities rather than option

prices. This is a convenient feature as, often, implied volatil-
ities are used as quoting conventions. This expression can be
found, for instance, in Gatheral (2006, Sec. 1).

Despite (33) provides an expression for the leverage func-
tion under LSV dynamics as per (32), in practice dealing
with such an expression is a non-trivial task for a number of
reasons. For instance, inside (33) the Dupire’s formula (34)
appears. So, unless one is able to compute the derivatives
in (34) exactly, as it would be the case should algorithmic
differentiation techniques be used (see Henrard 2017 for an
overview), then the choice of assuming a parametric form for
(34) is often the one followed in practice as proposed, e.g.
in Carmona and Nadtochiy (2009). The reason why this is,
in many cases, the preferred choice, is that the Dupire’s for-
mula is very sensitive to the values of the second derivative at
the denominator in (34) which, due to numerical approxima-
tions, can cause severe pricing inaccuracies. Also, adopting an
a-priori fully-parametric approach implies additional assump-
tions and model choices in the framework. Furthermore, we
also highlight that the denominator in (33) cannot, in gen-
eral, be computed analytically, leading to further undesirable
numerical instabilities.

The approach provided in Cuchiero et al. (2020) intro-
duces a novel idea as far as LSV modeling is concerned.
That is, consider M maturities for vanilla call options on
a given underlying (Yt)t≥0 denoted as T1 < · · · < TM (with
the convention that T0 := 0) and assume that the leverage
function (33) is of the form

L(k, t, θ) := 1 +
M∑

i=1

NNi(k, θi) · 1[Ti−1,Ti)(t) (35)

where, for every i ∈ {1, . . . , M }, NNi(· , ·) denotes a family
of feed-forward neural networks, dependent on a set of (to-be-
calibrated) weights θi ∈ .i ⊆ Rli (for some li > 0); θ denotes
the collection of all the aforementioned weights, while 1(·)
the indicator function. In Cuchiero et al. (2020) it is proposed
to approximate the leverage function by means of multi-
ple neural networks instead of a single one (in Gierjatowicz
et al. 2020, Vidales et al. 2018 a similar strategy is adopted).
As outlined in Gierjatowicz et al. (2020), the choice of using
multiple neural networks to be calibrated (i.e. one per matu-
rity) is backed by efficiency-related reasons. We consider each
neural network NN1(· , ·), . . . , NNM (· , ·) with an architec-
ture consisting of 4 hidden layers, each containing 64 neurons.
For activation functions, we used the Leaky ReLU neuron
activation with a parameter of 0.2 for the initial three lay-
ers and the Tanh activation function for the subsequent layer.
The loss function used during training is the MSE. Additional
information on the structure of the neural network is provided
in table 8 (which are the same as those outlined in Cuchiero
et al. 2020). Furthermore, we leveraged the parallel process-
ing capabilities of an NVIDIA GeForce GTX 1080 Ti GPU
to run the entire machine-learning workflow, mounted on a
computing device equipped with an Intel® Xeron® Platinum
8259CL processor (2.50GHz CPU), with 2 (4) physical (logi-
cal) cores, 16GB RAM, and a 250GB hard drive. In Cuchiero
et al. (2020) the reported calibration time is approximately
25 minutes. Our results are proportional, taking an average of
40 minutes. This is because the calibration time scales with

Neural network empowered liquidity pricing 1149

Table 8. Hyperparameter specifications for neural networks
used to approximate the leverage function.

Parameter(s) Value(s)

Hidden layers 4
Neurons (each layer) 64
Activation (first 3 layers) Leaky ReLU (0.2)
Activation (last layer) Tanh
Dropout rate 0.0
Batch-normalization No
Initialization Truncated normal
Optimizer Adam
Learning rate 10−3

Iterations per epoch 10
Batch size 106

Loss Mean squared error

respect to the number of points in the volatility surface to
be calibrated, as expected. Also, observe that the calibration
threshold we have considered in our example is approximately
half that considered in Cuchiero et al. (2020), i.e. 25bps versus
45bps, respectively.

