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In this paper, we study limit behavior for a Markov-modulated binomial counting pro-
cess, also called a binomial counting process under regime switching. Such a process
naturally appears in the context of credit risk when multiple obligors are present. Markov-
modulation takes place when the failure/default rate of each individual obligor depends
on an underlying Markov chain. The limit behavior under consideration occurs when the
number of obligors increases unboundedly, and/or by accelerating the modulating Markov
process, called rapid switching. We establish diffusion approximations, obtained by applica-
tion of (semi)martingale central limit theorems. Depending on the specific circumstances,
different approximations are found.
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1. INTRODUCTION

In this paper, we study scaling limits of a Markov-modulated (MM) counting process. Over
the last decades Markov-modulation (as it is often referred to in the operations research
literature) or Regime switching (common terminology in e.g. mathematical finance) has
become increasingly popular. Regime switching basically explains itself with its name. The
parameters of the stochastic process change with time and the behavior of the process
changes. The way this is usually modeled is to make the parameters of the process a function
of a background process (or modulating process), and commonly the background process is
assumed to be a finite state Markov chain, say with values in a finite set of d elements. This
explains the name Markov-modulation. The popularity of MM processes is due to the fact
that they provide a more flexible model of reality than their non-modulated versions. It is
natural to assume that a real-life phenomenon, which is modeled by a stochastic process,
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reacts to some environment which evolves autonomously. This is far more likely than the
basic case in which the parameters are constant over time.

The process we consider has various applications. In (software) reliability modeling early
variants are Jelinski and Moranda [33], Koch and Spreij [37], Littlewood [42]. The value of
modeling (software) failures within randomly changing environments, including Markov-
modulation, has been acknowledged for some time now, see for example, Özekici and Soyer
[46,47], Ravishanker et al. [48]. In particular, MM variants of Jelinski and Moranda [33] have
been studied, that is, in a Bayersian set-up in Landon et al. [38], with an estimation focus in
Ando et al. [3], Hellmich [27] and with an added failure rate component in Subrahmaniam
et al. [52]. A similar model to Jelinski and Moranda [33] has been used in epidemiology
(see Andersson and Britton [2]) and a multivariate version of it in sampling design (see
Berchenko et al. [9]), where the latter can also be used to model job switching behavior due
to recruiters.

An early application of Markov-modulation in economic modeling is Hamilton [26].
Since then Markov-modulation has been extensively used in various branches of mathemat-
ical finance. For example, in optimal investment theory for pension funds (Chen and Delong
[13]), interest rate modeling (Ang and Bekaert [4], Elliott and Mamon [19], Elliott and Siu
[20]) and affine processes (van Beek et al. [53]). Other financial applications concern option
and bond valuation (Buffington and Elliott [12], Elliott et al. [22], Jiang and Pistorius [35]),
optimal dividend policies (Jiang [34], Jiang and Pistorius [36]), optimal portfolio and asset
allocation (Elliott and Hinz [18], Elliott and Van der Hoek [21], Zhou and Yin [56]) and also
most notably in the modeling of credit risk and credit derivatives (Banerjee [7], Banerjee
et al. [8], Choi and Marcozzi [14], Dunbar and Edwards [16], Giampieri et al. [23], Hainaut
and Colwell [25], Li and Ma [39], Liechty [40], Yin [55]). Markov-modulation has been used
in insurance and risk theory as well (Asmussen and Albrecher [6]).

Outside mathematical finance, a rich area of applications of regime switching is in
operations research, where there is a sizeable body of work on MM queues, see for example,
Asmussen [5] and Neuts [44]. Contributions in this field with emphasis on scaling limits
under rapid switching (leading to functional limit theorems which are also the subject of
the present paper), are for example, Anderson et al. [1] and Blom et al. [10]. Similar scaling
limits have been obtained in Huang et al. [28,29] and for example, large deviations under
scaling have been treated in Huang et al. [30].

Following the considerable interest in MM financial models we consider scaling limits,
also referred to as diffusion approximations, of a MM model that has a natural interpretation
in Credit Risk, (see Mandjes and Spreij [43]). In the basic setting there are n obligors which
have independently exponential distributed default times τi with intensity parameter λ > 0.
In the MM case this parameter is MM, leading to an intensity process λt = f(Zt), say for
a nonnegative function f , where Z is the Markovian background process. The process N
counts the number of obligors that have defaulted. At time t, the random variable Nt

is binomially distributed with parameters n and p = 1 − E exp(− ∫ t

0
f(Zs) ds). Throughout

the paper, we will often use the credit risk context for explanation and illustration of certain
features of the model, although as was explained, applications are not limited to this branch
of mathematical finance.

In the present paper, we study diffusion approximations (functional central limit the-
orems, Gaussian limits) for the process N , if we scale up the transition matrix of the
underlying Markov chain by a factor α and let n, α → ∞. We find in principle different func-
tional limits of the scaled and centered process, depending on the order in which parameters
diverge, for example, first α → ∞, then n → ∞, or the other way around, or if both α and
n jointly tend to infinity, possibly with different rates. In addition, we will also study limit
behavior for the case where the intensity vanishes at a certain rate as n → ∞.
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The remainder of the paper is organized as follows. In Section 2, we collect some useful
results for the background Markov chain. In Section 3, we first construct the truly binomial
process and prove in Section 4 the first result on diffusion approximation. Section 5, the
body of the paper, is devoted to Markov modulated processes and contains the main results;
we prove several limit theorems for this process in which the influence of different rates for
α → ∞ and n → ∞ is clearly visible. Some numerical examples illustrating the main results
are presented in Section 6. Finally, in Section 7, we sketch some results for the case (in a
credit risk context) where defaulted companies re-enter the market.

2. THE BACKGROUND PROCESS

We will always work on a probability space (Ω,F , P). It is assumed that the background
process Z is an ergodic (also called irreducible), time homogeneous Markov chain on a finite
state space. Without loss of generality, we assume that it takes values in the set of basis
vectors {e1, . . . , ed} of R

d, with transition rates

qji =
d

dt

∣∣∣∣
t=0

P(Zt = ej |Z0 = ei) ≥ 0 i �= j

and qii := −∑
j �=i qji. We let Q be the matrix of all qij , also called the generator (of Z).

Note that 1TQ = 0, where 1 is the vector of all ones. Since Z is ergodic, the limits πj =
limt→∞P(Zt = ej |Z0 = ei), i, j ∈ {1, . . . , d} exist and are independent of i, and we have
the column vector π = (π1, . . . , πd)T satisfying Qπ = 0. The ergodic matrix is given by
Π := π1T, has columns equal to π and satisfies:

Π2 = Π and ΠQ = QΠ = 0.

The fundamental matrix is given by F := (Π − Q)−1. and the deviation matrix is defined
by D := F − Π. Basic properties are:

QF = FQ = Π − I, F1 = 1, and 1TD = 0, Dπ = 0, (2.1)

where the zeros should be read as a row or column vector. The deviation matrix can also
be computed by

D =
∫ ∞

0

exp(Qs) − Πds,

which follows from Glynn [24], Eq. (2.14).
The deviation matrix of an ergodic Markov process can be interpreted as a measure of total
deviation of the limiting probabilities. As such it will naturally find its way into the results
of our limit theorems of the stochastic processes we observe. For a survey of the main results
of deviation matrices we refer to Coolen-Schrijner and Van Doorn [15].

