Deconvolution for an atomic distribution

Bert van Es
Shota Gugushvili
Peter Spreij

Korteweg-de Vries Instituut voor Wiskunde
Universiteit van Amsterdam

DYNSTOCH + Workshop
Amsterdam, June 7-9, 2007

Model

Let X_{1}, \ldots, X_{n} be i.i.d. observations, s.t.

$$
X_{i}=Y_{i}+Z_{i},
$$

and let $Y^{\prime} \mathrm{s}$ and $Z^{\prime} \mathrm{s}$ be independent.

Assumption on Y
$Y=U V$ in distribution, where U has Bernoulli distribution with probability of zero $p<1$ and V has density f.

Assumption on Z
Z has the standard normal distribution.

Aim

Based on indirect observations X_{1}, \ldots, X_{n}, estimate the probability p and the unknown density f.

Related problem

Classical deconvolution problem: Y is assumed to have a density.

Motivation

Let $\eta_{t}=\xi_{t}+B_{t}$, where $\xi=\left(\xi_{t}\right)_{t \geq 0}$ is a compound Poisson process with intensity λ and $B=\left(B_{t}\right)_{t \geq 0}$ is a Brownian motion independent of ξ. Assume that η is observed at time points $1,2, \ldots, n$ and we want to characterise the distribution of ξ_{1}.

Passing to increments $\eta_{1}, \eta_{2}-\eta_{1}, \ldots$ reduces the problem to the deconvolution for an atomic distribution.
η_{i} 's can be interpreted as measurements of some quality characteristic of interest corrupted by noise Z_{i}.

Nonparametric Estimation

Tools: kernel smoothing and Fourier inversion.

Case of known p

Assume that p is known.

We have

$$
\phi_{X}(t)=\left[p+(1-p) \phi_{f}(t)\right] e^{-t^{2} / 2}
$$

where ϕ_{X} and ϕ_{f} are the ch.f.'s of X and V, respectively.
Solving for ϕ_{f}, we get

$$
\phi_{f}(t)=\frac{\phi_{X}(t)-p e^{-t^{2} / 2}}{(1-p) e^{-t^{2} / 2}}
$$

Assuming that ϕ_{f} is integrable, by Fourier inversion we obtain

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i t x} \frac{\phi_{X}(t)-p e^{-t^{2} / 2}}{(1-p) e^{-t^{2} / 2}} d t
$$

Step 1: Estimator of ϕ_{X}

Let $\phi_{e m p}$ denote an empirical characteristic function,

$$
\phi_{e m p}(t)=\frac{1}{n} \sum_{j=1}^{n} e^{i t X_{j}}
$$

Step 2: Plug-in type estimator for f
Define an estimator $f_{n h}$ of f as

$$
f_{n h}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i t x} \frac{\phi_{e m p}(t)-p e^{-t^{2} / 2}}{(1-p) e^{-t^{2} / 2}} \phi_{w}(h t) d t
$$

where w denotes a kernel function with characteristic function ϕ_{w} and h denotes a positive number, the bandwidth.

We assume that ϕ_{w} has a compact support on [$-1,1$]. An extra smoothing (in terms of ϕ_{w}) is required to ensure the integrability of an integrand in the definition of $f_{n h}$.

Estimator $f_{n h}$ is asymptotically unbiased

We have

$$
\mathrm{E}\left[f_{n h}(x)\right]-f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i t x} \phi_{f}(t)\left(\phi_{w}(h t)-1\right) d t .
$$

This expression coincides with the bias of an ordinary kernel density estimator based on observations from f and it is known that under sufficient smoothness assumptions on f it asymptotically vanishes.

Estimator for p

p is identifiable, since $\phi_{Y}(t) \rightarrow p$ as t tends to infinity.
This relation, however, cannot be used as a hint for the construction of a meaningful estimator of p, because of the oscillating behaviour of $\phi_{e m p}(t)$ as $t \rightarrow \infty$.