4.2. Calibration

Once the functional form for the leverage function has been
set as done by means of (35), one needs to set up a calibra-
tion routine for both the leverage function and the parameters
relating to the stochastic volatility component of (32), i.e.
those related to the process (σt)t≥0. In Cuchiero et al. (2020)
it is proposed to perform the calibration in two steps. That is,
after having calibrated the ‘stand-alone’ stochastic volatility
process, then the calibration of the leverage function (33) can
take place with the aim of compensating for the calibration
inaccuracies that the pure stochastic volatility approach pro-
duces (at least, as much as possible). Therefore, we assume
that the parameters of the process (σt)t≥0 are known (i.e. they
have been calibrated already) and we will solely focus on the
calibration of the local volatility component.

Considering the framework provided in section 4.1 given
by M option maturities, we assume that, for the ith matu-
rity Ti, Ji options are quoted. We denote their strikes and
prices by Ki,j and Ci,j, respectively (j ∈ {1, . . . , Ji}).† The cor-
responding model prices computed with the LSV approach
described in section 4.1 will be denoted by CLSV

i,j (θi). Assum-
ing the calibration is performed in a least-squares sense, then
it is necessary to solve the weighted minimization problems
given by

min
θi∈.i

Ji∑

j=1

wi,j(CLSV
i,j (θi)− Ci,j)

2, (36)

where the factors wi,j’s denote some positive weights.

† From here onwards, for simplicity, the index i will be always
assumed to range in {1, . . . , M }, while the index j(= j(i)) in
{1, . . . , Ji}, unless otherwise stated.

4.3. Application

In this section, we provide an applicative example of how
to calibrate a LSV pricing model to European option prices
under risk-neutral settings. The results available here will
be then the foundations for calibrating to bid and ask mar-
ket prices, by means of conic Monte Carlo (see section 2.2).
In particular, we employ the neural network approximation
approach for the leverage function outlined in sections 4.1
and 4.2. To start with, following Cuchiero et al. (2020),
as LSV model we chose the LSV variation of the SABR
model (6) given by






dYt = σtYtL(t, Yt)dWt

dσt = ασtdZt

d〈Wt, Zt〉 = ρdt

, (37)

where the notation used in (37) has been already outlined in
sections 2.1.1 and 4.1. Choosing SABR specifications also
allows to assess the advantages of considering the framework
taken into account here compared to the pure conic SABR
model (see section 2.1.1). Note that, in this example, we actu-
ally consider a special case of the SABR model in order to
be consistent with equity volatilities, which are in general
expressed in terms of lognormal ones. This means that, in
practice, the parameter β is exogenously set equal to one.
Therefore, given that choosing β = 1 is often referred to, in
practitioner’s jargon, as considering a stochastic lognormal
(SL) model (see also Hagan et al. 2002), from here onwards,
to avoid misunderstandings, will use this terminology. On a
side note, in order to calibrate the leverage function, we will
work with log-coordinates.

For LSV calibration purposes (Cuchiero et al. 2020) pro-
pose to split the calibration procedure into two steps. That is,
in the first part of the calibration, the goal is that of calibrat-
ing the SL parameters only. This means that, in this case, we
set L(· , ·) ≡ 1, and therefore consider the model as a pure
stochastic volatility one. In particular, given the SL specifica-
tions considered, we aim here to find a set of SL parameters
that, as good as possible, fit the ‘observable’ risk-neutral
prices for all the maturities available in the dataset. Thus,
once the SL parameters have been calibrated, then the local
volatility component of the model will be fine-tuned at a later
moment. This to compensate for the miscalibrations caused
by the fact that the stand-alone SL model cannot perfectly fit,
at the same time, all the options quoted for all the possible
strikes and maturities. However, from a practical perspective,
we propose here not to use a simulation-based approach to
calibrate the SL parameters but, rather, to use the (approxi-
mated) analytical SL volatilities as per (7). The underlying
reason for this choice is twofold, i.e. using analytical formu-
lae for computing option prices under SL dynamics is not only
better performing than using a Monte Carlo approach, but it
also avoids introducing unnecessary simulation noise within
the calibration procedure.