We will use a stochastic differential equation for Zt. Given the process Zt on (Ω,F),
Markovian relative to a filtration {Ft}t≥0, with initial state z0 and with generator Q, one
has by Dynkin’s formula Revuz and Yor [49], Proposition 1.6 that

M̃t := Zt − z0 −
∫ t

0

QZs ds
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is a martingale relative to {Ft}t≥0. Rewriting this into a differential notation yields

dZt = QZt dt + dM̃t, Z0 = z0. (2.2)

This representation can be found in many papers, for example, in Elliott [17], where this
result has a direct proof; see also Spreij [51] for a more general result. The martingale M̃ is
square integrable, which implies that 〈M̃〉t exists. As a matter of fact, one has

〈M̃〉t =
∫ t

0

(diag{QZs} − Qdiag{Zs} − diag{Zs}QT) ds, (2.3)

see for example, Proposition 3.2 and its proof in Huang et al. [29], and

Ddiag{π} + diag{π}DT is nonnegative definite. (2.4)

Ergodicity of the Markov chain implies the continuous-time ergodic theorem (see Norris [45],
Theorem 3.8.1). For t → ∞, it holds that 1/t

∫ t

0
Zs ds

a.s.→ π. Often we will use this result in
the following form,

1
m

∫ mt

0

Zs ds
a.s.→ πt, when m → ∞. (2.5)

We close with a remark on notation. For any process X we will use the generic notation F
X

for the filtration generated by X, that is, F
X = {FX

t }t≥0, with FX
t = σ(Xs, 0 ≤ s ≤ t).

3. THE MARKOV MODULATED BINOMIAL POINT PROCESS

The MM binomial point process, or counting process, (as we refer to it) is used in a variety
of applications under which are software reliability and intensity-based credit risk modeling
with the canonical set-up of n obligors and independent default times. Especially, the latter
case provides a convenient context to explain some fundamental features of this process. Let
us first introduce the non-modulated process. We assume there are n obligors with indepen-
dent default times τ i, i ∈ {1, . . . , n}. All τ i are exponentially distributed with parameter
λ > 0 which gives us that the process Y i

t = 1{t≤τ i} satisfies

dY i
t = λ(1 − Y i

t ) dt + dM i
t , Y i

0 = 0 (3.1)

for a martingale M i with respect to the filtration generated by Y i and the τ i. We then take
Nt :=

∑n
i=1 Y i

t as the first process we are interested in. It then follows from the independence
assumption and Eq. (3.1) that we have for the process N the submartingale decomposition

dNt = λ(n − Nt) dt + dMt, N0 = 0 (3.2)

where M is an F
N -martingale. We note that this model has already been introduced in Soft-

ware reliability models many years ago, see for example, Jelinski and Moranda [33], Koch
and Spreij [37] for early contributions and other references in Section 1. Note that for fixed
t > 0, the random variable has a Binomial(n, pt) distribution, with pt = 1 − exp(−λt).

This model can be generalized in many ways to one in which the (default) intensity is
not a constant λ, but a time-varying, random quantity λt. The distributional properties of N
are then determined by specific choices of λt and equations like Eq. (3.2) and its variations
further on are consequences of the general martingale characterization of counting processes,
see for example, Brémaud [11], Theorem II.T8.
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Our interest is to take a MM rate λt = λTZt−, where λ is now a vector in R
d
+ (the

meaning of the symbol λ thus depends on the context, but this should not cause any
confusion), and Z is the indicator process of the Markov chain A, see Section 2. We then
get the following stochastic differential equation (SDE) model for the process N ,

dNt = λTZt(n − Nt) dt + dMt, N0 = 0 (3.3)

where M is a martingale with respect to F = {FY
t ∨ FZ

∞, t ≥ 0}, which can be justified
by conditional independence of the default times, given the process Z. In this stochastic
intensity case one has that Nt, given the full process Z, has a Bin(n, 1 − exp(−Λt)) distri-
bution, with Λt =

∫ t

0
λs ds =

∫ t

0
λTZs ds. We call N the MM binomial point process. See

also Mandjes and Spreij [43] for further details on the construction of this process, and for
a justification of the following reasonable assumption.

Assumption 3.1: The processes N and Z never jump at the same time, that is, the optional
quadratic covariation process [N,Z] is identically zero (with probability one).

There are also situations known where this assumption is violated by construction,
see Spreij [50] for an example.

4. LIMIT THEOREMS FOR THE NON-MODULATED BINOMIAL PROCESS

Let us first, as a warming up and for future reference, consider the truly binomial non-
modulated process. Recall Eq. (3.2), where we have that λ > 0 is a constant. Since the
process N is distributed Bin(n, 1 − exp(−λt)) we have ENt = n(1 − exp(−λt)). Below we
will use �t := 1 − exp(−λt)), which satisfies the ODE

�̇t = λ(1 − �t), �0 = 0 (4.1)

This will function as the centering process for N , as ENt = n�t, in the following proposition.

Proposition 4.1: Let λ > 0 be constant and let N be given by Eq. (3.2). Then the scaled
and centered process

N̂n
t := n−1/2(Nt − n�t)

converges weakly to the solution of the following SDE,

dN̂t = −λN̂t dt + dBt, N̂0 = 0

as n → ∞. Here B is a continuous Gaussian martingale with 〈B〉t = 1 − e−λt.

Proof: First we will determine the limit of the martingale Mn = M/
√

n in Eq. (3.2).
Note that |ΔMn

t | = |ΔMt|/
√

n ≤ 1/
√

n → 0, and that EM2
t < ∞ for all t. We want to

prove that 〈Mn〉t P→ Ct for some deterministic Ct, so that can apply the martingale central
limit theorem Jacod and Shiryaev [31], Theorem VIII.3.11. By standard results for the
compensator of a counting process, 〈M〉t =

∫ t

0
λ(n − Ns) ds.
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Using this expression for 〈M〉t we have that (if n → ∞)

〈Mn〉t =
∫ t

0

λ − λNs

n
ds

a.s.→
∫ t

0

λ − λEY 1
t ds

=
∫ t

0

λe−λs ds = 1 − e−λt,

where we applied the dominated convergence theorem to establish almost sure convergence
of Nt/n (dominated by 1) to EY 1

t by the strong law of large numbers. Hence we can apply
the citetd martingale central limit theorem to find that M converges weakly to a Gaussian
martingale B with 〈B〉t = 1 − e−λt.

Now we consider the process N̂n
t = n−1/2(Nt − n�t). Taking the differentials and

rewriting gives us

dN̂n
t = −λN̂n

t dt + dMn
t .

Now we define X̂n
t := exp(λt)N̂n

t , to get dX̂n
t = eλt dMn

t . By similar reasoning as in proofs
of the next section where we spell out the details, we find that X̂n converges in distribution
to X̂ =

∫ ·
0
exp(λt) dBt and we find that N̂n

t
d→ N̂ , where N̂ satisfies the SDE

dN̂t = −λN̂t dt + dBt, N̂0 = 0. �

Remark 4.2: The binomial distribution of Nt for fixed t, can be exploited in an application of
the ordinary central limit theorem, which tells us that N̂n

t has a limiting normal distribution
with variance e−λt(1 − e−λt). This is, of course, in full agreement with the functional limit
result of Proposition 4.1, as can quickly be seen by computing the variance of N̂t.

