Deconvolution for an atomic distribution

Bert van Es Shota Gugushvili Peter Spreij

Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam

> DYNSTOCH+ Workshop Amsterdam, June 7-9, 2007

Model

Let X_1, \ldots, X_n be i.i.d. observations, s.t.

 $X_i = Y_i + Z_i,$

and let Y's and Z's be independent.

Assumption on Y

Y = UV in distribution, where U has Bernoulli distribution with probability of zero p < 1 and V has density f.

Assumption on Z

 ${\cal Z}$ has the standard normal distribution.

Aim

Based on indirect observations X_1, \ldots, X_n , estimate the probability p and the unknown density f.

Related problem

Classical deconvolution problem: Y is assumed to have a density.

Motivation

Let $\eta_t = \xi_t + B_t$, where $\xi = (\xi_t)_{t \ge 0}$ is a compound Poisson process with intensity λ and $B = (B_t)_{t \ge 0}$ is a Brownian motion independent of ξ . Assume that η is observed at time points $1, 2, \ldots, n$ and we want to characterise the distribution of ξ_1 . Passing to increments $\eta_1, \eta_2 - \eta_1, \ldots$ reduces the problem to the deconvolution for an atomic distribution.

 η_i 's can be interpreted as measurements of some quality characteristic of interest corrupted by noise Z_i .

Nonparametric Estimation

Tools: kernel smoothing and Fourier inversion.

Case of known p

Assume that p is known.

We have

$$\phi_X(t) = [p + (1 - p)\phi_f(t)]e^{-t^2/2},$$

where ϕ_X and ϕ_f are the ch.f.'s of X and V, respectively. Solving for ϕ_f , we get

$$\phi_f(t) = \frac{\phi_X(t) - pe^{-t^2/2}}{(1-p)e^{-t^2/2}}.$$

Assuming that ϕ_f is integrable, by Fourier inversion we obtain

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \frac{\phi_X(t) - pe^{-t^2/2}}{(1-p)e^{-t^2/2}} dt.$$

Step 1: Estimator of ϕ_X

Let ϕ_{emp} denote an empirical characteristic function,

$$\phi_{emp}(t) = \frac{1}{n} \sum_{j=1}^{n} e^{itX_j}.$$

Step 2: Plug-in type estimator for f

Define an estimator f_{nh} of f as

$$f_{nh}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \frac{\phi_{emp}(t) - pe^{-t^2/2}}{(1-p)e^{-t^2/2}} \phi_w(ht) dt,$$

where w denotes a *kernel function* with characteristic function ϕ_w and h denotes a positive number, the *bandwidth*.

We assume that ϕ_w has a compact support on [-1, 1]. An extra smoothing (in terms of ϕ_w) is required to ensure the integrability of an integrand in the definition of f_{nh} .

Estimator f_{nh} is asymptotically unbiased

We have

$$\mathsf{E}[f_{nh}(x)] - f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \phi_f(t) (\phi_w(ht) - 1) dt.$$

This expression coincides with the bias of an ordinary kernel density estimator based on observations from f and it is known that under sufficient smoothness assumptions on f it asymptotically vanishes.

Estimator for p

p is identifiable, since $\phi_Y(t) \rightarrow p$ as t tends to infinity.

This relation, however, cannot be used as a hint for the construction of a meaningful estimator of p, because of the oscillating behaviour of $\phi_{emp}(t)$ as $t \to \infty$.

As an estimator of p we propose

$$p_{ng} = \frac{g}{2} \int_{-1/g}^{1/g} \frac{\phi_{emp}(t)\phi_k(gt)}{e^{-t^2/2}} dt,$$

where the number g > 0 denotes the bandwidth and ϕ_k denotes a Fourier transform of a kernel k.

The definition is motivated by the fact that

$$\lim_{g \to 0} \frac{g}{2} \int_{-1/g}^{1/g} \frac{\phi_X(t)}{e^{-t^2/2}} dt = \lim_{g \to 0} \frac{g}{2} \int_{-1/g}^{1/g} \phi_Y(t) dt$$
$$= \lim_{g \to 0} \frac{g}{2} \int_{-1/g}^{1/g} (p + (1-p)\phi_f(t)) dt = p.$$

General case: unknown p

We define an estimator of f as

$$f_{nhg}^*(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \frac{\phi_{emp}(t) - \hat{p}_{ng} e^{-t^2/2}}{(1 - \hat{p}_{ng})e^{-t^2/2}} \phi_w(ht) dt,$$

9

where

$$\widehat{p}_{ng} = \min(p_{ng}, 1 - \epsilon_n).$$

Here $0 < \epsilon_n < 1$ and $\epsilon_n \downarrow 0$ at a suitable rate, which will be specified below. The truncation in is introduced due to technical reasons.

Main goal

The main goal is to derive the asymptotic normality of f^*_{nhg} at a fixed point x.

More conditions

Condition 1. Let the true density f be such that $u^{2+\gamma}\phi_f(u)$ is integrable. Here γ is some strictly positive number.

Condition 2. Let ϕ_w be real valued, symmetric and have support [-1,1]. Let $\phi_w(0) = 1$ and let

$$\phi_w(1-t) = At^{\alpha} + o(t^{\alpha}), \qquad \text{as} \qquad t \downarrow 0 \tag{1}$$

for some constants A and $\alpha \ge 0$. Moreover, we assume that $\alpha < \gamma/2$.

