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In this paper the correlation between two multivariate martingales is studied. This correlation can be 

expressed in a nondecreasing process, that remains zero in the case of linear dependence. A key result 

is an integral representation for this process. 
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1. Introduction 

Let (0, F, P) be a complete filtered probability space. Let M : 0 x [0, co) + R” and 

m : R x [0, cc) + Rk be locally square integrable martingales. We assume that both 

MO and m, are zero. 

Denote by (m, M) the predictable covariation process of m and M. So (m, M): R x 

[O, 00) + [Wkxn and if m’ and M’ are the ith and jth components of m and M 

respectively, then the ij entry (m, M)” of (m, M) equals the real valued process 

(m’, M’). (m) = (m, m) and (M) = (M, M) are defined likewise. 

Assume now that for some f > 0 the matrices (m), and (M), are invertible. Then, 

parallel to what one can do when dealing with multivariate random variables, it is 

natural to express the correlation between m and M over the interval [0, t] by 

p(m, M), =(m);“‘(m, M),(M);“‘. 

Let c(m, M), =(m), -(m, M),(M)J’(M, m),. Then we have the identity 

I-p(m, M),p(M, m), =(m),““c(m, M),(m);“*. 

It follows that c( m, M), carries the same amount of information about the correlation 

between m and M as p(m, M),. It turns out that it is more convenient to study 
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C( m, M), than p( m, M),. The process c( m, M) is of interest in its own right, because 

it appears at several places in probability and statistics. For example, this process - 

or rather a slightly different one-appears in Dzhaparidze and Spreij (I989), where 

we studied a strong law of large numbers for matingales. The results of the present 

paper offer an alternative approach to such a study. 

In the situation where m and M are Gaussian martingales with deterministic 

brackets c(m, M), has an interpretation as an (L2-) projection error. Indeed 

(m, M),(M)J’M, can be considered as an Lz-projection of m, on M, and it is also 

the conditional expectation of m, given M, and the conditional covariance matrix 

of m, given M, is precisely c(m, M),. See Lipster and Shiryaev (1979, Theorem 

13.1), which also describes the case where the inverse doesn’t exist. In the general 

framework that we consider in the present paper (we don’t assume that the brackets 

are deterministic) it is not clear whether a similar interpretation holds. 

In a statistical context c(m, M) can be interpreted as a measure of deficiency 

when comparing an arbitrary estimator with an optimal one. Consider for instance 

the following simple regression example. Let y, = x:p + F, for i = 1,. . . , n. Assume 

that the E’S are independent standard normal random variables, p E Rk and that the 

regressors are deterministic. Write YT = [y, , . . . , y,,], X = [x, , . . . , x,]. Let Q be 

some positive definite matrix and denote by p^ the minimizer of the quadratic form 

( Y - X’p)‘Q( Y-X’@). Then /? = (XQX’))‘XQY, assuming that X has rank k. 

For the special case that Q is equal to the identity matrix we have as the minimizer 

/3* = (XXT))‘XY. The Gauss-Markov theorem states that Cov(p) 2 Cov(p*). Hence 

0s XQX’(Cov(p) -Cov(/?*))XQX’= XQ2XT- XQX’(XX’))‘XQX’. 

Define the martingales m and M by 

I 
m, = C X,F, and M, = i i xlQi,&,. 

,=I jp, ,=, 

Then the right hand side of the last inequality is just c(m, M),. For more general 

estimation problems we refer to Dzhaparidze and Spreij (1990) for details. 

In the present paper we drop the restrictions that (m), and (M), are invertible. 

So we have to replace (M);’ in the definition of c( m, M), by a suitable generalized 

inverse. The Moore-Penrose inverse turns out to be a good choice. Working with 

a generalized inverse however complicates the analysis of c(m, M) considerably. 

The rest of the paper is organized as follows. In Section 2 we describe some 

properties of(M), its Moore-Penrose inverse process (M)+ and invariance properties 

of M under a to (M), related orthogonal projection. Section 3 contains an important 

integral representation of c(m, M). In Section 4 linear dependence between m and 

M is defined by c(m, M) = 0 and characterized by the property that there is a 

constant (random !) matrix C such that m = CM. See Example 1 in the next section 

for a motivating example. 

