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Abstract

We derive the exact loss distribution for portfolios of bonds or cor-
porate loans when the number of risks grows indefinitely. We show
that in many cases this distribution lies in the maximal domain of
attraction of the Weibull (Type III) limit law. Knowledge of the dis-
tribution and its tail behavior is important for risk management in
order not to over- or underestimate the likelihood of extreme credit
losses for the portfolio as a whole. Conform to the credit risk litera-
ture, we assume that bond (or loan) defaults are triggered by a latent
variable model involving two stochastic variables: systematic and id-
iosyncratic risk of the bond. It is shown that the tail behavior of these
two variables translates into the tail behavior of the whole credit loss
distribution. Surprisingly, even if both variables are thin-tailed, the
credit loss distribution can have a finite tail index. Moreover, if id-
iosyncratic risk exhibits heavier tails than the systematic risk factor
the tail index of the credit loss distribution can become extremely
high, giving rise to a non-conventional shape of the credit loss distri-
bution.
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1 Introduction

Extreme events plav an important role in financial risk management. Banks
and other financial”institutions must be able to meet all their financial obli-
gations even in situations of extremely adverse market conditions. As an
example, consider a pension fund that promises its members to pay a price
indexed amount per year from retirement until death. In order to finance
this scheme, the fund gathers contributions from the members and invests
these in stocks and bonds. A popular optimality criterion for choosing the
portfolio mix between
expected cost (in term
straint on risk. The ri
on the likelihood that

stocks and bonds
s of present and fu
.sk constraint may
a certain outflow

constitutes the minimization of the
ture contribiutions)  subject to a con-
be thought of constituting a bound
of pension money is no longer sus-

tainable due to e.g. extremely and thus unexpectedly low returns on stocks
and bonds or high inflation. If the probability bound is chosen sufficiently
low in determining the pension’s optimal asset mix, the latter will be highly
influenced by the extreme tail behavior of the pension fund’s market risks
in portfolio. Similar examples can be constructed for banks, which typically
have a portfolio of assets and liabilities.

The likelihoods of extremal events are increasingly interpreted and used
as risk measures as the above example illustrates, see Jorion (1997). In
particular, people often use a concept called Value-at-Risk or VaR. VaR
is an extreme quantile of the distribution of financial losses. Typically, one
uses quantiles corresponding to probability levels between 5% and 0.1%. The
widespread use of VaR has been spurred by at least two factors. First, there
have been several large losses involving more complex financial instruments
called derivatives, see for example Jorion (1995). These losses have made
responsible managers aware of the fact that they need to have insight into
the riskiness of current. financial activities. VaR is a simple way of meeting
this objective: it gives the maximum amount that can be lost given a certain
level of confidence. Due to its simplicity, VaR is commonly used in the
financial industry,. even though there are some conceptual problems with
it as a measure of risk, see Artzner, Delbaen, Eber, and Heath (1997). A
second reason for the widespread use of VaR is its acceptance by regulatory
authorities, see Basle Committee on Bank Supervision (1996). Regulators
require banks to conduct a sound risk management practice, including the
use of VaR as a quantitative risk management tool.

So far, we only discussed how to measure and manage the portfolio risk
evolving from market risk, i.e., risk evolving form fluctuations in market
prices -and thus holding returns- of quoted financial assets. The potential
usefulness of extreme value theory for market risk and the estimation of
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extreme quantiles has been demonstrated by, e.g., Danielsson and de Vries
(1998a,b).  Though the importance of market risk has been growing over the
last decades, credit risk is still (and has been historically) the most important
risk factor for banks. Credit risk may be defined as the likelihood that
obligors will not be able to repay the principal amount (and interest) of an
issued loan (default risk). It also involves financial risks due to changes in
the creditworthiness of the obligor, see J.P. Morgan (1999). In the present
paper, we will be mainly concerned with the default risk component of credit
risk.

It is generallv accepted that’ the distribution of credit1  losses is skewed and
exhibits heavy tails. Because we are interested in assessing the likelihood of
extreme credit losses for quantitative credit risk management, a correct spec-
ification of the distributional tail is important. The framework we present
here enables one to derive the distribution of credit losses and its tail behav-
ior. More specifically, we show that highest order statistics for credit loss
observations lie in the domain of attraction of an extreme value distribution
of the Weibul type. Moreover, the framework enables one to pin down the
determinants of the tail index under a variety of assumptions. To be more
precise, we model credit losses using a latent variable approach inspired on
JP Morgan’s CreditMetrics,  J.P. Morgan (1999). The latent variables are
driven by two stochastic variables reflecting the systematic and idiosyncratic
risk component of a given loan. Surprisingly we find that credit losses ex-
hibit a finite tail index even when the underlying variables that ‘trigger’ the
default mecahnism are thin-tailed, e.g., normal. Moreover, the tail index
can be arbitrarily close to zero if idiosyncratic risk is sufficiently more thin-
tailed than the systemati c risk component. Finally, we show that the effect
of joint default behavior, as expressed by the systematic risk factor, on the
distributional tail depends on the relative probabilitv mass in the tails of the”
svstematic  and idiosyncratic risk component.”

The set-up of the paper is as follows. In Section 2 we provide the basic
modeling framework and derive the distribution of credit loss distributions for
large corporate loan or bond portfolios. We also use this section to provide
some more background as to the different approaches used for modelling
credit loss distributions. In Section 3, we derive expressions for the tail
index of credit losses for homogenous loan portfolios and a single factor. The
results are generalized in Section 4 to the case of heterogenous portfolios and
multi-factor models. In Section 5, we make a first step in characterizing the
other characteristics of tail behavior apart from the tail index. For a linear
Gaussian factor model, we characterize the slowly varying function that co-
determines the tail behavior. Section 5 suggest that there may be strong
biases in estimates of the tail index in finite samples, as the slowly varying
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function decreases to zero for extreme credit losses. We investigate this issue
by means of simulation in Section 6. Section 7 concludes, while the Appendix
gathers all the proofs.