5. LIMIT RESULTS FOR THE MM BINOMIAL PROCESS

In this section, we will prove limit results for the MM binomial point process with a Markov
modulated rate. In principle, one can prove various types of limit theorems. We focus on
results in central limit form, that is, on diffusion approximations. These are obtained for
n → ∞ in Eq. (3.3), whereas we also investigate limit behaviors by scaling the generator of
the background process Markov chain via Q �→ αQ, and letting α → ∞. As we are interested
in the limit behavior for both n → ∞ and α → ∞, various possibilities occur. We will inves-
tigate iterated limits (first n → ∞, then α → ∞ or vice versa), or joint limit behavior when
certain specified relationships between n and α come into play. We shall also investigate the
impact of different choices for the centering processes.

As a side remark, we mention that alternative scalings may lead to completely different
limit results. For instance, if one would scale the vector λ to λ/n, keeping Q fixed, one
would get a MM Poisson process, with intensity process λTZt, see for example, Jacod and
Shiryaev [31], Theorem VIII.4.10, or Liptser and Shiryaev [41], Theorem 1, p. 588. Another
case, where the intensity is scaled as λ/nγ with γ ∈ (0, 1), leading again to a diffusion limit,
is treated at the end of this section.

Contrary to the non-modulated case, in the MM case the consequences of a scaling
Q �→ αQ for some α → ∞, will have a major impact. To make the dependence of the cor-
responding processes on n and α explicit, we denote the resulting processes by Nn,α, Mn,α
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and Zα, giving the following SDE which is an analogy to Eq. (3.3)

dNn,α
t = λTZα

t (n − Nn,α
t ) dt + dMn,α

t , Nn,α
0 = 0. (5.1)

We will prove functional limit theorems of central limit type. However the centering process
� will, in the case n → ∞, not always be the asymptotic limit of the expectation. It may
depend on α and we will make this explicit in the notation. We first present a theorem for
n → ∞ and then α → ∞. Second comes the theorem in which the limits are interchanged.
We write λα

t for λTZα
t and Λα

t =
∫ t

0
λα

s ds.

Theorem 5.1: Let Nn,α be given by Eq. (5.1) for λ ∈ R
d
+ and let �α be given by

�̇α
t = λTZα

t (1 − �α
t ), �α

0 = 0.

Then the scaled and compensated process

N̂n,α
t = n−1/2(Nn,α

t − n�α
t ),

converges, as n → ∞, weakly to the solution of the following SDE

dN̂α
t = −λTZα

t N̂α
t dt + dBα

t , N̂α
0 = 0 (5.2)

where Bα is a continuous martingale with 〈Bα〉t = 1 − exp(−Λα
t ).

Moreover, for α → ∞, the process N̂α converges weakly to the solution of

dN̂t = −λ∞N̂t dt + dBt, N̂0 = 0 (5.3)

where B is a Gaussian martingale with 〈B〉t = 1 − exp(−λ∞t) where λ∞ = λTπ.

Proof: We modify the proof of Proposition 4.1. We first view the scaled martingale
Mn,α/

√
n, with Mn,α defined in Eq. (5.1). As in the proof of Proposition 4.1 we see that

ΔMn,α/
√

n → 0. Following the same arguments, we find that for the quadratic variation
we have the expression 〈Mn,α〉t =

∫ t

0
λα

s (n − Nn,α
s ) ds. Hence for the scaled martingale it

holds that 〈
Mn,α

√
n

〉
t

=
∫ t

0

λα
s

(
1 − Nn,α

s

n

)
ds

a.s.→
(n→∞)

∫ t

0

λα
s exp(−Λα

s ) ds

= 1 − exp(−Λα
t ),

where we have used dominated convergence and the conditional strong law of large numbers
for the convergence ((Nn,α

s )/n)a.s.→ E[Y 1
s |FZ ] = 1 − exp(−Λα

s ). It follows from the functional
CLT for martingales with random quadratic variation to a conditional Gaussian martingale
Liptser and Shiryaev [41], Theorem 4, p.567 that Mn,α converges to a continuous martingale
Bα with 〈Bα〉t = 1 − exp(−Λα

t ).
One easily derives that N̂n,α is the solution to

dN̂n,α
t = −λα

t N̂n,α
t dt + n−1/2 dMn,α

t ,

implying that

N̂n,α
t = n−1/2 exp(−Λα

t )
∫ t

0

exp(Λα
s ) dMn,α

s .
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It follows from the above, the validity of the P-UT condition for martingales, Jacod and
Shiryaev [31], VI.6.13 and the weak convergence theorem for stochastic integrals, Jacod and
Shiryaev [31], VI.6.22 that N̂n,α converges to a process N̂α, given by

N̂α
t = exp(−Λα

t )
∫ t

0

exp(Λα
s ) dBα

s , (5.4)

which is the solution to Eq. (5.2).
We next consider the convergence of N̂α for α → ∞. From the ergodic theorem for

Markov chains (see Eq. (2.5)), we obtain, for α → ∞,
∫ t

0
Zα

s ds
a.s.→ πt, and hence Λα

t → λ∞t
and exp(Λα

t ) → exp(λ∞t) a.s. As these processes are increasing and the limit is continuous
we can apply Jacod and Shiryaev [31], Thm VI.2.15(c) to find that this convergence is
uniform on compact sets,

sup
s≤T

| exp(Λα
s ) − exp(λ∞s)| P→ 0 as n → ∞. (5.5)

Furthermore, we also obtain 〈Bα〉t P→ 1 − exp(−λ∞t). Hence by the CLT for martingales
again, we have the weak convergence of Bα to a continuous martingale B with 〈B〉t =
1 − exp(−λ∞t). By the same arguments as above, we have that the stochastic integral
process in Eq. (5.4) converges to

∫ ·
0
exp(λ∞s) dBs, and therefore N̂α converges to the process

N̂ given by N̂t = exp(−λ∞t)
∫ t

0
exp(λ∞s) dBs, which is the solution to Eq. (5.3). �

Theorem 5.2: With the assumptions and notation of Theorem 5.1 we have, for α → ∞
that the counting processes Nn,α converge to the counting process Nn whose submartingale
decomposition is

dNn
t = λ∞(n − Nn

t ) dt + dMn
t , Nn

0 = 0.

Equivalently, the centered processes N̂n,α converge weakly to N̂n defined as the solution of
the SDE

dN̂n
t = −λ∞N̂n

t dt + dM̂n
t , N̂0 = 0,

where M̂n = n−1/2Mn.
Furthermore, we have that the process N̂n converges weakly to N̂ defined as the solution

of the SDE
dN̂t = −λ∞N̂t dt + dBt, N̂0 = 0,

where B is a continuous Gaussian martingale with 〈B〉t = 1 − exp(−λ∞t).

