C.Larédo

Introduction

Ground survey data

Inference for Incompletely Observed Branching Processes

Catherine Larédo

M.I.A. INRA, Jouy-en-Josas et LPMA Paris 6-Paris 7, UMR7599

joint work with

O. David Mathématiques et Informatique Appliquées (M.I.A.), INRA, Jouy-en-Josas A. Garnier PhD student Laboratoire d'Ecologie, Systématique et Evolution (E.S.E.) Paris 11, Orsay.

Dynstoch-Amsterdam-2007

C.Larédo

Introduction

Study of a mode for feral oilseed rape dynamics

Ground survey data

(1) Biological Problem

Context

- Many species can escape from fields and survive outside fields
- Raises numerous questions concerning
 - \Rightarrow their foundation and origine,
 - \Rightarrow their ability to persist,
 - \Rightarrow their dispersal vectors.
- problems linked to Theoretical Ecology: populations dynamics in a pertubated habitat.

- problems linked to Applied Ecology: environmental risks
 - \Rightarrow release of Genetically Modified Plants,
 - \Rightarrow escape of transgenes in the landscape.

C.Larédo

Introduction

Study of a mode for feral oilseed rape dynamics

Ground survey data

(2) Escape of a cultivated species

Echappement d'une espèce cultivée

Champ, jachères

Bords de champs, Bords de routes/chemins... Conséquences...

- modification des communautés des bordures (invasibilité, adaptation locale, compétitivité)

- flux de gènes (pollen et graines)

Tournesol

Colza

Sorgho

C.Larédo

Introduction

Study of a model for feral oilseed rape dynamics

Ground survey data

(3) Reasons for choosing oilseed rape (*Brassica napus* .*L*)

- Environmental risks associated with cultivating transgenic oilseed rape (herbicide resistant).
- Abundant populations outside fields.
- Existence of wild species able to hybridize with feral plants.
- Persistence of seeds in the soil for several years: presence of a seed bank.
- Populations might be maintained by immigration: neighbouring fields or seeds released by trucks.

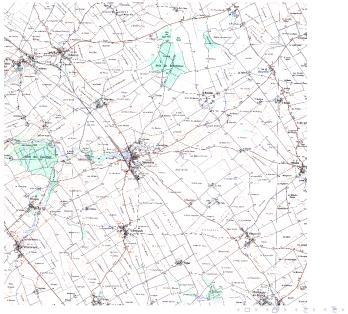
C.Larédo

Introduction

Study of a model for feral oilseed rape dynamics

Ground survey data

(4) Region of Sélommes



き うくぐ

C.Larédo

Introduction

Ground survey data

Experimental data Aims

(5) Production basin: Sélommes

- Ground survey of 500 feral populations on three roads and three paths
- Monthly observations from January 2001 to June 2003 et localization with G.P.S.
- Counts of the number of plants in each developmental stage within each population .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Observations of possible covariates: presence/absence of cultivated oilseedrape, same year, herbicide treatments, favourable Winter,..

C.Larédo

Introduction

Ground survey data

Experimental data Aims (6) Sélommes, Loir-et-Cher: Production basin for oilseed rape. January 2001- June 2003: suivi of cultivated fields and feral populations.

Map of the experiment with the three roads and three paths.

Fig. 2-12. : Map of the study area representing the three paths and three roads where crops and feral populations of oilseed rape were surveyed from January 2001 to June 2003.

C.Larédo

Introduction

Ground survey data

Experimenta data Aims

- Explore the processes involved in the dynamics of these populations.
- Link individual scale and population scale.
- Intrinsic randomness of survival and populations offsprings.
- Ecology \Rightarrow Stage structured models (Leslie matrices, Caswell 2001).
- Stochastic modelling for the dynamics of these populations
- Framework: Multitype branching processes with immigration in one of the types
- Parametric inference for the demographic parameters of the laws ruling the dynamics of these populations.
- Using all the data collected in Sélommes
- Problem: one type is never observed: the seeds
 - \Rightarrow New problem in Statistical Inference