The familiar case of linear dependence where m and M are replaced with random 

variables is easily recognized. 
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2. Some technical results 

In this section we describe some properties of the process (M). (M) takes its values 

in the space of positive semidefinite n x n matrices 9,,, and if t > s, then (M), - (M)$ E 

p’,. 
For fixed t, w(M), =(M),(w) may have non trivial kernel. This is typically the 

case if M, =I:=, x,ei, where E, is a real valued martingale difference sequence and 

x and R”-valued predictable process. Then (M), for t < n is always a singlular 

matrix. For t > s we always have Im(M), 11m(M),, where Im(M), is the image 

space of (M),, a linear subspace of R”. 

Define r:fix[O,co)+{O,...,n} by 

r, = dim Im(M), = rank(M),. 

Then r is a predictable process (see Proposition 2.1). Although (M) is a right 

continuous process, r may fail to be right (or left) continuous. See Example 2 

below. Define the stopping times Tk (k =O, . . . , n+ 1) by T,=O and T,,, = 

inf{ t > Tk: r, > rTL} (inf 0 = CO). Then each Tk : R + [0, 001, and T,,, = ~0. The Tk are 

in general not predictable (see Example l), which is one of the sources of the 

technical complexity in the analysis hereafter. For (0, t) E I] Tk, T,+,[ we have that 

Im(M), does not depend on t, and hence r is constant on this stochastic interval. 

So we can find a (random) matrix F(k) of size n x r, such that the columns of F(k) 

span Im(M), and F( k)TF(k) = I,, the r, x r, identity matrix. Similarly we can find 

matrices G(k) of size n x r7, l,,cs, such that the columns of G(k) span 

Im(M)TL1tTL,,l and such that G(k)TG(k) = 1r71,,, . Moreover, since Im(M), 2 

Im(M), for t > s, we can always assume that F(kf<i? of the form [G(k), U,(k)], 

where U,(k)isanx(r,-r,,l -r,,,,) matrix for (w, t) E jjTL, T,+,[, and likewise G(k) 

is of the form [F(k-1), U,(k)]. Then for (w, t)E[TL, T,+,[ there exists a r,xr, 

matrix V,(k) such that 

(JW, = F(k) V,(k)F(k)T 

and there exists an r,, 1 (TLrsj x r7, 1 (7LCr) matrix W(k) such that 

(W,lf,,,,= G(k) W(k)G(k)T. 

Notice that the V,(k) and the W(k) are in general not diagonal. Hence 

(M).= i 1 ,r,.r,+,oF(k) V.(k)F(k)T+ i l,,,G(k) Wk)G(k)T. (2.1) 
h=O h =o 

On the sets where the V,(k) and W(k) are defined, these matrices are invertible. 

Therefore we can define the generalized inverse process (M)’ by 

(M):= i lD,,,+,,F(k)V(k)~‘F(k)T+ i l,TLIIG(k) W(k)-‘G(k)T. (2.2) 
k=O k=O 

Proposition 2.1. (M): de$ned by equation (2.2) is for each t the Moore-Penrose 

inverse of (M), and r and (M)+ are predictable processes. 
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Proof. First we show that the map rank: [w’““” + (0,. . . , m A n} is upper semi- 

continuous, that is the sets G,, = {A E [w”““: rank A up} are open in the ordinary 

topology on Iw”““. Let A E G,,, and rank A = q 2 p. Then A contains a submatrix 

A, E Wxy with rank A, = q. Let {.sh} c Iw”“” be a sequence of matrices converging 

to zero. Let .syh be the submatrix of sl, that is obtained in the same was as A,, that 

is by deleting the same rows and columns. Then limk_ det(A,+ E,~) # 0. (by 

continuity of the determinant). Hence rank(A, + E+) = q for all k large enough and 

consequently rank.(A+ .sh) 2 q for the same k. This shows that G,, is open. As a 

consequence rank is a (Borel) measurable map. Since r is the composition r = 

rank (M), it is predictable. Since (M), and (M): are both symmetric and since they 

commute, it follows from Lancaster and Tismenetsky (1985, p. 432), that (M): is 

the Moore-Penrosie inverse of (M),. To show predictability of (M)+, we need the 

following characterization of the Moore-Penrose inverse for any real matrix R: R’ = 

lim,,,( RTR + (l/n)Z)-’ RT. That this characterization holds is easily seen for posi- 

tive semidenfinite matrices (see the appendix). For the general case with a consider- 

ably more difficult proof we refer to Rao and Mitra (1971, Theorem 3.5.3). Apply 

this characterization to (M)s for any stopping time S to obtain that (IV)+ as a limit 

of predictable processes is predictable too. Cl 

Remark. Proposition 2.1 really needs a proof, since 

(M), may not yield a predictable process. Consider 

another generalized inverse of 

the following example. 