2 Basic framework

We consider a portfolio containing rz bonds or loans. Each bond has a specific
price which is determined by current interest rates, the bond’s initial credit
rating, and its maturity. During the life time of the bond, its characteristics
can change, giving rise to changes in the market price of the bond. For
example, the firm issuing the bond may go bankrupt. In that case, the
price of the bond falls to a level guaranteed by, e.g., the sale of the firm’s
collateral, or even to zero if no guarantees are built into the bond contract.
To capture these features, we characterize each bond j, where j = 1, . . . ,n,
by a two-dimensional vector

The first variable is a latent variable that is crucial in triggering a company’s
default or a change in its credit rating. A prime candidate for Sj is the com-
pany’s ‘surplus’, i.e., the difference in market value of assets and liabilities. If
this surplus falls below a certain threshold, default occurs. We assume that
the portfolio exposures are driven by a common factor structure

where f is the common factor, &j is a firm-specific risk factor, and gj(*,  l ) de-
fines the functional form of the factor model for the jth firm. The formulation
in (2) comprises the usual factor models from the literature. For example,
if we set $(f,  Ej) = Pjf + &j for some factor loading pj E R,  we obtain the
formulation of CreditMetrics,  see J.P. Morgan (1999). If gj(f, Q) = &j/(Pjf),
we obtain the Creditrisk+  specification, at least up to first order, see Gordy
(1999) and Credit Suisse (1999). Throughout the present article, we consider
the one-factor model only, i.e., f E R ‘. This simplifies the derivations con-
siderably while still allowing us to analyze a broad range of interesting prop-
erties of credit loss distributions. In Section 7, we comment on approaches
to generalize the results to a multi-factor setting.

We make the following assumption for the components in (2).

Assumption 1 (i) {~j)j00,~ is sequence of independent random variates that
is independent off.



(ii) gj(  f, Ej)  is monotonically increasing in f and Ej for all j.
(iii) Let Fj (0)  denote th ( 1e a most everywhere continuously diflerentiable) dis-
tribution function of&j,  and F,(a)  = l-Fj(*).  Moreover, let c = inf{&iF(&)  =

1) and c = SUP(E(F(E)  = O}. If E < 00, Fj(*)  has a right-hand tail expansion
-

F (

j E  -  l / E ) = E - u ’

l  exP(P;w  l  L(E) (3)

for E suficiently large, where P;(E) = vi . & l (1 + o(1)) and L(a) is a slowly
varying function. Conversely, if Z = 00, the tail expansion takes the same
form as in (3), but with the left-hand side replaced by F,(E).  Analogous tail
expansions apply for Ff (),  the distribution of f, with the expansion being
valid for the left-hand tail.

Part (i) of the assumption is standard in the credit risk literature. It as-
serts that the surplus variables Sj, which trigger a firms default, have a
systematic risk component f,  and a so called firm-specific or idiosyncratic
risk component &j. The svstematic  risk component allows for defaults to
occur in clusters. For example, average default rates are much higher during
recessions than during booms of the economy. This can be modelled  by let-
ting f have more mass in the lower tails during recessions. Part (ii) places
restrictions on the functional form of the factor model (2). In particular, we
only consider cases where we can always uniquely retrieve an element from
the vector (Sj, f,  Ej)  given the other two elements. Note that both the linear
CreditMetrics  model and the multiplicative CreditRisk+  model satisfy this
criterion, see Gordy (1999) and the model specifications presented earlier.
The focus on increasing g(*?  0) is not very restrictive per se. For example, if
gj (f 7 Q) is decreasing in f, we can transform variables and consider s,(i, &j)
with f = -f.  Part (iii) of the assumption places restrictions on the tail be-
havior of the idiosyncratic and systematic risk components. If P;(E)  E 0, we
allow for tails that lie in the domain of attraction of a Frechet  or a Weibull
law, see Embrechts et al. (1997). We also allow for tails that have an
exponential decav.  Though our formulation is not as general as that in The-
orem 3.3.26 of Embrechts et al. (1997) , we still cover all distributions that
are commonly used in empirical exercises, e.g., the normal and the Gamma
distributions.

The second characteristic of bond j in (1) is the credit loss rj () associated
with bond j. The loss depends on several factors. First, the surplus variable
Sj may trigger a credit event such as default or a credit rating migration.
This results in a monetary loss. ’ The severity of the loss is determined by

l We assume that the exposures are marked to market, such that a credit rating mi-
gration generally causes a change in market value due to a change in the (market) credit
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(inter alia) the initial credit rating, as the ratings are directly related to the
bond’s market discount factors. The amount lost may also depend on the
state of the economy. This can be modeled by incorporating a common factor
$J  in 7~  ( l ). For example, the level and shape of the term structure of interest
rates may change over time, resulting in higher or lower losses in the event of
default. Similarly, there mav be an additional idiosvncratic  risk component
qj, for example, if the bond‘ is a convertible bond. In the present paper we
refrain from introducing the additional complications of dependence of 7~  (m)
on $J  or qj. Finally, the loss functions rj(*) may differ in general over different
bonds or firms. Easy examples are cases in which the sizes of the loans or
their maturities differ over firms.

We make the following assumption for the loss functions.

Assumption 2 supj  E [ rj(Sj)21  f] < oo almost surely.

The assumption makes the application of a law of large numbers possible
at a later stage. Note that the potential loss rj(*) may still be unbounded,
as long as the conditional squared expectation is bounded uniformly in j.
This comprises most cases of practical interest, e.g., portfolios of bonds,
convertible bonds, interest rate derivatives like swaps, etc. As mentioned,
for reasons of simplicity we do not allow rj (0)  to depend on other stochastic
variables than Sj. Such extensions can be useful if one wants to study credit
risk and market risk in an integrated framework, see the remarks in Lucas,
Klaassen, Spreij, and Straetmans (1999).

