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estimation in the Jelinski-Moranda software reliability model is studied. ¢ S (i - 1)ti/ Et
The distribution of the stochastic variable that completely determines the
maximum likelihood estimate is obtained. s-Confidence intervals for the
parameter of interest can then be constructed by using the same stochastic gauf Cdf of a standard normal random variable
variable. An example is given using real data. Xi random time until error i causes a failure

PX pdf of the random variable X

Other, standard notation is given in "Information for
1. INTRODUCTION Readers & Authors" at rear of each issue.

Various models are used to evaluate the reliability of Assumptions
complex computer programs. Along with the programs,
the models also vary in complexity. One of the oldest
models, originally proposed by Jelinski & Moranda [1], is a l. ra vesindept
frequently used. It is extremely simple and conclusions in- are s-independent random varliables.
ferred from it have only a limited applicability. Some A2. Xha an e distribution withrte

drawbcksothisodelavebenpoitedotbyFrman A3. The failure rate Xt IS proportional with thedrawbacks of this model have been pointed out by Forman residual number of errors in the program: X, = O(N - ne).
& Singpurwalla [2] and by Littlewood [3]. Therametersinthepregram nown constnts

However, for reasons of simplicity, it remains attrac- A4. The parameters 4 and N are unknown constants
tive and as long as one keeps the limitations in mind, this
model can be a useful tool in obtaining some basic ideas
about the reliability of a program. An alternative approach 2. DESCRIPTION OF THE MODEL
that motivates the attraction of the Jelinski-Moranda
model via the theory of "shock models and wear pro- Following the assumptions of Jelinski & Moranda,
melse via tventy of10. consider the failure process n, (ie, the total number of
cesses" iS given by Langberg & Singpurwalla [10].

Although numerous models have been proposed in the observed failures in the time interval [0, t]) of a program as

literature to study the reliability of a program, very little a self-exciting Poisson process which means that the inten-
attention has been paid to the important question of sity X, of the process depends in general on ns, s E [0, t].

- . , ,, ~~~~~~~~Forthis model, X, = O(N - n,).estimating parameters in the models. thism e Xbe= n - tE 7 o

This paper discusses the estimation of the initial error Supposewe kobserve n for t e [0,Ts . If one wants to
content of a program and gives a method to construct one estimate the unknown parameters N and X using the
sided s-confidence intervals for this parameter. method of maximum likelihood (ML), one has to max-

exampe inolvin rea datais gven,imize the likelihood function which, in this context, has the
A numerical ~~~~~~~~~form[4]:

Notation T T

nt number of observed failures in [0, t] L °x( Xd lg~n) 21
failure rate (per error) X; li {X}

N initial error content of the program 5 s=t {u
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However, one rarely observes the process n, itself, but only then the true ML estimate of N will be [N] or [N] + 1,
the successive interfailure times ti, t2,-. Suppose one depending on which of the two yields the largest value of
wants an estimate of N after observation of the first n in- (2.2). To derive ML estimates for N and 0 we solve (if
terfailure times ti, ..., t,, then one maximizes, instead of AL AL
(2.1), a "stopped version" of the likelihood function, that possible) the equations dz = 0, a = 0. Nis our main

n aq$ aN
is (2.1) evaluated at T = tj, which becomes, after
evaluating~ ~th ineras parameter of interest and itS ML estimate iS the solutionevaluating the integrals: of:

n

L(N, 0; t,1...,tn) = (N)n exp(-fE (N i + I)tj), n.. . . . ........... n n n=O, =E(-ltEt.(N-i+ _______ - 0,= (i -1)ti/22 tj.
(2.2) 1 N-i+ 1 N-1- 1

(3.1)

For better understanding of the model it can be useful to In [6] it is proved that (3.1) has a finite solution for N if
look at the situation in another way. Consider the N ran- d l if r > l/ ( - 1)
dom variables Xi and let Xi be order statistic i from the a o. if.1) (n - 1).
sample X = (Xl, ...,...XN), X = (Xl, ...,..,XN). Then one can ......Eq. (3.1) shows that the solution Ni IS completelysample X = 'Xl..., XN), = XI, XN) Then one can determined by the value of ¢, and the statistical propertiescompute the pdf of (tl, ..........tN) as follows..

compute the pf oftit~asfllowsof N follow from those of P. An immediate problem is

.tI---tNQ1, ., tN) = Pk(tI, t1 + 6, tl.,1 + . + tN) therefore to find the distribution of t. This distribution
has been empirically investigated by Forman & Singpur-

= N! px(tl, t, + t2, ..., tl + .. + tN) walla [2].

