
Chapter 11
Nonparametric Methods for Volatility Density
Estimation

Bert van Es, Peter Spreij, and Harry van Zanten

Abstract Stochastic volatility modeling of financial processes has become increas-
ingly popular. The proposed models usually contain a stationary volatility pro-
cess. We will motivate and review several nonparametric methods for estimation
of the density of the volatility process. Both models based on discretely sampled
continuous-time processes and discrete-time models will be discussed.

The key insight for the analysis is a transformation of the volatility density esti-
mation problem to a deconvolution model for which standard methods exist. Three
types of nonparametric density estimators are reviewed: the Fourier-type deconvo-
lution kernel density estimator, a wavelet deconvolution density estimator, and a
penalized projection estimator. The performance of these estimators will be com-
pared.

Keywords Stochastic volatility models · Deconvolution · Density estimation ·
Kernel estimator · Wavelets · Minimum contrast estimation · Mixing

Mathematics Subject Classification (2010) 62G07 · 62G08 · 62M07 · 62P20 ·
91G70

11.1 Introduction

We discuss a number of nonparametric methods that come into play when one wants
to estimate the density of the volatility process, given observations of the price pro-
cess of some asset. The models that we treat are mainly formulated in continuous
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time, although we pay some separate attention to discrete-time models. The ob-
servations of the continuous-time models will always be in discrete time however
and may occur at low frequency (fixed lag between observation instants) or high
frequency (vanishing time lag). In this review, for simplicity, we focus on the uni-
variate marginal distribution of the volatility process, although similar results can
be obtained for multivariate marginal distributions.

Although the underlying models differ in the sense that they are formulated ei-
ther in continuous or in discrete time, in all cases the observations are given by a
discrete-time process. Moreover, as we shall see, the observation scheme can always
(approximately) be cast as of “signal plus noise” type

Yi = Xi + εi,

where Xi is to be interpreted as the “signal.” If for fixed i, the random variables Xi

and εi are independent, the distribution of the Yi is a convolution of the distributions
of Xi and εi . The density of the “signal” Xi is the object of interest, while the
density of the “noise” εi is supposed to be known to the observer. The statistical
problem is to recover the density of the signal by deconvolution. Classically, for such
models, it was often also assumed that the processes (Xi) and (εi) are i.i.d. Under
these conditions, Fan [12] gave lower bounds for the estimation of the unknown
density f at a fixed point x0 and showed that kernel-type estimators achieve the
optimal rate. An alternative estimation method was proposed in the paper Pensky
and Vidakovic [23], using wavelet methods instead of kernel estimators and where
global L2-errors were considered instead of pointwise errors.

However, for the stochastic volatility models that we consider, the i.i.d. assump-
tion on the Xi is violated. Instead, the Xi may be modeled as stationary random
variables that are allowed to exhibit some form of weak dependence, controlled
by appropriate mixing properties, strongly mixing or β-mixing. These mixing con-
ditions are justified by the fact that they are satisfied for many popular GARCH-
type and stochastic volatility models (see, e.g., Carrasco and Chen [6]), as well as
for continuous-time models where σ 2 solves a stochastic differential equation, see,
e.g., Genon-Catalot et al. [17]. The estimators that we discuss are based on kernel
methods, wavelets, and penalized contrast estimation, also referred to as penalized
projection estimation. We will review the performance of these deconvolution esti-
mators under weaker than i.i.d. assumptions and show that this essentially depends
on the smoothness and mixing conditions of the underlying process and the fre-
quency of the observations. For a survey of other nonparametric statistical problems
for financial data, we refer to Franke et al. [14]

The paper is organized as follows. In Sect. 11.2 we introduce the continuous time
model. In Sect. 11.3 we consider a kernel-type estimator of the invariant volatility
density and apply it to a set of real data. Section 11.4 is devoted to a wavelet density
estimator, and in Sect. 11.5 a minimum contrast estimator is discussed. Some related
results for discrete-time models are reviewed in Sect. 11.6, and Sect. 11.7 contains
some concluding remarks.
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11.2 The Continuous-Time Model

Let S denote the log price process of some stock in a financial market. It is often
assumed that S can be modeled as the solution of a stochastic differential equation
or, more generally, as an Itô diffusion process. So we assume that we can write

dSt = bt dt + σt dWt , S0 = 0, (11.1)

or, in the integral form,

St =
∫ t

0
bs ds +

∫ t

0
σs dWs, (11.2)

where W is a standard Brownian motion, and the processes b and σ are assumed
to satisfy certain regularity conditions (see Karatzas and Shreve [22]) to have the
integrals in (11.2) well defined. In a financial context, the process σ is called the
volatility process. One often takes the process σ independent of the Brownian mo-
tion W .