The credit loss for a portfolio of size n is now given by

i.e., the sum of the individual losses. Instead of considering the distribution
of Cn  directly, we follow Lucas et al. (1999) and consider the case n + 00.
Define

C = lim C,ln. (5)
n+oo

The advantage of considering the distribution of credit losses for (infinitely)
large portfolios only, is that the number of stochastic components is limited
considerably. This facilitates the study of the tail behavior of credit losses.
As was shown in Lucas et al. (1999),  empirically relevant quantiles of C, e.g.,
99% or 99.9%,  can be used to construct good approximations to quantiles of
Cn  for n in the range 300-500 or larger. These values of n are quite small
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given the usually large numbers of exposures in tvpical  bank portfolios. We”
have the following theorem.

Theorem 1 (Williams)

!\% i xrj(Sj,  kj)  - E [rj(Sj, kj)i  f] a.S,.  0.
. a

Using Assumption 2 the proof of this theorem follows directly from Theorem
12.13 of Williams (;991),  see also Lucas et al. ( 1999). Consequently, from
now on we only consider

C=  lim  ‘~E[~j(S3.li))~f],n+oo  n
j=l

(6)

which does only depend on one stochastic variable, fl and not on {Ej}39”,1.  As
argued in the introduction, we are especially interested in the tail behavior of
C, as this is very important from a credit risk management perspective. The
most straightforward wav to study this behavior is by using extreme value
theory. In the next two sections we start by deriving the rate of tail decay
in the form of the tail index for portfolios of increasing complexity.

3 Tail index for homogenous portfolios

For expositional purposes, we first derive the tail index of the credit loss
distribution for a homogenous portfolio. This portfolio contains exposures
which exhibit the same systematic risk, initial credit rating, and credit loss
in case of default. In particular, for all j we set gj (f, Ej)  =  g(f, Q),  Fj (E) =
FE(&),  and r#‘j>  = l~~j<s)  (Sj) for some relevant s E R,  where l~( 0) is the
indicator function for the set A. So all bonds in the portfolio have the same
characteristics. In case of default (Sj < s), one money unit is lost, whereas
there is no loss if default does not occur. Using this stylized portfolio, (6)
simplifies to

isj<s}(�j)/  f] zz P☯9(f~&j) < S( f] l

j=l

(7)

Given the monotonicity conditions in Assumption 1, we can define the
partial inverse functions g-‘(f,  Sj) and g-f (Sj, Ej)  such that

9Lfd7-‘(f~sj)J  = 9(9+(Sj,Ej>,Ej) = g(f,Ej) = Sj- (8)
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In addition to Assumption 1, we postulate the following requirements for the
factor model (2).

Assumption 3 (i) Let Sj, 3, and &j denote the support of Sj, f, and Ej
respectively. Then g-‘(f, s) and S,‘(s,  Ej)  are well defined for all j, s E  S”,
f E  3, and Ej  E  &j. Also,

for all f E 3 and
(9-j (S,  Ej) IS f Sj } = 3.

for all Ej  E  Ej.  (ii) If p;(e) E 0 and &-)  G 0, lim,+,ln 1g-f(s,E)I/ln 1~1  =  C.
Else lim,-t,  g-f (s, &)/&  = (.

Part (i) of the assumption requires that the factor model (2) is balanced in
the systematic risk component f and the idiosyncratic risk &j.  In particular,
any realization of f can be compensated by a suitable realization of &j to
produce the same value of Sj. This implies that if &j is pushed to the upper
end of its support, f has to be pushed to the lower edge of its support in
order to realize the same value of Sj. The intuition in economic terms of this
condition is as follows. Consider the borderline case where a firm j is almost
pushed into bankruptcy. If the common risk factor f is extremely adverse,
then firm specific conditions (Ej)  have to be highly advantageous to prevent
the firm from going bankrupt. Typical examples excluded by Assumption 3
are when firms are pushed into bankruptcy for a given realization of f no
matter their firm specific risk factor realization &j.  Part (ii) of the assumption
is again a condition on the balancedness of the factor model (2). In particular,
the rate at which systematic risk components have to change in order to
maintain a fixed level . of surplus Sj = s has to be related to the rate of
change of the idiosyncratic risk factor. Again, one can easily check that the
condition is met for the linear and multiplicative factor model specifications
commonly studiedin the credit risk literature. Also note that one can often
use a transformation of variables to achieve the required balancedness. For
example, instead of considering f . exp(Q  one can consider f l & with &j =
exp(Ej).  Such transformations can alter the tail behavior of the random
variates, such that one has to make sure that Assumption 1 is still met.

The following theorem is proved in the Appendix.

Theorem 2 Let Assumptions 1 through 3 be satisfied.

l If pi (0)  = ps( l ) G 0, C lies in the maximum domain of attraction of the
Weibull distribution with tail index UC  = CV{/V~.
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l Otherwise, if v,f  = L$, C lies in the maximum domain of the Weibull
distribution with tail index vc  = vIcu2fly;.

Theorem 2 directly reveals how the tail index of the credit loss distribution
depends on the tail indices of the latent factors (f and &j)  and on the factor
model g(e).  The dependence on the factor model only enters through C, which
is controlled by the balancedness condition (ii) in Assumption 3. If the tails
of f and &j are of the Frechet or Weibull type, see Embrechts et al. (1997) *
the theorem shows that the tail index of the credit loss distribution is directly
proportional to the ratio of the tail index of f to that of Ej. The tail index
of C can thus be very low if VE  is much higher than vi.f Put differently, the
tails of the credit loss distribution may be very fat if the idiosyncratic risk
is much lighter tailed than the systematic risk, at least if both risks have
Frechet tvpe tails. This makes economic sense. If bad realizations of f occur”
more often because f has fatter tails than &j,  simultaneous default of large
portions of the portfolio as opposed to isolated firms is more likely, resulting
in a higher probabilitv of extreme realizations of C.”

An interesting implication of the second part of Theorem 2 is that the
tail index of credit losses can be finite even if the underlying risk factors f
and &j are both thin-tailed, see also Lucas et al. (1999) and Figure 1 below.
AS an example, take the linear factor model Sj = ,0f + &j,  with f and &j
both standard normally distributed and ,8 > 0. Clearly, ~3’  =  V{  = -l/2,
G f= u2 = 2, and C = p-2*  As a result we obtain z-q  =  pw2.  This confirms
the results in Lucas et al. (1999). So higher systematic risk in terms of a
higher p (and thus a lower c>  transforms into a lower tail index of C.