In symbols, following the conventions introduced in
section 4.2, assuming M maturities T1 < · · · < TM and Ji

options quoted per maturity (i ∈ {1, . . . , M }) with strike prices
Ki,j (j ∈ {1, . . . , Ji}), then the calibration task for the pure
SL component of the LSV model (37) (in implied volatility

1150 M. Michielon et al.

terms) boils down to the minimization problem

min
σ0,α,ρ

M∑

i=1

Ji∑

j=1

wi,j

(
σ SL

j (Ki,j, Ti)− σmarket(Ki,j, Ti)
)2

, (38)

where in (38) σmarket(Ki,j, Ti) denotes the (lognormal) market
implied volatility corresponding to maturity Ti and to strike
Ki,j, while the weights wi,j’s are defined by means of

wi,j := 1−
|Ki,j − KATM

i |
KATM

i

. (39)

In (39), KATM
i represents the at-the-money point for the ith

maturity. That is, defining the weights as per (39) aims to
give less and less importance to options which are far from
the at-the-money point. This is sufficient, in our case, as the
moneyness levels considered always allow for (39) to be pos-
itive. This choice is justified by the fact that, solely with
the SL parameters, it is not possible to have a satisfactory
calibration for all maturities and strikes simultaneously as
already highlighted above. Therefore, here we attempt to fit
the volatility surface backbone the best way possible given
the set of SL parameters available. In order to achieve this we
give less and less importance to the points that departure from
the relevant at-the-money levels. We then attempt to fit, in
a least-squares sense, those implied volatilities. In contrast, in
Cuchiero et al. (2020) it is proposed to calibrate the SL param-
eters to the first maturity only. Despite the choice of how to
calibrate the SL parameters remains in any case arbitrary, by
experimentation it seems that attempting to fit the SL param-
eters to reproduce the volatility backbone is the best choice
amongst the two.

Once the SL parameters have been calibrated following
the methodology highlighted above, then the calibration of
the local volatility component of the SL LSV model (i.e. the
leverage function) can take place, at the risk-neutral level,
following the procedure highlighted in section 4.2.

We now provide an example of the calibration routine just
outlined. We recall that, in a two-price economy under conic
finance settings, the calibration is a two-step process. That is,
first the parameters describing the risk-neutral dynamics of
the underlying process need to be calibrated. Afterwards, the
calibration to the observed bid and ask prices can take place.
In this example, as proxy for the risk-neutral prices, we con-
sider their mid-counterparts. The results of the second step,
i.e. those related to the bid-ask calibration, will be outlined in
section 4.3.1.

We start by considering, under risk-neutral settings, the SL
model and calibrate it for the full range of options consid-
ered utilizing (38) and (39). With the benchmark calibration
now complete we proceed with the second step. That is, we
calibrate the actual SL LSV model outlined in section 4.2
(under risk-neutral settings). As the final step for the risk-
neutral calibration, we now add the local volatility component
to the SL model and fit the model to the market data by
means of approximating its local volatility component with
a combination of neural networks as illustrated in section 4.1.

In order to provide a transparent analysis of the calibra-
tion results we now quantify and compare the errors obtained

Table 9. Calibrated SL parameters for each maturity.

Maturity (years) σ0 ρ α

0.17 0.21 − 0.81 2.50
0.33 0.21 − 0.82 1.62
0.46 0.22 − 0.86 1.28
0.62 0.22 − 0.91 1.05
0.89 0.22 − 0.97 0.81
1.04 0.75 − 0.95 2.44

Table 10. Performance metrics for the SL and SL LSV models.

Model

Error SL LSV SL

MSE 7.20 · 10−6 4.85 · 10−7

RMSE 2.68 · 10−3 6.96 · 10−4

MAPE 1.02 · 10−2 2.40 · 10−3

using a pure SL calibration versus the case where a local
volatility component is introduced in the model (in both
approaches, i.e. SL model with and without local volatility
component, β = 1, so the settings considered are consistent
with each other). The results of this comparison are available
in table 10. Note that it is obvious that calibrating the SL LSV
model will result in a better fit compared to just calibrating
the SL model. Therefore, in order to show the performance
of the SL LSV model, we compare its calibration errors with
those of the SL calibrated maturity by maturity. That is, in
the latter case, for each maturity we compute a different set
of risk-neutral SL parameters in order to have a fit, per matu-
rity slice, that is better than that given by solely considering
the SL model for all maturities simultaneously (see Appendix
for some remarks concerning this choice). The calibrated SL
parameters are present in table 9. We report the calibration
errors in terms of MSEs, RMSEs and MAPEs in table 10.