Adopting this common assumption throughout the paper, unless explicitly stated
otherwise, we also assume that σ is a strictly stationary positive process satisfying
a mixing condition, for example, an ergodic diffusion on (0,∞). The standing as-
sumption in all what follows is that the one-dimensional marginal distribution of σ

admits an invariant density w.r.t. Lebesgue measure on (0,∞). This is typically the
case in virtually all stochastic volatility models that are proposed in the literature,
where the evolution of σ is modeled by a stochastic differential equation, mostly in
terms of σ 2 or logσ 2 (see, e.g., Wiggins [31], Heston [20]). Often σ 2

t is a function
of a process Xt satisfying a stochastic differential equation of the type

dXt = b(Xt ) dt + a(Xt ) dBt (11.3)

with Brownian motion Bt . Under regularity conditions, the invariant density of X is
up to a multiplicative constant equal to

x �→ 1

a2(x)
exp

(
2
∫ x

x0

b(y)

a2(y)
dy

)
, (11.4)

where x0 is an arbitrary element of the state space, see, e.g., Gihman and Sko-
rokhod [19] or Skorokhod [25]. From formula (11.4) one sees that the invariant dis-
tribution of the volatility process (take X, for instance, equal to σ 2 or logσ 2) may
take on many different forms, as is the case for the various models that have been
proposed in the literature. In absence of parametric assumptions on the coefficients
a and b, we will investigate nonparametric procedures to estimate the correspond-
ing densities, even refraining from an underlying model like (11.3), partly aimed at
recovering possible “stylized facts” exhibited by the observations.

For instance, one could think of volatility clustering. This may be cast by say-
ing that for different time instants t1, t2 that are close, the corresponding values of
σt1, σt2 are close again. This can partly be explained by the assumed continuity of



296 B. van Es et al.

the process σ , but it might also result from specific areas around the diagonal where
the multivariate density of (σt1, σt2) assumes high values if t1 and t2 are relatively
close. It is therefore conceivable that the density of (σt1, σt2) has high concentra-
tions around points (�, �) and (h,h), with � < h, a kind of bimodality of the joint
distribution, with the interpretation that clustering occurs around a low value � or
around a high value h. This in turn may be reflected by bimodality of the univariate
marginal distribution of σt .

A situation in which this naturally occurs is the following. Consider a regime
switching volatility process. Assume that for i = 0,1, we have two stationary pro-
cesses Xi having stationary densities f i . We assume these two processes to be inde-
pendent and also independent of a two-state stationary homogeneous Markov chain
U with states 0,1. The stationary distribution of U is given by πi := P(Ut = i).
The process ξ is defined by

ξt = UtX
1
t + (1 − Ut)X

0
t .

Then ξ is stationary too, and it has the stationary density f given by

f (x) = π1f
1(x) + π0f

0(x).

Suppose that the volatility process is defined by σ 2
t = exp(ξt ) and that the Xi are

both Ornstein–Uhlenbeck processes given by

dXi
t = −bi

(
Xi

t − μi

)
dt + ai dWi

t

with independent Brownian motions W 1 and W 2, μ1 �= μ2, and b1, b2 > 0. Suppose

that the Xi start in their stationary N(μi,
a2
i

2bi
) distributions. Then the stationary

density f is a bimodal mixture of normal densities with μ1 and μ2 as the locations
of the local maxima. Nonparametric procedures are able to detect such a property
and are consequently by all means sensible tools to get some first insights into the
shape of the invariant density.

A first object of study is the marginal univariate distribution of the stationary
volatility process σ . We will also consider the invariant density of the integrated
squared volatility process over an interval of length Δ. By stationarity of σ this is
the density of

∫ Δ

0 σ 2
t dt . We will consider density estimators and assess their quality

by giving results on their mean squared or mean integrated squared error. For ker-
nel estimators, we rely on Van Es et al. [10], where this problem has been studied
for the marginal univariate density of σ . In Van Es and Spreij [9] one can find re-
sults for multivariate density estimators. Results on wavelet estimators will be taken
from Van Zanten and Zareba [32]. Penalized contrast estimators have been treated
in Comte and Genon-Catalot [7].

The observations of log-asset price S process are assumed to take place at the
time instants 0,Δ,2Δ, . . . , nΔ. In case one deals with low-frequency observations,
Δ is fixed. For high-frequency observations, the time gap satisfies Δ = Δn → 0 as
n → ∞. To obtain consistency for the estimators that we will study in the latter
case, we will make the additional assumption nΔn → ∞.
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To explain the origin of the estimators that we consider in this paper, we often
work with the simplified model, which is obtained from (11.1) by taking bt = 0.
We then suppose to have discrete-time data S0, SΔ,S2Δ, . . . from a continuous-time
stochastic volatility model of the form

dSt = σt dWt .

Under this additional assumption, we will see that we (approximately) deal with
stationary observations Yi that can be represented as Yi = Xi + εi , where for each i,
the random variables Xi and εi are independent.

11.3 Kernel Deconvolution

In this section we consider kernel deconvolution density estimators. We construct
them, give expressions for bias and variance, and give an application to real data.

11.3.1 Construction of the Estimator

To motivate the construction of the estimator, we first consider (11.1) without the
drift term, so we assume to have the simplified model

dSt = σt dWt , S0 = 0. (11.5)

It is assumed that we observe the process S at the discrete time instants 0, Δ,
2Δ, . . . , nΔ, satisfying Δ → 0, nΔ → ∞. For i = 1,2, . . . , we work, as in Genon-
Catalot et al. [15, 16], with the normalized increments

XΔ
i = 1√

Δ
(SiΔ − S(i−1)Δ).