To illustrate all the above findings, we present some credit loss distri-
butions with different tail indices. We consider the linear factor model
Sj = Pf + Ej with P = 1. We further assume that f and &j follow a Student
t distribution and that the probability of default is 5%. The resulting tail
indices are given in Figure 1.

The first thing to see in Figure 1 is that for ~1’  > V[ the distribution
function of C approaches 1 for C T 1 with increasing steepness. This implies
that the density of C will be increasing in C near the maximum credit loss
of 1. The fact that such phenomena have so far never been observed in the
literature is not surprising. Up to now, the focus has only been on thin-
tailed risk factors, e.g., normal or Gamma. The above results for fat-tailed
risk factors, therefore, constitute a new contribution to the literature. The
results also have a practical edge for credit risk management. The likelihood
of extreme credit losses is increased if the common risk factor has fatter tails
than the idiosyncratic risk factor. As it can be difficult to reliably estimate
the tail-fatness of f and &j from the empirical data that is typically available,
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Figure 1: Credit loss distributions with different tail indices
The figure contains the credit loss densities for a homogenous portfolio (top row)

and the log-exceedance probabilities for extreme credit losses. The underlying
factor model is linear, g( f, q)  = f + q , and the default probability is 5%. All
Ej are identically distributed. The risk-factors f and Ej both follow a Student t
distribution withsvf  and of degrees of freedom, respectively.
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a more conservative approach than that based on normally distributed risk
factors can be warranted for prudent risk management.

4 Heterogenous portfolios

So far we have concentrated on a homogenous portfolios for a one-factor
model. It is much more interesting, however, to study heterogenous portfolios
and multi-factor models. For simplicity, we focus on a portfolio consisting of
m homogenous groups, where m can be arbitrarily large. Using (6),  we have

c = F Ai l  P☯gi(f,G) < slf] = jil: Ai l  F,(g,�(f, s)),

i = l i = l

where, with a slight abuse of notation, we have replaced the firm index j by
the group index i. The constants Xi denote the ith exposure size multiplied
by the fraction of firms present in group i.

In order to study extreme credit losses, we need several additional defini-
tions. First define the upper bound of the support of C. Let

c * = SUP  y:  Xi
l Fi(9t�(f7 S)),

fE3 i-1
-

then C* defines our maximum credit loss. Note that C* does not equal the
maximum credit loss for a portfolio of finite size, as it may be the case that
C*  < cE1 Ai. Firms can be pushed into default by either the systematic (f)
or the idiosyncratic (~j)  risk factors. Therefore, the maximum credit loss for
a portfolio of finite size is always xF1 Ai. In the limit, however, the idiosyn--
cratic  risk can be diversified, meaning in statistical terms that Theorem 1
applies. It is common to exclude the diversifiable risk from an analysis on
the management and pricing of risk, cf. Markowitz (1952). Therefore, we
concentrate on C* as the extremum of interest.

Let M be a collection of sets defined by

M C  {l,...,m} SUP  x  Xi l Fi(gz”
fE3iEM

W # M, such that sup x A
fE3ifMS

f,  s)) = C* A PM” c M,

l  Fi(g,�(f, S ) )  = C * .

(9)

In words, M is the collection smallest subsets of the portfolio that can give
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rise to the maximum credit loss C*.
Along with each set A4 E M, we define a collection of (disjoint) arcs

F(M)  C  F, such that for f along any f̂  E F(M)  the portfolio results in its-
supremum credit loss. The collection F(M) is assumed to be complete in
the sense that for any arc f̂  leading to C* for subgroup M, we have that all
f-values along the arc also belong to an arc in i(M).

Along each arc f, we assume there exists indices I and constants C(<,  f^)
such that

F,(g,‘(f7 4)
F,,i)  (gLt;, M  4 >

I <(C,  f^,

for all i E M, c > 0 sufficiently small, and f uniformly in f E f. We also
assume 0 < C(<,  f^) < 00.  The fact that (L  depends on { denotes that we only
consider that part of the arc fl that brings the credit loss within a t distance
of C* . We also define C ( f^>  =  lirn,J,  inf [(<, f^) as the uniform upper bound
(infinitely) close to C*.  Also define

To complete the set of definitions, let

f^*(M,  S) = arg ess sup P
f^@( M)

$fI[

M” (0 = arg ess  sup  P
MEM

iL(f*(M)) [l  - FL(f*(M))(g-E(fl  s>>]  < ti f*c”)] p[i*(M)1,

and finally
M * =  lim M*(c).

13.0
Given all these definitions, we can now present the following theorem

on the tail index of credit losses for heterogenous multi-factor models. The
theorem is proved in the appendix.

Theorem 3

lim lnP[C > c* - r] lnP.-- lim
s,(f^*(M*))  (f, 4 < s I

ln[l F ( )I
.

o-0 ld Ep -
o*w*  >>  &

The main result of this theorem is threefold. First, the theorem states
that in order to look at the extreme tail behavior of C we do not have to
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take the whole portfolio into account. Only subgroups A4  that can produce
the maximum credit loss matter. Second, given the focus on a particular M,
we do not have to consider all possible realizations of the common factors f
that push subgroup M into default. Instead, we only have to consider one
critical path, f*(M*)  for one particular M = M*.  Finally, given the critical
path f^*(M*)  and the subportfolio characterized by M”,  the extreme tail
behavior is only determined by one particular original group of the portfolio,
characterized bv i = ~(f*&!*)). S o a studv of the tail behavior of C forL ”
hete rogenous multi-factor models after stepwise simplification boils down to a
study of the tail behavior of a homogenous single-factor model. Homogeneity
is assured by the focus on the specific (homogenous) portfolio group i =
L(f *W*)),  h’lw 1 e a single-factor approach suffices because we only consider
realizations along f*  (M*).