(W,= ; : . 
[ 1 

Let a, be an artibrary stochastic process, possibly not adapted. Then for t > 0, 

1/t a1 
[ 1 a, taf 

is a generalized inverse of (M),, different from the Moore-Penrose inverse (which 

corresponds with a, = 0), and viewed as a stochastic process it is in general not 

predictable. 

Example 1. Let N be the standard Poisson process. Define T = inf{ t > 0: N, = 1). Then 

T is a totally inaccessible stopping time. Define now the martingale M by M, = 

N,-t-(N,,, -tI,T).Then(M),=t-tAT.Butnow T,=inf{t>O:(M),>O}=T. 

So T, is not predictable. Notice that r, = l(,,r) is predictable. 

Let now k be an arbitrary sTmeasurable random variable and K, = kl,,, T). Then 

K is predictable (cf. Bremaud, 1981, p. 304) and m = K.M (the dot means stochastic 

integration) is a martingale indistinguishable from the product KM. Although K is 

not a constant, it is strightforward to show that c(m, M) = 0 (see the introduction 

for the definition of c(m, M)). We will return to this in Section 4. 

We need some technical properties of M and (M), to be used in Section 3. These 

are formulated in the next three lemmas. In the notation introduced above we have 

the following: 
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Lemma 2.2. On the set { Tk < 00) we have: 

(i) V,,_(k - 1) = lim,Tr, V,(k - 1) exists and is invertible. 

(ii) If F(k) = G(k), then limrlrI V,(k) = W(k). If F(k) = [G(k), U,(k)], with 

U,(k) nontrivial, then we can write 

V,(k) = R,(k)R,(k)T 

with 

decomposed in blocks of appropriate sizes such that lim,17L b,(k) = 0, limrlTL c,(k) = 0 

and limrlTL a,(k)a,(k)T= W(k). 

Proof. (i) is obvious. 

(ii) If F(k) = G(k), then right continuity of(M) yields the result. Assume there- 

fore that F(k) = [G(k), U,(k)]. Then 

with the zero blocks of appropriate dimension. 

Decompose V,(k) in blocks of the same dimension as 

V,(k),, V,(k),2 
V,(k),, I V,(k),, ’ 

Since V,(k) > 0, we also have V,(k),, > 0. Since on I] T,, Tk+,[ also (M), -(M)rL s 0, 

we have that 

[ 

K(k),, - W(k) v,(k),2 

V,(k),, K(k)22 I 

>. 

A ’ 

Hence 

V,(k),, - W(k)- V,(k),,V,(k);: V,(k),, 20. 

Use the decomposition V,(k) = R,(k)R,(k)T to write this inequality as 

a,(k)a,(k)T+ b,(k)b,(k)T- W(k) 

-b,(k)c,(k)T[c,(k)c,(k)T]-‘c,(k)b,(k)TzO. 

But c,(k) is invertible, so this inequality becomes 

a,(k)a,(k)T- W(k) 2 0. (2.3) 

Right continuity of(M) gives lim,l,, V,(k),, = W(k). So 

O=lim[v(k),,- W(k)]=lim[(a,(k)a,(k)T- W(k))+b,(k)b,(k)T]. 
IlTh IlTA 
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The term in brackets is because of equation (2.3) the sum of two nonnegative 

matrices. Hence lim ,lTIa,(k)a,(k)T= W(k) and lim,,,b,(k)=O. Because 

limrlTr V,(k)22=0, we obtain lim,l,c,(k)=O. 0 

Introduce the following notation. P, = (M),(M):. Observe that P, for fixed (t, w) 

is the orthogonal projection on Im(M), along Ker(M),. P as a process doesn’t 

depend on t on ] T,, T,+,[I. It is, like r, nor right or left continuous at the T,, although 

(trivially) left and right limits exist and are finite. Furthermore, for t > s, we have 

P,l’, = P,P, = P,, because Im(M), = Im(M),. 

Lemma 2.3. M is indistinguishable from the stochastic integral l?M and from the 

product PM. 

Proof. P is predictable (from Proposition 2.1). Hence P.M defines again a marting- 

ale. Then 

(M-P.M)=((I-P).M)= (I-P)d(M)(I-P)T. 