For small Δ, we have the rough approximation

XΔ
i = 1√

Δ

∫ iΔ

(i−1)Δ

σt dWt

≈ σ(i−1)Δ

1√
Δ

(WiΔ − W(i−1)Δ)

= σ(i−1)ΔZΔ
i , (11.6)

where for i = 1,2, . . . , we define

ZΔ
i = 1√

Δ
(WiΔ − W(i−1)Δ).
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By the independence and stationarity of Brownian increments, the sequence
ZΔ

1 ,ZΔ
2 , . . . is an i.i.d. sequence of standard normal random variables. Moreover,

the sequence is independent of the process σ by assumption.
Writing Yi = log(XΔ

i )2, ξi = logσ 2
(i−1)Δ, εi = log(ZΔ

i )2, and taking the loga-

rithm of the square of XΔ
i , we get

Yi ≈ ξi + εi,

where the terms in the sum are independent. Assuming that the approximation is
sufficiently accurate, we can use this approximate convolution structure to estimate
the unknown density f of logσ 2

iΔ from the transformed observed Yi = log(XΔ
i )2.

The characteristic functions involved are denoted by φY , φξ , and φk , where k is the
density of the “noise” log(ZΔ

i )2. One obviously has φY = φξφk , and one easily sees
that the density k is given by

k(x) = 1√
2π

e
1
2 xe− 1

2 ex

and its characteristic function by

φk(t) = 1√
π

2itΓ

(
1

2
+ it

)
.

The idea of getting a deconvolution estimator of f is simple. Using a kernel
function w, a bandwidth h, and the Yi , the density g of the Yi is estimated by

gnh(y) = 1

nh

∑
j

w

(
y − Yj

h

)
.

Denoting by φg,nh the characteristic function of gnh, one estimates φY by φg,nh and
φξ by φg,nh/φk . Following a well-known approach in statistical deconvolution the-
ory (see, e.g., Sect. 6.2.4 of Wand and Jones [30]), Fourier inversion then yields the
density estimator of f . By elementary calculations from this procedure one obtains

fnh(x) = 1

nh

n∑
j=1

vh

(
x − log(XΔ

j )2

h

)
, (11.7)

where vh is the kernel function, depending on the bandwidth h,

vh(x) = 1

2π

∫ ∞

−∞
φw(s)

φk(s/h)
e−isx ds. (11.8)

One easily verifies that the estimator fnh is real valued.
To justify the approximation in (11.6), we quantify a stochastic continuity prop-

erty of σ 2. In addition to this, we make the mixing condition explicit. We impose
the following:
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Condition 11.1 The process σ 2 satisfies the following conditions.

1. It is L1-Hölder continuous of order one half: E|σ 2
t − σ 2

0 | = O(t1/2) for t → 0.
2. It is strongly mixing with coefficient α(t) satisfying, for some 0 < q < 1,

∫ ∞

0
α(t)q dt < ∞. (11.9)

The kernel function w is assumed to satisfy the following conditions (an exam-
ple of such a kernel is given in (11.12) below, see also Wand [29]) that include in
particular the behavior of φw at the boundary of its domain.

Condition 11.2 Let w be a real symmetric function with real-valued symmetric
characteristic function φw with support [−1,1]. Assume further that

1.
∫ ∞
−∞ |w(u)|du < ∞,

∫ ∞
−∞ w(u)du = 1,

∫ ∞
−∞ u2|w(u)|du < ∞,

2. φw(1 − t) = Atρ + o(tρ) as t ↓ 0 for some ρ > 0 and A ∈ R.

The first part of Condition 11.1 is motivated by the situation where X = σ 2

solves an SDE like (11.1). It is easily verified that for such processes, it holds
that E|σ 2

t − σ 2
0 | = O(t1/2), provided that b ∈ L1(μ) and a ∈ L2(μ), where μ is

the invariant probability measure. Indeed, we have E|σ 2
t − σ 2

0 | ≤ E
∫ t

0 |b(σ 2
s )|ds +

(E
∫ t

0 a2(σ 2
s ) ds)1/2 = t‖b‖L1(μ) + √

t‖a‖L2(μ).
The main result we present for this estimator concerns its mean squared error at a

fixed point x. Although the motivation of the estimator was based on the simplified
model (11.5), the result below applies to the original model (11.1). For its proof and
additional technical details, see Van Es et al. [10].

Theorem 11.3 Assume that Eb2
t is bounded. Let the process σ satisfy Condi-

tion 11.1, and let the kernel function w satisfy Condition 11.2. Moreover, let the
density f of logσ 2

t be twice continuously differentiable with a bounded second
derivative. Also assume that the density of σ 2

t is bounded in a neighborhood of
zero. Suppose that Δ = n−δ for given 0 < δ < 1 and choose h = γπ/ logn, where
γ > 4/δ. Then the bias of the estimator (11.7) satisfies

Efnh(x) − f (x) = 1

2
h2f ′′(x)

∫
u2w(u)du + o

(
h2), (11.10)

whereas, the variance of the estimator satisfies the order bounds

Varfnh(x) = O

(
1

n
h2ρeπ/h

)
+ O

(
1

nh1+qΔ

)
. (11.11)

Remark 11.4 The choices Δ = n−δ with 0 < δ < 1 and h = γπ/ logn with γ > 4/δ

render a variance that is of order n−1+1/γ (1/ logn)2ρ for the first term of (11.11)
and n−1+δ(logn)1+q for the second term. Since by assumption γ > 4/δ we have
1/γ < δ/4 < δ, the second term dominates the first term. The order of the variance
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Fig. 11.1 AEX. Left: daily closing values. Right: log of the daily closing values

is thus n−1+δ(logn)1+q . Of course, the order of the bias is logarithmic, and hence
the bias dominates the variance, and the mean squared error of fnh(x) is of order
(logn)−4.

