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Nonparametric Bayesian inference

Observations X n taking values in sample space X n. Model
{Pn

θ : θ ∈ Θn}. All Pn
θ dominated, density pn

θ .
Put a prior distribution Πn on the parameter θ and base the
inference on the posterior distribution

Πn(B |X n) =

∫
B pn

θ (X n) Πn(dθ)∫
Θn pn

θ (X n) Πn(dθ)
.

Frequentist questions:

• Does the posterior contract around the true parameter θ0 as
n →∞?

• What is the rate of contraction?



Infinite-dimensional models: parameter θ is a function (density,
regression function, drift function, . . . ), parameter space Θ is a
function space.

View prior Πn as the law of a stochastic process with sample paths
in Θ.

Attractive stochastic process priors: use Gaussian processes as
building blocks.

• flexible class

• relatively tractable mathematically



Example: Density estimation

Let X1,X2, . . . ,Xn be a sample from a distribution with positive,
continuous density θ on [0, 1].

Prior distribution on θ: take a Brownian motion Wt and let Π be
the law of the random density

t 7→ eWt∫ 1
0 eWt dt

.

(Leonard (1978), Lenk (1988), Tokdar and Ghosh (2005), . . . )

At what rate does the posterior based on this prior converge to the
true density θ0?



Ghosal, Ghosh and Van der Vaart (2000):

If there exist Θn ⊂ Θ and positive numbers εn such that nε2
n →∞

and, for some c > 0,

sup
ε>εn

log N(ε, Θn, h) ≤ nε2
n, (entropy)

Π(Θ\Θn) ≤ e−(c+4)nε2
n , (remaining mass)

Π(Bn(θ0, εn)) ≥ e−cnε2
n , (prior mass)

then for M large enough

Eθ0Π(θ : h(θ, θ0) > Mεn |X1, . . . ,Xn) → 0.



Step 1: Relate the relevant metrics (Hellinger, Kullback-Leibler,
. . . ) on the densities

pw (t) =
ewt∫ 1

0 ewt dt

to the uniform distance on the functions w .

Step 2: Solve the corresponding problem for Brownian motion.
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To get a rate εn (with nε2
n →∞), need to show that there exist

Cn ⊂ C [0, 1] such that, for some c > 0,

sup
ε>εn

log N(ε, Cn, ‖ · ‖∞) ≤ nε2
n,

P(W 6∈ Cn) ≤ e−(c+4)nε2
n ,

P(‖W − w0‖∞ < εn) ≥ e−cnε2
n ,

(small ball probability)

where w0 = log θ0.



(Bibliography: Lifshits (2006))

Brownian motion:

P(‖W − w0‖∞ < ε) ≤ P(‖W ‖∞ < ε) ∼ e−(1/ε)2 .

Hence, can not do better than εn ∼ Cn−1/4.

Question: under which conditions on w0 = log θ0 do we achieve
the rate n−1/4?



Reproducing kernel Hilbert space (RKHS):

H = {h =

∫
h′ : h′ ∈ L2}, ‖h‖H = ‖h′‖L2 .

Non-centered vs. centered small ball probability:

P(‖W − h‖∞ < ε) ≥ e−
1
2‖h‖

2
HP(‖W ‖∞ < ε).

Prior mass condition:
φw0(εn) ≤ nε2

n,

where

φw0(ε) = inf
h∈H:‖h−w0‖∞<ε

‖h‖2
H − log P(‖W ‖∞ < ε).

(concentration function)



Lemma.
If w0 ∈ Cα[0, 1], α > 0, then

inf
h∈H:‖h−w0‖∞<ε

‖h‖2
H . ε−(2−2α)/α.

Hence for w0 ∈ Cα[0, 1] the prior mass condition φw0(εn) ≤ nε2
n

holds for

εn ∼

{
n−1/4 if α ≥ 1/2

n−α/2 if α ≤ 1/2.

How about the entropy and remaining mass conditions?

They are automatically fulfilled!
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Let X1,X2, . . . ,Xn be a sample from a density θ on [0, 1].

Prior distribution on θ: law of

t 7→ eWt∫ 1
0 eWt dt

,

with W a Brownian motion

Theorem.
Suppose log θ0 ∈ Cα[0, 1]. Then the posterior contracts around θ0

at the rate

εn ∼

{
n−1/4 if α ≥ 1/2

n−α/2 if α ≤ 1/2.



Concentration of Gaussian measures

Abstract formulation:

Let B be a separable Banach space with norm ‖ · ‖. Let W be a
Borel measurable random element in B, centered and Gaussian (i.e.
b∗(W ) is Gaussian and centered for b∗ ∈ B∗).

Consider S : B∗ → B, Sb∗ = EWb∗(W ).
Reproducing kernel Hilbert space (RKHS) H associated with W :
closure of SB∗ with respect to the inner product

〈Sb∗1,Sb∗2〉H = Eb∗1(W )b∗2(W ).