Proof: The first assertion is shown in, for instance, the recent reference Mandjes and Spreij
[43], Corollary 2. For the second step we find ourselves in the situation of Proposition 4.1,
and if we apply this result the proof is complete. �

Remark 5.3: It is striking that Theorems 5.1 and 5.2 tell that the order in which the limits
are taken (first n → ∞, then α → ∞ or vice versa) give the same limit for N̂n,α. It is a
priori not guaranteed that in the two situations the same limit results. Moreover, below
we will investigate what happens if α and n jointly tend to infinity, see for example, The-
orems 5.6, 5.11 and Proposition 5.13 where different limits will appear. Three different
scenarios will be investigated, namely, α tends faster to infinity than n, the converse situa-
tion, and the balanced case, where the speeds to convergence are proportional, and in the
latter case without loss of generality equal.
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Up to now, we investigated limit behavior, where limits have been taken in specified
order. We continue with the case where α and n jointly tend to infinity. First, we do this
when this happens at the same rate for both of them, w.l.o.g. we take them equal, α = n,
implying the scaling Q �→ nQ. We will take the asymptotic centering process �, similar to the
one in Eq. (4.1). We find this process by defining �t := limn→∞(1/n)ENn

t = 1 − exp(−λ∞t).
A differential equation for � is given by

�̇t = λ∞(1 − �t), �0 = 0. (5.6)

In this notation, we have in analogy to Eq. (3.3) that the process Nn is given by

dNn
t = λTZn

t (n − Nn
t ) dt + dMn

t , Nn
0 = 0. (5.7)

In the proof of Theorem 5.6 the following lemma turns out to be useful, of which we shall
also use a stochastic version.

Lemma 5.4: Consider a measurable space (Ω,F). Let (μn) be a sequence of signed measures,
such that the total variations ||μn|| are bounded by a constant B and that are converging
weakly to a signed measure μ, and let (fn) be a sequence of measurable functions, converging
uniformly to f . Then the integrals μn(fn) converge to μ(f).

Proof: Consider the inequalities

|μn(fn) − μ(f)| ≤ |μn(fn) − μn(f)| + |μn(f) − μ(f)|
≤ ||fn − f ||∞||μn|| + |μn(f) − μ(f)|
≤ B||fn − f ||∞ + |μn(f) − μ(f)|.

By the assumptions made, both terms on the right in the above display tend to zero. �

Remark 5.5: Lemma 5.4 also has a stochastic version. If the functions f, fn are random
variables, the measures μ and μn are random as well (measurable in an appropriate way),
the conclusion of the lemma under evidently modified conditions holds ‘ω-wise, that is,
almost surely.

Theorem 5.6: Let Nn be given by Eq. (5.7) and � by Eq. (5.6). Then the scaled and centered
process N̂n given by

N̂n
t := n−1/2(Nn

t − n�t),

converges weakly (as n → ∞) to the solution of the following SDE

dN̂t = −λ∞N̂t dt + dBt + dGt, N̂0 = 0, (5.8)

where G is a Gaussian martingale with

〈G〉t =
V

2λ∞
(1 − exp(−2λ∞t)),

with V = λT(diag{π}DT + Ddiag{π})λ (D is the deviation matrix of the background
Markov chain), and B is a Gaussian martingale with 〈B〉t = 1 − exp(−λ∞t), independent
of G.
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Proof: We divide the proof into a number of steps.
Step 1. We begin by rewriting the expression for N̂n. We have

N̂n
t = e−λTζn

t

(∫ t

0

eλTζn
s n1/2λT(Zn

s − π)(1 − �s) ds +
∫ t

0

eλTζn
s dn−1/2Mn

s

)
, (5.9)

where ζn
s =

∫ s

0
Zn

u du. Now consider the process

Xn
t =

∫ t

0

eλTζn
s n1/2λT(Zn

s − π)(1 − �s) ds +
∫ t

0

eλTζn
s dn−1/2Mn

s .

Define Ψn
s = exp(λTζn

s )(1 − �s)λTD and recall from Eq. (2.2) that Zn
t − Zn

0 −
n

∫ t

0
QZn

s ds = M̃n
t for a martingale M̃n. From Eq. (2.1) we obtain DQ = Π − I, ΠZn

t = π.
Hence, we can write

Xn
t = −

∫ t

0

Ψn
s dn−1/2Zn

s +
∫ t

0

Ψn
s dn−1/2M̃n

s +
∫ t

0

eλTζn
s dn−1/2Mn

s . (5.10)

Step 2. In order to prove weak convergence of the process in Eq. (5.9) we prove joint
weak convergence of Eq. (5.10) and e−λTζn

t . By using the same reasoning as in the proof of
Theorem 5.1 in order to arrive at Eq. (5.5), we have exp(λTζn

t )
ucp→ exp(λ∞t) and the u.c.p.

convergence of exp(−λTζn
t ) to exp(−λ∞t).

Step 3. In order to establish weak convergence of Eq. (5.10) we establish joint weak
convergence of the terms. We begin with showing that the first term converges weakly to
the zero process. Using the result from Step 2 and 1 − �s = exp(−λ∞s), we get from the
continuous mapping theorem that

Ψn ucp→ Ψ := λTD. (5.11)

We have that the processes t �→ exp(λTζn
t ) are of bounded variation on compact intervals,

uniformly in n. Therefore, as t �→ et is Lipschitz on compact sets and �s is of bounded
variation, we also have that the Ψn are of bounded variation and have bounded total
variation processes on compact sets uniformly in n. It follows that n−1/2Ψn converges
u.c.p. to the zero process and so does its total variation process. To analyze the integral∫ t

0
Ψn

s dZn
s we make the following observation, derived from Jansen [32]. Every component

Zn,i of the process Zn takes values in {0, 1}, and hence ΔZn,i
s ∈ {−1,+1}. Therefore the

integral
∫ t

0
Ψn

s dZn,i
s is of the form

∑
τi≤t ±Ψn

τi
, where the τi are the jump times of Zn,i.

Hence | ∫ t

0
Ψn

s dZn,i
s | is bounded from above by the sum of the total variation of Zn,i and its

sup-norm, see Jansen [32], Lemma 6.6.5. Therefore we have for the first term of Eq. (5.10),
that

∫ t

0

Ψn
s dn−1/2Zn

s
ucp→ 0.

By Slutsky’s theorem, one obtains joint convergence of the three terms in Eq. (5.10), as
soon as the final two terms jointly converge weakly. This we show in the next step.
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Step 4. For the weak convergence of the remaining two terms of Eq. (5.10) consider the
locally square-integrable martingale

Mn
t =

[
n−1/2M̃n

t

n−1/2Mn
t

]

which by Assumption 3.1 has quadratic variation given by

〈Mn〉t =
∫ t

0

[
Ṽ n,∗

s 0
0 V n,∗

s

]
ds,

where

Ṽ n,∗
s = diag{QZn

s } − Qdiag{Zn
s } − diag{Zn

s }QT,

V n,∗
s = λTZn

s (1 − n−1Nn
s )

because of Eq. (2.3). Therefore, by following Jacod and Shiryaev [31], section III.6a, the
square integrable martingale

Mζ,n
t =

⎡
⎢⎢⎢⎣

∫ t

0

Ψn
s dn−1/2M̃n

s

∫ t

0

eλTζn
s dn−1/2Mn

s

⎤
⎥⎥⎥⎦ (5.12)

has quadratic variation

〈Mζ,n〉t =
∫ t

0

[
Ψn

s Ṽ n,∗
s (Ψn

s )T 0
0 exp(2λTζn

s )V n,∗
s

]
ds. (5.13)

In order to prove weak convergence of the last two terms in Eq. (5.10) we aim to apply the
MCLT to the martingale Mζ,n in Eq. (5.12). Thereto we need that (i) the jumps of the
martingale on compact sets disappear and that (ii) the quadratic variation converges to a
deterministic continuous function in probability.