Remark 11.5 It can then be shown that for the characteristic function φk , one has
the behavior

∣∣φk(s)
∣∣ = √

2e− 1
2 π |s|

(
1 + O

(
1

|s|
))

, |s| → ∞.

This means that k is supersmooth in the terminology of Fan [12], which explains the
slow logarithmic rate at which the bias vanishes. Sharper results on the variance can
be obtained when σ 2 is strongly mixing, see Van Es et al. [11] for further details.
The orders of the bias and of the MSE remain unchanged though.

11.3.2 An Application to the Amsterdam AEX Index

In this section we present an example using real data of the Amsterdam AEX stock
exchange. We have estimated the volatility density from 2600 daily closing values
of the Amsterdam stock exchange index AEX from 12/03/1990 until 14/03/2000.
These data are represented in Fig. 11.1. We have centered the daily log returns, i.e.,
we have subtracted the mean (which equaled 0.000636), see Fig. 11.2. The decon-
volution estimator is given as the left-hand picture in Fig. 11.3. Observe that the
estimator strongly indicates that the underlying density is unimodal. Based on com-
putations of the mean and variance of the estimate, with h = 0.7, we have also fitted
a normal density by hand and compared it to the kernel deconvolution estimator. The
result is given as the right-hand picture in Fig. 11.3. The resemblance is remarkable.

The kernel used to compute the estimates is a kernel from Wand [29], with ρ = 3
and A = 8,

w(x) = 48x(x2 − 15) cosx − 144(2x2 − 5) sinx

πx7 . (11.12)
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Fig. 11.2 AEX. Left: the values of Xt , i.e., the centered daily log returns. Right: log(X2
t )

Fig. 11.3 AEX. Left: The estimate of the density of log(σ 2
t ) with h = 0.7. Right: The normal fit

to the log(σ 2
t ). The dashed line is the normal density, and the solid line the kernel estimate

It has the characteristic function

φw(t) = (
1 − t2)3

, |t | ≤ 1. (11.13)

The bandwidths are chosen by hand. The estimates have been computed by fast
Fourier transforms using the Mathematica 4.2 package.

This is actually the same example as in our paper Van Es et al. [11] on volatil-
ity density estimation for discrete-time models. The estimator (11.7) presented here
is, as a function of the sampled data, exactly the same as the one for the discrete-
time models. The difference lies in the choice of underlying model. In the present
paper the model is a discretely sampled continuous-time process, while in Van Es
et al. [11] it is a discrete-time process. For the latter type of models, the discretiza-
tion step in the beginning of this section is not necessary since these models satisfy
an exact convolution structure.

11.4 Wavelet Deconvolution

As an alternative to kernel methods, in this section we consider estimators based on
wavelets. Starting point is again the simplified model (11.5). Contrary to the previ-
ous section, we are now interested in estimating the accumulated squared volatility



302 B. van Es et al.

over an interval of length Δ. We assume having observations of S at times iΔ to
our disposal, but now with Δ fixed (low-frequency observations). Let, as before,
XΔ

i = Δ−1/2(SiΔ − S(i−1)Δ), and let σ̄ 2
i = Δ−1

∫ iΔ

(i−1)Δ
σ 2

t dt . Denote by Fσ the σ -

algebra generated by the process σ . By the assumed independence of the processes
σ and W , we have, for the characteristic function of XΔ

i given Fσ ,

E
[
exp

(
isXΔ

i

)∣∣Fσ

] = exp

(
−1

2
σ̄ 2

i s2
)

.

Consider also the model X̃Δ
i = σ̄iZi with σ̄i and Zi independent for each i and Zi

a standard Gaussian random variable. Then

E
[
exp

(
isX̃Δ

i

)∣∣Fσi

] = exp

(
−1

2
σ̄ 2

i s2
)

.

It follows that XΔ
i and X̃Δ

i are identically distributed. From this observation we
conclude that the transformed increments log(Δ−1(SiΔ − S(i−1)Δ)2) are then dis-
tributed as Yi = ξi + εi , where

ξi = log σ̄ 2
i , εi = logZ2

i ,

and Zi is an i.i.d. sequence of standard Gaussian random variables, independent
of σ . The sequence ξi is stationary, and we assume that its marginal density g exists,
i.e., g is the density of log(Δ−1

∫ Δ

0 σ 2
u du). The density of εi is again denoted by k.

Of course, estimating g is equivalent to estimating the density of the aggregated
squared volatility

∫ Δ

0 σ 2
u du.

In the present section the main focus is on the quality of the estimator in terms of
the mean integrated squared error, as opposed to establishing results for the (point-
wise) mean squared error as in Sect. 11.3. At the end of this section we compare the
results presented here to those of Sect. 11.3.

