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Abstract—An automated negotiating agent must take into
account the preferences of its user to negotiate effectively. In
practice, these preferences are not always fully known; therefore
the agent needs to support user preference uncertainty. We
present a general framework to tackle the problem of user
preference uncertainty in automated negotiation. We model the
user’s preferences as a utility function that is unknown to the
representative agent. The utility is parametrizable by a finite
dimensional real vector. The agent possesses a prior belief on
this parameter and can query the user for information. We
are interested in determining which queries will most reduce
uncertainty of the belief through what we call their information
potential. We propose an optimization problem with the goal
of finding a sequence of queries maximizing the information
potential. We present an application of this framework to a
special type of linear additive utilities defined on a multi issue
negotiation domain. We establish optimal querying algorithms for
this application, and experimentally assess the quality of their
robust guarantees.

I. INTRODUCTION

In many modern scenarios, automated assistance is essential
for effective negotiations. Consider smart grid technologies
facilitating rapid peer-to-peer energy exchanges, a pace too
swift for human involvement [1]. Negotiating agents strive to
secure optimal outcomes for their users, considering factors
like offering strategies, deal acceptance, and opponent mod-
eling [2], [3]. While considerable progress has been made,
challenges persist in accurately representing human negotiators
[4]. A critical challenge involves preference elicitation, where
agents must gather user preferences to achieve favorable deals
while minimizing user inconvenience. This can occur through
two methods: online and offline elicitation.

Online methods, such as [5]–[9], query users to maximize
expected utility during negotiations. These queries enhance
negotiation outcomes by providing valuable information.

Offline methods can be passive or active. Passive approaches
estimate utility using pre-negotiation information, as seen
in [10] and top agents like KakeSoba and SAGA in [11].
Active offline elicitation involves querying users for preference
information before negotiations, often using techniques like
Conditional Preference nets (CP-nets) [12], [13].

Yet, a formal mathematical framework for optimal use of
offline querying in negotiation remains absent. This paper aims
to fill that gap by introducing a framework focusing on pre-
negotiation uncertainty reduction. We assume user utility fol-
lows a parameterized model and agent queries reduce param-
eter uncertainty. We define the query’s information potential,
measuring worst-case uncertainty reduction, and formulate a

sequential decision problem to maximize it. We apply this
framework to linearly additive multi-issue negotiation domains
in section III. We present OQS-n, an algorithm for optimal
query sequences in simple multi-issue domains. Subsection
III-B extends this to practical negotiation settings, offering
optimal query sequences up to length n − 1, where n is the
issue count. These sequences yield robust uncertainty reduc-
tion guarantees. In section IV, we experimentally compare this
guarantee’s quality against a stochastic exploratory querying
strategy.

II. THE INFORMATION FRAMEWORK

Given a negotiation domain Ω, we define F to be the set of
all functions from Ω to [0, 1]. Namely, F := {f : Ω→ [0, 1]}.
We make the assumption that a known subspace U ⊆ F
contains an unknown true utility of the user u∗. We call U the
utility space. We add the assumption that U is parametrizable,
namely that each utility u can be uniquely described by a finite
vector of d parameters θ ∈ Θ ⊆ Rd, with Θ a compact set.
Let θ∗ be the parameter corresponding to u∗. Furthermore, we
assume the existence of a query space Q that corresponds to
all possible queries the agent can make to the user. Each query
q ∈ Q must have a finite amount of possible answers that are
captured by a finite set A. We assume that each query can
be appropriately and truthfully answered by the user and we
capture this idea through an answer function a : Θ×Q → A.
In our case, when querying the user with a query q, we
would observe a(θ∗, q) which we abbreviate by a∗(q). We
also consider a cost function c : Q → [0, 1] representing the
user bother associated with asking queries. Before the user
is queried by the agent, we quantify the uncertainty on the
user model through a probability distribution Π on Θ. We call
Π the prior belief. Since we assumed truthfulness of answers,
querying the user with q ∈ Q and receiving answer a∗(q) ∈ A
informs us that θ∗ ∈ {θ ∈ Θ : a(θ, q) = a∗(q)}. Querying has
the effect of narrowing down the belief by discarding the set
{θ ∈ Θ : a(θ, q) ̸= a∗(q)}. The querying cycle presented
in the diagram of Figure 1 summarizes the setting of our
framework.