Finally, to make the error analysis more comprehensive,
we provide additional details concerning the implied volatil-
ity squared errors of the SL and the SL LSV models. The
results of this analysis are presented in figure 13(a,b), respec-
tively. The outcomes clearly illustrate how introducing a
local volatility component within the SL calibration allows
to obtain (squared) errors in volatility space which are one
order of magnitude lower than their counterparts computed
using a pure SL approach. In particular, from the empirical
analysis provided it is clear that introducing the leverage func-
tion in the calibration allows to drastically reduce calibration
errors. We also observe that, with the exception of a handful
of points, the implied volatility squared error in the case of the
LSV calibration (see figure 13(b)) is smoother that its pure SL
counterpart (see figure 13(a)). And it is also worth remarking
that, even when the peaks observed in figure 13(b) are taken
into account, the values they correspond to are, in any case,
smaller than their counterparts available in figure 13(a).

4.3.1. Results: bid-ask calibration. In this section, we
present the results obtained by extending the calibration of

Neural network empowered liquidity pricing 1151

Figure 12. Surface of the squared calibration errors in implied volatility terms for the SL model (panel (a)) and for the SL LSV model
(panel (b)).

the SL LSV model to a conic two-price setting. The method-
ology outlined in section 2.2, as well as the results obtained
section 4.3, serve as foundations for this extension. The
results outlined here are a continuation of those available in
section 4.3. That is, after having performed the calibration of
the LSV model at the risk-neutral level we can, by means of
conic Monte Carlo (see section 2.2), perform a bid-ask cali-
bration given real market data. Furthermore, we also present
a selection of calibration results coming from the application
of some of the hybrid families of distortion functions intro-
duced in section 2.3. For the sake of conciseness, we exhibit
here, from a graphical perspective, only the calibration results
pertaining to the first and to the last maturities.

In figure 14, we present the bid and ask implied volatilities
obtained following the pure conic SL calibration outlined in
section 2.1.1. Additionally, for the purpose of comparison, we
include the market bid and ask implied volatilities, as well as
the market mid-price implied volatilities.

An examination of figure 14 reveals an often poor perfor-
mance of the calibration method, which seems particularly
evident for options with low moneyness levels and short
maturities. The plots in figure 14 illustrate a significant bid-
ask spread which the calibration fails to capture, as evidenced
by the high repricing errors for certain options, where the cali-
brated bid implied volatility differ by approximately 800 basis
points from the market bid implied volatility.

For comparison purposes, in figure A1 we now present the
results obtained by calibrating the SL LSV model by means
of conic Monte Carlo given the same dataset considered so
far. Furthermore, in figure A1 we present bid and ask implied
volatilities obtained through the SL LSV calibration using
both the Minmaxvar and the Wang distortion functions. The
results demonstrate a clear improvement in terms of calibra-
tion accuracy. We remark here that, in this framework, as we

are not dealing with analytical formulae, it does not make a
difference, from an implementation angle, whether we use one
distortion function or another. On the contrary, in the case of
the conic SL model (see section 2.1.1), the choice of the Wang
transform (instead of another distortion) allows to still remain
in a framework where (approximated) analytical formulae can
be used.

We now present, for completeness, some calibration results
obtained by employing the novel t-Minmaxwang distortion
introduced in section 2.3. The key distinction of this approach
is the inclusion of an additional parameter, denoted as t (we
use t in this context due to the interpretation of this dis-
tortion function provided in section 2.3). We also consider
the Minmaxvar-Wang and the Wang-Minmaxvar distortions
introduced in section 2.3. This parameter serves as a met-
ric for selecting the appropriate distortion in each instance.
This is a useful feature because, as highlighted in section 2.3,
often the choice of the distortion function to be used is some-
what arbitrary. Therefore, having a simple tool allowing to
discriminate between the possible choices available can often
come in handy. Through the analysis of the results we find
that the majority of points in the volatility surface exhibit a
(close to) zero value for t, indicating a predominance of the
Wang transform in terms of performance accuracy. Based on
this observation, we can empirically assess that, at least for
the cases considered in the examples available in the paper
at hand, using the Wang transform results in lower calibra-
tion errors compared to the Minmaxvar distortion. We present
in tables 11 and 12 some summary statistics concerning the
bid-ask calibration errors observed using different distortions
functions. From the results obtained, and as expected by
construction, we observe that the t-Minmaxwang (slightly)
outperforms the other choices (due to the extra degree of
freedom introduced).

1152 M. Michielon et al.

Figure 13. Calibrated bid and ask implied volatilities using the conic SL model. Panels (a) and (b) illustrate the calibrated bid and ask
implied volatilities for the first maturity of the dataset considered, while (c) and (d) their counterparts in the case the last maturity is taken
into account.

Table 11. Calibration bid errors per distortion function given the dataset considered.