(7) Aims

Modèle

Likelihood

Incomplete observations

Inference for Incompletely Observed Branching Processes Part 2

June 6, 2007

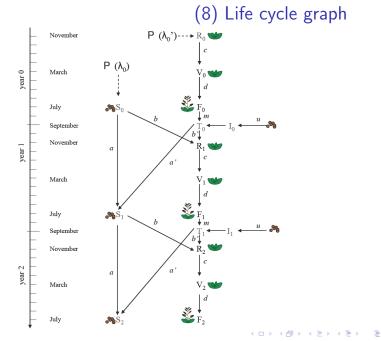
▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Modèle

Notations Preliminary results

Likelihood

Incomplete observations



Modèle

Notations Preliminary results

Likelihood

Incomplete observations

(9) Annual plant model structured in 5 stages: $X_i = (S_i, T_i, R_i, V_i, F_i).$

- Seeds buried in the soil i.e. in the seed bank: S_i
- Seeds on the soil: T_i
- Rosettes before Winter or non vernalised rosettes: R_i
- Rosettes after Winter or vernalised rosettes: V_i
- Mature plants carrying pods: F_i.

Model parameters

- $P(\text{seed in } S_i \rightarrow \text{non-vernalised rosette in } R_i) = b$
- $P((\text{seed in } T_i \rightarrow \text{non-vernalised rosette in } R_i) = b'$
- $P(\text{seed in } S_i \rightarrow \text{seed in } S_{i+1}) = a$
- $P(\text{seed in } T_i \rightarrow \text{seed in } S_{i+1}) = a'$
- $P(\text{non-vernalised rosette in } R_i \rightarrow \text{vernalised rosette in } V_i) = c$
- $P(\text{vernalised rosette in } V_i \rightarrow \text{mature plant in } F_i) = d$
- G(.): Offspring distribution of plants in F_i (\Rightarrow seeds in T_{i+1})
- I_{i+1} : Immigration r.v. distribution $\mu \iff \text{seeds in } T_{i+1}$).

Modèle

Notations Preliminary results

Likelihood

Incomplete observations

(10) Proposition:

- $X_i = (S_i, T_i, R_i, V_i, F_i)$ multitype branching process
- Initial distribution $\pi_0(x) = \pi_0(s, r, v, f, t)$

$$P(S_0 = s, T_0 = t) p_3(r/s, t) p_4(v/r) p_5(f/v)$$

with $p_4(v/r) = \mathcal{B}(r; c)(v), p_5(f/v) = \mathcal{B}(v; d)(f)$
 $p_3(r/s, t) = (\mathcal{B}(s; b) \star \mathcal{B}(t; b'))(r)$

• Transition kernel p(x; x')

$$p(x,x') = p_1(s'/s,t,r) p_2(t'/f) p_3(r'/s',t') p_4(v'/r') p_5(f'/v')$$
$$p_2(t'/f) = (G^{\star f} \star \mu)(t')$$
$$p_1(s'/s,t,r) = \frac{\mathcal{M}(s;a,b) \star \mathcal{M}(t;a',b'))(s',r')}{\mathcal{B}(s;b) \star \mathcal{B}(t;b'))(r)}$$

Notation: $\mathcal{M}(N; a, b, c)(i, j, k) = \mathcal{M}(N; a, b)(i, j)$ for $i + j \leq N$.

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆□ →

(11) Notations

Modèle

Likelihood

Notations Likelihood Estimation

Inference for Incompletely Observed

Branching Processes Part 2

Incomplete observations

Parameters: $\theta = (\theta^1, \theta^2, \theta^3, c, d, a, b, a', b')$

- θ^1 distribution of (S_0, T_0) ,
- $\theta^2 \rightarrow$ offspring distribution $G(\theta^2,.)$,
- $\theta^3 \rightarrow \text{immigration distribution } \mu(\theta^3, .).$

Complete observations

- K = 300 independent populations during *n* years.
- Observations in population k at generation i: $x_i^k = (s_i^k, t_i^k, r_i^k, v_i^k, f_i^k).$
- Observations up to generation *n*: $O_{0:n}^k = (x_0^k, \dots, x_n^k)$.
- Whole observations up to time $n: O_{0:n} = (O_{0:n}^1, \dots, O_{0:n}^K).$

True value of the parameter: θ_0

(12) Asymptotics

Modèle

Likelihood

Notations Likelihood Estimation

Incomplete observations

Three possible asymptotics:

- **1** K prescribed and $n \to \infty$
- **2** *n* prescribed and $K \to \infty$
- **3** $K \to \infty$ and $n \to \infty$

Here: K = 500 and n = 3.