As an estimator of p we propose

$$
p_{n g}=\frac{g}{2} \int_{-1 / g}^{1 / g} \frac{\phi_{e m p}(t) \phi_{k}(g t)}{e^{-t^{2} / 2}} d t
$$

where the number $g>0$ denotes the bandwidth and ϕ_{k} denotes a Fourier transform of a kernel k.

The definition is motivated by the fact that

$$
\begin{aligned}
& \lim _{g \rightarrow 0} \frac{g}{2} \int_{-1 / g}^{1 / g} \frac{\phi_{X}(t)}{e^{-t^{2} / 2}} d t=\lim _{g \rightarrow 0} \frac{g}{2} \int_{-1 / g}^{1 / g} \phi_{Y}(t) d t \\
&=\lim _{g \rightarrow 0} \frac{g}{2} \int_{-1 / g}^{1 / g}\left(p+(1-p) \phi_{f}(t)\right) d t=p
\end{aligned}
$$

General case: unknown p

We define an estimator of f as

$$
f_{n h g}^{*}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i t x} \frac{\phi_{e m p}(t)-\widehat{p}_{n g} e^{-t^{2} / 2}}{\left(1-\hat{p}_{n g}\right) e^{-t^{2} / 2}} \phi_{w}(h t) d t
$$

where

$$
\hat{p}_{n g}=\min \left(p_{n g}, 1-\epsilon_{n}\right)
$$

Here $0<\epsilon_{n}<1$ and $\epsilon_{n} \downarrow 0$ at a suitable rate, which will be specified below. The truncation in is introduced due to technical reasons.

Main goal

The main goal is to derive the asymptotic normality of $f_{n h g}^{*}$ at a fixed point x.

More conditions

Condition 1. Let the true density f be such that $u^{2+\gamma_{\phi_{f}}}(u)$ is integrable. Here γ is some strictly positive number.

Condition 2. Let ϕ_{w} be real valued, symmetric and have support $[-1,1]$. Let $\phi_{w}(0)=1$ and let

$$
\begin{equation*}
\phi_{w}(1-t)=A t^{\alpha}+o\left(t^{\alpha}\right), \quad \text { as } \quad t \downarrow 0 \tag{1}
\end{equation*}
$$

for some constants A and $\alpha \geq 0$. Moreover, we assume that $\alpha<\gamma / 2$.

An example of such a kernel is a sinc kernel, $w(x)=\frac{\sin x}{\pi x}$. Its characteristic function is given by $\phi_{w}(t)=1_{[-1,1]}(t)$.

Condition 3. Let ϕ_{k} be real valued, symmetric and have support $[-1,1]$. Let ϕ_{k} integrate to 2 and let

$$
\begin{gathered}
\phi_{k}(1-t)=A t^{\alpha}+o\left(t^{\alpha}\right), \\
\phi_{k}(t)=B t^{2+\gamma}+o\left(t^{2+\gamma}\right) .
\end{gathered}
$$

as $t \downarrow 0$. Here B is some constant, and A, γ and α are as above.
Condition 4. Let the bandwidths h and g depend on $n, h=$ h_{n} and $g=g_{n}$, and let $h_{n}=\left(\left(1+\eta_{n}\right) \log n\right)^{-1 / 2}, g_{n}=((1+$ $\left.\left.\delta_{n}\right) \log n\right)^{-1 / 2}$, where η_{n} and δ_{n} are such that $\eta_{n} \rightarrow 0, \delta_{n} \rightarrow 0$, $\eta_{n}-\delta_{n}>0$, and $\left(\eta_{n}-\delta_{n}\right) \log n \rightarrow \infty$.

An example of η_{n} and δ_{n} in the definition above are

$$
\eta_{n}=2 \frac{\log \log n}{\log n}, \quad \delta_{n}=\frac{\log \log n}{\log n}
$$

Condition 5. Let ϵ_{n} be such that $-\log \epsilon_{n} \ll \log n\left(\eta_{n}-\delta_{n}\right)$.