N Thoe
.

= N! H [o exp(-~ E 0 herm .j=1 N=E The r is distributed with pdff¢(z; N) w.r.t. Lebesque
measure with support [0, n - 1]:

N

= N! Nexp(-k (N- j +1)tj). (2.3)
i=1 fr~~~~~~~(z;N) = (N) *X- t*Z 32

By integrating over tn+1, ..., tN one obtains the pdf of (t1, f(.-(N-_ Z)n X[o0, II (z), (3.2)

where x0,1l is the (n - 1)-folded convolution of the in-

Ptl tn(t,,= HI p (t,), F = f(N - j + 1) dicator function of [0, 1] with itself. Calculation of the
n ~~j=1j(1 convolution yields:

exp(-(N- j + l)tj) (2.4) (1n I [z] n

Hence the tj's ares-independent L5]. The conclusion is that f_z)n (n j(l=oj)
the tj's are indeed the interfailure times as they appear in
the Jelinski-Moranda model. Thus (2.4) yields again (2.2). (-1)'(z - J) . (3.3)

From a Bayes point of view the parameters N and 0
should be treated as random variables with a certain prior Theorem 3.1 is proved in the appendix.
distribution. In this case the above derivation still holds
given N and X, if one replaces the s-independence of the
Xi's and the ti's by conditional s-independence given Nand CoroTlhary3df2
4. An analysis of the implications of a Bayes viewpoint
concerning the Jelinski-Moranda model can be found in (N)n 1 [z (f -1n

[9-11]. ~~~~~~~~~~~~~~Fj;z;N) (Nzn-i (n-1!J=

3N. ESTIMATION (-1 3n4-

In order to estimate the unknown parameters N andN- (z-)
X, note that the parameter space for (N, ck) is N x R+. Application
However in obtaining ML estimates, N is treated as a con- Now we are able to compute the probability that when
tinuous parameter. Let (N, k>) denote the value of (N, ¢) n interfailure times are observed the ML estimate of N
that maximizes L(-, *; t1, ..., t") as a function from R+ to R; becomes infinite. This probability is F¢(V/2(n - 1); N).
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When n < Nthen F(½12(n - 1); N) = F(½12(n - 1; oo) FJ(z; oo) > 1 - a but very close to 1 - a, then N is very
1/2. This means, that for large systems, which presumably sensitive to changes in the value of a. A minor increase

contain many errors, we anticipate, in the early phase of (decrease) of 1 - a results in a disproportionately large in-
testing, infinite estimates of N in 50Wo of the cases. crease (decrease) in the value of N. Eq. (4.2) can be well

Observe that the family of pdf's {Jf(Z; N)}N has approximated, provided n is not very small, by
(decreasing) monotone likelihood ratio, since:

(z; N + m) (N + m) gauf z- 2(n -
1) > 1-t, (4.3)

f (z; N) (Nl)n N + m - z

which is a decreasing function of z. The following proposi- because is approximately s-normal with mean V2 (n -

tion can then be proved [8].

Proposition 3.3 5. CONTINUOUS-TIME PARAMETER ESTIMATION

If we express the dependence of v on N by writing ;N
instead of ¢, then the sequence of random variables I NNJN T
is stochastically decreasing, ie, the sequence {FJ(z; N)}N is changed if one has full knowledge of the process nt over a
increasing. given time interval [0, T1. Now one has to deal directly

with (2.1). Again an equation can be written from which a

4. s-CONFIDENCE INTERVALS FOR N (I-SIDED) ML estimate of N can be calculated.

Consider hypotheses of the form Ho: N > No. Sup- Paralleling the procedure leading to (3.1) leads to:
pose one tests such a hypothesis at s-significance level a
and uses v as a test statistic. Then Ho is rejected for large nT T
values of ¢, say . c, where c = c(NO, a) is such that i1 nT s (5.1)

SUp PNG > C)=PN( 2 C) =o.
N>.No

In this caseN is not determined by a single statistic but in-

Suppose that v = z is observed and that Ho: N > No is ac- stead by (nfT, T), the distribution of which is hard to deter-
cepted, so z c c. Then one would also accept Ho: N > N' mine. Solving this problem requires an entirely different
with No < N0, because: approach; I hope to treat it in another paper.