It is easy to see that Theorem 3 comprises the result in Theorem 2. For a
homogenous portfolio and a single-factor model, we can skip the subindex L

in (10). The numerator and denominator in (10) are then obviously directly
related to the left-hand tail index of f and the right-hand tail index of E,
respectively. This corroborates the statements in Theorem 2 and leads to very
similar expressions in case of multi-factor models and heterogenous portfolios.

Apart from its positive contribution in characterizing the extreme credit
loss tails, T‘heorem 3 also points to a potential problem of the application
of extreme value theory to credit loss problems. The limiting credit loss is
determined by a single subgroup of the total portfolio only. For example,
if a specific group only constitutes an arbitrarily small portion of the total
portfolio, it can still be the case that this group completely determines the
extreme tail behavior. The small size of the group, however, makes it imma-
terial for the tail shape of credit losses near empirically relevant quantiles.
We discuss this issue and related issues pertaining to a cautious application
of extreme value theory in the credit risk context in the next two subsections.

5 Specific example: complete tail behavior

The fact that the credit loss distribution for (infinitely) large portfolios lies
in the maximum domain of attraction of a Weibull law might suggest that
extreme value theory can be very useful for computing extreme credit loss
quantiles. As these quantiles are used in risk management exercises, they are
of clear economic interest.

One example of how extreme value theory can be useful is as follows. If
a specific quantile of the credit, loss distribution is required, one can sim-
ulate from the underlying factor model. These simulations transform into
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simulated credit losses through (4). Using a set of N simulated credit losses,
the qth  quantile can be estimated by the @-th  simulated order statistic.
A much more efficient estimate can however be obtained by exploiting the
precise tail shape of the credit loss distribution. Examples of such estimators
are given in . . . One usually proceeds by estimating the rate of decay of the
tail of C using only the extreme order statistics. Subsequently, using esti-
mates of scale and location constants, the tail can be inverted to arrive at
the relevant quantile.

This brings us to an important point. Usually, much attention is paid to
the type of tail behavior (Gumbel, Frechet,  Weibull) and to reliable estima-
tion of the tail index. Much less attention is paid to the scaling constants
that are needed to make the tail approximations operational in empirical ap-
plications. A similar approach was taken in the present article. In Sections 3
and 4 we focused on obtaining closed-form expressions for the tail index for
a range of distributions for f and ~j. In this section, we study the scaling
constants in more detail, as these are important for the practical applicability
of extreme value theory.

As an aside, note that we showed in Section 4 that the rate of decay of the
tail may differ substantially over different ranges of the credit loss support.
This may limit the applicability of extreme value theory, as different tail
shapes may dominate for different sizes of the credit loss. We come back to
this issue using simulations in Section 6.

In the present section, we use an analytic approach instead of simulations.
We derive the complete tail behavior of credit losses for a specific example
and point out tail shape inhomogeneity over the support of credit losses even
in case of a homogenous portfolio and a single-factor model. This warrants
the cautious use of EVT, if it is to be used at all.

We consider the Gaussian linear factor model for a homogenous portfolio,
see also Belkin, Suchower, and Forest (1998). We have

Sj = Pf + j/l - p2&jJ

where f and &j are standard normal, and 0 < p < 1. This set-up has the basic
ingredients of the CreditMetrics  approach. We only consider default loss, and
the default probability and bond/loan size is the same for all exposures in
the portfolio. We normalize the loan sizes by letting the maximum credit
loss c* = 1. We now have the following result.
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Theorem 4 Given the model above, C has a tail expansion of the form

for c J,.  0. The leading terms in this tail expansion are

[

S2
exp -2  -

2P

Note that exp( 1 ln(c)ll/“) is slowly varying in the sense of Karamata, as

lim  exp(I ln(tr>  11’2)
c3-0  exp(  I ln(<)  11i2)

= l.i.iexp(i In Itl/l ln(#“) = 1.

Define

p-3
L(l/c)  = d&e~s2~~2p2+  ln(27rc2))  2

I [
exP syJqGpj  *(1+0(l)),1(13)

then L(a)  is slowly varying and lirn,,, L( l/r> = 0 for s < 0, which is typically
the case. We have

P[C > 1 -  {]  = p-p2)lp2  . q  l/C),

with L(e)  as in (13).
The above results illustrate some of the potential pitfalls in the appli-

cation of extreme value theory for even simple homogenous credit portfo-
lios. By concentrating only on the rate of tail decay, i.e., the tail index,
we are effectively concentrating on the factor J(l-P2)/P2  in (11). The slowly
varying function L(l/c), however, is also important for characterizing the
complete tail behavior of C for empirically relevant quantiles. The fact that
liq,, WJ) = 0 signals that tail probabilities will be overestimated if we
only concentrate on <(1-p2)lP2. The (neglected) presence of L( 0) may also
cause biases in standard estimates of the tail index, thus further limiting the
applicability of extreme value theory. To investigate these issues in more
depth, we use simulations in the next section.
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6 Simulated examples: tail inhomogeneity

In this section we make a first step in analyzing the usefulness of extreme
value theory for credit loss distribution and credit risk management. As in
the previous sections, we concentrate on the estimation of the tail index. In a
future paper we plan to consider the fit of tail expansions based on extreme
value theory for typical credit loss quantiles of empirical interest, such as
95%,  99% or even higher.

In our simple simulation set-up, we focus on the linear factor model of
CreditMetrics,

Sj (14)

where f and Ej both have mean zero and unit variance. The factors either
follow a thin-tailed Gaussian distribution or a fatter-tailed Student t(5) dis-
tribution. The higher the value of pj, the larger the systematic risk. We
consider pj = 0.1,0.25,0.5.  We assume a default probability of 1%  which
corresponds to a portfolio of BB rated bonds, see J.P. Morgan (1999).

As seen in Sections 3 and 4, the tail index is determined by only one part
of the portfolio. It is therefore interesting to study the effect of the relative
magnitude of different parts of the portfolio on the estimated tail index.
To do this, we consider a portfolio consisting of two homogenous groups.
Each group is characterized by its value of p,“,  p: and pg  for group 1 and
2, respectively. Furthermore, group 1 and 2 constitute 100X  and lOO(1  - A)
percent of the portfolio, respectively.