Definition 1 (Posterior set). Given a query q ∈ Q and its
answer a∗(q) ∈ A, we define the posterior set Θ(q,a∗(q)) by:

Θ(q,a∗(q)) := {θ ∈ Θ|a(θ, q) = a∗(q)}.

Furthermore, given a finite subset of queries Q ⊆ Q and their
corresponding answers, we let

a∗(Q) := {(q, a∗(q))|q ∈ Q}.
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Fig. 1. The querying cycle in our framework.

In this way, we can extend the definition of posterior set for
finitely many multiple queries to be:

Θa∗(Q) : = {θ ∈ Θ|∀q ∈ Q, a(θ, q) = a∗(q)}

=
⋂
q∈Q

Θ(q,a∗(q)).

The objective when querying the user is to gain the most
information possible on θ∗, or equivalently to reduce the
uncertainty of our initial belief on θ∗ captured by Π. This
means that we would like to query q ∈ Q that will significantly
reduce the possibilities considered for θ∗. Namely, we want q
to lead to the “smallest” possible posterior set, i.e. the smallest
value of Π(Θ(q,a∗(q)). Indeed, the larger Π(Θ(q,a∗(q))), the
less information we gain on θ∗ by asking q. The worst case
being Π(Θ(q,a∗(q))) = 1, since this happens when for example
Θ(q,a∗(q)) = Θ, which essentially means that asking q added
no information. We quantify this idea that a query contains
information through what we call the information potential.

Definition 2 (Information Potential). The initial information
potential of a query q ∈ Q is

I(q) := min
a∈A
− log Π(Θ(q,a)). (1)

More generally, given a subset of answered queries a∗(Q), we
define the information potential of q as

I(a∗(Q), q) := min
a∈A
− log

Π(Θa∗(Q)∪{(q,a)})

Π(Θa∗(Q))
. (2)

Note that I(q) = I(∅, q).

Lemma 1. ∀q ∈ Q,∀Q ⊆ Q :

0 ≤ I(a∗(Q), q) ≤ log |A|.

Proof. By definition of posterior sets, we have that ∀a ∈ A,
Θa∗(Q)∪{(q,a)} ⊆ Θa∗(Q). It follows that:

log
Π(Θa∗(Q)∪{(q,a)})

Π(Θa∗(Q))
≤ log

Π(Θa∗(Q))

Π(Θa∗(Q))
= log 1 = 0.

Hence I(a∗(Q), q) ≥ 0. For the upper bound observe that
since a∗(q) ∈ A, q can be answered in at most |A| different
ways. The posterior sets corresponding to those answers form

a partition of Θa∗(Q). Namely, Θa∗(Q) is equal to the disjoint
union over a ∈ A of the sets Θa∗(Q)∪{(q,a)}. Consequently,∑

a∈A
Π(Θa∗(Q)∪{(q,a)}) = Π(Θa∗(Q)).

This implies that there exists at least one answer a0 whose
posterior set must satisfy the inequality:

Π(Θa∗(Q)∪{(q,a0)}) ≥
Π(Θa∗(Q))

|A|
.

We conclude that:

I(a∗(Q), q) ≤ − log
Π(Θa∗(Q)∪{(q,a0})

Π(Θa∗(Q))
≤ log |A|.

Corollary 1. If the logarithm base in Definition 2 is equal
to |A| then I(q) ∈ [0, 1]. Similarly for Q ⊆ Q, it is true
that I(a∗(Q), q) ∈ [0, 1]. We thus can assume without loss of
generality that the information potential is in [0, 1].

A. The Optimization Problem

At this point, it helps to picture ourselves in the agent’s
shoes. Initially, the queries appear to us as unactivated ora-
cles that can provide us with information which will reduce
uncertainty of our belief on θ∗. We want to be as frugal as
possible in activating those oracles. It therefore makes sense
that we start by activating an oracle whom we know will
not disappoint. Ideally, we activate q1, a maximizer of the
information potential:

q1 ∈ argmax
q∈Q

I(q).