- reasonable to choose (2)
- Other studies often belong to case (1)
- statistical inference also investigated in case (1) (here X_i subcritical branching with immigration \Rightarrow positive recurrent)

(13) Likelihood

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\log L(heta; O_{0:n}) = I(heta; O_{0:n}) = \sum_{i=0}^5 I_i(heta; O_{0:n})$$
 with

•
$$I_0(\theta; O_{0:n}) = I_0(\theta^1; O_{0:n}) = \sum_{k=1}^K \log p_{\theta^1}(s_0^k, t_0^k),$$

•
$$l_1(\theta; O_{0:n}) = \sum_{k=1}^{K} \sum_{i=0}^{n} \log(\mathcal{B}(s_i^k; b) \star \mathcal{B}(t_i^k; b'))(r_i^k)$$

•
$$l_2(\theta; O_{0:n}) = l_2(c; O_{0:n}) = \sum_{k=1}^{K} \sum_{i=0}^{n} \log \mathcal{B}(r_i^k; c)(v_i^k)$$

•
$$I_3(\theta; O_{0:n}) = I_3(\mathbf{d}; O_{0:n}) = \sum_{k=1}^{K} \sum_{i=0}^{n} \log \mathcal{B}(\mathbf{v}_i^k; \mathbf{d})(f_i^k)$$

•
$$I_4(\theta; O_{0:n}) = I_5(\theta^2, \theta^3; O_{0:n}) = \sum_{k=1}^K \sum_{i=0}^n \log((G^{*f_i^k} \star \mu)(t_{i+1}^k)).$$

•
$$I_5(\theta; O_{0:n}) = I_5(a, b, a', b'; O_{0:n}) =$$

,

$$\sum_{k=1}^{K} \sum_{i=0}^{n} \log(\frac{\mathcal{M}(s_i^k; a, b) \star \mathcal{M}(t_i^k; a', b')(s_{i+1}^k, r_i^k)}{\mathcal{B}(s_i^k; b) \star \mathcal{B}(t_i^k; b'))(r_i^k)})$$

Inference for Incompletely Observed Branching Processes Part 2

Notations Likelihood Estimation

Incomplete observations

Modèle

Likelihood

Notations Likelihood Estimation

Incomplete

(14) Maximum likelihood estimates

$$\hat{c} = \frac{\sum_{k=1}^{K} \sum_{i=0}^{n} v_{i}^{k}}{\sum_{k=1}^{K} \sum_{i=0}^{n} r_{i}^{k}}; \quad \hat{d} = \frac{\sum_{k=1}^{K} \sum_{i=0}^{n} f_{i}^{k}}{\sum_{k=1}^{K} \sum_{i=0}^{n} v_{i}^{k}}.$$
(1)

Under $P_{ heta_0}$ as $K o \infty$,

- (\hat{c}, \hat{d}) strongly consistent, asymptotically Gaussian at rate \sqrt{K} .
- $l_1 + l_5 = l_1' \rightarrow$ quasilikelihood $\tilde{l_1'}$: same results for (a, b, a', b').
- $I_4 \rightarrow$ branching part:
 - -loglikelihood: $\sum_{k=1}^{K} \sum_{i=0}^{n} (Log \left(G_{\theta^2}^{\star f_i^k} \star \mu_{\theta^3} \right) (t_{i+1}^k) \right)$
 - conditional least squares or variants: (Wei & Winnicki 1990) $\sum_{k=1}^{K} \sum_{i=0}^{n} (t_{i+1}^{k} m_{\theta^{2}} f_{i}^{k} u_{\theta^{3}})^{2},$ ($m_{\theta^{2}}$: mean of $G_{\theta^{2}}$ and $u_{\theta^{3}}$: mean of $\mu_{\theta^{3}}$).