Model

Error Minmaxvar Wang t-MinmaxWang Minmaxvar-Wang Wang-Minmaxvar

MSE 6.93 · 10−7 6.49 · 10−7 6.42 · 10−7 6.83 · 10−7 6.69 · 10−7

RMSE 8.32 · 10−4 8.05 · 10−4 8.01 · 10−4 8.26 · 10−4 8.18 · 10−4

MAPE 2.65 · 10−3 2.60 · 10−3 2.57 · 10−3 2.63 · 10−3 2.63 · 10−3

Table 12. Calibration ask errors per distortion function given the dataset considered.

Distortion

Error Minmaxvar Wang t-Minmaxwang Minmaxvar-Wang Wang-Minmaxvar

MSE 4.77 · 10−7 4.62 · 10−7 4.58 · 10−7 4.71 · 10−7 4.69 · 10−7

RMSE 6.90 · 10−4 6.79 · 10−4 6.76 · 10−4 6.85 · 10−4 6.85 · 10−4

MAPE 2.22 · 10−3 2.20 · 10−3 2.17 · 10−3 2.21 · 10−3 2.21 · 10−3

Neural network empowered liquidity pricing 1153

Figure 14. Calibrated bid and ask implied volatilities using the conic SL LSV model. Panels (a) and (b) illustrate the calibrated bid and ask
implied volatilities for the first maturity of the dataset considered, while (c) and (d) their counterparts in the case the last maturity is taken
into account.

5. Conclusion

In the article at hand we investigated new ways of com-
bining the usage of neural networks in quantitative finance
and, in particular, in the context of derivatives valuation in
a two-price economy according to the paradigm of Cherny
and Madan (2010). We examined two different applications of
neural networks in conic financial markets. The first explores
the possibility of replicating bid and ask pricing by the use
of (vector-valued) neural networks, while the second aims
to combine the use of neural networks with the LSV mod-
eling framework. More precisely, (i) we provided an accurate,
flexible and fast neural network-based architecture for deriva-
tive valuation in a conic economy, and (ii) we extended this
approach to compute sensitivities. Moreover, in the second
part (iii) we extended the work of Cuchiero et al. (2020) to
incorporate bid-ask pricing through conic Monte Carlo simu-
lations. To conclude, (iv) we introduced a conic version of the
SABR (Hagan et al. 2014) model, based on the Wang distor-
tion (Wang 2000), and (v) we provided simple techniques to
generate arbitrary families of hybrid distortion functions.

Acknowledgments

We would like to thank two anonymous referees for their valu-
able comments and suggestions. Their detailed and insightful
feedback has greatly contributed to improving the quality of
our paper. The views and opinions expressed in this article are
solely those of the authors and do not necessarily reflect those
of their current or past employers.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

Diogo Franquinho https://orcid.org/0009-0005-7258-5903
Peter Spreij http://orcid.org/0000-0002-6416-6320

https://orcid.org/0009-0005-7258-5903
http://orcid.org/0000-0002-6416-6320

1154 M. Michielon et al.

References

Awoyemi, J.O., Adetunmbi, A.O. and Oluwadare, S.A, Credit card
fraud detection using machine learning techniques: A compar-
ative analysis. In 2017 International Conference on Computing
Networking and Informatics (ICCNI), pp. 1–9, 2017.

Bayer, C., Friz, P. and Gatheral, J., Pricing under rough volatility.
Quant. Finance, 2016, 16(6), 887–904.

Bennedsen, M., Lunde, A. and Pakkanen, M.S., Hybrid scheme for
Brownian semistationary processes. Finance Stoch., 2017, 21(4),
931–965.

Borchani, H., Varando, G., Bielza, C. and Larrañaga, P., A survey on
multi-output regression. WIREs Data Min. Knowl. Discov., 2015,
5, 216–233.

Buehler, H., Volatility and dividends—volatility modelling with cash
dividends and simple credit risk. Working paper, 2010. Available
online at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=11
41877.

Buehler, H., Gonon, L., Teichmann, J. and Wood, B., Deep hedging.
Quant. Finance, 2019, 19(8), 1271–1291.

Carmona, R. and Nadtochiy, S., Local volatility dynamic models.
Finance Stoch., 2009, 13, 1–48.

Chen, Z., Van Khoa, L.D., Teoh, E.N., Nazir, A., Karuppiah, E.K.
and Lam, K.S., Machine learning techniques for anti-money laun-
dering (AML) solutions in suspicious transaction detection: A
review. Knowl. Inf. Syst., 2021, 190, 184–192.