On IT,, T,,.,[ we have 

Pd(M)=d(P(M))=d(M) 

which makes the integral zero over ] T,,, T,+,[. On { Tk < KJ} we can apply the same 

argument if P7, = P7,_. Otherwise we get 

(I - P,,)A(M),, = (I- &k)[(M)Tk -(Mh~~l 

=-(I-P,L)(M),._=-(Z-P,,)P,,_.(M),_=O, 

since PTLPTA_ = PT,_. Hence (M -R M) is indistinguishable from the zero process. 

Consider now the product PM. On ] T,, T,+,[I we have d(PM) = P dM. Let T, < 00. 

Then 

PT,MTI = P,,AM, = A(P.M), = AM, = M,. 

Now we use an induction argument. Let Tk <co and assume that P-,,_,M,_, = M,_, . 

Then 

=AM,+(P,,+-f%-) PdM+O 

Hence PM and M are indistinguishable. Cl 
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The covariation process (m, M) enjoys the following property. 

Lemma 2.4. (m, M) = (m, M)F? 

Proof. 

= I lnTk,Tk+,u d(m, W5 (by Lemma 2.3) 
I&t1 

= (3 M),~I~~.~~+,u. 

On { Tk < ~0) we have 

because the second term equals zero, as can be seen by the first part of the proof 

and by using an induction argument like in the proof of Lemma 2.3. By the same 

argument it follows that 

(m, M),_P,,_=lim(m, M),P,=lim(m, M),=(m, M)Tk-. 
QTh ITT, 

So (m, WT~PT~ =(m, Mb,. Combining this with the first part of the proof we get 

(m, M)=(m, M)P. 0 

Remark. Lemmas 2.3 and 2.4 as well the results in subsequent sections can be 

generalized by taking other generalized inverses of (M). Consider for instance once 

more the example in the remark after Proposition 2.1 Then 

P, = 
1 ta, 

[ 1 0 0’ 

Write 

M, = 
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with W a standard Brownian motion, then P,M, = (PM), = M,. However one 

is in general faced with the problem that (although P, is still a (non-orthogonal) 

projection) P fails to be a predictable process. So, proving a statement like in 

Lemma 2.3 will certainly be more difficult. We will leave this possible generalization 

aside, since for our purposes the specific choice of the Moore-Penrose inverse 

suffices. 

3. The process c(m, M) 

Let II? and M be as in Section 1. Define the predictable process (related to the 

correlation between m and M) c(m, M) : 0 x [0, 00) + Rkxk by 

c(m, M) = (m)-(m, M)(M)+(M, m). 

The main result of this section is an integral representation for c( m, M). The difficulty 

that we encounter is that (M)+ and even (m, M)(M)+ may not be right continuous. 

See example 2. Typically right limits of (M)’ at the Tk are not finite. Take for 

example the trivial case where (M),=t-tr\l, then (M):=l/(t-1), for t>l. 

Therefore we need some agreements concerning the notation that we will follow. 

The considerations above forbid us to define A(M): as (M):+ - (M):_ . Therefore 

we adopt the convention 

A(M):=(M):-(M):_. 

All integrals of the type J, =jlo,,, (Y d(M)+ are then to be understood such that 

A.4 = 4(M): = a,((M): -(M):-), P rovided of sourse that (Y is such that this 

convention makes sense, for instance it is such that .I is right continuous. 

We need the following representation result (cf. Lipster and Shiryaev, 1990, 

pp. 112, 113 for the univariate case; the proof of the multivariate case proceeds 

along the same lines). 

Lemma 3.1. There exists a (in general not unique) predictable process K : fl X [0, Co) + 

R kxn, such that m - K.M is an Rk-valued locally square integrable martingale, 

orthogonal to M in the sense that (m - K.M, M) = 0. However the martingale m - K. M 

is uniquely deJined (up to indistinguishability). 0 

With a process K as in Lemma 3.1 we can write 

c(m, M)=(m-K.M)+(K.M)-(m, M)(M)+(M,m) 

=(m-K.M)+c(K.M, M). 

The proof of Theorem 3.3 below involves some calculus rules. As for (M)+, we also 

use for P the notation AP, = P, -P,_. 
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Lemma 3.2. (i) d(M),(M):_=-(M), d(M):+dP,. 

