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(1) Biological Problem

Context

• Many species can escape from fields and survive outside fields

• Raises numerous questions concerning
⇒ their foundation and origine,
⇒ their ability to persist,
⇒ their dispersal vectors.

• problems linked to Theoretical Ecology: populations dynamics in
a pertubated habitat.

• problems linked to Applied Ecology: environmental risks
⇒ release of Genetically Modified Plants,
⇒ escape of transgenes in the landscape.
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Introduction

Study of a model
for feral oilseed
rape dynamics

Ground survey
data

(2) Escape of a cultivated species

Sorgho

Concerne de nombreuses espèces…

Colza

Luzerne

Tournesol

Blé

Echappement d’une espèce cultivée

Compartiment

cultivé

Compartiment

non cultivé

Champ, jachères Bords de champs, 

Bords de routes/chemins…

Conséquences…

- modification des communautés 

des bordures (invasibilité, 

adaptation locale, compétitivité)

- flux de gènes (pollen et graines)
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(3) Reasons for choosing oilseed rape (Brassica napus .L)

• Environmental risks associated with cultivating transgenic
oilseed rape (herbicide resistant).

• Abundant populations outside fields.

• Existence of wild species able to hybridize with feral plants.

• Persistence of seeds in the soil for several years: presence of a
seed bank.

• Populations might be maintained by immigration: neighbouring
fields or seeds released by trucks.
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(4) Region of Sélommes
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(5) Production basin: Sélommes

• Ground survey of 500 feral populations on three roads and three
paths

• Monthly observations from January 2001 to June 2003 et
localization with G.P.S.

• Counts of the number of plants in each developmental stage
within each population .

• Observations of possible covariates: presence/absence of
cultivated oilseedrape, same year, herbicide treatments,
favourable Winter,..
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(6) Sélommes, Loir-et-Cher: Production basin for oilseed rape.
January 2001- June 2003: suivi of cultivated fields and feral
populations.
Map of the experiment with the three roads and three paths.
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Fig. 2-I.2. : Map of the study area representing the three paths and three roads where crops 
and feral populations of oilseed rape were surveyed from January 2001 to June 2003.  
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(7) Aims

• Explore the processes involved in the dynamics of these
populations.

• Link individual scale and population scale.

• Intrinsic randomness of survival and populations offsprings.

• Ecology ⇒ Stage structured models (Leslie matrices, Caswell
2001).

• Stochastic modelling for the dynamics of these populations

• Framework: Multitype branching processes with immigration in
one of the types

• Parametric inference for the demographic parameters of the laws
ruling the dynamics of these populations.

• Using all the data collected in Sélommes

• Problem: one type is never observed: the seeds
⇒ New problem in Statistical Inference
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(8) Life cycle graph
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(9) Annual plant model structured in 5 stages:
Xi = (Si ,Ti ,Ri ,Vi ,Fi ).

• Seeds buried in the soil i.e. in the seed bank: Si

• Seeds on the soil: Ti

• Rosettes before Winter or non vernalised rosettes: Ri

• Rosettes after Winter or vernalised rosettes: Vi

• Mature plants carrying pods: Fi .

Model parameters

• P(seed in Si → non-vernalised rosette in Ri ) = b

• P((seed in Ti → non-vernalised rosette in Ri ) = b′

• P(seed in Si → seed in Si+1) = a

• P(seed in Ti → seed in Si+1) = a′

• P(non-vernalised rosette in Ri → vernalised rosette in Vi ) = c

• P(vernalised rosette in Vi → mature plant in Fi ) = d

• G (.): Offspring distribution of plants in Fi (⇒ seeds in Ti+1)

• Ii+1: Immigration r.v. distribution µ (⇒ seeds in Ti+1).
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Modèle

Notations

Preliminary
results

Likelihood

Incomplete
observations

(10) Proposition:

• Xi = (Si ,Ti ,Ri ,Vi ,Fi ) multitype branching process

• Initial distribution π0(x) = π0(s, r , v , f , t)