For (i) the proof is that both integrals in Eq. (5.12) have continuous integrands. There-
fore the stochastic integral with respect to Mn (M̃n can be treated in the same way) we
have

max
0≤t≤T

{
|Δ

∫ t

0

Ψn
s dn−1/2Mn

s |
}

≤ ‖Ψn‖∞n−1/2 → 0,

where ‖Ψn‖∞ denotes the supremum-norm of Ψn on [0, T ] which is finite as Ψn is bounded
on compact intervals uniformly in n. For (ii) we check the convergence of the two non-zero
entries in the quadratic variation separately.

First, we consider
∫ t

0
Ψn

s Ṽ n,∗
s (Ψn

s )T ds. We know that Ψn converges u.c.p. to Ψ, see
Eq. (5.11), and from Eq. (2.5) that

∫ t

0
Zn

s ds converges a.s. to πt. Below we apply the
almost sure version of Lemma 5.4 to the elements of the matrix

∫ t

0
Ψn

s Ṽ n,∗
s (Ψn

s )T ds. Take
the ij-th element of this matrix. It is, in obvious notation, a sum over k and l of integrals∫ t

0
(Ψn

s )ik(Ṽ n,∗
s )kl(Ψn

s )jl ds, where those integrals are of the form
∫ t

0
(Ψn

s )ik(Ψn
s )jlμkl(ds),

with μkl(ds) = (Ṽ n,∗
s )kl ds. Using that

∫ t

0
(Ṽ n,∗

s ) ds → (diag{π}DT + Ddiag{π}) t, we see
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that an application of Lemma 5.4 results in
∫ t

0

Ψn
s

(
diag{QZn

s } − Qdiag{Zn
s } − diag{Zn

s }QT
)
(Ψn

s )T ds (5.14)

ucp→ −
∫ t

0

Ψs(Qdiag{π} + diag{π}QT)ΨT
s ds

= λT(diag{π}DT + Ddiag{π})λ t =: V t,

since DQ = Π − I and Qπ = 0, see Eq. (2.1). Note that V is nonnegative in view of Eq. (2.4).
Next, we consider the other non-zero entry in the quadratic variation. Recall V n,∗

t =
λTZn

t (1 − n−1Nn
t ). We first show u.c.p. convergence of

∫ t

0
V n,∗

s ds to a continuous function.
This requires a couple of steps.

The first step is to show that n−1Nn
t converges in probability to �t = 1 − exp(λ∞t),

as a matter of fact we show that the convergence is in the L2-sense. Recall that, condi-
tional on FZ , Nn

t is binomial with parameters n and pn
t = 1 − exp(− ∫ t

0
λTZn

s ds). Therefore
we have E(n−1Nn

t − �t) = Epn
t − �t → 0. Hence, writing E(n−1Nn

t − �t)2 = (E(n−1Nn
t −

�t))2 + Var(n−1Nn
t ), we only have to prove that the variance tends to zero. By the law of

total variation we have

Var(n−1Nn
t ) = n−2

E Var(Nn
t |FZ) + Var(E[n−1Nn

t |FZ ])

= n−1
E[pn

1 (1 − pn
t )] + Var pn

t .

As the pn
t are bounded and pn

t → 1 − exp(−λ∞t), we get Var(n−1Nn
t ) → 0 by application

of the dominated convergence theorem.
Now we are ready for the final step. Write

∫ t

0

exp(2λTζn
s )V n,∗

s ds =
∫ t

0

exp(2λTζn
s )λTZn

s (1 − �s) ds

+
∫ t

0

exp(2λTζn
s )λTZn

s (�s − n−1Nn
s ) ds. (5.15)

Consider the expectation of the absolute value of the last integral. By the Cauchy-Schwartz
inequality, its square is less than

E

∫ t

0

(exp(2λTζn
s )λTZn

s )2 ds ×
∫ t

0

E(�s − n−1Nn
s )2 ds.

In this product, the first factor is bounded, whereas the second factor tends to zero by
the above L2-convergence of n−1Nn

s to �s and by application of the monotone convergence
theorem.

We now focus on the first term on the RHS of Eq. (5.15). By the ucp-convergence of the
exponential term exp(2λTζn

s )(1 − �s) to exp(2λ∞s)(1 − �s) = exp(λ∞s) (as in Step 2), we
can again apply the almost sure version of Lemma 5.4, to arrive at

∫ t

0
exp(2λTζn

s )λTZn
s (1 −

�s) ds
a.s.→ ∫ t

0
exp(λ∞s)λ∞ ds = exp(λ∞t) − 1. Summarizing all these intermediate results

we get convergence in probability of the quadratic variation, that is,

〈Mζ,n〉t P→
[
V t 0
0 eλ∞t − 1

]
.

The MCLT allows us to deduce that Mζ,n converges weakly to a two-dimensional Gaussian
martingale with the independence of the components.
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Step 5: By the weak convergence of Mζ,n and weak convergence of the first term in
Eq. (5.10) to the zero process, we deduce by application of the continuous mapping theorem,
weak convergence of Eq. (5.10) to a Gaussian martingale with quadratic variation

∫ t

0
(V +

λ∞eλ∞s) ds. Therefore Mζ,n has the limit distribution of

⎡
⎢⎢⎢⎣

∫ t

0

√
V dB1

s

∫ t

0

√
λ∞eλ∞s dB2

s

⎤
⎥⎥⎥⎦ , (5.16)

where B1 and B2 are independent standard Brownian motions and thus we have weak
convergence of the sum in Eq. (5.10) to the Gaussian martingale in Eq. (5.16).

Step 6: In conclusion, we showed that N̂n,α can be written as the product of processes
in Eq. (5.9). In Step 2 we show u.c.p. convergence of the first process and in Steps 3–5 we
showed weak convergence of the second process. Therefore we have joint weak convergence
of the processes in Eq. (5.9). Since multiplication is continuous at continuous limits in the
Skorohod topology (c.f. Whitt [54], Thm 4.2) we have weak convergence of N̂n to the process
N̂ given by (B̃ is a standard Brownian motion)

N̂t = e−λ∞t

∫ t

0

√
V + λ∞eλ∞s dB̃s,

which solves the SDE

dN̂t = −λ∞N̂t dt + e−λ∞t
√

V + λ∞eλ∞t dB̃t.

Alternatively, we can represent this SDE as Eq. (5.8),

dN̂t = −λ∞N̂t dt + dBt + dGt,

where B and G are independent Gaussian martingales, with 〈B〉t = 1 − exp(−λ∞t) and
〈G〉t = (V/(2λ∞))(1 − exp(−2λ∞t)). �

Remark 5.7: Let us compare Proposition 4.1 and Theorem 5.6. The Brownian motion B
of Theorem 5.6 is as B in Proposition 4.1. The Brownian motion G in the theorem comes
as an ‘extra’ compared with the situation of the proposition. If we apply Theorem 5.6 to
the non-modulated case, which happens if the vector λ is a constant λ∞ times 1, we have
〈G〉t = −λ2

∞1T(diag{π}DT + Ddiag{π})1 t, which is indeed zero in view of the property
Dπ = 0, see Eq. (2.1). So this theorem in the non-modulated case reduces to Proposition 4.1,
as it should.