(ii) d(M), =-(M),_ d(M):(M), +dP,(M),. 

Proof. On ]Tk, T,+,[ the ordinary calculus rules apply to V,(k) and P doesn’t vary 

with t on this stochastic interval. Hence the result follows in this case. Consider 

now what happens if t = Th < ~0. If (M) happens to be left continuous at this point 

we are back in the previous case. So assume that A(M)7, f 0. Then 

A(M),(M)~~~+(M)~~A(M)~~ =(M),,(M);, -(M),,-(M):,~ = A&k. 

This proves (i). Similarly we have 

A(M),, +(M)&(M);&%~ 

=(i%, -(M)~&-+(M)~~-p-r, -&-(MTk 

= (1 -P,,m)(M),,AM),,AI - P-,,) = A&,(M),, 

which proves the second assertion. 0 

In the notation that we introduced above we are now able to present the principal 

result of this section. 

Theorem 3.3. (i) c( m, M) is a right continuous process. 

(ii) With K as in Lemma 3.1 we have for m = K.M the following integral rep- 

resentation: 

c(m, W = - I (K(M)-(m, W) d(M)+(K(M)-(m, WjT 

= -I (K -(m, M)(M)+)(M) d@f>‘(M>(K -fm, WOf)+)T 

=-I (K -(m, M)_(M)+)(M)_ d(M)‘(M)_(K -(m, M)_(M)‘jT 

(K-(m,M)_(M)‘)(I-A(M)(M)+)d(M) 

x (K -(m, kf_(M)+)r. 

Proof. (i) This is a simple consequence of right continuity of all involved processes 

if we restrict our attention to the open intervals ]Tk, T,+,[. Therefore we consider 

what happens at the Tk (on { Tk <co}). Define the process q on ]Tk, T,+,[ by 

q, = (m, M),F(k)R,(k)-‘, by q, = (m, M),F(k)R,(k)-‘, where R,(k) is as in Lemma 

2.2. We will show that lim,jr, q,qT exists. Write 

s,=4:+4:, 



292 K. Dzhaparidze, P. Spreij / Martingale correlations 

with 

and 

q: = (m, M),F(k)R,(k)YT 

q: = ((m, M), -(m, M),)F(k)R,(k)-T. 

First we will show that lim,L,A qf = 0. It is sufficient to prove that tr[qf(qT)T] tends 

to zero for f 1 T,. Write 

s:cs:,‘= K WWUW: d(M)tcT2 0. 
(T~,rl (Tk.‘l 

Let K, be the ith row of K and write (M): = Cr=, QjtQf , where the Qjr are R” valued 

random variables and QTQ,, = 0 if if j. Then 

1 
2 tr(qfqfT) = C K, d(M)Qj, 1 

‘..I 
which is by Schwarz’ inequality less than 

ki d(M)K; 
I 

0; d(M) Qjt 

Ki d(M)KTC Q~((M),-(M)T~)Q,, 
i 

= tr K d(M)kT tr[((M), -(M)Tk)(WTI. (3.1) 
(T~,rl 

The first factor of this product tends to zero as t 1 T,, . Consider now the seond factor. 

First we notice that 

tr[(M),(M):]=tr[F(k)F(k)T]=tr[F(k)TF(k)]=r,. 

(Remember that r, = rank(M),.) Next we compute 

tr[(WTk(M):I = tr[G(k) Wk)G(k)TF(k) V,(k)m’F(k)Tl 

= tr[ V,(k)-‘F(k)TG(k) W(k)G(k)TF(k)] 

=tr[ V,(k)-‘[ wAk) :]] 

=tr[ R,(k)-‘[ wik) i]R,(k)pT] 

=,,i [.A,)-’ :][ W;k) ;][d”1)-’ fj] 

(q,(k)q,(k)T) -’ W(k) 0 
= tr 

0 0 1 
= tr[(a,(k)a,(k)T)m’ W(k)1 
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which tends to tr[ W(k)-' W(k)] = rr,. Hence lim,l,,[((M), -(M),,)(M):] = 

rTk+ - rTA < cc. So from equation (3.1) we obtain that indeed qf + 0 as t J, Tk. Secondly 

we look at qi . From Lemma 2.4 we see that there exists a random matrix A(k) such 

that (m, M)T, = A(k)G(k)T. Hence 

q; =A(k)G(k)TF(k)R,(k)mT 

=A(k)[I O][ “(t)pT f] 

SO 

=A(k)[a,(k)-T 01. 

q:(q:)T=A(k)(a,(k)a,(k)T)m’A(k)T+A(k) W(k)p’A(k)T, 

since W(k) is invertible and a,( k)a,( k)T + W(k) by Lemma 2.2. Because of the fact 

that lim ,Ir, qf = 0, and that u,(k) is bounded for tJ T,, we get 

hy q,qf= ;I; q:(q:)T=A(k) W(k)m’A(k)T. 