P(S0 = s,T0 = t) p3(r/s, t) p4(v/r) p5(f /v)

with p4(v/r) = B(r ; c)(v), p5(f /v) = B(v ; d)(f )

p3(r/s, t) = (B(s; b) ? B(t; b′))(r)

• Transition kernel p(x ; x ′)

p(x , x ′) = p1(s
′/s, t, r) p2(t

′/f ) p3(r
′/s ′, t ′) p4(v

′/r ′) p5(f
′/v ′)

p2(t
′/f ) = (G?f ? µ)(t ′)

p1(s
′/s, t, r) =

M(s; a, b) ?M(t; a′, b′))(s ′, r ′)

B(s; b) ? B(t; b′))(r)

Notation: M(N; a, b, c)(i , j , k) =M(N; a, b)(i , j) for i + j ≤ N.
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(11) Notations

Parameters: θ = (θ1, θ2, θ3, c , d , a, b, a′, b′)

• θ1 distribution of (S0,T0),

• θ2 → offspring distribution G (θ2, .),

• θ3 → immigration distribution µ(θ3, .).

Complete observations

• K = 300 independent populations during n years.

• Observations in population k at generation i :
xk
i = (sk

i , tk
i , rk

i , vk
i , f k

i ).

• Observations up to generation n: Ok
0:n = (xk

0 , . . . , xk
n ).

• Whole observations up to time n: O0:n = (O1
0:n, . . . ,O

K
0:n).

True value of the parameter: θ0
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(12) Asymptotics

Three possible asymptotics:

1 K prescribed and n →∞
2 n prescribed and K →∞
3 K →∞ and n →∞

Here: K = 500 and n = 3.

• reasonable to choose (2)

• Other studies often belong to case (1)

• statistical inference also investigated in case (1)
(here Xi subcritical branching with immigration ⇒ positive
recurrent)
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(13) Likelihood

log L(θ;O0:n) = l(θ;O0:n) =
5∑

i=0

li (θ;O0:n) with

• l0(θ;O0:n) = l0(θ
1;O0:n) =

∑K
k=1 log pθ1(sk

0 , tk
0 ),

• l1(θ;O0:n) =
∑K

k=1

∑n
i=0 log(B(sk

i ; b) ? B(tk
i ; b′))(rk

i )

• l2(θ;O0:n) = l2(c ;O0:n) =
∑K

k=1

∑n
i=0 logB(rk

i ; c)(vk
i )

• l3(θ;O0:n) = l3(d ;O0:n) =
∑K

k=1

∑n
i=0 logB(vk

i ; d)(f k
i )

• l4(θ;O0:n) = l5(θ
2, θ3;O0:n) =

∑K
k=1

∑n
i=0 log((G?f k

i ? µ )(tk
i+1)).

• l5(θ;O0:n) = l5(a, b, a′, b′;O0:n) =

K∑
k=1

n∑
i=0

log(
M(sk

i ; a, b) ?M(tk
i ; a′, b′)(sk

i+1, r
k
i )

B(sk
i ; b) ? B(tk

i ; b′))(rk
i )

)

,
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(14)Maximum likelihood estimates

ĉ =

∑K
k=1

∑n
i=0 vk

i∑K
k=1

∑n
i=0 rk

i

; d̂ =

∑K
k=1

∑n
i=0 f k

i∑K
k=1

∑n
i=0 vk

i

. (1)

Under Pθ0 as K →∞,

• (ĉ , d̂) strongly consistent, asymptotically Gaussian at rate
√

K .

• l1 + l5 = l ′1 → quasilikelihood l̃ ′1: same results for (a, b, a′, b′).

• l4 → branching part:

-loglikelihood:
∑K

k=1

∑n
i=0(Log (G

?f k
i

θ2 ? µθ3)(tk
i+1) )

- conditional least squares or variants: (Wei & Winnicki 1990)∑K
k=1

∑n
i=0(t

k
i+1 −mθ2 f k

i − uθ3)2,
( mθ2 : mean of Gθ2 and uθ3 : mean of µθ3).