• Consistent and asymptotically Gaussian estimators of $(m_{\theta^2}, u_{\theta^3})$ Conclusions: Standard study, estimation at rate \sqrt{K} . Remark: Asymptotics for Markov chains K = 1; $n \to \infty$: \Rightarrow would lead to similar results.

Modèle

Likelihood

Incomplete observations

Framework

Study for the Poisson case Likelihood

(15) Framework

Incomplete Observations

- Impossible in practice to observe S_i (nb of seeds in the seed bank) and T_i (nb of seeds on the soil).
- Requires to study the process $\{Y_i = (R_i, V_i, F_i); i = 1, ..., n\}$.
- (*Y_i*) is no longer Markov.
- (*Y_i*) is not linked to a Hidden Markov Model since (*S_i*, *T_i*) does not evolve independently

New statistical problem

- What parameters are identifiable when only (Y_i) is observed?
 (i.e. (y_i^k); i = 1...n; k = 1...K))
- How to estimate these parameters?
- Properties of these estimators?
- Non standard inference $pb \Rightarrow$ requires a specific study.

Modèle

Likelihood

Incomplete observations

Framework

Study for the Poisson case Likelihood

(16) Poisson case model

- * Informative example leading to explicit computations
- * Analogy with the Kalman filter

Assumptions

- Offspring distribution G: Poisson law $\mathcal{P}(m)$
- Immigration distribution μ in type T_i : Poisson $\mathcal{P}(u)$
- Initial distribution of S_0 (seeds in the seed bank): Poisson $\mathcal{P}(\sigma)$
- Initial distribution of T_0 (non-vernalised rosettes): Poisson $\mathcal{P}(\tau)$

• S_0 and T_0 are independent r. v.

Modèle

Likelihood

Incomplete observations

Framework

Study for the Poisson case

(17) Probabilistic properties

Notations

- Recap $\mathcal{F}_i = \sigma((S_k, T_k, R_k, V_k, F_k); k = 0, ..., i).$
- Define $\mathcal{G}_i = \sigma(R_k, V_k, F_k); k = 0, \dots, i).$
- Set $Y_k = (R_k, V_k, F_k)$.
- Set $\Lambda_0 = a\sigma + a'\tau$ and for $i \ge 1$,
- $\Lambda_i = a^i \Lambda_0 + a' u \frac{1-a^i}{1-a} + a' m (F_{i-1} + aF_{i-2} + a^2 F_{i-3} + \dots a^{i-1} F_0)$
- $\Lambda'_i = mF_i + u$ for $i \ge 0$,

Theorem

Under Assumptions (A1)-(A2), $Y_i = (R_i, V_i, F_i)$ satisfies

- initial distribution is $\tilde{\pi}_0(y) = \mathcal{P}(b\sigma + b'\tau) p_4(v/r) p_5(f/v)$
- conditional distribution $\mathcal{L}(Y_{i+1}/\mathcal{G}_i)$, $P(Y_{i+1} = (r', v', f')/\mathcal{G}_i) = \mathcal{P}(b\Lambda_i + b'\Lambda'_i)(r') p_4(v'/r') p_5(f'/v')$

Explicit dependence on the past up to time 0 through the r.v. F_i Rk: Conditionally on G_i , S_{i+1} and T_{i+1} independent $\mathcal{P}(\Lambda_i)$, $\mathcal{P}(\Lambda'_i)$.