Once activated, q1 becomes obsolete. The next rational thing
to do is to repeat the same process with the other queries and
to stop when it becomes too costly to activate another query, or
when none of the remaining queries have positive information
potential. Within our framework, optimal querying can be re-
formulated as the following problem: Can we find a sequence
of queries which maximizes the information potential? In this
work, we will only consider constant cost functions c. Noting
that the cost’s value will only affect the length T of the query
sequence, we will discard it and will assume that the maximal
number of queries T to be asked is fixed. We consider the
following sequential optimization problem:

Problem 1. Given T ∈ N find queries q1, . . . , qT such that
(s.t):

q1 ∈ argmax
q∈Q

I(q) and I(q1) > 0,

∀t ≥ 2, qt ∈ argmax
q∈Q

I(a∗({q1, . . . , qt−1}), q) and

I(a∗({q1, . . . , qt−1}), qt) > 0.
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III. OPTIMAL QUERYING IN MULTI-ISSUE DOMAINS

Let us now illustrate our framework with a practical appli-
cation to linear additive utility functions, which are a common
type of utility function considered in the automated negotiation
literature (e.g. in [2], [11], [10]). To define such functions, we
first require a multi issue domain Ω; namely, Ω = I1×. . .×In
for some n ∈ N. Each element Ik of this decomposition
is called an issue, which represent qualitative or quantitative
elements considered in the negotiation, such as price, color,
and quantity.

Definition 3 (Linear Additive Utility Function). Consider the
notation [n] := {1, · · · , n}. A utility u on Ω is said to be
linearly additive if ∀k ∈ [n],∃ θk ∈ [0, 1] and functions uk :
Ik → [0, 1] s.t

∑n
k=1 θk = 1 and s.t ∀ ω = (ω1, . . . , ωn) ∈ Ω :

u(ω) =
n∑

k=1

θk · uk(ωk).

We call the θk’s the issue weights, and for each value ωk ∈ Ik,
we will call uk(ωk) the value weight of ωk.

A. Simple Multi-Issue Domains

We apply our framework to a simple multi-issue domain
and utility function that satisfy the following assumptions:

1) The issues are compact intervals: Ii = [Li, Hi] with
Li, Hi ∈ R for all k ∈ [n].

2) The issue’s utility functions u∗
1, . . . , u

∗
n are strictly

monotone with minimal value 0 and maximal value 1.
3) u∗

1, . . . , u
∗
n are known to the agent.

The first and third assumptions are made to relate to situations
where the utilities of issues follow a simple preferential
scale. The second assumption shifts our focus to eliciting the
weights. Note that the weights are an abstract representation
for the preferences of the human user. Directly querying for
their values is counterintuitive for humans, especially in large
domains, as it is complex to elicit weights on many issues. A
remedy to this challenge is to consider simpler queries such as
outcome comparisons which are easier to preform for humans.
Another approach popular in the mechanism design literature
to reduce the cumbersomeness of querying is to summarize
the outcomes (referred to as bids) using a bidding language,
so as to simplify the preferences’ representation (see [14]).
We will apply our framework using the first approach. The
framework components are the following:

• U := {uθ(ω) =
∑n

i=1 θi · u∗
i (ω) | θi ≥ 0,

∑n
i=1 θi = 1}

is the utility space. The true issue weights vector θ∗ lives
in the paramterization of U that is:

Θ :=

{
θ ∈ Rn : ∀i ∈ [n], θi ≥ 0,

n∑
i=1

θi = 1

}
.

We recognize that this is the standard n−1 simplex ∆n−1.
• The query space consists of outcome comparison of

questions of the type: “Do you prefer ω over ω′?”. We
use the notation: (ω ≤ ω′)?. Let then the query space
be Q = {(ω ≤ ω′)? : ω, ω′ ∈ Ω}. It follows that the

possible answers to a query are A = {1, 0}, s.t the
answer function is:

a(θ, (ω ≤ ω′)?) =

{
1 if uθ(ω) ≤ uθ(ω

′),

0 if uθ(ω) > uθ(ω
′).