Cherny, A. and Madan, D.B., New measures for performance evalu-
ation. Rev. Financ. Stud., 2009, 22(7), 2571–2606.

Cherny, A. and Madan, D.B., Markets as a counterparty: An intro-
duction to conic finance. Int. J. Theor. Appl. Finance, 2010, 13(8),
1149–1177.

Chopra, S., Reinforcment learning methods for conic finance. PhD
thesis, University of Maryland, 2020.

Corcuera, J.M., Guillaume, F., Madan, D.B. and Schoutens, W.,
Implied liquidity: Towards stochastic liquidity modeling and liq-
uidity trading. Int. J. Portf. Anal. Manag., 2012, 1(1), 80–91.

Cuchiero, C., Khosrawi, W. and Teichmann, J., A generative adver-
sarial network approach to calibration of local stochastic volatility
models. Risks, 2020, 8(4), 101.

Davis, J., Devos, L., Reyners, S. and Schoutens, W., Gradient boost-
ing for quantitative finance. J. Comput. Finance, 2021, 21(4),
1–40.

De Spiegeleer, J., Madan, D.B., Reyners, S. and Schoutens, W.,
Machine learning for quantitative finance: Fast derivative pricing,
hedging and fitting. Quant. Finance, 2018, 18(10), 1635–1643.

Denneberg, D., Non-Additive Measure and Integral, 1994 (Kluver
Academic Publishers: Dordrecht).

Domashova, J. and Mikhailina, N., Usage of machine learning meth-
ods for early detection of money laundering schemes. Procedia
Comput. Sci., 2021, 190, 184–192.

Dupire, B., Pricing with a smile. Risk, 1994, 7(1), 18–20.
Ferguson, R. and Green, A., Deeply learning derivatives. Work-

ing paper, 2018. Available online at: https://arxiv.org/abs/1802.
03042.

Fritsch, F.N. and Carlson, R.E., Monotone piecewise cubic interpo-
lation. SIAM J. Numer. Anal., 1980, 17(2), 238–246.

Gatheral, J., The Volatility Surface, 2006 (John Wiley & Sons:
Hoboken).

Gierjatowicz, P., Sabate-Vidales, M., Šiška, D., Szpruch, L. and
Žurič, Ž., Robust pricing and hedging via neural SDEs. Working
paper, 2020. Available online at: https://arxiv.org/abs/2007.04154.

Guyon, J. and Henry-Labordère, P., Being particular about calibra-
tion. Risk Mag., 2012, January, 92–97.

Hagan, P.S., Kumar, D., Lesniewski, A. and Woodward, D.,
Arbitrage-free SABR. Wilmott, 2014, 69, 60–75.

Hagan, P.S., Kumar, D., Lesniewski, A.S. and Woodward, D.E.,
Managing smile risk. Wilmott, 2002, 1, 84–108.

Haug, E.G., The Complete Guide to Option Pricing Formulas, 2007
(McGraw-Hill: New York).

Henrard, M., Algorithmic Differentiation in Finance Explained, 2017
(Springer: Cham).

Heston, S.L., A closed-form solution for options with stochastic
volatility with applications to bond and currency options. Rev.
Financ. Stud., 1993, 6(2), 327–343.

Hinton, G.E., Vinyals, O. and Dean, J., Distilling the knowledge
in a neural network. Working paper, 2010. Available online at:
https://arxiv.org/abs/1503.02531.

Hwu, W., Kirk, D.B. and El Hajj, I., Programming Massively Paral-
lel Processors: A Hands-on Approach, 2022 (Morgan Kaufmann:
Waltham).

Johri, P., Verma, J.K. and Paul, S., Applications of Machine Learn-
ing, 2020 (Springer Verlag: Singapore).

Kaelo, P. and Ali, M., Integrated crossover rules in real coded genetic
algorithms. Eur. J. Oper. Res., 2007, 176(1), 60–76.

Krauss, C., Do, X.A. and Huck, N., Deep neural networks, gradient-
boosted trees, random forests: Statistical arbitrage on the S&P 500.
Eur. J. Oper. Res., 2017, 259(2), 689–702.

Liu, S., Borovykh, A. and Grzelak, L., A neural network-based
framework for financial model calibration. J. Math. Ind., 2019a,
9(9), 9.