An example of such a kernel is a sinc kernel, $w(x) = \frac{\sin x}{\pi x}$. Its characteristic function is given by $\phi_w(t) = \mathbf{1}_{[-1,1]}(t)$.

Condition 3. Let ϕ_k be real valued, symmetric and have support [-1, 1]. Let ϕ_k integrate to 2 and let

$$\phi_k(1-t) = At^{\alpha} + o(t^{\alpha}),$$

$$\phi_k(t) = Bt^{2+\gamma} + o(t^{2+\gamma}).$$

as $t \downarrow 0$. Here B is some constant, and A, γ and α are as above.

Condition 4. Let the bandwidths h and g depend on n, $h = h_n$ and $g = g_n$, and let $h_n = ((1 + \eta_n) \log n)^{-1/2}$, $g_n = ((1 + \delta_n) \log n)^{-1/2}$, where η_n and δ_n are such that $\eta_n \to 0, \delta_n \to 0$, $\eta_n - \delta_n > 0$, and $(\eta_n - \delta_n) \log n \to \infty$.

An example of η_n and δ_n in the definition above are

$$\eta_n = 2 \frac{\log \log n}{\log n}, \quad \delta_n = \frac{\log \log n}{\log n}$$

Condition 5. Let ϵ_n be such that $-\log \epsilon_n \ll \log n(\eta_n - \delta_n)$.

An example of such ϵ_n for η_n and δ_n given above is $(\log \log n)^{-1}$.

Principal results

Our first goal is to derive the asymptotic normality of the estimator $f_{nh}(x)$.

Theorem 1. Assume Conditions 1, 2, 4, suppose that p is known and let $E[X^2] < \infty$. Then, as $n \to \infty$ and $h \to 0$,

$$\frac{\sqrt{n}}{h^{1+2\alpha}e^{1/2h^2}}\left(f_{nh}(x)-\mathsf{E}\left[f_{nh}(x)\right]\right) \xrightarrow{\mathcal{D}} N\left(0,\frac{A^2}{2\pi^2(1-p)^2}(\mathsf{\Gamma}(\alpha+1))^2\right),$$

where $\mathsf{\Gamma}(t) = \int_0^\infty v^{t-1}e^{-v}dv.$

13

Remarks

In order to get a consistent estimator, $\sqrt{n}h^{-1-2\alpha}e^{-1/2h^2}$ has to diverge to infinity. Therefore the bandwidth h has to be at least of order $(\log n)^{-1/2}$.

The asymptotic variance depends on an unknown p: the larger p is, the larger is the asymptotic variance. This reflects the fact that it is 'harder' to estimate f for large values of p, since many of the 'signals' Y_i are expected to be zero.

Results concerning an estimator of p

Theorem 2. Let the conditions of the previous theorem hold true. Then p_{ng} is a consistent estimator of p,

$$\mathsf{P}(|p_{ng} - p| > \epsilon) \to 0$$

as $n \rightarrow 0$ and $g \rightarrow 0$. Here ϵ is an arbitrary positive number.

 p_{ng} is not only consistent, but also asymptotically normal, as the following theorem demonstrates.

Theorem 3. Let the conditions of the previous theorem hold true. Then we have

$$\frac{\sqrt{n}}{g^{2+2\alpha}e^{1/2g^2}}(p_{ng} - \mathsf{E}[p_{ng}]) \xrightarrow{\mathcal{D}} N\left(0, \frac{A^2(\Gamma(1+\alpha))^2}{2}\right)$$

15

Main theorem

We formulate the main theorem.

Theorem 4. Assume that the Condition 1,2,3 and 4 hold true. Then, as $n \to \infty$ and $h \to 0$, $g \to 0$, we have

$$\frac{\sqrt{n}}{h^{1+2\alpha}e^{\frac{1}{2h^2}}}(f_{nhg}^*(x)-\mathsf{E}\left[f_{nhg}^*(x)\right]) \xrightarrow{\mathcal{D}} N\left(0,\frac{A^2}{2\pi^2(1-p)^2}(\mathsf{\Gamma}(\alpha+1))^2\right),$$

where $\mathsf{\Gamma}(t) = \int_0^\infty v^{t-1}e^{-v}dv.$

Possible generalisations

There are many possibilities to generalise the problem in question.

- One can assume that Y has an atom not necessarily in zero, but in some other known point.
- One can suppose that the location of an atom is unknown.
- One can consider a more general model $X = aY + \sigma Z$, where σ is some positive and unknown number.
- A more general noise distribution can be considered.

Further applications

The results that we obtained can be used in decompounding problem under Gaussian noise: assume that we observe a process $\eta_t = \xi_t + B_t$ at equidistant time points $1, 2, \ldots$, where ξ is a compound Poisson process with intensity λ and jump size density f, and B is Brownian motion. Based on a discrete sample from η , we want to estimate the density f.

The process η is a simple example of a Lévy process with Lévy density λf .

References

This presentation is based on

Bert van Es, Shota Gugushvili, Peter Spreij, Deconvolution for an atomic distribution, to appear shortly on arxiv.org.