• The prior belief Π on Θ is uniform.
Let us now observe the effect of a query on Θ = ∆n−1. Let

q be the query comparing two arbitrary outcomes x, y ∈ Ω,
i.e. q = ((x1, . . . , xn) ≤ (y1, . . . , yn))? Suppose q is answered
yes (a∗(q) = 1). Then we obtain:

u∗(x) ≤ u∗(y)⇐⇒
n∑

i=1

θ∗i u
∗(xi) ≤

n∑
i=1

θ∗i u
∗(yi)

⇐⇒
n∑

i=1

θ∗i (u
∗(xi)− u∗(yi)) ≤ 0

⇐⇒
n−1∑
i=1

θ∗i (di − dn) + dn ≤ 0,

∀i ∈ [n], di := u∗
i (xi)− u∗(yi).

(3)

The last inequality above describes a half-space in Rn−1.
If q was answered no, then we would have obtained the
complement of this half-space. We therefore have that a query
corresponds exactly to a hyperplane in Rn−1. Furthermore,
as per the domain assumptions, we have that the u∗

i ’s are
monotone with image [0, 1], meaning that they are bijective.
This gives us that for every possible tuple (a1, . . . , an) in
[−1, 1]n, there exists a query q corresponding to the hyper-
plane a1θ1+. . . an−1θn−1+an = 0. This is enough to describe
all hyperplanes, and so the queries are in surjection with the
hyperplanes. Now, given a set of answered queries a∗(Q), the
posterior set Θa∗(Q) ⊆ ∆n−1 is identified with its projection
on Rn−1, T (Θa∗(Q)). Because queries are identified with
hyperplanes, we have that T (Θa∗(Q)) is a closed intersection
of half-spaces, and hence is a convex polytope in n − 1
dimensions. Since every query divides every posterior set in
at most two parts, it follows from our previous discussion on
Π, that a query with maximal information potential (equal to
1 from Corollary 1) is a query that divides T (Θa∗(Q)) in two
parts of equal volume. Since there always exists a hyperplane
that can divide a convex polytope in two parts of equal volume,
we have that if Θa∗(Q) ̸= ∅, then there exists a query q
satisfying I(a∗(Q), q) = 1.

The idea to obtain optimal queries for a domain of n
issues is thus to successively bisect ∆n−1, preferably along its
longest edge. Such procedures exist in the Global Optimization
literature and have been studied in the context of Branch &
Bound algorithms where partitioning the simplex serves to
refine the search space for optima ( [15], [16]). Based on this
idea, we present the OQS-n algorithm (Algorithm 1) to find an
optimal query sequence for any number of issues n. In view
of the discussion in the previous paragraph, OQS-n produces
an optimal sequence of queries for Problem 1.

B. A General Optimal Algorithm

The assumptions established in section III-A are usually too
strong to be satisfied. For instance, the value weights functions
u∗
1, . . . , u

∗
n might not satisfy the monotonicity assumptions or
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Algorithm 1 OQS-n
Input: Ω, u∗

1, . . . , u
∗
n, T

P ← V (∆n−1) // Store the n vertices of ∆n−1

1: for t ∈ {1, . . . , T} do
2: (p, q)← argmax(pi,pj)∈P 2 d(pi, pj) // Longest edge

3: m← 1

2
(p+ q)

4: ℓ← HP(P\{p, q},m) // ℓ is the hyperplane bisecting P

5: q ← Query(ℓ) // Find a query corresponding to ℓ

6: a← Ask(q)
7: P ← Update(q, a)
8: end for

Fig. 2. Decision tree for optimal query sequence in a domain with 5 issues.

might be unknown. For this reason, we consider a restricted
version of OQS-n which will require less assumptions. The
negotiation domain is Ω = I1×. . .×In and the unknown linear
additive user utility is u∗(ω) =

∑n
i=1 θ

∗
i · u∗

i (ωi). The issues
I1, . . . , In can be any sets, they do not have to be intervals. We
only have two assumptions. The first one is that only the best
and worst outcomes w.r.t u∗ are known to the agent. Namely,
the agent possesses knowledge of ωmax and ωmin defined as:

ωmax = argmax
ω∈Ω

u∗(ω),

ωmin = argmin
ω∈Ω

u∗(ω).
(4)

The second assumption is that these outcomes have extreme
utilities:

u∗(ωmax) = 1,

u∗(ωmin) = 0.
(5)

These assumptions are standard in practice as it is easy to
provide the best and worst outcomes for the user to its agent
in almost all negotiation scenarios. Interestingly, we will see
that they allow us to make a good enough use of OQS-n for
reducing uncertainty on the issue weights θ∗1 , . . . , θ

∗
n. For a

given set S ⊆ [n], we define the negotiation outcome ωS

coordinate wise by:

ωS
i =

{
ωmax
i if i ∈ S,

ωmin
i otherwise.