To estimate the tail index, several estimators can be thought of. We
concentrate on the one most well-known, namely the Hill estimator, see Hill
(1975). A crucial step in estimating the tail index is the selection of the
number of order statistics to be taken into account. As we have an ana-
lytic expression for the tail index and know the data generating process of
credit losses, we can choose the number of order statistics that minimizes
the mean-squared error (MSE) of the tail index estimator. This procedure
cannot be implemented for empirical data, but gives an indication of what
one might best expect. A disadvantage of the Hill estimator is that it was
originally developed to estimate the tail index of distributions of type II, i.e.,
distributions that lie in the maximum domain of attraction of a Frechet  law.
We have proved earlier that the credit loss distribution lies in the maximum
domain of attraction of a Weibull. This might cause complications for the
validity of the Hill estimation procedure. To check this, we compute the Hill
estimator both for the raw simulated credit losses, C, and for the transformed
credit losses (1 - C) -l. If C lies in the maximum domain of attraction of a
Weibull with index ~1,  (1 - C)-’  lies in the maximum domain of attraction

16



of the Frechet with the same index a.
The results of our simulation experiment are presented in Table 1. The

note below the table describes the simulation set-up in more detail.
We first concentrate on the tail index estimates of the untransformed

credit losses C. For Gaussian factors, the Hill estimator generally underes-
timates the true tail index. The discrepancy is smaller for smaller values of
the tail index. Based on Section 4 one can prove that for Gaussian factors
the tail index is given by maxi=i,z(  1 - p’>l& By inspecting the entries in
Table 1, we see that the bias in the Hill estimator is larger for smaller sizes of
that part of the portfolio characterized by the smallest pz. This is intuitively
clear. If the portion of the portfolio determining the extreme tail behavior is
only small, the tail shape governed by the remaining exposures in the port-
folio will heavily influence the less extreme tails, thus influencing the Hill
estimates for finite sample sizes. The biases are much less noticeable if the
smaller part of the portfolio has a larger &

If the factors follow a Student t(5) distribution, the true tail index is
generally lower. The bias in the Hill estimator is also generally lower for
$ equal to 0.25 and 0.50. For less systematic risk, p: = 0.10, the bias is
still about 30% if the tail behavior is determined by the smallest part of the
portfolio.

A peculiar finding of the present simulation experiment is seen if we
consider the transformed credit losses. As mentioned, (1 - C)-’  has Pareto
type tails. With a few exceptions for the Student t(5), however, the Hill
estimates are all too high, both for Gaussian and Student t factors. At first
sight, one might be tempted to explain this from the presence of the slowly
varying function in the expression for the tail. As proved in Section 5 for
the Gaussian case, this function decreases to zero, probably causing a bias
towards thinner tails in finite samples. It is then unclear, however, why the
same reasoning does not apply for the untransformed credit losses where a
downward rather than an upward bias was seen. Clearly, more  research has
to be put in studying the behavior of different tail index estimators for credit
loss distributions in order to understand these results more thoroughly.

7 Concluding remarks

In this paper, we followed the conditional approach to credit risk manage-
ment. Using a latent factor model, we (nonlinearlv) decompose credit risk
into a svstematic  and an idiosyncratic risk factor. We allow for different tail
behavior of both risk components and a general factor structure. With these
ingredients, we prove that under a wide variety of circumstances, the distri-
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Table 1: Hill Estimates of the Credit Loss Tail Index

x
Gaussian factors

Tail C
Student t(5) factors Gaussian factors

Tail (1 - C)-’
Student t(5) factors

A?
Pl P;

L
Pl P; Pl  2 P;

2
Pl P;

1 0 25 50 1 0 25 50 1 0 25 50 1 0 25 50
1 0 6.2(9.0) 5.3(9.0) 5.5(9.0) 1 0 3.1(3.0) 1.8(3.0)  1.9(3.0) 1 0 84.2(9.0)  27.5(9.0) 9.4(9.0) 1 0 56.6(3.0)  10.8(3.0)  2.6(3.0)

1 25 6.5(9.0) 2.6(3.0) 2.6(  3.0) 2 5  3.1(3.0) 1.8(1.7) 1.4(  1.7) 2 5  80.9(9.0) 27.9(  3.0) 9.2(3.0)  25 50.6(3.0) 12.0(  1.7) 2.3p.7)
5 0  6.1(9.0)  2.8(3.0) l.O( 1.0) 5 0  3.1(3.0) 1.8(1.7) l.l(l.0) 50 79.5(9.0) 27.4(3.0) 9.1(  1.0) 5 0  50.0(3.0) 13.1(  1.7) 1.9(  1.0)

d Pi 4 Pi 4 P; d P;
1 0 25 50 1 0 25 50 1 0 25 50 1 0 2 5 50

1 0 5.7(9.0) 6.2(9.0) 4..5(9.0) 1 0 3.1(3.0)  1.9(3.0)  2.0(3.0) 1 0 83.0(9.0)  28.3(9.0) 10.2(9.0) 1 0 60.3(3.0)  11.8(3.0)  3.3(3.0)
10 25 6.1(9.0) 2.8(  3.0) 2.7(3.0) 2 5  2.9(3.0) 1.8(1.7) 1.6(1.7) 2 5  sS.O(S.0) 29.5(  3.0) 8.9(3.0) 2 5  34.5(3.0) 9.4(  1.7) 2.3(  1.7)

5 0  5.9(9.0)  3.0(3-o)l.O( 1.0) .  5 0  2.6(3.0) 1.7(1.7) l.l( 1.0) 5 0  48.6(9-O) 22.8(  3.0) 9.q  1.0) 5 0  21.7(3.0) 8.0(  1.7) 2.9(  1.0)

d P; PT P; d P; d P;
1 0 25 50 1 0 25 50 1 0 25 50 1 0 25 50

1 0 6.2(9.0) 5.9(9.0) 4.5(9.0) 1 0 3.1(3.0)  2.3(3.0) 2.2(3.0) 1 0 84.2(9.0)  42.8(9.0) 17.0(9.0) 1 0 57.2(3.0)  16.7(3.0)  6.3(3.0)
50 25 5.8(9.0) 2.7(3.0) 2.7(3.0) 2 5  2.3(3.0) 1.8(  1.7) 1.4(  1.7) 2 5  41.7(9-O) 27.7(3.0) 14.1(3.0) 2 5  21.4(3.0) 10.3(1.7) 4.4(  1.7)