But 

(m, M)&W:,(M m), = A(k)G(k)TG(kl WklY’G(klTG(kMk)’ 

=A(k) W(k)m’A(k)T, 

which gives right continuity of (m, M)( M)+(M, m) at the Tk (on { Tk <a}), thus 

proving the first assertion of the theorem. In order to prove the second one we 

proceed as follows. Because c(m, M) is right continuous we can use the results of 

Lemma 3.2 in the computations below. 

dc(m, M) = K d(M)KT-(m, M)_(M)+ d(M)KT 

-(m, M)_ d(M)+(M, m)- K d(M)(M)+(M, m) (3.2) 

from which we obtain by Lemma 3.2, 

dc(m, hf)=-(K(M)_-(m, M)_) d(&f)+(K(M)-(m, M))7 

+ K dP(M)KT- (m, M)_ dPKT-K dP(M, m) (3.3) 

= -(K(M)-(m, M)) d(M)+(K(M)-(m, M))T 

+ K d(M)_KT -(m, M)_ dPKT- K dP(M, m)_. (3.4) 

It is immediately seen that on jTk, T,+,[ the last three terms vanish, whereas on 

{ Tk <co} we have 

(m, WTAAPTh = (m, WT~PTA&WI = 0, 

since P,-_APTL = 0. This proves the first formula of the second assertion. The other 

ones follow similarly. q 
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Remark. At t = Tk it is not true that A(M): ~0 and that (M),A(M)T(M), ~0. 

However for all t one has (M),+A(M):(M),- s 0. This is trivially true on the open 

intervals lTk, Tk+,[. Consider what happens at Tk on { Tk <CO} if A(M),, # 0. We 

know that G(k)W(k)G(k)r-F(k-l)Vr~~(k-l)F(k-l)T>O or, with an obvious 

decomposition of W(k): 

[ 

W(k),,- V,,-(k-l) W(k),, 

W(k),2 W(k),, 1 >. 

’ . 
Hence, since W(k),, is invertible, we get 

W(k),, - W(k),, W(k),-: W(k),, - V,,-(k - 1) 20. (3.5) 

Now look at 

(M)+(M);#),- 

= (M),,-(M)=,(M),~-(M),- 

=F(k-l)VrLJk-l)[F(k-l)TG(k)W(k))’G(k)TF(k-l) 

- V,,_(k-l))‘]V,,_(k-l)F(k-l)T. 

Consider the term in brackets. Again in obvious notation, it becomes 

[W(k))‘],,- V,,_(k-1))’ 

=[W(k),,- W(k),,W(k);; W(k),,]~‘-V,,_(k-l)~‘~O, 

from equation (3.5). Thus we have proved the following: 

Corollary 3.4. 7ihe process c( m, M) is nondecreasing. 0 

4. Linear dependence 

In this section we will study a suitably defined notion of linear dependence between 

two square integrable martingales m and M. By analogy with the situation in which 

one deals with multidimensional random variables we have the following: 

Definition 4.1. (i) m is said to be linearly dependent on M if the process c(m, M) E 

R kxk is indistinguishable from zero. 

(ii) m and M are said to be mutually linearly dependent if both c(m, M) and 

c( M, m) are indistinguishable from zero. 

Here is the main result of this section. 

Theorem 4.2. m is linearly dependent on M if there exists a (possibly random) matrix 

c E [Wkxn with C(M) a predictable process such that m = CM. Moreover in this case 

C(M) = (m, M). Furthermore m and M are mutually linearly dependent ifs there exist 

matrices C, and C2 such that m = C,M and M = C,m. In the latter case we also have 

that C, and C, are each others Moore-Penrose inverses. 
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Remark. The matrix C in Theorem 4.2 is not necessarily .90-measurab1e. See 

Example 1 in Section 2 and Example 3 below. 