First we recall the construction of the wavelet estimator proposed in Pensky and
Vidakovic [23]. For the necessary background on wavelet theory, see, for instance,
Blatter [1], Jawerth and Sweldens [21], and the references therein. For the construc-
tion of deconvolution estimators, we need to use band-limited wavelets. As in Pen-
sky and Vidakovic [23], we use a Meyer-type wavelet (see also Walter [27], Walter
and Zayed [28]). We consider an orthogonal scaling function and wavelet ϕ and ψ ,
respectively, associated with an orthogonal multiresolution analysis of L2(R). We
denote in this section the Fourier transform of a function f by f̃ , i.e.,

f̃ (ω) =
∫

R

e−iωxf (x) dx,

and suppose that for a symmetric probability measure μ with support contained in
[−π/3,π/3], it holds that

ϕ̃(ω) = (
μ(ω − π,ω + π])1/2

, ψ̃(ω) = e−iω/2(μ(|ω|/2 − π, |ω| − π
])1/2

.
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Observe that the assumptions imply that ϕ and ψ are indeed band-limited. For
the supports of their Fourier transforms, we have supp ϕ̃ ⊂ [−4π/3,4π/3] and
supp ψ̃ ⊂ [−8π/3,−2π/3] ∪ [2π/3,8π/3]. By choosing μ smooth enough we en-
sure that ϕ̃ and ψ̃ are at least twice continuously differentiable.

For any integer m, the unknown density g can now be written as

g(x) =
∑
l∈Z

am,lϕm,l(x) +
∑
l∈Z

∞∑
j=m

bj,lψj,l(x), (11.14)

where ϕm,l(x) = 2m/2ϕ(2mx − l), ψj,l(x) = 2j/2ψ(2j x − l), and the coefficients
are given by

am,l =
∫

R

ϕm,l(x)g(x) dx, bj,l =
∫

R

ψj,l(x)g(x) dx.

The idea behind the linear wavelet estimator is simple. We first approximate g by
the orthogonal projection given by the first term on the right-hand side of (11.14).
For m large enough, the second term will be small and can be controlled by using
the approximation properties of the specific family of wavelets that is being used.
The projection of g is estimated by replacing the coefficients am,l by consistent
estimators and truncating the sum. Using the fact that the density p of an observation
Yi is the convolution of g and k, it is easily verified that

am,l =
∫

R

2m/2Um

(
2mx − l

)
p(x)dx = 2m/2

EUm

(
2mYi − l

)
,

where Um is the function with Fourier transform

Ũm(ω) = ϕ̃(ω)

k̃(−2mω)
. (11.15)

We estimate the coefficient am,l by its empirical counterpart

âm,l,n = 1

n

n∑
i=1

2m/2Um

(
2mYi − l

)
.

Under the mixing assumptions that we will impose on the sequence Y , it will be sta-
tionary and ergodic. Hence, by the ergodic theorem, âm,l,n is a consistent estimator
for am,l . The wavelet estimator is now defined by

ĝn(x) =
∑

|l|≤Ln

âmn,l,nϕmn,l(x), (11.16)

where the detail level mn and the truncation point Ln will be chosen appropriately
later.
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The main results in the present section are upper bounds for the mean integrated
squared error of the wavelet estimator ĝn, which is defined as usual by

MISE(ĝn) = E

∫
R

(
ĝn(x) − g(x)

)2
dx.

We will specify how to choose the detail level mn and the truncation point Ln in
(11.16) optimally in different cases, depending on the smoothness of g and k. The
smoothness properties of g are described in terms of g belonging to certain Sobolev
balls and by imposing a weak condition on its decay rate. The Sobolev space Hα is
defined for α > 0 by

Hα =
{
g : ‖g‖α =

(∫
R

∣∣g̃(ω)
∣∣2(

ω2 + 1
)α

dω

)1/2

< ∞
}
. (11.17)

Roughly speaking, g ∈ Hα means that the first α derivatives of g belong to L2(R).
The Sobolev ball of radius A is defined by

Sα(A) = {
g ∈ Hα : ‖g‖α ≤ A

}
.

The additional assumption on the decay rate is reflected by g belonging to

S∗
α(A,A′) = Sα(A) ∩

{
g : sup

x

∣∣xg(x)
∣∣ ≤ A′}.

We now have the following result, see Van Zanten and Zareba [32], for the wavelet
density estimator ĝn of g defined by (11.16).

Theorem 11.6 Suppose that the volatility process σ 2 is strongly mixing with mixing
coefficients satisfying ∑

k≥0

α
p
kΔ < ∞ (11.18)

for some p ∈ (0,1). Then with the choices

2mn = logn

1 + (4π2/3)
, Ln = (logn)r , r ≥ 1 + 2α

the mean square error of the wavelet estimator satisfies

sup
g∈S∗

α(A,A′)
MISE(ĝn) = O

(
(logn)−2α

)

for α,A,A′ > 0. If (11.18) is satisfied for all p ∈ (0,1), the same bound is true if
the choice for Ln is replaced by Ln = n.