5 0  5.6(9.0) 2.7(3.0) l.O( 1.0) 50 1.7(3.0) 1.4(1.7) l.l( 1.0) 50 18.2(9.0) 12.7(3.0) 8.2(  1.0) 50 6.4(  3.0) 4.5(  1.7) 2.3(  1.0)

4 Pi d P; d P; PT Pi
1 0 25 50 1 0 25 50 1 0 25 50 1 0 25 50

1 0 6.4(9.0)  5.4(9.0) M(9.0) 1 0 3.1(3.0)  2.9(3.0) 2.6(3.0) 1 0 85.1(9.0)  72.9(9.0)  52.8(9.0) 1 0 57.4(3.0)  44.2(3.0)  21.6(3.0)
90 25 5.6(  9.0) 2.6(  3.0) 2.7(3.0) 25 1.9(3.0) 1.8(  1.7) 1.7(1.7) 25 28.6(  9.0) 27.2(3-O) 23.4(  3.0) 25 10.0(3.0) 10.5(  1.7) 8.5(1.7)

50 4.9(  9.0) 2.7(3.0) l.O( 1.0) 5 0  2.0(3.0) 1.4(  1.7) l.l( 1.0) 50 9.8(9.0) 8.5(  3.0) 8.3(  1 .O) 50 2.6(3.0) 2.6(1.7) 2.3(  1.0)

Pf Pi d P; 4 P; PT P;
1 0 25 50 1 0 25 50 1 0 25 50 1 0 25 50

1 0 6.1(9.0) 6.1(9.0) 5.9(9.0) 1 0 3.1(3.0)  3.1(3.0) 3.0(3.0) 1 0 85.5(9.0)  79.9(9.0)  79.4(9.0) 1 0 51.9(3.0)  52.7(3.0)  51.5(3.0)
99 25 5.1(9.0) 2.8(  3.0) 2.7(3.0) 25 1.8(3.0) 1.8(  1.7) 1.8(1.7) 2 5  27.5(9.0) 28.2(  3.0) 27.6(3.0)  25 11.0(3.0) 9.7(1.7) 10.7(1.7)

50 4.5(  9.0) 2.6(3.0) l.O(  1.0) 5 0  2.0(3.0) 1.6(  1.7) l.O(  1.0) 50 9.8(9.0) 8.7(3.0) 8.3(  1 .O) 50 2.5(3.0) 2.4(  1.7) 2.1(  1.0)

The table contains estimates of the tail index of the credit loss distribution based on the Hill estimator. The factor model is linear,
S. = pjf  + (1 - p3)‘12&j,  and the factors f and Ej either have a standard normal, or a unit variance Student t(5) distribution. The
vilues  of pT/lOO  instead of pi are presented in the table. The loan portfolio consists of 2 groups, where group 1 (characterized by px>
constitutes X%  of the portfolio. The tail index estimates are obtained as follows. For a series of 1000 observations, we compute the Hill
estimator as a function of the number of order statistics. This is repeated 100 times to obtain an estimate of the variance of the Hill
estimator. As we know the tail index analytically, we can compute the mean-squared error (MSE) as a function of the number of order
statistics using the estimated variance (mentioned earlier) and the squared bias. The latter is computed using the average of the Hill
estimates (per number of order statistics) over the 100 replications. The final estimate is the average Hill estimate for the number of
order statistics that minimizes the MSE. As the Hill estimator is typically for Frechet  laws and we have a distribution in the maximum
domain of attraction of a Weibull, we estimate the index using the original credit losses (tail C) and transformed credit losses (tail
(1 - C)-‘),  where we note that (1 - C)-’ has Frkhet  tails if C has Weibull tails.



bution  of portfolio credit losses lies in the maximum domain of attraction
of a Weibull law. For a homogenous portfolio and a single factor, the tail
index is related directly to the factor model structure and the tail indices
of svstematic  and idiosyncratic risk. For multi-factor models and heteroge-
nous  portfolios, the expression for the tail index is much more involved. The
key result, however, is that only an arbitrarily small subset of the complete
portfolio determines the extreme tail behavior. Moreover, only one partic-
ular realization of the systematic risk factors matters for the tail index. In
words, the thickness of the extreme tail is determined by the realization of
risk factors that in a sense produces the worst possible culmination of poten-
tial losses. If the idiosyncratic risk is much thinner tailed than the systematic
risk, the tail index of credit losses is very small. In particular, the density of
credit losses may then be increasing towards the upper end of its support. In
some circumstances, the increasing part of the density already starts before
extreme quantiles of empirical interest, e.g., 99%. This means that very ex-
treme credit losses may show up with a much larger probability than based
on a. factor model with both Gaussian systematic and idiosyncratic risk.

For a special case of a linear Gaussian factor model, we were able to de-
termine the tail behavior analytically in more much detail. We proved that
in the setting studied the algebraically declining tail shape has to be comple-
mented by a slowly varying function that decreases to zero. As a result, in
finite samples tails may appear to be more rapidly declining than the in fact
are. To studv the magnitude of the potential bias, we conducted a small-scale
simulation experiment. Some of the theoretical findings were supported in
the experiment. Tail index estimates are generally biased, and the bias is
larger if the part of the portfolio that determines the tail index is smaller.
The simulation experiment also produced some interesting topics for further
research. It turned out that the tail index estimators behaved completely
differently if the credit- losses were transformed or not. The transformation
considered was that which makes the extreme tail shape of credit losses lie in
the maximum domain of attraction of the Frechet rather than the Weibull.
Though one would expect intuitivelv that the Hill estimator, which is de-
signed to estimate the tail index of “a tvpe II limiting law, performs better
for the transformed credit losses, it turned out that the estimates for the
untransformed losses were much closer their true values.