• Consistent and asymptotically Gaussian estimators of (mθ2 , uθ3)

Conclusions: Standard study, estimation at rate
√

K .
Remark: Asymptotics for Markov chains K = 1; n →∞:
⇒ would lead to similar results.
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(15) Framework

Incomplete Observations

• Impossible in practice to observe Si (nb of seeds in the seed
bank) and Ti (nb of seeds on the soil).

• Requires to study the process {Yi = (Ri ,Vi ,Fi ); i = 1, . . . , n}.
• (Yi ) is no longer Markov.

• (Yi ) is not linked to a Hidden Markov Model since (Si ,Ti ) does
not evolve independently

New statistical problem

• What parameters are identifiable when only (Yi ) is observed?
(i.e. (yk

i ); i = 1 . . . n; k = 1 . . .K ))

• How to estimate these parameters?

• Properties of these estimators?

• Non standard inference pb ⇒ requires a specific study.
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(16) Poisson case model

* Informative example leading to explicit computations
* Analogy with the Kalman filter

Assumptions

• Offspring distribution G : Poisson law P(m)

• Immigration distribution µ in type Ti : Poisson P(u)

• Initial distribution of S0 (seeds in the seed bank): Poisson P(σ)

• Initial distribution of T0 (non-vernalised rosettes): Poisson P(τ)

• S0 and T0 are independent r. v.
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(17) Probabilistic properties

Notations

• Recap Fi = σ((Sk ,Tk ,Rk ,Vk ,Fk); k = 0, . . . , i).

• Define Gi = σ(Rk ,Vk ,Fk); k = 0, . . . , i).

• Set Yk = (Rk ,Vk ,Fk).

• Set Λ0 = aσ + a′τ and for i ≥ 1,

• Λi = aiΛ0 + a′u 1−ai

1−a + a′m(Fi−1 + aFi−2 + a2Fi−3 + . . . ai−1F0)

• Λ′i = mFi + u for i ≥ 0,

Theorem
Under Assumptions (A1)-(A2), Yi = (Ri ,Vi ,Fi ) satisfies

• initial distribution is π̃0(y) = P(bσ + b′τ) p4(v/r) p5(f /v)

• conditional distribution L(Yi+1/Gi ),
P(Yi+1 = (r ′, v ′, f ′)/Gi ) = P(bΛi +b′Λ′i )(r

′) p4(v
′/r ′) p5(f

′/v ′)

Explicit dependence on the past up to time 0 through the r.v. Fi

Rk: Conditionally on Gi , Si+1 and Ti+1 independent P(Λi ), P(Λ′i ).
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(18) Incomplete Model Likelihood

Notations
Observations: Õ0:n = (yk

i ; i = 1 . . . n; k = 1 . . .K )
Parameter: θ = (σ, τ,m, u, c , d , a, b, a′, b′)
Define: λk

i (θ) and λ′i
k(θ) realizations of Λi (θ),Λ

′
i (θ) in population k.

Define Φi = bΛi + b′Λ′i and ϕk
i (θ) = bλk

i (θ) + b′λ′i
k(θ)

Likelihood for one population

• L(θ; yk
0 , . . . , yk

n ) = π̃0(θ; y
k
0 )

∏n−1
i=0 Pθ(Yi+1 = yk

i+1/yk
i , . . . , yk

0 ).

• Pθ(Yi+1 = yk
i+1/yk

i , . . . , yk
0 ) =

P(ϕk
i (θ))(r

k
i+1) p4(θ; v

k
i+1/rk

i+1) p5(θ; f
k
i+1/rk

i+1)

Loglikelihood l̃(θ, Õ0:n) associated with Õ0:n

• l̃(θ, Õ0:n) =
∑4

i=0 l̃i (θ, Õ0:n) with

• l̃0(θ, Õ0:n) =
∑K

k=1 logP(bσ + b′τ)(rk
0 ).

• l̃2(θ, Õ0:n) = l2(c ,O0:n); l̃3(θ, Õ0:n) = l3(d ,O0:n).