Let us point out the relation with the results of Sect. 11.3 and with those in Van Es
et al. [11], see also Sect. 11.6.1. In that paper kernel-type deconvolution estimators



11 Nonparametric Methods for Volatility Density Estimation 305

for discrete-time stochastic volatility models were considered. When applied to the
present model, the results say that under the same mixing condition and assuming
that g has two bounded and continuous derivatives, the (pointwise) mean squared
error of the kernel estimator is of order (logn)−4. The analogue of g having two
bounded derivatives in our setting is that g ∈ S∗

2 (A,A′) for some A,A′ > 0. Indeed,
the theorem yields the same bound (logn)−4 for the MISE in this case. The same
bound is valid for the MSE when estimating the marginal density for continuous-
time models, see Theorem 11.3 and its consequences in Remark 11.4. Theorem 11.6
is more general, because the smoothness level is not fixed at α = 2, but allows for
different smoothness levels of order α �= 2 as well. Moreover, the wavelet estimator
is adaptive in the sense that it does not depend on the unknown smoothness level if
the condition on the mixing coefficients holds for all p ∈ (0,1).

11.5 Penalized Projection Estimators

The results of the preceding sections assume that the true (integrated) volatility den-
sity has a finite degree of regularity, either in Hölder or in Sobolev sense. Under
this assumption, the nonparametric estimators have logarithmic convergence rates,
cf. Remark 11.4 and Theorem 11.6. Although admittedly slow, the minimax results
of Fan [12] show that these rates are in fact optimal in this setting. In the paper Pen-
sky and Vidakovic [23] it was shown however that if in a deconvolution setting the
density of the unobserved variables has the same degree of smoothness as the noise
density, the rates can be significantly improved, cf. also the lower bounds obtained
in Butucea [4] and Butucea and Tsybakov [5]. This observation forms the starting
point of the paper Comte and Genon-Catalot [7], in which a nonparametric volatility
density estimator is developed that achieves better rates than logarithmic if the true
density is supersmooth. In the latter paper it is assumed that there are observations
SΔ,S2Δ, . . . , SnΔ of a process S satisfying the simple equation (11.5) with a strictly
positive process V = σ 2, independent of the Brownian motion W . It is assumed that
we deal with high-frequency observations, Δ → 0, and nΔ → ∞. We impose the
following condition on V .

Condition 11.7 The process V is a time-homogenous, continuous Markov process,
strictly stationary and ergodic. It is either β-mixing with coefficient β(t) satisfying

∫ ∞

0
β(t) dt < ∞

or is ρ-mixing. Moreover, it satisfies the Lipschitz condition

E

(
log

(
1

Δ

∫ Δ

0
Vt dt

)
− logV0

)2

≤ CΔ

for some C > 0.
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In addition to this, a technical assumption is necessary on the density f of logV0

we are interested in and on the density gΔ of log( 1
Δ

∫ Δ

0 Vt dt), which is assumed
to exist. Contrary to the notation of the previous section, we write gΔ instead of g,
since now Δ is not fixed.

Condition 11.8 The invariant density f is bounded and has a second moment, and
gΔ ∈ L2(R).

As a first step in the construction of the final estimator, a preliminary estimator f̂L

is constructed for L ∈ N fixed. Note that Condition 11.8 implies that f ∈ L2(R), and
hence we can consider its orthogonal projection fL on the subspace SL of L2(R),
defined as the space of functions whose Fourier transform is supported on the com-
pact interval [−πL,πL]. An orthonormal basis for the latter space is formed by
the Shannon basis functions ψL,j (x) = √

Lψ(Lx − j), j ∈ Z, with the sinc kernel
ψ(x) = sin(πx)/(πx). For integers Kn → ∞ to be specified below, the space SL

is approximated by the finite-dimensional spaces Sn
L = span{ψL,j : |j | ≤ Kn}. The

function fL is estimated by f̂L = argminh∈Sn
L
γn(h), where the contrast function γn

is defined for h ∈ L2(R) ∩ L1(R) by

γn(h) = ‖h‖2
2 − 2

n

n∑
i=1

uh

(
log

(
XΔ

i

)2)
, uh(x) = 1

2π

∫ ∞

−∞
eixs h̃(−s)

φk(s)
ds.

Here, as before, φk is the characteristic function of log ε2, with ε standard normal,
and h̃ is the Fourier transform of h. It is easily seen that

f̂L =
∑

|j |≤Kn

âL,jψL,j , âL,j = 1

n

n∑
j=1

uψL,j

(
log

(
XΔ

i

)2)
.

Straightforward computations show that, with 〈·, ·〉 the L2(R) inner product,
Euh(log(XΔ

i )2) = 〈h,gΔ〉, and hence Eγn(h) = ‖h − gΔ‖2
2 − ‖gΔ‖2

2. So in fact,

f̂L is an estimator of the element of Sn
L which is closest to gΔ. Since Sn

L approxi-
mates SL for large n and gΔ is close to f for small Δ, the latter element should be
close to fL.