Always H ⊂ B.



Example:

Let W be a Borel measurable centered and Gaussian random
element in B = C [0, 1] with norm ‖ · ‖∞.

B∗ = {finite signed measures} and for ν ∈ B∗

(Sν)t = EWt

∫ 1

0
Ws ν(ds).

It follows that H = {t 7→ EWtH : H ∈ first chaos of W },

〈t 7→ EWtG , t 7→ EWtH〉H = EGH.



Support of W : smallest closed subset B0 of B such that
P(W ∈ B0) = 1.

Fact:

The support of W is the closure of H in B.

(Consequence of Hahn-Banach.)

Much more precise: Borell’s inequality.



B1, H1: unit balls in B, H.

φw (ε) = inf
h∈H:‖h−w0‖<ε

‖h‖2
H − log P(‖W ‖ < ε).

Borell (1975):

P(W 6∈ εB1 + MH1) ≤ 1− Φ(Φ−1(e−φ0(ε)) + M).

Kuelbs and Li (1973):

H1 is compact in B, metric entropy related to small ball
probability φ0(ε).



Theorem.
Let w be in the support of W and εn > 0 such that nε2

n →∞ and

φw (εn) ≤ nε2
n.

Then for all C > 1 there exist measurable Bn ⊂ B such that

log N(3εn,Bn, ‖ · ‖) ≤ 6Cnε2
n,

P(W 6∈ Bn) ≤ e−Cnε2
n ,

P(‖W − w‖ < 2εn) ≥ e−nε2
n .



Rates of convergence in various settings

X1,X2, . . . ,Xn: i.i.d. from density θ w.r.t. a measure ν on X .

Prior distribution on θ: law of x 7→ eWx /
∫
X eWx ν(dx), with W a

centered, Borel measurable Gaussian process on X with uniformly
bounded sample paths.

Theorem.
Suppose w0 = log θ0 is in the support of W . Let εn > 0 be such
that nε2

n →∞ and φw0(εn) ≤ nε2
n (with the uniform norm). Then,

relative to the Hellinger metric, the posterior concentrates around
θ0 at the rate εn.



X (n): sample path of the process

X
(n)
t =

∫ t

0
θ(s) ds +

1√
n
Bt , t ∈ [0, 1],

with B a Brownian motion.

Prior on θ: law of a centered Gaussian process W with sample
paths in L2[0, 1].

Theorem.
Suppose θ0 is in the support of W . Let εn > 0 be such that
nε2

n →∞ and φw0(εn) ≤ nε2
n (with the L2-norm). Then, relative to

the L2-norm, the posterior concentrates around θ0 at the rate εn.



Similar results can be derived for

• classification

• regression

• ergodic diffusion

• . . .



Gaussian process priors for smoothness classes

Let X1,X2, . . . ,Xn be a sample from a distribution with a positive,
continuous density θ on [0, 1].

Prior distribution on θ: take a centered Gaussian process Wt and
let Π be the law of the random density

t 7→ eWt∫ 1
0 eWt dt

.

Suppose that log θ0 ∈ Cα[0, 1] for α > 0.

Which Gaussian process W leads to the optimal rate n−α/(1+2α)?



Candidate: Riemann-Liouville process

Wt =

∫ t

0
(t − s)α−1/2 dBs .

For α− 1/2 integer: W is (α− 1/2)-fold repeated integral of B.
For other α: use fractional calculus.

Intuition: good model for α-smooth functions.



Known results for the RL-process:

Li and Linde (1998):

− log P(‖W ‖∞ < ε) ∼ ε−1/α

RKHS is I
α+1/2
0+ (L2),

‖Iα+1/2
0+ f ‖H =

‖f ‖L2

Γ(α + 1/2)
.



Modified RL-process with parameter α > 0:

Wt =

α+1∑
k=0

Zktk +

∫ t

0
(t − s)α−1/2 dBs .

Theorem.
The support of the process W is C [0, 1]. For w ∈ Cα[0, 1] we have
φw (ε) = O(ε−1/α) as ε → 0.



Let X1,X2, . . . ,Xn be a sample from a distribution with a positive,
continuous density θ on [0, 1].

Prior distribution on θ: take a modified RL-process Wt with
parameter α > 0 and let Π be the law of the random density

t 7→ eWt∫ 1
0 eWt dt

.

Theorem.
Suppose log θ0 ∈ Cα[0, 1]. Then, relative to the Hellinger metric,
the posterior concentrates around θ0 at the rate n−α/(1+2α).



Alternative Gaussian process priors:

• fractional Brownian motion

• truncated series expansions

• wavelet expansions

• . . .



Concluding remarks

Additional questions:

• Concrete priors: priors on functions of several variables, . . .

• Scaling: W and cW lead to the same rate. How to choose c?

• Adapting to smoothness: When does mixing over the
smoothness parameter work?

• Non-Gaussian processes: Lévy processes, . . .