Letting now T ⊆ [n] s.t S ∩ T = ∅, we obtain that the
query q = (ωS ≥ ωT )?, if answered yes, corresponds to the
following restriction on u∗:

n∑
i=1

θ∗i · u∗
i (ω

S
i ) ≥

n∑
i=1

θ∗i · u∗
i (ω

T
i )

⇐⇒
∑
i∈S

θ∗i ≥
∑
i∈T

θ∗i .

Note that every query comparing two outcomes ωS and ωT

corresponds to a hyperplane through the origin with normal
vector whose coefficients are in {0, 1,−1}n. For a subset S,
define now:

θS :=
∑
i∈S

θi.

We have that (ωS ≥ ωT ?) corresponds to the general question
(θS ≥ θT ?). Interestingly, for n = 5, the optimal query
sequences of length 4 generated by OQS-5 are entirely made
up of these types of questions (Figure 2). This is a consequence
of the following theorem.

Theorem 2. Consider the following query space subset of Q:

Qn,1 := {(ωS ≥ ωT ?) : S, T ⊆ [n], S ∩ T = ∅}.

OQS-n always selects a maximally optimal query sequence of
length n− 1 in Qn,1 for Problem 1.

The proof follows by induction on the first n − 1 queries.
It relies on the fact that the hyperplanes along which we can
successively bisect ∆n−1 correspond to queries in Qn,1. Once
answered, a query leads to a posterior set which is a convex
polytope sharing at least two vertices with ∆n−1. Through
carefully considering all possible cases for the vertices of this
polytope, it can be shown that the hyperplane bisecting along
the edge formed by those two vertices always corresponds
to a query in Qn,1. It is furthermore possible to explicitly
derive those queries. The following corollary captures this fact.
It allows us to derive an easy decision rule to describe the
dynamic interaction of OQS-n with the user.

Corollary 2. The following decision rule can recreate the
optimal query sequence generated by OQS-n up to length
n− 1 :

q1 = (ω{1} ≥ ω{2}?),

∀2 ≤ k < n− 1, if qk−1 = (ωS ≥ ωT ?),

then qk =

{
(ωS∪{k+1} ≥ ωT ?) if a∗(qk−1) = 0,

(ωS ≥ ωT∪{k+1}?) if a∗(qk−1) = 1.

(6)

IV. EXPERIMENTS

Thanks to Corollary 2, we have determined a simple optimal
sequential querying mechanism for up to n− 1 queries. Since
each successive asked query perfectly divides the previous
posterior set in two parts of equal mass, we obtain a guarantee
on the reduction of uncertainty on the issue weights. Namely,
for k ≤ n − 1, the sequence of queries produced by OQS-n:
q◦1 , . . . , q

◦
k satisfies the following for any θ∗:

Π(Θa∗({q◦1 ,...,q◦k})) = 2−k. (7)
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It is clear that no other querying mechanism can provide as
good of a guarantee because there will always exist a θ ∈ Θ
for which the queries will lead to a posterior set with mass
greater than or equal to 2−k. Nevertheless, we would like to
assess the relevance of this guarantee, specifically by asking
the following question: How probable is it that a smart random
querying strategy yields a posterior set with Π-measure smaller
than the guarantee of OQS-n? We will answer by constructing
a smart random strategy and then evaluate the frequency at
which it can beat the guarantee. To this end, we define for
θ ∈ Θ and a query sequence q1, . . . , qk, the following quantity:

Tn(θ, q1, . . . , qk) := 1{Π(Θaθ({q1,...,qk}) ≥ 2−k}.