Liu, S., Oosterlee, C. and Bohte, S., Pricing options and computing
implied volatilities using neural networks. Risks, 2019b, 7(1), 16.

Madan, D.B. and Schoutens, W., Applied Conic Finance, 2016
(Cambridge University Press: Cambridge).

Madan, D.B. and Sharaiha, Y.M., Machine trading: Theory,
advances, and applications. J. Financ. Data Sci., 2020, 2(3), 8–24.

Mandelbrot, B.B. and van Ness, J.W., Fractional Brownian motions,
fractional noises and applications. SIAM Rev., 1968, 10(4), 422–
437.

Mazzon, A. and Pascucci, A., The forward smile in local–stochastic
volatility models. J. Comput. Finance, 2016, 20(3), 1–29.

McCrickerd, R. and Pakkanen, M.S., Turbocharging Monte Carlo
pricing for the rough Bergomi model. Quant. Finance, 2018,
18(11), 1877–1886.

Michielon, M., Khedher, A. and Spreij, P., Liquidity-free implied
volatilities: An approach using conic finance. Int. J. Financ. Eng.,
2021, 8(4), 2150041.

Morelli, M.J., Montagna, G., Nicrosini, O., Treccani, M., Farina, M.
and Amato, P., Pricing financial derivatives with neural networks.
Phys. A Stat. Mech. Appl., 2004, 338(1), 160–165.

Moussa, K., Arbitrage-based filtering of option price data. Work-
ing paper, 2018. Available online at: https://ssrn.com/abstract=319
7284.

Nasse, F., Thurau, C. and Fink, G.A., Face detection using GPU-
based convolutional neural networks. In CAIP, pp. 83–90, 2009.

Oh, K.-S. and Jung, K., GPU implementation of neural networks.
Pattern Recognit., 2004, 37(6), 1311–1314.

Okanovic, P., Waleffe, R., Mageirakos, V., Nikolakakis, K.E.,
Karbasi, A., Kalogerias, D., Gürel, N.M. and Rekatsinas,
T., Repeated random sampling for minimizing the time-to-
accuracy of learning. Working paper, 2023. Available online at:
https://arxiv.org/abs/2305.18424.

Overhaus, M., Bermúdez, A., Buehler, H., Ferraris, A., Jordison, C.
and Lamnouar, A., Equity Hybrid Derivatives, 2007 (John Wiley
& Sons: Hoboken).

Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P.,
Numerical Recipes. The Art of Scientific Computing, 2007 (Cam-
bridge University Press: Cambridge).

Robey, R. and Zamora, Y., Parallel and High Performance Comput-
ing, 2021 (Manning: Shelter Island).

Sachdev, N. and McAuley, J., Data distillation: A survey. Working
paper, 2010. Available online at: https://arxiv.org/abs/2301.04272.

Sadgali, I., Sael, N. and Benabbou, F., Performance of machine
learning techniques in the detection of financial frauds. Procedia
Comput. Sci., 2019, 148, 45–54.

Schoutens, W., Simons, E. and Tistaert, J., A perfect calibration! now
what? Wilmott Mag., 2004, March, 66–78.

Sorscher, B., Geirhos, R., Shekhar, S., Ganguli, S. and Morcos, A.S.,
Beyond neural scaling laws: Beating power law scaling via data
pruning. In Advances in Neural Information Processing Systems,
edited by A. H. Oh, A. Agarwal, D. Belgrave and K. Cho, volume
35, pp. 19523–19536, 2022.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1141877
https://arxiv.org/abs/1802.03042
https://arxiv.org/abs/2007.04154
https://arxiv.org/abs/1503.02531
https://ssrn.com/abstract=3197284
https://arxiv.org/abs/2305.18424
https://arxiv.org/abs/2301.04272

Neural network empowered liquidity pricing 1155

Spiegeleer, J.D., Madan, D.B., Reyners, S. and Schoutens, W.,
Machine learning for quantitative finance: Fast derivative pricing,
hedging and fitting. Quant. Finance, 2018, 18(10), 1635–1643.

Szandała, T., Review and comparison of commonly used activation
functions for deep neural networks. In Bio-Inspired Neurocomput-
ing, edited by A. K. Bhoi, P. K. Mallick, C.-M. Liu, and V. E.
Balas, pp. 203–224, 2021 (Springer: Singapore).

