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Model

Let X1, . . . , Xn be i.i.d. observations, s.t.

Xi = Yi + Zi,

and let Y ′s and Z′s be independent.

Assumption on Y

Y = UV in distribution, where U has Bernoulli distribution with

probability of zero p < 1 and V has density f.

Assumption on Z

Z has the standard normal distribution.
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Aim

Based on indirect observations X1, . . . , Xn, estimate the proba-

bility p and the unknown density f .

Related problem

Classical deconvolution problem: Y is assumed to have a density.

Motivation

Let ηt = ξt+Bt, where ξ = (ξt)t≥0 is a compound Poisson process

with intensity λ and B = (Bt)t≥0 is a Brownian motion indepen-

dent of ξ. Assume that η is observed at time points 1,2, . . . , n

and we want to characterise the distribution of ξ1.
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Passing to increments η1, η2 − η1, . . . reduces the problem to the

deconvolution for an atomic distribution.

ηi’s can be interpreted as measurements of some quality charac-

teristic of interest corrupted by noise Zi.

Nonparametric Estimation

Tools: kernel smoothing and Fourier inversion.

Case of known p

Assume that p is known.
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We have

φX(t) = [p + (1− p)φf(t)]e
−t2/2,

where φX and φf are the ch.f.’s of X and V, respectively.

Solving for φf , we get

φf(t) =
φX(t)− pe−t2/2

(1− p)e−t2/2
.

Assuming that φf is integrable, by Fourier inversion we obtain

f(x) =
1

2π

∫ ∞
−∞

e−itxφX(t)− pe−t2/2

(1− p)e−t2/2
dt.
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Step 1: Estimator of φX

Let φemp denote an empirical characteristic function,

φemp(t) =
1

n

n∑
j=1

eitXj .

Step 2: Plug-in type estimator for f

Define an estimator fnh of f as

fnh(x) =
1

2π

∫ ∞
−∞

e−itxφemp(t)− pe−t2/2

(1− p)e−t2/2
φw(ht)dt,
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where w denotes a kernel function with characteristic function

φw and h denotes a positive number, the bandwidth.

We assume that φw has a compact support on [−1,1]. An extra

smoothing (in terms of φw) is required to ensure the integrability

of an integrand in the definition of fnh.

Estimator fnh is asymptotically unbiased

We have

E[fnh(x)]− f(x) =
1

2π

∫ ∞
−∞

e−itxφf(t)(φw(ht)− 1)dt.
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This expression coincides with the bias of an ordinary kernel den-
sity estimator based on observations from f and it is known that
under sufficient smoothness assumptions on f it asymptotically
vanishes.

Estimator for p

p is identifiable, since φY (t) → p as t tends to infinity.

This relation, however, cannot be used as a hint for the construc-
tion of a meaningful estimator of p, because of the oscillating
behaviour of φemp(t) as t →∞.

As an estimator of p we propose

png =
g

2

∫ 1/g

−1/g

φemp(t)φk(gt)

e−t2/2
dt,
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where the number g > 0 denotes the bandwidth and φk denotes
a Fourier transform of a kernel k.

The definition is motivated by the fact that

lim
g→0

g

2

∫ 1/g

−1/g

φX(t)

e−t2/2
dt = lim

g→0

g

2

∫ 1/g

−1/g
φY (t)dt

= lim
g→0

g

2

∫ 1/g

−1/g
(p + (1− p)φf(t))dt = p.

General case: unknown p

We define an estimator of f as

f∗nhg(x) =
1

2π

∫ ∞
−∞

e−itxφemp(t)− p̂nge−t2/2

(1− p̂ng)e−t2/2
φw(ht)dt,
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where

p̂ng = min(png,1− εn).

Here 0 < εn < 1 and εn ↓ 0 at a suitable rate, which will be

specified below. The truncation in is introduced due to technical

reasons.

Main goal

The main goal is to derive the asymptotic normality of f∗nhg at

a fixed point x.
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More conditions

Condition 1. Let the true density f be such that u2+γφf(u) is

integrable. Here γ is some strictly positive number.