The indicator Tn(θ, q1, . . . , qk) is equal to 0 only if the
posterior set obtained when asking q1, . . . , qk has smaller mass
than 2−k under θ being the true parameter. This essentially
means that Tn(θ, q1, . . . , qk) = 0 if asking q1, . . . , qk was
better than asking the optimal q◦1 , . . . , q

◦
k in view of reducing

uncertainty. We assume that any θ ∈ Θ is equally likely
of being the true parameter, that is that our belief on θ∗ is
represented by the random variable ϑ where ϑ ∼ Π. Taking the
expectation over ϑ allows us to define the following quantity:

Tn(q1, . . . , qk) := E[Tn(ϑ, q1, . . . , qk)].

The quantity Tn(q1, . . . , qk) represents the frequency at which
the strategy of asking q1, . . . , qk is beaten by the strategy of
asking q◦1 , . . . , q

◦
k. Now, in the general situation of an agent

that has little knowledge on the utility of its user like we
considered in subsection III-B, the only queries that it should
consider asking are the ones in Qn,1 as defined in Theorem
2. The size of Qn,1 grows exponentially with n and so it very
quickly becomes a large set of queries in which it can be
cumbersome to make a decision on the next query to ask. A
legitimate strategy could then be to randomly select queries
to ask to the user. Naturally, to exploit the information of the
received answers, we want to avoid asking redundant queries.
This corresponds to queries with 0 information potential. For
a given k ≤ n− 1, the smart random strategy is summarized
by the distribution Dk on queries that is hierarchically defined
as such:

q1 ∼ U(Qn,1),

and ∀ 2 ≤ i ≤ k,

qi|qi−1, . . . , q1 ∼ U (Qn,1\Ai)

with Ai := {q : I(a∗({q1, . . . , qi−1}), q) = 0},

where for a set A, U(A) is the uniform distribution over A.
We can then define the following quantity of interest:

µn,k := E(q1,...,qk)∼Dk
[Tn(q1, . . . , qk)].

The expected value µn,k represents the frequency at which the
random strategy described by Dk will yield a posterior set of
greater mass than the 2−k guarantee. The larger µn,k is, the
harder it is to beat the guarantee provided by OQS-n. The
most simple example is the case µ2,1. There is no choice to
be made here as Q2,1 contains only two queries equivalent to
the same question, so µ2,1 = 1. For n = 3, the situation is

Fig. 3. The unit simplex ∆2 and the queries of Q3,1 represented by bold
and red lines.

k µ̂3,k µ̂4,k µ̂5,k µ̂6,k µ̂7,k µ̂8,k

1 µ̂3,1 = 0.88 ±0.020 µ̂4,1 = 0.86 ±0.022 0.85 ±0.022 0.84 ±0.023 0.84 ±0.023 0.84 ±0.023

2 µ̂3,2 = 0.77 ±0.026 µ̂4,2 = 0.75 ±0.027 0.74 ±0.028 0.76 ±0.026 0.77 ±0.026 0.78 ±0.026

3 µ̂4,3 = 0.76 ±0.026 0.77 ±0.026 0.79 ±0.025 0.80 ±0.025 0.80 ±0.025

4 0.80 ±0.026 0.82 ±0.024 0.82 ±0.024 0.83 ±0.023

5 0.83 ±0.023 0.84 ±0.023 0.85 ±0.022

6 0.86 ±0.022 0.87 ±0.021

7 0.90 ±0.019

TABLE I
ESTIMATES OF µn,k FOR DIFFERENT VALUES OF n AND k WITH 95%

CONFIDENCE INTERVALS. EACH ESTIMATE WAS THE AVERAGE OVER 1000
I.I.D SAMPLES.

already more interesting. The non-trivial queries in Q3,1 are
all equivalent to one of the following six questions:

θ1 ≥ θ2?, θ2 ≥ θ3?, θ1 ≥ θ3?