SUP PNG .:2 Z) > PNJ(D 2 Z) > PNO(G 2 C) = a
N>N' 6. NUMERICAL EXAMPLE

Here the first inequality follows from proposition 3.3. As a The J-M model has been applied on data collected from an
consequence of this, a 1 - a s-confidence interval for N automization project at the Dutch Aerospace Laboratory
based on v = z is [n, N] where (NLR), where the numerical computation has also been per-

formed. The data are represented as consecutive interfailure
N = sup{N: FJ(z; N) < 1 - a}. (4.1) times in table.

It may well be possible that N is infinite. A necessary and
sufficient condition for N to be finite is

TABLE 1

(n-)(f[ln-1 Execution times between successive failures in seconds

¢(n- 1)! j=o ( j ) 880 3820 24300 14910
3430 14800 17500 14670

(-1Y'(Z J~)n > 1 - a (4.2) 2860 1770 4450 163i0
i1760 24270 4860 38410

If one is interested only in finite s-confidence intervals, and 42047°0 39490 30560
N is not finite for a specific value of 1 - ae, given r = z,2300 40 26840 6210
then one can of course obtain a finite N by lowering the 8570 10170 2270 120
s-confidence level 1 -(a. The graph of the function N- 4620 1120 200 20210
F¢(z; N) has a horizontal asymptote at level F¢(z; oo). If 1060 980 39180 26400
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140

Notation 0

120 x

N ML estimate of N +
N upperbound of a s-confidence interval for N lO
n number of observed failures.

80 o +

~~0+
Work out the cases when n = 10, 14, 20, 30, 32, 34,)

36, 38, 40 failures are detected. (Many of the other cases 60 +
40~~~~~~~~~~~yield infinite s-confidence bounds.) This results in table 2: 8, ° T

208

TABLE 2 x

ML estimates and upperbounds for 1 -a s-confidence intervals for N after ._ ._._._._._._.
detection of n failures. Here "-" means that an infinite or a very large 10 20 30 40
value was found. Fig. 1. ML estimates and s-confidence bounds for the parameter

-- N in the JM model plotted against the number of observed
n SfN N, a = 0.30 N, a = 0.05 failures. N is denoted by x, N for a = 0.30 denoted by o and N
10 123 - - for a = 0.05 is denoted by +.
14 16 18 60
20 111 - -
30 39 46 113 140
32 40 45 84 0

34 38 41 54
36 41 43 55 120
38 47 51 80 +
40 47 50 69 ,o

80 o + +

Figures 1 & 2 represent the above table among other results 0 +
with the number of failures(n) and cumulative execution 60 + x + +
time, respectively, represented on the horizontal axis. 8 0 x

40 x x x 0

20 x 8

APPENDIX
10 20 30 40

Proof of theorem 3.1 Fig. 2. ML estimates and s-confidence bounds for the parameter
First we will show that - N in the JM model plotted against cumulative execution time x

104 sec. at failure instants. N is denoted by x, N for ae = 0.30
in _ _n denoted by o and N for a = 0.05 is denoted by +.

logf~(z;N) = - A.1
aN Nog ) E N- i + I N- z

a k0(t)Z ne- 0 (t) (N-r(t))dt
Let t = (t1, ..., tn) E R+ and let f(t; N, k) denote the joint azTa
pdf of t:f(t; N, 4) = n

(N)n exp(- kT(t)*(N - z(t))), with = d -(t) z 4 T(t)(N - Q(t))e 'T(t)(N-(t))dt (A.3)az
T(t) = E ti, z(t) = E (i - l)tJ/ S tb The ¢ does not Consider now a coordinate transformation t - (, ), t E

depend on forwcanwrtet R+ with Jacobi matrix J. Then (A.3) becomes:
depend on 4, for we can write ¢ = (i - 1)4fti/ Xt,

1 1

where the Oti's are s-independent random variables with a 1< X i ne-° (N J(4 P)i dtid! =
exponential distribution determined by their respective az
means 1/(N - i + 1). The pdf ofris- a ir X -TtON - ~)e-( °N-°)lJ(t, O ldtd~.

a (A.4)
A'z;) = az -.&)s¢(N)ne T(t).(N- at))dt. (A*2) Hence -

Sine ¢,f¢(z; N) = 0 it follows from differentiating iFne 11(t z)Idt
w.r.t. ck under the integral sign - - Xj- ~T(tz)(N - z)e-+4tzXN-z)IjJ(t,z)Itdt. (A.5)
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Now compute

a
aN log f(z;N) =

a n

dz |l(t)sz ¢ (N)n L E N - . + - kT(t)le-T(t)(N-t)) dt

az i
(t).z O"Nn-¢T()N ()

dt
a

n azqt1daz <z kT(t)e- T(t)(N-(t)) dt
__ ___(A.6)