Proof of Theorem 4.2. Define y, = (m, M),(M):. Then y,(M), = (m, M), from 

Lemma 2.4. On lTk, T,+,[ we have 

dy, = (m, M),- d(M): + d(m, M),(M): 

= y,&‘f),- d(M):+ K, d(W,UW: 

= (Y,- - K,)(M),- WW:. 

So if c( m, M) = 0, then from Theorem 3.3 we obtain that y is constant on ] T,, T,+,[. 

This also implies that y admits right limits at TL if Tk < ~0. We need some more 

properties of y. On { Tk < 00) we have 

(Yr,+ -YT~)G(~)=O, (4.1) 

Y~~-~~~~=K~~[G(~)G(~)~-F(~-~)F(~-~)~]=K~~AP,,. (4.2) 

Indeed right continuity of (m, M) gives 

YT~@%, =(m, Mb, = lim(m, W, = lim YAW, = yT,+(WT,. 
!lTh flTI 

Hence ( yTl+ - yTA)(M)Tk =O, which is equivalent to equation (4.1). Next we use 

Lemma 3.2 to write 

yTk -yTkp=h M)T,(M)~k-(mY M)TAm(M)qk_ 

=(m, M)T,-A(M)~~+KT,A(M)T,(M):, 

= YT~-_(WT~-A(W:~ + KT~A(WT~(M)G~ 

= YT~-(M)T~--~(W;~ - K,(WT~-A(W~~ + KT~APT~ 

=(~T~~-KT~)(M)T~~A(M):~+KT~APT~. 

The assumption that c( m, M) = 0 yields the first term zero from Theorem 3.3, which 

gives equation (4.2). Notice that equation (4.1) and equation (4.2) imply 

(YT, -YT~_)(WT~_=O, (YT~+-YT~)(M)T~ ~0. (4.3) 

Hence YT,(WT~~=O and A(YT~(WT~)= Y-,,A(M)T~, or Ah WT~ = Y-,,A(WT~. 

Define now C =lim,,, y,. We claim that this is the matrix in the assertion of the 

theorem. Notice that on the set ok = { Tk < ~0, T,,, = a} C equals yTA+. Furthermore 

U~=OOk=fi and R,nfl,=O if kfl. F’ t trs we prove the following facts. CM is a 

martingale and CM, = y,M, = ( y. M),. 

From Lemma 2.3: CM, = C(M),(M):M,. On flk we have for js k, 

C(M),, = YT~+(M)T, = i (YT,+- YT,_,+)(WT~ 
i=, 

= ,i, (YT,+ - YT,-)(M)T, = YT,+(M)T,, 
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since ( yT,+ - yT,-)( M),, = 0 if i <j. But 

YT~+(WT, = (yr,+ -YT,)(MT,+ ~T)(M)T, = ~T,(WT, 

by equation (4.3). 

Furthermore on 0, x [0, co) n]T,, T,+,[[ we have in the same way C(M), = 

yT,+( M),, because ( yT, + - yT,_) F( j) = 0 if j < i and so C(M) is equal to y(M). Hence 

CM, = y,M, = (y.M), + 
I 

dy,M,_. 
[o,rl 

Now on ok for j G k we have 

AYT,MT,- = AYT,(M)T,(WT~MT~- = 0. 

Hence 

dy,M,_= 1 Ay,,M,,_=O. 
T,S, 

Predictability of y (Lemma 2.3) gives that CM = y.M is indeed a martingale. 

Finally we have to show that m and CM are indistinguishable. Compute 

(m-CM)=(m-~.M)=((K-y).M)= 
s 

(K - Y) d(M)(K - ~1~. 
l&t1 

Consider 

which is zero on all 1 Tk, T,+,[, because here d y, = 0. At t = Tk <CO we also get zero 

from equation (4.2). This proves the only if part. 

Next we prove the converse statement. Assume that C(M) is predictable, 

equivalently CP is predictable. Then the product m = CM is a martingale. Indeed 

CM = CPM is adapted. Let now y = CP. Then 

m= y.M+ dyM_= y.M+ 
I I’ 

dyP_M_. 
0 0 

The last integral is easily seen to be zero. So m is equal to y. M and thus a martingale. 

Moreover we also obtain 

(m, M) = Y.(M) = Y(M) - 

where again the last integral vanishes. But y(M) = C(M). Similarly (m) = C( M)CT. 