θ1 ≥ θ2 + θ3?, θ2 ≥ θ1 + θ3?, θ3 ≥ θ1 + θ2?
(8)

We can visualize this scenario in Figure 3. The black bold
lines represent queries corresponding to questions in the first
line of equation (8) while the red ones correspond to the ones
in the second line. To compute µ3,1 we proceed as follows:
Fix θ ∈ Θ, that is take any point inside the triangle of Figure
3. We distinguish two cases:

• θ is in the middle triangle delimited by the red lines. In
this case, asking any red query will lead to a posterior
set of mass 3/4, while any black query will lead to a
posterior set of mass 1/2. We therefore have that none
of the 6 queries will beat the 1/2 guarantee given by
OQS-n.

• θ is in one of the 3 triangles formed by a red line and
the half of two sides of ∆2. In this case, the red query
corresponding to this red line will lead to a posterior set
of mass 1/4 while the 2 other red queries will yield a
posterior set of mass 3/4. The black queries will lead to
a posterior set of mass 1/2. Therefore, only 1 of the 6
queries beats the 1/2 guarantee.

The middle triangle has mass 1/4, and so taking expectations
over Θ gives us that:

µ3,1 =
1

4
· 6
6
+

3

4
· 5
6
=

7

8
.

In Table I, we present estimates µ̂n,k of µn,k for n ranging
from 3 to 8 and k from 1 to n − 1. We observe that all of
the estimates for µn,k’s are quite high (above 0.7), telling us
that a random strategy only rarely beats the 2−k guarantee on
the reduction of uncertainty given by OQS-n. We see that for
a fixed k, the estimates µ̂n,k are roughly equal for different
values of n, whereas for a fixed n, µ̂n,k increases with k for
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k ≥ 2. This seems to indicate that it gets increasingly more
challenging to do better than OQS-n at reducing uncertainty
as we consider longer query sequences. This may be due to
the fact that in the large pool of possible query sequences,
very few actually have a chance of capturing a given fixed θ
more accurately than OQS-n. For instance, the red triangle of
Figure 3 was a “dead zone” because no queries were able to
give a smaller posterior set if θ was inside it. Such dead zones
contribute to making µn,k larger and so it may be that they
are more numerous as we consider longer query sequences.
These estimates comfort us in the idea that OQS-n is not only
a robust method of querying, but also that it rarely pays off
to adopt another strategy to reduce uncertainty.

V. CONCLUSION AND DISCUSSION

Our main contribution is to provide a general framework
to deal with the problem of user uncertainty in automated
negotiation. We consider a situation where the true utility
is assumed to come from a parametric family and where
the agent is allowed to query the user for information about
this true utility. By introducing the notion of information
potential of a query, we derive an optimal sequential problem
in Problem 1. An optimal querying mechanism is then one that
maximizes the information potential of queries. This gives us
an objective way to quantify what it means to optimally reduce
uncertainty in an offline active elicitation setting. We apply the
framework to a specific form of utilities called linear additive
utilities. Based on successive bisections of the standard unit
simplex, we derive OQS-n, an optimal querying algorithm
which provides a maximal guarantee on the reduction of un-
certainty. OQS-n is optimal in our framework provided that the
prior belief Π on the true parameter is uniformly distributed on
the unit simplex. We relax the strong assumptions that OQS-
n relies on to be able to produce an optimal query sequence
of arbitrarily length and consider assumptions applicable to
most negotiations on multi-issue domains. Namely, we show
that under the sole knowledge of the best and worst outcomes,
OQS-n can generate maximally optimal query sequences up
to length n− 1. We then demonstrate experimentally that the
guarantee on the reduction of uncertainty provided by OQS-n
can hardly be beaten by using a random exploratory querying
strategy.

Our contribution is to provide a formal manner of using
offline active elicitation to tackle the problem of user un-
certainty in automated negotiation. Nevertheless, the relative
importance of reducing user uncertainty still needs to be put to
the test with respect to the performance of the agent. A future
direction to evaluate this could be to conduct a meta analysis
of negotiating agents by treating the elicitation mechanism of
an agent as a component just like the acceptance strategy or
the opponent model, and to assess how modifying those com-
ponents affects the performance of the agent. Such work has
been done previously but without considering elicitation as a
component of the agent [17]. We have nonetheless established
a framework that can be used in future works to make objective
formal statements about reduction of uncertainty in automated
negotiations under user uncertainty.
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