Modèle

Likelihood

Incomplete observations

Framework Study for the Poisson case Likelihood

(18) Incomplete Model Likelihood

Notations Observations: $\tilde{O}_{0:n} = (y_i^k; i = 1 \dots n; k = 1 \dots K)$ Parameter: $\theta = (\sigma, \tau, m, u, c, d, a, b, a', b')$ Define: $\lambda_i^k(\theta)$ and $\lambda_i'^k(\theta)$ realizations of $\Lambda_i(\theta), \Lambda_i'(\theta)$ in population k. Define $\Phi_i = b\Lambda_i + b'\Lambda_i'$ and $\varphi_i^k(\theta) = b\lambda_i^k(\theta) + b'\lambda_i'^k(\theta)$

Likelihood for one population

• $L(\theta; y_0^k, \dots, y_n^k) = \tilde{\pi}_0(\theta; y_0^k) \prod_{i=0}^{n-1} P_{\theta}(Y_{i+1} = y_{i+1}^k/y_i^k, \dots, y_0^k).$

• $P_{\theta}(Y_{i+1} = y_{i+1}^k/y_i^k, \dots, y_0^k) = \mathcal{P}(\varphi_i^k(\theta))(r_{i+1}^k) p_4(\theta; v_{i+1}^k/r_{i+1}^k) p_5(\theta; f_{i+1}^k/r_{i+1}^k)$

Loglikelihood $\tilde{I}(\theta, \tilde{O}_{0:n})$ associated with $\tilde{O}_{0:n}$

- $\tilde{I}(\theta, \tilde{O}_{0:n}) = \sum_{i=0}^{4} \tilde{I}_i(\theta, \tilde{O}_{0:n})$ with
- $\tilde{l}_0(\theta, \tilde{O}_{0:n}) = \sum_{k=1}^K \log \mathcal{P}(b\sigma + b'\tau)(r_0^k).$
- $\tilde{l}_2(\theta, \tilde{O}_{0:n}) = l_2(c, O_{0:n}); \ \tilde{l}_3(\theta, \tilde{O}_{0:n}) = l_3(d, O_{0:n}).$
- It remains to study $\tilde{l}_0(\theta, \tilde{O}_{0:n})$ and $\tilde{l}_4(\theta, \tilde{O}_{0:n})$.

Modèle

Likelihood

Incomplete observations

Framework Study for the Poisson case Likelihood

(19)Study of $\tilde{I}_0(\theta, \tilde{O}_{0:n}), \tilde{I}_4(\theta, \tilde{O}_{0:n})$

Preliminaries

- Set $\mu = \Lambda_0 = a\sigma + a'\tau$ and $\nu = b\sigma + b'\tau$
- $\lambda_i^k = a^i \mu + a' u \frac{1-a^i}{1-a} + a' m (f_{i-1}^k + a f_{i-2}^k + a^2 f_{i-3}^k + \dots a^{i-1} f_0^k)$
- $\lambda_i^{\prime k} = (mf_i^k + u)$ and $\varphi_i^k = b\lambda_i^k + b'\lambda_i^{\prime k}$
- $\tilde{l_0}(\theta, \tilde{O}_{0:n}) = \tilde{l_0}(\nu; r_0^1, \dots r_0^k) \Rightarrow \nu$ identifiable
- MLE: $\hat{\nu} = \frac{\sum_{k=1}^{K} r_0^k}{K}$ consistent asympt. Gaussian at rate \sqrt{K} .

Estimation of $\theta = (\mu, m, u, a, b, a', b')$

(c,d) omitted now.

- All the difficulties are in the study of this last term
- $\tilde{l}_4(\theta, \tilde{O}_{0:n}) = \tilde{l}_4(\phi_i^k, \tilde{O}_{0:n}) = \sum_{i=1}^{K} (-\varphi_i^k + r_i^k \log \varphi_i^k)$
- What parameters are identifiable given that all the available information is contained in the φ_i^k?

Modèle

Likelihood

Incomplete observations

Framework Study for the Poisson case Likelihood

(20)Estimating θ from $\tilde{l}_4(\theta, \tilde{O}_{0:n})$

Define $\mathcal{K}(P, Q)$ as the Kullback-Leibler information of Q w.r.t. PRecap If $P \sim \mathcal{P}(\lambda_0), \ Q \sim \mathcal{P}(\lambda), \ \mathcal{K}(P, Q) = \lambda - \lambda_0 - \lambda_0 (\log \lambda - \log \lambda_0).$

Theorem

Let $heta_0$ be the true parameter value. Then, almost surely under $P_{ heta_0}$, as $K \to +\infty$

$$\frac{1}{\mathcal{K}}\tilde{l}_4(\theta,\tilde{O}_{0:n})\to -E_{\theta_0}\sum_{i=0}^{n-1}\mathcal{K}(\mathcal{P}(\Phi_i(\theta_0),\Phi_i(\theta)).$$

 Φ_i : random variables depending on θ and on the r.v. F_0, \ldots, F_i .