The centering in Theorem 5.6 is with the function n�t. In the proposition below we
compare �t = 1 − exp(−λ∞t) with �n

t = 1 − exp(−λTζn
t ), and we shall see the result of

alternative centering with �n
t in Proposition 5.9.

Proposition 5.8: It holds that Ĥn
t :=

√
n(�n

t − �t) converges weakly to the process Ĥ given
by Ĥt = exp(−λ∞t)GH

t , where GH is a Brownian motion with variance parameter V =
λT(diag{π}DT + Ddiag{π})λ, so 〈GH〉t = V t.
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Proof: We compute

�n
t − �t = exp(−λ∞t) − exp(−λTζn

t )

=
∫ t

0

exp(−λTζn
s )λTζn

s ds −
∫ t

0

exp(−λ∞s)λ∞ ds

=
∫ t

0

(exp(−λTζn
s ) − exp(−λ∞s))λTZn

s ds +
∫ t

0

exp(−λ∞s)λT(Zn
s − π) ds

= −
∫ t

0

(�n
s − �s)λTZn

s ds +
∫ t

0

exp(−λ∞s)λT(Zn
s − π) ds.

For Ĥn
t =

√
n(�n

t − �t) we then obtain

Ĥn
t = −

∫ t

0

Ĥn
s λTZn

s ds +
√

n

∫ t

0

exp(−λ∞s)λT(Zn
s − π) ds.

Solving this equation yields

Ĥn
t = exp(−λTζn

t )
√

n

∫ t

0

exp(λTζn
s − λ∞s)λT(Zn

s − π) ds.

The latter equation has the same structure as Eq. (5.9), but with the martingale term
missing. For the limit behavior we can therefore copy the relevant parts of the proof of
Theorem 5.6, which yields the assertion. �

Now we revisit Theorem 5.6, by replacing the centering n�t by n�n
t . This leads to

Proposition 5.9: Let K̂n
t = n−1/2(Nn

t − n�n
t ). Then K̂n converges weakly to the solution

to the SDE dK̂t = −λ∞K̂t dt + dBt, where B is a continuous Gaussian martingale with
〈B〉t = 1 − exp(−λ∞t).

Proof: We follow the line of reasoning of the proof of Theorem 5.6. Parallel to the first
step of that proof we now obtain

K̂n
t = n−1/2Mn

t −
∫ t

0

λTZn
s K̂n

s ds, (5.17)

equivalent to

K̂n
t = exp(−λTζn

t )
∫ t

0

n−1/2 exp(λTζn
s ) dMn

s ,

which is a simpler version of Eq. (5.9). Following the steps in the proof of the theorem, we
arrive at the weak convergence of the stochastic integral to a Gaussian martingale B̃ with
quadratic variation exp(λ∞t) − 1 and of the process K̂n to K̂ given by K̂t = exp(−λ∞t)B̃t.
The latter being equivalent to K̂ solving

dK̂t = −λ∞K̂t dt + dBt,

where B is a Gaussian martingale with 〈B〉t = 1 − exp(−λ∞t). �

Putting the conclusions of Propositions 5.8 and 5.9 together and comparing them with
Theorem 5.6, we can provide an illuminating explanation of the result of the theorem.
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Write N̂n
t = Ĥn

t + K̂n
t , and recall the following weak limits. We have seen that the limit

process Ĥ satisfies dĤt = −λ∞Ĥt dt + exp(−λ∞t) dGH
t , with 〈GH〉t = V t. And we have

also seen that the limit process K̂ is a Gaussian process satisfying dK̂t = −λ∞K̂t dt + dBt,
with 〈B〉t = 1 − exp(−λ∞t). Adding up these limits (justified by the proof of the theorem)
yields that the limit process N̂ satisfies dN̂t = −λ∞N̂t dt + dBt + exp(−λ∞t) dGH

t . With
Gt =

∫ t

0
exp(−λ∞s) dGH

s , we have 〈G〉t as in the theorem, and the SDE Eq. (5.8) follows
again.

Summarizing, the result of Theorem 5.6 can be explained by decoupling N̂n into Ĥn

and K̂n and their limits results according to Propositions 5.8 and 5.9. From a distributional
point of view, the result of Theorem 5.6 is more appealing than Proposition 5.9, since the
latter involves centering with a random process. In line with the common view on a central
limit theorem, one can interpret the statement of the theorem by saying that asymptotically,
for fixed t, the random variable N̂n

t has a normal distribution with (nonrandom) mean n�t

and variance n exp(−2λ∞t)(V t + exp(λ∞t) − 1).
Note that the K̂t in Proposition 5.9 is the same limiting process as the limiting process

N̂t in Theorem 5.1 and Theorem 5.2. In continuation of our discussion above we can explain
the equivalence of these limits via the centering process. The process K̂n is centered with
the stochastic process n�n (and likewise we use for N̂n,α centering with the stochastic
process n�α). Centering in this way, as opposed to centering with n�t, removes the first
term in Eq. (5.9), which in Theorem 5.6 converges to the Gaussian term G with 〈G〉t =

V
2λ∞

(1 − exp(−2λ∞t)). Intuitively one cancels out the ’extra’ variation, due to the first term
Eq. (5.9) which results in a situation where the order of limits does not matter anymore.
This situation is to some extent similar to the case for the process given by Eq. (5.2). But
note also the difference between the two cases, the martingale in Eq. (5.2) is continuous and
Gaussian, whereas the martingale in Eq. (5.17) is a (scaled) compensated jump martingale,
although with a continuous Gaussian limit.

Next, we investigate the limit behavior of Nt when we speed up the Markov chain with
nβ for some β > 0. Note that before we had β = 1. The Propositions 5.8 and 5.9 now take
a different form, but the proofs of the results in Proposition 5.10 below are similar to the
previous ones, and are therefore omitted. Let us write, in order to express the dependence
on β, �n,β = 1 − exp(−λTζn,β

t ) with ζn,β
t =

∫ t

0
Znβs ds.

Proposition 5.10:

(i) Let Ĥn,β
t := nβ/2(�n,β

t − �t). Then Ĥn,β converges weakly to the process Ĥ given
by Ĥt = exp(−λ∞t)GH

t , where GH , as before, is a Brownian motion with variance
parameter V = λT(diag{π}DT + Ddiag{π})λ.

(ii) Let K̂n,β
t = n−1/2(Nn

t − n�n,β
t ). Then K̂n,β converges weakly to the solution to the

SDE dK̂t = −λ∞K̂t dt + dBt,

where B is a continuous Gaussian martingale with 〈B〉t = 1 − exp(−λ∞t).

As a consequence of this proposition, we have the following extension of Theorem 5.6.