Under Conditions 11.7 and 11.8, a bound for the mean integrated squared er-
ror, or quadratic risk MISE(f̂L) = E‖f̂L − f ‖2

2, can be derived, depending on the
approximation error ‖f − fL‖2, the bandwidth L, and the truncation point Kn,
see Comte and Genon-Catalot [7], Theorem 1. The result implies that if f be-
longs to the Sobolev space Hα as defined in (11.17), then the choices Kn = n and
L = Ln ∼ logn yield a MISE of order (logn)−2α , provided that Δ = Δn = n−δ for
some δ ∈ (0,1). Not surprisingly, this is completely analogous to the result obtained
in Theorem 11.6 for the wavelet-based estimator in the fixed Δ setting. In particular
the procedure is adaptive, in that the estimator does not depend on the unknown
regularity parameter α.
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To obtain faster than logarithmic rates and adaptation in the case that f is super-
smooth, a data-driven choice of the bandwidth L is proposed. Define

L̂ = argmin
L∈{1,...,logn}

(
γn(f̂L) + penn(L)

)
,

where the penalty term is given by

penn(L) = κ
(1 + L)Φk(L)

n

for a calibration constant κ > 0 and

Φk(L) =
∫ πL

−πL

1

|φk(s)|2 ds.

For the quadratic risk of the estimator f̂
L̂

, the following result holds (Comte and
Genon-Catalot [7]).

Theorem 11.9 Under Conditions 11.8 and 11.7, we have

MISE(f̂
L̂
) ≤ C1 inf

L∈{1,...,logn}

(
‖f − fL‖2

2 + (1 + L)Φk(L)

n

)

+ C2
log2 n

Kn

+ C3
logn

nΔ
+ C4Δ log3 n

for constants C1,C2,C3,C4 > 0.

It can be seen that this bound is worse than the corresponding bound for the
estimator f̂L by a factor of order L. This is at worst a logarithmic factor which, as
usual in this kind of setting, has to be paid for achieving adaptation. The examples
in Sect. 6 of Comte and Genon-Catalot [7] show that indeed, the estimator f̂

L̂
can

achieve algebraic convergence rates in case the true density f is supersmooth.

11.6 Estimation for Discrete-Time Models

Although the main focus of the present paper is on estimation procedures for
continuous-time models, in the present section we also highlight some analogous
results for discrete-time models. These deal with both density and regression func-
tion estimation.

11.6.1 Discrete-Time Models

The discrete time analogue of (11.5) is

Xt = σtZt , t = 1,2, . . . . (11.19)
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Here we denote by X the detrended or demeaned log-return process. Stochastic
volatility models are often described in this form. The sequence Z is typically an
i.i.d. noise (e.g., Gaussian), and at each time t the random variables σt and Zt are
independent. See the survey papers by Ghysels et al. [18] or Shephard [24]. Also in
this section we assume that the process σ is strictly stationary and that the marginal
distribution of σ has a density with respect to the Lebesgue measure on (0,∞).
We present some results for a nonparametric estimator of the density of logσ 2

t and
results for a nonparametric estimator of a nonlinear regression function, in case σ 2 is
given by a nonlinear autoregression. The standing assumption in all what follows is
that for each t , the random variables σt and Zt are independent, the noise sequence
is standard Gaussian, and σ is a strictly stationary, positive process satisfying a
certain mixing condition.

In principle one can distinguish two classes of models. The way in which the
bivariate process (σ,Z), in particular its dependence structure, is further modeled
offers different possibilities. In the first class of models one assumes that the process
σ is predictable with respect to the filtration Ft generated by the process Z and
obtains that σt is independent of Zt for each fixed time t . We furthermore have that
(assuming that the unconditional variances are finite) σ 2

t is equal to the conditional
variance of Xt given Ft−1. This class of models has become quite popular in the
econometrics literature. It is well known that this class also contains the (parametric)
family of GARCH-models, introduced by Bollerslev [2].

In the second class of models one assumes that the whole process σ is inde-
pendent of the noise process Z, and one commonly refers to the resulting model
as a stochastic volatility model. In this case, the natural underlying filtration F =
{Ft }t≥0 is generated by the two processes Z and σ in the following way. For each t ,
the σ -algebra Ft is generated by Zs , s ≤ t , and σs , s ≤ t + 1. This choice of the fil-
tration enforces σ to be predictable. As in the first model, the process X becomes a
martingale difference sequence, and we have again (assuming that the unconditional
variances are finite) that σ 2

t is the conditional variance of Xt given Ft−1. An exam-
ple of such a model is given in De Vries [26], where σ is generated as an AR(1)
process with α-stable noise (α ∈ (0,1)).

As in the previous sections, we refrain from parametric modeling and review
some completely nonparametric approaches. We will mainly focus on results for the
second class, as it is the discrete-time analogue of the stochastic volatility models
of the previous sections. At the heart of all what follows is again the convolution
structure that is obtained from (11.19) by squaring and taking logarithms,

logX2
t = logσ 2

t + logZ2
t .

11.6.2 Density Estimation

The main result of this section gives a bias expansion and a variance bound of a
kernel-type density estimator of the density f of logσ 2

t . The estimator is, analo-
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gously to (11.7),

fnh(x) = 1

nh

n∑
j=1

vh

(
x − log(Xj )

2

h

)
, (11.20)

where vh is the kernel function of (11.8).
The next theorem is derived from Van Es et al. [11], where a multivariate den-

sity estimator is considered. It establishes the expansion of the bias and an order
bound on the variance of our estimator under a strong mixing condition. Under
broad conditions, this mixing condition is satisfied if the process σ Markov, since
then convergence of the mixing coefficients to zero takes place at an exponential
rate, see Theorems 4.2 and 4.3 of Bradley [3] for precise statements. A similar be-
havior occurs for ARMA processes with absolutely continuous distributions of the
noise terms (Bradley [3], Example 6.1).