Hence c( m, M) = 0. Assume finally that m and M are mutually linearly dependent. 
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Then there exists matrices C, and C, as in the first part of the theorem. They are 

of the form as in the first part of the proof. Therefore we can compute 

C,C& = lim(m, W,(W:(M, m),(m)+(m, M),(M): 
,-a3 

= lim(m, M):(M): = C,. 
,+‘X 

Here we used in the second equality the fact that c( M, m) = 0. Similarly one can 

prove that C,C,C, = C2 and C,C, = (C,QT which shows that C, and C, are each 

others Moore-Penrose inverses (cf. Lancaster and Tismenetsky, 1985). This com- 

pletes the proof. 0 

Remark. Consider the other extreme case. One always has c(m, M), G(m),. Here 

equality holds iff (m, M), =O. Indeed, assume that equality holds, then 

(m, M),(M), = 0, and hence (m, M),P, = 0 and by Lemma 2.4 this implies (m, M), = 0. 

The converse statement is trivial. 

By localization it is possible to formulate a whole string of corollaries, which are 

roughly all of the following type. 

Corollary 4.3. Let S be a stopping time and assume that 

c(m, Nslfs++c(m, M),-lfs=,~=O. 

Then the stopped martingale ms depends linearly on the stopped martingale MS. 

Equivalently there exists C such that l~,,J m - CM) = 0. 

Proof. It holds that c(m, M)S = c(mS, MS). Hence the assumption in the corollary 

implies lim,,, c(mS, MS), =O. So c(mS, MS), =0 Vt20, since c(mS, MS) is non 

decreasing (Corollary 3.4). The result now follows from Theorem 4.2. 0 

Example 2. Let W be Brownian motion and E an N(0, 1) distributed random variable. 

Assume that W and E are independent. Let p, = W, + l{rZ,l~. Define 5: [0, 00) + R* 

by 

and M = 5.~. Let 

Then M is a martingale with respect to the filtration F = {s,},ZO and 

for (CL)= t+lc,,,) (t). Hence r, =rank(M), = l,,,(t)+2l,,.,,(r). 
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Let K : [0, co) + R2x2 be given by K(t)=K’l,,,(t)+K*l,,.,,(t), and m=K.M. 

Then (m, M), = K.(M), equals 

A computation shows 

4 -6 

(W: = 
t+3 (t- 1)(t+3) -6 12t 1 1~, . &t) . 

(t-1)(t+3) (t-1)‘(t+3) 

Let K’=[Kh] and K*=[K$]. Then 

Y, = (m, W,(M): 

t+3 

+ (4K:,+(t-l)K:,) 

L t-t3 

K:z+ 

K:z+ 

Hence lim,,, y, doesn’t exist for arbitrary K. 

Assume now that c( m, M) = 0, then from Theorem 4.2 we know that y is constant 

on (1,00). So the following equalities have to hold: K :, = Kf, and Ki, = K:, . Now 

y becomes 

And in agreement with Theorem 4.2 (cf. its proof) we see that m = +y,+M. 

Example 3. Let si be i.i.d. N(0, 1) random variables. Let .F,, = (T{F,, . _ . , F,}. Let 

x, . . . x, be an orthonormal basis for lF%” and xi = 0 for i 2 n + 1. Let furthermore 

K, : R + Rkxn be Si_, measurable. Define 

M, = C x,&i, m, = C K,AM,. 
I= I i-r 

Then 

(M), = C x,x;, (M),+= 1 xix:. 
is, i=S,nti 

A simple calculation shows that c( m, M) = 0 and that the matrix C in Theorem 4.2 

becomes C =CjS_, K,x,xy, which is S+, measurable. 
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Appendix 

We provide a simple proof of the characterization of the Moore-Penrose inverse 

of a positive semidefinite matrix R. Write R = QQT, where Q has full column rank, 

so that Q’Q is invertible. Use the matrix inversion lemma, which is a simple extension 

of the Sherman-Morrison formula (cf. Lancaster and Tismenetsky, 1985, p. 64) to 

write (R2+(l/n)l)-‘R as 

=n[l- Q(O14(QTQ)-'+QTQ)-'QTIQQT 

=nV-QW4(QTQ)-*+W'(QTQ)-'QTIQQT 

=~[~-Q(~-(ll~)(QTQ)-2+O(l/~2))(QTQ)~'QTlQQ7 

= Q(QTQ)-2QT+O(l/n). 

Clearly Q(Q’Q))‘Q’ is the Moore-Penrose inverse of R. 
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