Theorem 5.11: Let Nn be given by Eq. (5.7) and � by Eq. (5.6). Then the scaled and
centered process N̂n,β given by

N̂n,β
t := n−1/2(1+(1−β)+)(Nn

t − n�t),
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converges weakly (as n → ∞) to the solution of the following SDE

dN̂t = −λ∞N̂t dt + 1{β≤1} dGt + 1{β≥1} dBt, N̂0 = 0, (5.18)

where G is a Gaussian martingale with

〈G〉t =
V

2λ∞
(1 − exp(−2λ∞t)),

with V = λT(diag{π}DT + Ddiag{π})λ (D is the deviation matrix of the background
Markov chain), and B is a Gaussian martingale with 〈B〉t = 1 − exp(−λ∞t), independent
of G.

Alternatively, we have the representation

dN̂t = −λ∞N̂t dt +
(
1{β≤1}V exp(−2λ∞t) + 1{β≥1}λ∞ exp(−λ∞t)

)1/2 dWt,

where W is a standard Brownian motion.

Proof: We only have to consider the cases β < 1 and β > 1, as the case β = 1 is covered by
Theorem 5.6. For β < 1 we have N̂n,β = n−1+β/2(Nn

t − n�t) = n(β−1)/2K̂n,β
t + Ĥn,β . From

Proposition 5.10 we obtain that N̂n,β has Ĥ as the limit process. For β > 1 we have N̂n,β =
n−1/2(Nn

t − n�t) = K̂n,β
t + n(1−β)/2Ĥn,β . From Proposition 5.10 we now obtain that N̂n,β

has K̂ as the limit process.
Putting these two cases (combined with β = 1) together we see that we obtain for N̂n,β

the limit process 1{β≤1}Ĥ + 1{β≥1}K̂. Therefore we also have

dN̂n,β
t = −λ∞N̂n,β

t dt + 1{β≤1} exp(−λ∞t) dGH
t + 1{β≥1} dBt

= −λ∞N̂n,β
t dt + 1{β≤1} dGt + 1{β≥1} dBt,

which completes the proof. �

Remark 5.12: From the quadratic variation of the Brownian terms in the limit of
Theorem 5.11 one sees that the quadratic variation process converges to (V/(2λ∞))1{β≤1} +
1{β≥1} if t → ∞. Note that then also the quadratic variation 〈N̂〉t → (V/(2λ∞))1{β≤1} +
1{β≥1}, as it is completely determined by the quadratic variation of the martingale part of
N̂ . Therefore, the Brownian terms converge to a Gaussian random variable with expecta-
tion zero for t → ∞ and variance (V/(2λ∞))1{β≤1} + 1{β≥1}. It follows that the limiting
process N̂ in Theorem 5.11 is Gaussian with vanishing variance for t → ∞, and therefore
behaves as the constant zero process for large t.

The previous limit theorems were based on a fixed value of λ, which is possibly some-
thing to relax. Consider a modulated process, but with default intensity n−γλ	Zt, for some
γ > 0. In financial terms, we consider a market with many obligors whose individual default
rate tends to zero and we are still interested in the total number of defaults. As before, we
scale Q �→ nβQ for some β > 0, which speeds up the background process. We omit the
dependence on β in the notation as it will turn out that the diffusion limit we derive is
independent of β. So, we consider

dNn,γ
t = n−γλ	Zn

t (n − Nn,γ
t ) dt + dMn,γ

t , Nn,γ
0 = 0.

If γ = 1, we know that the limit process (for n → ∞) is a Poisson process with intensity
λ∞. The case γ > 1 is not very interesting, one certainly has Nn,γ

t
a.s.→ 0 for fixed t. But
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for 0 < γ < 1 there is something to do; the case γ = 0, we have already encountered in
Proposition 4.1. Write λn,γ

t for n−γλ	Zn
t and Λn,γ

t =
∫ t

0
λn,γ

s ds. Put �n,γ
t = 1 − exp(−Λn,γ

t ).

Proposition 5.13: Let β > 0. Consider for γ ∈ (0, 1) the process N̂n,γ given by

N̂n,γ
t = n(γ−1)/2 (Nn,γ

t − n�n,γ
t ) .

As n → ∞, this process converges weakly to a Brownian motion with variance parameter
λ∞.

Proof: One checks that

dN̂n,γ
t = −λn,γ

t N̂n,γ
t dt + dM̂n,γ

t ,

where M̂n,γ
t = n(γ−1)/2Mn,γ

t , with

〈M̂n,γ〉t =
∫ t

0

λ	Zn
s

(
1 − Nn,γ

s

n

)
ds.

Note that the jumps of M̂n,γ disappear for n → ∞, as γ < 1, and that
(

1 − Nn,γ
t

n

) ∫ t

0

λ	Zn
s ds ≤ 〈M̂n,γ〉t ≤

∫ t

0

λ	Zn
s ds.

As for each t ≥ 0, E((Nn,γ
t )/n) → 0 and Nn,γ

t ≥ 0 it holds that ((Nn,γ
t )/n) P→ 0 and thus

〈M̂n,γ〉t P→ λ∞t. Consequently, M̂n,γ weakly converges to
√

λ∞B, where B is a standard
Brownian motion. As N̂n,γ

t = exp(−Λn,γ
t )

∫ t

0
exp(Λn,γ

s ) dM̂n,γ
s , by previous arguments and

using that Λn,γ
t

P→ 0 since γ > 0, N̂n,γ converges to
√

λ∞B as well. �

6. SOME ILLUSTRATING SIMULATIONS

In this section, we will show some graphs of simulations, illustrating some of the results
proven in this paper. To illustrate all the results would require too much space, so we will
show two intuitive results, namely, the first part of Theorem 5.2 where we only speed up
the underlying Markov process, and Theorem 5.6.

We simulate Nn,α
t as in Eq. (5.1) and N̂n,β as in Theorem 5.11 for a couple of parameter

settings of α and n on a time interval [0, T ]. We take T = 3 for the first and T = 10 for the
second simulation, to illustrate the interesting phenomona corresponding to the theorems.
We take a state space of three elements for the Markov chain

Q =

⎡
⎣−5 1 5

2 −2 5
3 1 −10

⎤
⎦ ,

and the different values of the intensity are summarized by the vector λ =
[
0.1 1 3

]T, a
fixed choice in all simulations.

We start by simulating Nn,α
t and λTZt for n = 1000 fixed and varying values of α ∈

{1, 10, 100, 10000} to illustrate the first part of Theorem 5.2. The sample paths of these
simulations are shown in Figures 1 and 2.
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Figure 1. Sample Paths with α = 1 (left) and α = 10 (right)

Figure 2. Sample Paths with α = 100 (left) and α = 10, 000 (right)

Figure 3. CLT illustration n = α = 10 (left) and n = α = 100 (right)

One can see the effect from the MM default rate in Figure 1. The contents of the first
part of Theorem 5.2 is that this modulating effect should disappear and the default rate
becomes a deterministic constant λ∞ in the limit. This is visible in Figure 2, where this
modulating effect disappears and a constant default rate appears due to the Markov chain
jumping very fast.

Next, we simulate the centered and scaled process N̂n,β , for β = 1. We then have α = n
and we choose n ∈ {10, 100, 1, 000, 10, 000} in order to illustrate Theorem 5.11. The sample
paths are shown in Figures 3 and 4.