Theorem 11.10 Assume that the process σ is strongly mixing with coefficient αk

satisfying
∞∑

j=1

α
β
j < ∞

for some β ∈ (0,1). Let the kernel function w satisfy Condition 11.2, and let the
density f of logσ 2

t be bounded and twice continuously differentiable with bounded
second-order partial derivatives. Assume furthermore that σ and Z are independent
processes. Then we have, for the estimator of f defined as in (11.20) and h → 0,

Efnh(x) = f (x) + 1

2
h2f ′′(x)

∫
u2 w(u)du + o

(
h2) (11.21)

and

Varfnh(x) = O

(
1

n
h2ρeπ/h

)
. (11.22)

Remark 11.11 Comparing the above results to the ones in Theorem 11.3, we ob-
serve that in the continuous-time case, the variance has an additional O( 1

nh1+qΔ
)

term.

11.6.3 Regression Function Estimation

In this section we assume the basic model (11.19), but in addition we assume that
the process σ satisfies a nonlinear autoregression, and we consider nonparametric
estimation of the regression function as proposed in Franke et al. [13]. In that paper
a discrete-time model was proposed as a discretization of the continuous-time model
given by (11.1). In fact, Franke et al. include a mean parameter μ, but since they as-
sume it to be known, without loss of generality we can still assume (11.19). Assume
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that the volatility process is strictly positive and consider logσ 2
t . It is assumed that

its evolution is governed by

logσ 2
t+1 = m

(
logσ 2

t

) + ηt , (11.23)

where the ηt are i.i.d. Gaussian random variables with zero mean. The regression
function m is assumed to satisfy the stability condition

lim sup
|x|→∞

∣∣∣∣m(x)

x

∣∣∣∣ < 1. (11.24)

Under this condition, the process σ is exponentially ergodic and strongly mixing,
see Doukhan [8], and these properties carry over to the process X as well. Moreover,
the process logσ 2

t admits an invariant density f .
Denoting Yt = logX2

t , we have

Yt = logσ 2
t + logZ2

t .

It is common to assume that the processes Z and η are independent, the second class
of models described in Sect. 11.6.1, but dependence between ηt and Zt for fixed t

can be allowed for (first model class) without changing in what follows, see Franke
et al. [13].

The purpose of the present section is to estimate the function m in (11.23). To that
end, we use the estimator fnh as defined in (11.20). Since this estimator resembles
an ordinary kernel density estimator, the important difference being that the kernel
function vh now depends on the bandwidth h, the idea is to mimic the classical
Nadaraya–Watson regression estimator similarly, in order to obtain an estimator of
m(x). Doing so, one obtains the estimator

mnh(x) =
1
nh

∑n
j=1 vh(

x−Yj

h
)Yj+1

fnh(x)
. (11.25)

It follows that

mnh(x) − m(x) = pnh(x)

fnh(x)
,

where

pnh(x) = 1

nh

n∑
j=1

vh

(
x − Yj

h

)(
Yj+1 − m(x)

)
.

In Franke et al. [13] bias expansions for pnh(x) and fnh are given that fully corre-
spond to those in Theorem 11.10. They are again of order h2, under similar assump-
tions. It is also shown that the variances of pnh and fnh tend to zero. The main result
concerning the asymptotic behavior then follows from combining the asymptotics
for pnh and fnh.
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Theorem 11.12 Assume that m satisfies the stability condition (11.24), that m and
f are twice differentiable, and the first of Condition 11.2 on the kernel w. The
estimator mnh(x) satisfies (logn)2(mnh(x) − m(x)) = Op(1) if h = γ / logn with
γ > π .

Following the proofs in Franke et al. [13], one can conclude that, e.g., the vari-
ance of pnh is of order O(

exp(π/h)

nh4 ), which tends to zero for h = γ / logn with

γ > π . For the variance of fnh, a similar bound holds. Comparing these order
bounds to the ones in Theorem 11.10, we see that the latter ones are sharper. This is
partly due to the fact that Franke et al. [13], do not impose conditions on the bound-
ary behavior of the function φw (the second of Condition 11.2), whereas their other
assumptions are the same as in Theorem 11.10.

11.7 Concluding Remarks

In recent years, many different parametric stochastic volatility models have been
proposed in the literature. To investigate which of these models are best supported
by observed asset price data, nonparametric methods can be useful. In this paper we
reviewed a number of such methods that have recently been proposed. The overview
shows that ideas from deconvolution theory can be instrumental in dealing with this
statistical problem and that both for high- and for low-frequency data, methods are
now available for nonparametric estimation of the (integrated) volatility density at
optimal convergence rates.

On a critical note, the methods available so far all assume that the volatility pro-
cess is independent of the Brownian motion driving the asset price dynamics. This
is a limitation, since in several interesting models nonzero correlations are assumed
between the Brownian motions driving the volatility dynamics and the asset price
dynamics.
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