• It remains to study l̃0(θ, Õ0:n) and l̃4(θ, Õ0:n).
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(19)Study of l̃0(θ, Õ0:n),l̃4(θ, Õ0:n)

Preliminaries

• Set µ = Λ0 = aσ + a′τ and ν = bσ + b′τ

• λk
i = aiµ + a′u 1−ai

1−a + a′m(f k
i−1 + af k

i−2 + a2f k
i−3 + . . . ai−1f k

0 )

• λ′i
k = (mf k

i + u) and ϕk
i = bλk

i + b′λ′i
k

• l̃0(θ, Õ0:n) = l̃0(ν; r1
0 , . . . rk

0 ) ⇒ ν identifiable

• MLE: ν̂ =
PK

k=1 rk
0

K consistent asympt. Gaussian at rate
√

K .

Estimation of θ = (µ, m, u, a, b, a′, b′)
(c,d) omitted now.

• All the difficulties are in the study of this last term

• l̃4(θ, Õ0:n) = l̃4(φ
k
i , Õ0:n) =

∑K
i=1(−ϕk

i + rk
i log ϕk

i )

• What parameters are identifiable given that all the available
information is contained in the ϕk

i ?



Inference for
Incompletely

Observed
Branching
Processes

Part 2

Modèle

Likelihood

Incomplete
observations

Framework

Study for the
Poisson case

Likelihood

(20)Estimating θ from l̃4(θ, Õ0:n)

Define K(P,Q) as the Kullback-Leibler information of Q w.r.t. P
Recap If P ∼ P(λ0), Q ∼ P(λ),
K(P,Q) = λ− λ0 − λ0(log λ− log λ0).

Theorem
Let θ0 be the true parameter value. Then, almost surely under Pθ0 ,
as K → +∞

1

K
l̃4(θ, Õ0:n)→ −Eθ0

n−1∑
i=0

K(P(Φi (θ0),Φi (θ)).

Φi : random variables depending on θ and on the r.v. F0, . . . ,Fi .



Inference for
Incompletely

Observed
Branching
Processes

Part 2

Modèle
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(21) Identifiability
Corollary

1 If n = 0, only ν = bσ + b′τ is identifiable

2 If n = 1, the identifiable parameters are: ν, bµ + b′u, b′m

3 If n = 2, the identifiable parameters are:
ν, bµ + b′u, b′m, abµ + b′u + a′bu, a′b

b′

4 If n ≥ 3, the identifiable parameters are: ν, bµ, b′u, b′m, a, a′b
b′ .

Consequences

• Only the combinations appearing in (3) can be estimated.

• Natural here to use E.M. or Bayesian approaches: ongoing work.

• Very important to ecologists: how parameters are linked using
the available information ⇒ impossible with E.M

• Observations collected in the ground survey: n = 2.

• Many observed populations K = 500 ⇒ rate
√

K .

• K large ⇒ Ability to introduce covariates in the estimation.
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Estimation of the parameters

Link with the model parameters

• x1 = b′m: ”Efficient fecundity”

• x2 = a′bm:”Efficient delayed fecundity ”

• x3 = ub′ + bλ0 : seeds in the seed bank + immigrating seeds.

• x4 = ub′ + a′um + aλ0



Inference for
incompletely

observed
branching
processes

Estimated values for the model
parameters

Known values from the bibliography (Claessen, data from U.K. )

• Incorporation in the seed bank: â′ = 0.006

• Annual survival in the seed bank: â = 0.15

• Emergence rate from the seed bank: b̂′ = 0.0043

Derived estimated values for the other model parameters

• R → V: ĉ = 0.31 (favourable Winter ); ĉ = 0.14 (hiver non
favorable );

• V → F : d̂ = 0.05

• Offspring distribution G : mean m̂ = 700

• Immigration: û = 110 seeds/m (with crop); û = 25 seeds/m
(without crop)

• S → R: b̂ = 0.36

• Seeds in the seed bank at time 0: λ̂0 = 25.