1N - i + a eT(t)(N-t)) dt

az 1t< -d

which becomes, by using the same transformation:

1 - az J ¢-. JtM,zT(t, P)e- 0 T( °(N-lN AlJ(t, t) dtd
N- i + 1 a

at J(t, P)jdtdD

| 1 ¢ T(t, z)e- T(t,z)(N-z) J(t, z) dt (A.7)
N - i + 1 J-e- T(lz)(N-z) J(t,z)Idt

Remarks
Rewrite (A.7) by using (A.5) into: a a

The dN logf = d log f(t; N, ¢(N, t)), where (N, t) is
aN aN

n nn a
__________ . (A.8) the solution for 0 of f(t; N, k) = 0. This is an appeal-
N - i + I N-z (-)

From (A. 1) it follows that f(z; N) = Nn h(z), ing result, although not obvious, becauseD is not sufficient
(N - z) for N (in presence of the nuisance parameter -).

where the function h does not depend on N.
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Book eview .............. Ralph A. Evans, Product Assurance Consultant

IEEE Recommended Practice for Design of Reliable 1. The assumption of constant failure rate should be
Industrial and Commercial Power Systems explicit.
(The Gold Book) 2. The differences between statistical jargon and or-
Power System Technologies Committee of the dinary language should be explained better. For example, ex-
IEEE Industry Applications Society pected and confidence are used as statistical jargon, but
1980, 224 pages, ca. $20 significance is not. Three different words (expected value,
Wiley-Interscience mean, average) are all used to mean the same thing. In a
LCCC 80-83819; ISBN 0-417-09261-4 technical treatise, synonyms can and should be given in a

glossary, but in the text there should be a one-to-one cor-
Table of Contents respondence between concepts and the names for those con-

Section Title pages cepts.
3. FMEA (failure modes and effects analysis) should

either be explained more conventionally or its differences
1. Introduction 2 from the conventional version should be explained.

2. Plannin andequipmentreliability a
d 4. The category of maintenance-induced failures3. Summary of equipment reliability data 16o

4. Evaluating and improving reliability of should be introduced under preventive maintenance.
Preventive maintenance should be used only where it is clearan existing plant 10

5. Electrical preventive maintenance 6 that more good than harm will come from actions done in its

6. Emergency and standby power 6 name.
7. Example of reliability analysis and cost 27 5. The explanations and examples for series and parallel
8. Basic concepts of reliability analysis by systems need more work. Series and parallel in this context

probability methods 10 refer to logic diagrams, not to schematics. Where there is
Appendixes 100 more than one failure mode for a component then the con-
A-B. Report on reliability survey of industrial plants cepts of series and parallel become more complicated.
C. Cost of electrical interruptions to commercial buildings For example, assume: a) a capacitor can fail only short or
D. Reliability of electric utility supplies to industrial plants open, and b) a 2-capacitor bank can likewise fail only short or
E. Reports of switchgear bus reliability survey of industrial open. Two capacitors that are physically in parallel are in
plants and commercial buildings series for shorts (the 2-capacitor bank fails if either one shorts)

and in parallel for opens (the 2-capacitor bank does not fail open
This is a very useful book for those who need: 1) this unless both fail open).

kind of data, and/or 2) the introduction to reliability con- 6. The failure data for each class of component are not
cepts this book provides. The book itself is a pioneering ef- a random sample from a population that has a single, con-
fort and reports the results of some pioneering efforts. stant failure rate. There are several sub-populations, each

Two of the excellent aspects of the book are: with its own failure rate. Thus, the statistical treatment of
1. The emphasis on planning, design, and corrective confidence intervals is not appropriate. The explanations

action. treat accuracy and confidence as synonomous; that is especially
2. The many examples and their illustrative numerics. not true in the current treatment.

Both aspects will help engineers to learn that the reliability 7. The MTBF (mean time between failures) is the
discipline is not a numbers game but is an important aid to reciprocal of the failure rate only when the anticipated lives
traditional engineering tasks. are much greater than the reciprocal failure rate.

The treatment of probability and statistics is above 8. The problem of common-causes of failures is not
average for an engineering book (but is deficient as ex- treated adequately. For example, one violent electrical storm
plained below). Considering that the book is a pioneering can damage several components; those failures are definitely
work, the treatment is very good. Some areas for future im- not a random sample from a sub-population with a constant
provement are: failure rate.***
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