An example of such ϵ_{n} for η_{n} and δ_{n} given above is $(\log \log n)^{-1}$.

Principal results

Our first goal is to derive the asymptotic normality of the estimator $f_{n h}(x)$.

Theorem 1. Assume Conditions 1, 2, 4, suppose that p is known and let $\mathrm{E}\left[X^{2}\right]<\infty$. Then, as $n \rightarrow \infty$ and $h \rightarrow 0$,
$\frac{\sqrt{n}}{h^{1+2 \alpha} e^{1 / 2 h^{2}}}\left(f_{n h}(x)-\mathrm{E}\left[f_{n h}(x)\right]\right) \xrightarrow{\mathcal{D}} N\left(0, \frac{A^{2}}{2 \pi^{2}(1-p)^{2}}(\Gamma(\alpha+1))^{2}\right)$,
where $\Gamma(t)=\int_{0}^{\infty} v^{t-1} e^{-v} d v$.

Remarks

In order to get a consistent estimator, $\sqrt{n} h^{-1-2 \alpha} e^{-1 / 2 h^{2}}$ has to diverge to infinity. Therefore the bandwidth h has to be at least of order $(\log n)^{-1 / 2}$.

The asymptotic variance depends on an unknown p : the larger p is, the larger is the asymptotic variance. This reflects the fact that it is 'harder' to estimate f for large values of p, since many of the 'signals' Y_{i} are expected to be zero.

Results concerning an estimator of p

Theorem 2. Let the conditions of the previous theorem hold true. Then $p_{n g}$ is a consistent estimator of p,

$$
\mathrm{P}\left(\left|p_{n g}-p\right|>\epsilon\right) \rightarrow 0
$$

as $n \rightarrow 0$ and $g \rightarrow 0$. Here ϵ is an arbitrary positive number.
$p_{n g}$ is not only consistent, but also asymptotically normal, as the following theorem demonstrates.

Theorem 3. Let the conditions of the previous theorem hold true. Then we have

$$
\frac{\sqrt{n}}{g^{2+2 \alpha} e^{1 / 2 g^{2}}}\left(p_{n g}-\mathrm{E}\left[p_{n g}\right]\right) \xrightarrow{\mathcal{D}} N\left(0, \frac{A^{2}(\Gamma(1+\alpha))^{2}}{2}\right) .
$$

Main theorem

We formulate the main theorem.
Theorem 4. Assume that the Condition 1,2,3 and 4 hold true.
Then, as $n \rightarrow \infty$ and $h \rightarrow 0, g \rightarrow 0$, we have
$\frac{\sqrt{n}}{h^{1+2 \alpha} e^{\frac{1}{2 h^{2}}}}\left(f_{n h g}^{*}(x)-\mathrm{E}\left[f_{n h g}^{*}(x)\right]\right) \xrightarrow{\mathcal{D}} N\left(0, \frac{A^{2}}{2 \pi^{2}(1-p)^{2}}(\Gamma(\alpha+1))^{2}\right)$,
where $\Gamma(t)=\int_{0}^{\infty} v^{t-1} e^{-v} d v$.

Possible generalisations

There are many possibilities to generalise the problem in question.

- One can assume that Y has an atom not necessarily in zero, but in some other known point.
- One can suppose that the location of an atom is unknown.
- One can consider a more general model $X=a Y+\sigma Z$, where σ is some positive and unknown number.
- A more general noise distribution can be considered.

Further applications

The results that we obtained can be used in decompounding problem under Gaussian noise: assume that we observe a process $\eta_{t}=\xi_{t}+B_{t}$ at equidistant time points $1,2, \ldots$, where ξ is a compound Poisson process with intensity λ and jump size density f, and B is Brownian motion. Based on a discrete sample from η, we want to estimate the density f.

The process η is a simple example of a Lévy process with Lévy density λf.

References

This presentation is based on

Bert van Es, Shota Gugushvili, Peter Spreij, Deconvolution for an atomic distribution, to appear shortly on arxiv.org.