Figures 3 and 4 illustrate how the process N̂n,β converges to a continuous process,
which fluctuates like a Gaussian martingale. We chose for the time scale T = 10 to show
that the quadratic variation 〈N̂〉t of the limiting process N̂ tends to a constant as t → ∞.
So these figures also illustrate the observations made in Remark 5.12.
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Figure 4. CLT illustration n = α = 1, 000 (left) and n = α = 10, 000 (right)

7. INCLUSION OF RECOVERY

The process N of Eq. (3.2) counts the number of defaults of companies (as one of the
interpretations). After a default, a company disappears from the market. Alternatively, one
might think of recovery of defaulted companies. In this section, we present a few general-
izations of previous results. As the proofs are similar to previous ones, but somewhat more
involved, we only sketch them.

Supposing first that recovery happens at a constant rate μ per company and that
Markov-modulation does not take place, we are dealing with a birth-death process N whose
semimartingale decomposition is, instead of Eq. (3.2), now given by

dNn
t = (λ(n − Nn

t ) − μNn
t ) dt + dMn

t , Nn
0 = 0. (7.1)

It is possible to show that Nn is a Markov chain on {0, 1, . . . , n} whose transition rates
are jμ if N jumps from j to j − 1 and (n − j)λ if N jumps from j to j + 1, whereas other
transitions have rate zero. It follows that now Nt has a Bin(n, n�t) distribution, where �
satisfies the differential equation

�̇ = λ(1 − �) − μ�, �0 = 0.

The solution to this equation is

�t =
λ

λ + μ
(1 − exp(−(λ + μ)t).

To compute 〈Mn〉t = 〈Nn〉t, we first look at the optional quadratic variation process [Nn].
As [Nn]t =

∑
s≤t(ΔNn

s )2, and a nonzero ΔNn
s is either plus or minus 1, which happens with

rates λ(n − Nn
t ) and μNn

t , respectively, it follows that (d/dt)〈Mn〉t = λ(n − Nn
t ) + μNn

t .

Proposition 7.1: Let λ, μ > 0 be constants and let Nn be given by Eq. (7.1). Then the
scaled and centered process

N̂n
t := n−1/2(Nn

t − n�t)

converges weakly to the solution of the following SDE,

dN̂t = −(λ + μ)N̂t dt + σ(t) dBt, N̂0 = 0

as n → ∞. Here B is a standard Brownian motion and

σ(t)2 = λ − λ(λ − μ)
λ + μ

(1 − exp(−(λ + μ)t) = λ − (λ − μ)�t.
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The proof of this proposition is similar to that of Proposition 4.1, so we only highlight
the main differences. For the process N̂n

t we now obtain

dN̂n
t = −(λ + μ)N̂n

t dt + dM̂n
t ,

where the martingale M̂n has quadratic variation satisfying (see above)

d
dt

〈M̂n〉t =
1
n

d
dt

〈Mn〉t = λ − (λ − μ)
Nt

n
→ λ − (λ − μ)�t = σ2(t), for n → ∞.

Obviously, the jumps of Mn are negligible for large n. The remainder of the proof is as
before.

In Eq. (7.1) the rates λ and μ are constant. From now on we assume that regime
switching will be present, so we have time-varying rate λt = λTZt− as before and likewise,
in similar notation, μt = μTZt−. Hence for the Markov modulated case, we now have, instead
of Eq. (5.7),

dNn
t =

(
λTZt(n − Nn

t ) − μTZt−Nn
t

)
dt + dMn

t , (7.2)

where Mn is a martingale with respect to F = {FY
t ∨ FZ

∞, t ≥ 0}.

Remark 7.2: In principle, the recovery rate μt could depend on another Markov chain Z̃,
leading to a seemingly more general model. But combining the chains Z and Z̃ into a
bivariate chain, would lead to a representation like Eq. (7.2) again with the matrix Q
composed from the transition matrices of Z and Z̃.

One can then investigate the limit behavior of the process Nn given by Eq. (7.2) for
n → ∞ together with rapid switching of the Markov chain. We confine ourselves to a gener-
alization of Theorem 5.11. We use notation introduced in previous sections and self-evident
analogies. We will need the function � satisfying

�̇t = λ∞(1 − �t) − μ∞�t, �0 = 0, (7.3)

where μ∞ = μTπ, and the functions σ1 and σ2 as specified after the statement of the
theorem.

Theorem 7.3: Let Nn be given by Eq. (7.2) and � by Eq. (7.3). Then the scaled and centered
process N̂n,β given by

N̂n,β
t := n−1/2(1+(1−β)+)(Nn

t − n�t),

converges weakly (as n → ∞) to the solution of the following SDE

dN̂t = −(λ∞ + μ∞)N̂t dt + 1{β≤1}σ1(t) dB1
t + 1{β≥1}σ2(t) dB2

t , N̂0 = 0, (7.4)

where B1 and B2 are independent Brownian motions. Alternatively, we have the represen-
tation

dN̂t = −(λ∞ + μ∞)N̂t dt +
(
1{β≤1}σ1(s)2 + 1{β≥1}σ2(s)2

)1/2
dBt,

where B is a standard Brownian motion.

We close with a few remarks on the proof. For the case β = 1 it is along the same lines as
the one for Theorem 5.6, but with more complicated expressions, although methodologically
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there are hardly any changes. One now writes N̂n
t = e−(λ+μ)Tζn

t Xn
t , where Xn

t is given by
an analog of Eq. (5.10),

Xn
t = −

∫ t

0

Ψn
s dn−1/2Zn

s +
∫ t

0

Ψn
s dn−1/2M̃n

s +
∫ t

0

e(λ+μ)Tζn
s dn−1/2Mn

s , (7.5)

with in the present situation

Ψn
s = e(λ+μ)Tζn

s ((1 − �s)λ − �sμ)TD.

Another main difference is the quadratic variation of the bivariate martingale Mζ,n. One
now obtains

〈Mζ,n〉t =
∫ t

0

[
Ψn

s Ṽ n,∗
s (Ψn

s )T 0
0 e2(λ+μ)Tζn

s V n,∗
s

]
ds, (7.6)

where Ṽ n,∗
s is as before, but

V n,∗
s = λTZn

s (1 − n−1Nn
s ) + μTZn

s n−1Nn
s → λ∞(1 − �s) + μ∞�s.

As a consequence, the limit of 〈Mζ,n〉t is not an expression as simple as before, but can still
be computed explicitly (it only involves integration of exponential functions). For reasons
of brevity we just write

∫ t

0

Ψn
s Ṽ n,∗

s (Ψn
s )T ds →

∫ t

0

e2(λ∞+μ∞)sΦs(diag{π}DT + Ddiag{π})ΦT
s ds

=:
∫ t

0

e2(λ∞+μ∞)sσ1(s)2 ds,

where
Φs = (1 − �s)λT

∞ − �sμ
T
∞, σ1(s)2 = Φs(diag{π}DT + Ddiag{π})ΦT

s

and
∫ t

0

e2(λ+μ)Tζn
s V n,∗

s ds →
∫ t

0

e2(λ∞+μ∞)s(λ∞(1 − �s) + μ∞�s) ds

=:
∫ t

0

e(2(λ∞+μ∞)sσ2(s)2 ds.
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