Vadera, S. and Ameen, S., Methods for pruning deep neu-
ral networks. Working paper, 2021. Available online at:
https://arxiv.org/abs/2011.00241.

van der Stoep, A.W., Grzelak, L.A. and Oosterlee, C.W., The
time-dependent FX-SABR model: Efficient calibration based on
effective parameters. Int. J. Theor. Appl. Finance, 2015, 18(6),
1550042.

Vidales, M.S., Siska, D. and Szpruch, L., Unbiased deep solvers for
linear parametric PDEs. Working paper, 2018. Available online at
https://arxiv.org/abs/1810.05094.

Wang, S.S., A class of distortion operators for pricing financial and
insurance risks. J. Risk Insur., 2000, 67(1), 15–36.

Wang, Y., Wei, G. and Brooks, D., Benchmarking TPU, GPU, and
CPU platforms for deep learning. Working paper, 2019. Available
online at: https://arxiv.org/abs/1907.10701.

Wang, Z. and Klir, G.J., Generalized Measure Theory, 2009
(Springer: New York).

Appendix. A remark on the calibration choice of the SL
model

In terms of calibration of the SL model, see section 4.3, one could
follow two approaches:

(i) Calibrate the parameters of the SL model given all the options
quoted in the market (i.e. all maturities included at the same
time);

(ii) Calibrate, for each maturity, a set of SL model parameters
(as done in section 4.3) and interpolate prices in the maturity
direction by, for instance, interpolate the SL parameters or
the implied volatilities appropriately.

Despite approach (i) would be the theoretically-correct way of cal-
ibrating the model, it would obviously provide, per maturity slice,
larger calibration errors compared to approach (ii). In figure A1
we have reported the squared errors obtained by calibrating the SL
model to all the available option maturities considered in section 4.3
at the same time (i.e. by means of (i)). The resulting calibrated
parameters are σ0 = 0.22, ρ = −0.91 and α = 1.30.

Figure A1. Squared errors in implied volatility obtained by calibrat-
ing the SL model to all maturities simultaneously for the options
considered in section 4.3, i.e. approach (i).

If we compare figure A1 above with figure 13(a) (which follows
approach (ii)), we note that the errors in the former are two orders
of magnitude larger compared to the errors in the latter. We further
report, by means of the four panels in figure A2 below, how the cal-
ibration performance of the SL model would look like when using
approach (i) (cf. panels in figure 14).

The reason why we considered approach (ii) in section 4.3 to be
compared with the LSV calibration is that we wanted to show that,
even if model choices were made in such a way to obtain (without
a local volatility component) repricing errors that are as low as pos-
sible, the approach described in section 4.3 still outperforms it. We
highlight that by no mean we are stating that approach (ii) is the
one that is theoretically justified (despite often used in practice), but
it provides a useful benchmark to be used in the tests outlined in
section 4.3.

https://arxiv.org/abs/2011.00241
https://arxiv.org/abs/1810.05094
https://arxiv.org/abs/1907.10701

1156 M. Michielon et al.

Figure A2. Calibrated bid and ask implied volatilities using the conic SL model where the risk-neutral parameters of the SL model have
been calibrated as per (i) given the dataset of section 4.3. Panels (a) and (b) illustrate the calibrated bid and ask implied volatilities for the
first maturity of the dataset considered, while (c) and (d) their counterparts in the case the last maturity is taken into account.

	1. Introduction
	2. Bid-ask pricing with distorted expectations: an intuitive introduction
	2.1. Conic pricing of European options with the Wang transform
	2.1.1. Interlude: conic SABR

	2.2. Conic Monte Carlo
	2.3. Hybrid distortions

	3. Conic neural networks: liquidity pricing and hedging with vector-valued neural networks
	3.1. A motivating example
	3.2. CNNs in use
	3.2.1. A fully-fledged arbitrage-free calibration routine with CNNs: an illustration
	3.2.2. A real-world example
	3.2.3. Performance analysis
	3.2.4. A no-arbitrage test
	3.2.5. Training validation

	3.3. Sensitivities: learning (the) Greek(s)
	3.4. Some concluding remarks on training CNNs

	4. Neural network-driven LSV calibration in a two-price economy
	4.1. Leverage function: a neural network approximation
	4.2. Calibration
	4.3. Application
	4.3.1. Results: bid-ask calibration

	5. Conclusion
	Acknowledgments
	Disclosure statement
	ORCID
	References
	Appendix. A remark on the calibration choice of the SL model