Condition 2. Let φw be real valued, symmetric and have support

[−1,1]. Let φw(0) = 1 and let

φw(1− t) = Atα + o(tα), as t ↓ 0 (1)

for some constants A and α ≥ 0. Moreover, we assume that

α < γ/2.

An example of such a kernel is a sinc kernel, w(x) = sinx
πx . Its

characteristic function is given by φw(t) = 1[−1,1](t).
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Condition 3. Let φk be real valued, symmetric and have support

[−1,1]. Let φk integrate to 2 and let

φk(1− t) = Atα + o(tα),

φk(t) = Bt2+γ + o(t2+γ).

as t ↓ 0. Here B is some constant, and A, γ and α are as above.

Condition 4. Let the bandwidths h and g depend on n, h =

hn and g = gn, and let hn = ((1 + ηn) logn)−1/2, gn = ((1 +

δn) logn)−1/2, where ηn and δn are such that ηn → 0, δn → 0,

ηn − δn > 0, and (ηn − δn) logn →∞.

An example of ηn and δn in the definition above are

ηn = 2
log logn

logn
, δn =

log logn

logn
.
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Condition 5. Let εn be such that − log εn � logn(ηn − δn).

An example of such εn for ηn and δn given above is (log logn)−1.

Principal results

Our first goal is to derive the asymptotic normality of the esti-

mator fnh(x).

Theorem 1.Assume Conditions 1, 2, 4, suppose that p is known

and let E [X2] < ∞. Then, as n →∞ and h → 0,
√

n

h1+2αe1/2h2 (fnh(x)−E [fnh(x)])
D→ N

(
0,

A2

2π2(1− p)2
(Γ(α + 1))2

)
,

where Γ(t) =
∫∞
0 vt−1e−vdv.

13



Remarks

In order to get a consistent estimator,
√

nh−1−2αe−1/2h2
has to

diverge to infinity. Therefore the bandwidth h has to be at least

of order (logn)−1/2.

The asymptotic variance depends on an unknown p : the larger

p is, the larger is the asymptotic variance. This reflects the fact

that it is ’harder’ to estimate f for large values of p, since many

of the ’signals’ Yi are expected to be zero.
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Results concerning an estimator of p

Theorem 2. Let the conditions of the previous theorem hold

true. Then png is a consistent estimator of p,

P(|png − p| > ε) → 0

as n → 0 and g → 0. Here ε is an arbitrary positive number.

png is not only consistent, but also asymptotically normal, as the

following theorem demonstrates.

Theorem 3. Let the conditions of the previous theorem hold

true. Then we have
√

n

g2+2αe1/2g2(png − E [png])
D→ N

(
0,

A2(Γ(1 + α))2

2

)
.
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Main theorem

We formulate the main theorem.

Theorem 4. Assume that the Condition 1,2,3 and 4 hold true.

Then, as n →∞ and h → 0, g → 0, we have
√

n

h1+2αe
1

2h2

(f∗nhg(x)−E [f∗nhg(x)])
D→ N

(
0,

A2

2π2(1− p)2
(Γ(α + 1))2

)
,

where Γ(t) =
∫∞
0 vt−1e−vdv.

Possible generalisations

There are many possibilities to generalise the problem in ques-

tion.
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• One can assume that Y has an atom not necessarily in zero,

but in some other known point.

• One can suppose that the location of an atom is unknown.

• One can consider a more general model X = aY +σZ, where

σ is some positive and unknown number.

• A more general noise distribution can be considered.
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Further applications

The results that we obtained can be used in decompounding

problem under Gaussian noise: assume that we observe a process

ηt = ξt + Bt at equidistant time points 1,2, . . . , where ξ is a

compound Poisson process with intensity λ and jump size density

f, and B is Brownian motion. Based on a discrete sample from

η, we want to estimate the density f.

The process η is a simple example of a Lévy process with Lévy

density λf.
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