Several interesting topics for future research remain. First, a further
study into the properties of different tail index estimators for different trans-
formations of credit losses seems warranted. This will also be a first step
for the second topic of research, namely an assessment of the adequacy of
extreme quantiles estimated using extreme value theorv. Though the biases
and properties in general of tail indices are interesting in themselves, the fit
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of extreme tails and quantiles based on extreme value theory seems more
important from a practical point of view. This boils down to studying the
applicability and relevance of extreme value theory for practical credit risk
management.

Appendix: Proofs
We first prove the following lemma for the homogenous portfolio of Sections 3.

Lemma Al Given Assumptions 1 through 3, we have

limlnPIC>l-[] -- lim ln [Ff (9-f(s,  E))]
lCl0 w EtF In [l - FE(E)] (Al)

Proof: First note that gwE (f, s) is decreasing in f. Moreover, the inverse of g-“(f,  s) with
respect to f is given by g-f (s, &j).  From (7), we have

where the inequality is preserved because g( f, &j) is increasing in &j. Therefore,

P[C  > 1 - <] = w-E(f,s)  > F,l(l - r>3

= P[f  < 9-%F,V - {>>I

= m-% F,'(l  - r>>3, (A3)

where the inequality is reversed because g-&(  f, s) is decreasing in f. Using the substitution
& = FED1  (1 - 5) we obtain the desired result.

The importance of this lemma lies in the fact that it
index of the distribution of C. From Corollary 3.3.13 of
Mikosch (1997) it follows that if (Al) equals vc #  0, then
of attraction of a Weibull law with (right) tail index VC.

n

allows us to compute the tail
Embrechts, Kliippelberg, and
C lies in the maximal domain

Proof of Theorem 2: We first prove the first half of the theorem. If z = 00, we have
from the tail conditions in Assumption 1 and the result in Lemma Al that

lim ln[p(()  > 1 - s>] In  (9-f(s,E))-“’,
- Iim [ l Lf w (ST d)]

-

610. 1e
E-b In  [& +f l L,(&)]

where C = limEtoo  ln[g-f  (s, e>]/  ln[&].
Similarly, if Z  < co,

lim ln[p(C  > 1 - <)I . In (7 - gefcs’ E))“’- [ l Lf([7 - ir’wl-l)]- lim
<-Lo ln( E-pz In  [(T - E)“f  . &([Z  - &l-l)]

2 0



where C now equals lim,+,  ln[f - g-f(,, E)]/  ln[Z  - E].
For the second half of the theorem, note that for .? = oo

fi f  u2  =  u$, and 0 or 00 if V[ > V$  and V{ < ~5,  respectively. A similar derivation can be
set up for the case of finite E. n

To prove Theorem 3, we first introduce the following lemma.

Lemma A2 For any Ml,  M2  E  M, Ml  #  M2,  define

3l  = {fl  1  Ai ’ F,(gzTE(f7S))  > C”  - {}
iEM

a n d

Then lirntlo  P(3i fl32)  = 0.

uw

bw

P r o o f :  L e t  Ml,M2  f M ,  Ml  #  M2. If the lemma is false, then for a given [ with
[ sufficiently small, there exists a region 3*  C 3 such that 3*  C 31, 3*  C 32, and
P(f  E 3*)  > 0. As A41  is the smallest subset of the portfolio giving rise to the maximum
credit loss,

x Ai l E(gt”(f,s))  > k,

Wh  \M2

for all f E 3*  and some constant k > 0. Using this and (A5), we have

for all f f 3*.  As { can be chosen arbitrarily small, this contradicts the definition of C’
as the supremum credit loss and thus proves the lemma. n

Proof of Theorem 3: Given Lemma A2, we have to consider

which follows by noting that

P C Xi l Fi(gz”(f,S))  > C* -t
[ 1 [= P C Ai * [l -Fi(g,“(f,~))]  < < 1 . (AT)
iEM iEM

Conditional an a given arc f̂  E 3(M), the uniform boundedness in the definition of I
ensures that the term with i = h(j)  dominates the other terms for < J- 0. As a result, we
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can replace the sum over i by the single term indexed I. A similar argument can be
repeated, leading us to select the arc f^+ and subset M*  that produce the fattest tail in
(A6). The proof is completed by noting that

-.lim 1nP  [L(f*(,.))[ 1 - F,(f*(M*))(g-“(f,s))]  < [] = lim lnP [g-‘(j+) > qj*(M*)) (1 E)]
<3-0 ill c a-0 ln c

ll-lP.
lim E s  > df3L~;*(~*))(l  - r,,i--
w w

= lim 1l-P  19(f9  4 < 4
E-v ln[l - ~L$(M+)]’ (A8)

which proves the theorem. m

Proof of Theorem 4: Using the fact that for =t:  .J.  -oo  we have a(z) = ~#@)/]z](l  +
0( ]x]-~)),  we obtain

P[C > l- []  = a
(

s + @-l&/V
P )

4
s+W’([)Jl-p2

a P
\

)
I--

S2 4 (a-‘(0) ( * p-1 (#-P2)lP2
- s@-l(<)dW
- e x p  -2 -( P P )I I~-l(t~l 1 Is+cp-‘(E)J1-P21

P
a S2 SW’(&/iqF p-yJ)(P-P2)lP2
-- e x p  -2 -

(

P
W)

P P )

~~]  l-;2

)s+@-�(5)☺1-p21  l

P

Let h(z) = #(z)/]z], then

i-l(t) = - exp[-$V(1/(27r[2))]

Jz;;F”  ’

with LW()  the Lambert-W function, i.e., the solution to

LW(⌧) l exp[LW(z)]  = x.

For large positive x, we have asymptotically that

LW(x)  = In(x)  - ln(ln(x)) + o(ln(ln(x))),

such that

(AlO)
nSubstituting V’(c) in (A9) by (AlO),  we obtain the desired result.
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