Modèle

Likelihood

Incomplete observations

Framework Study for the Poisson case Likelihood

(21) Identifiability

Corollary

- 1 If n = 0, only $\nu = b\sigma + b'\tau$ is identifiable
- 2 If n = 1, the identifiable parameters are: $\nu, b\mu + b'u, b'm$
- **3** If n = 2, the identifiable parameters are: $\nu, b\mu + b'u, b'm, ab\mu + b'u + a'bu, \frac{a'b}{b'}$
- **4** If $n \ge 3$, the identifiable parameters are: $\nu, b\mu, b'u, b'm, a, \frac{a'b}{b'}$.

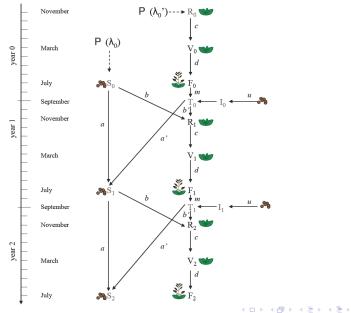
Consequences

- Only the combinations appearing in (3) can be estimated.
- Natural here to use E.M. or Bayesian approaches: ongoing work.
- Very important to ecologists: how parameters are linked using the available information ⇒ impossible with E.M
- Observations collected in the ground survey: n = 2.
- Many observed populations $K = 500 \Rightarrow$ rate \sqrt{K} .
- K large \Rightarrow Ability to introduce covariates in the estimation.

Inference for incompletely observed branching processes

Dynstoch 2007

Life cycle graph



996

æ

Estimation of the parameters Taking the affiles of the

		Estimates of the x_i 's	5	
	"All"	"With crop"	"Without crop"	
	n = 595	n = 55	n = 540	
\hat{x}_1	2.8 [0.9, 4.8]	7.4 [1.6, 13.3]	1.8 [0.3, 3.4]	<i>x</i> ₁
\hat{x}_2	1.5 [-0.1, 3.1]	-2.4 [-22.6, 17.8]	1.5 [0.17, 2.9]	<i>x</i> ₂
\hat{x}_3	16.4 [5.7, 27.1]	7.8 [-8.3, 23.8]	18.2 [7.7, 28.6]	<i>x</i> ₃
\hat{x}_4	12.5 [3.1, 21.8]	119.0 [12.4, 225.7]	6.4 [0.3, 12.4]	<i>x</i> ₄
$\hat{\tau}$	22.7	17.9	19.8	

Link with the model parameters

- $x_1 = b'm$: "Efficient fecundity"
- $x_2 = a'bm$:" Efficient delayed fecundity "

• $x_3 = ub' + b\lambda_0$: seeds in the seed bank + immigrating seeds.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

•
$$x_4 = ub' + a'um + a\lambda_0$$

Li

Estimated values for the model parameters

Known values from the bibliography (Claessen, data from U.K.)

- Incorporation in the seed bank: $\hat{a'} = 0.006$
- Annual survival in the seed bank: $\hat{a} = 0.15$
- Emergence rate from the seed bank: $\hat{b'} = 0.0043$

Derived estimated values for the other model parameters

- R \rightarrow V: $\hat{c} = 0.31$ (favourable Winter); $\hat{c} = 0.14$ (hiver non favorable);
- V \rightarrow F : $\hat{d} = 0.05$
- Offspring distribution G : mean $\hat{m} = 700$
- Immigration: $\hat{u} = 110$ seeds/m (with crop); $\hat{u} = 25$ seeds/m (without crop)

- S \rightarrow R: $\hat{b} = 0.36$
- Seeds in the seed bank at time 0: $\hat{\lambda_0} = 25$.