Gaussian process priors in Bayesian nonparametrics

Harry van Zanten

joint work with Aad van der Vaart

Vrije Universiteit Amsterdam

2007 DYNSTOCH+ Meeting

Nonparametric Bayesian inference

Observations X^n taking values in sample space \mathcal{X}^n . Model $\{\mathbb{P}^n_{\theta} : \theta \in \Theta^n\}$. All \mathbb{P}^n_{θ} dominated, density p^n_{θ} . Put a prior distribution Π^n on the parameter θ and base the inference on the posterior distribution

$$\Pi^n(B \mid X^n) = \frac{\int_B p_\theta^n(X^n) \Pi^n(d\theta)}{\int_{\Theta^n} p_\theta^n(X^n) \Pi^n(d\theta)}.$$

Frequentist questions:

• Does the posterior contract around the true parameter θ_0 as $n \to \infty$?

• What is the rate of contraction?

Infinite-dimensional models: parameter θ is a function (density, regression function, drift function, ...), parameter space Θ is a function space.

View prior Π^n as the law of a stochastic process with sample paths in Θ .

Attractive stochastic process priors: use Gaussian processes as building blocks.

- flexible class
- relatively tractable mathematically

Example: Density estimation

Let X_1, X_2, \ldots, X_n be a sample from a distribution with positive, continuous density θ on [0, 1].

Prior distribution on θ : take a Brownian motion W_t and let Π be the law of the random density

$$t\mapsto \frac{e^{W_t}}{\int_0^1 e^{W_t}\,dt}.$$

(Leonard (1978), Lenk (1988), Tokdar and Ghosh (2005), ...)

At what rate does the posterior based on this prior converge to the true density θ_0 ?

Ghosal, Ghosh and Van der Vaart (2000):

If there exist $\Theta_n \subset \Theta$ and positive numbers ε_n such that $n\varepsilon_n^2 \to \infty$ and, for some c > 0,

$$\begin{split} \sup_{\varepsilon > \varepsilon_n} \log N(\varepsilon, \Theta_n, h) &\leq n \varepsilon_n^2, \qquad \text{(entropy)} \\ \Pi(\Theta \backslash \Theta_n) &\leq e^{-(c+4)n\varepsilon_n^2}, \qquad \text{(remaining mass)} \\ \Pi(B_n(\theta_0, \varepsilon_n)) &\geq e^{-cn\varepsilon_n^2}, \qquad \text{(prior mass)} \end{split}$$

then for M large enough

$$\mathbb{E}_{\theta_0}\Pi(\theta:h(\theta,\theta_0)>M\varepsilon_n\,|\,X_1,\ldots,X_n)\to 0.$$

Step 1: Relate the relevant metrics (Hellinger, Kullback-Leibler, \ldots) on the densities

$$p_w(t) = \frac{e^{w_t}}{\int_0^1 e^{w_t} dt}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

to the uniform distance on the functions w.

Step 1: Relate the relevant metrics (Hellinger, Kullback-Leibler, \ldots) on the densities

$$p_w(t) = \frac{e^{w_t}}{\int_0^1 e^{w_t} dt}$$

to the uniform distance on the functions w.

Step 2: Solve the corresponding problem for Brownian motion.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

To get a rate ε_n (with $n\varepsilon_n^2 \to \infty$), need to show that there exist $C_n \subset C[0, 1]$ such that, for some c > 0,

$$\begin{split} \sup_{\varepsilon > \varepsilon_n} \log N(\varepsilon, C_n, \|\cdot\|_{\infty}) &\leq n \varepsilon_n^2, \\ \mathbb{P}(W \not\in C_n) &\leq e^{-(c+4)n\varepsilon_n^2}, \\ \mathbb{P}(\|W - w_0\|_{\infty} < \varepsilon_n) &\geq e^{-cn\varepsilon_n^2}, \\ \end{split}$$
(small ball probability)

where $w_0 = \log \theta_0$.

(Bibliography: Lifshits (2006))

Brownian motion:

$$\mathbb{P}(\|W - w_0\|_{\infty} < \varepsilon) \le \mathbb{P}(\|W\|_{\infty} < \varepsilon) \sim e^{-(1/\varepsilon)^2}$$

Hence, can not do better than $\varepsilon_n \sim C n^{-1/4}$.

Question: under which conditions on $w_0 = \log \theta_0$ do we achieve the rate $n^{-1/4}$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Reproducing kernel Hilbert space (RKHS):

$$\mathbb{H} = \{h = \int h' : h' \in L^2\}, \qquad \|h\|_{\mathbb{H}} = \|h'\|_{L^2}.$$

Non-centered vs. centered small ball probability:

$$\mathbb{P}(\|W-h\|_{\infty}$$

Prior mass condition:

$$\phi_{w_0}(\varepsilon_n) \le n\varepsilon_n^2,$$

where

$$\phi_{w_0}(arepsilon) = \inf_{h \in \mathbb{H}: \|h - w_0\|_{\infty} < arepsilon} \|h\|_{\mathbb{H}}^2 - \log \mathbb{P}(\|W\|_{\infty} < arepsilon).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(concentration function)

Lemma. If $w_0 \in C^{\alpha}[0,1]$, $\alpha > 0$, then

$$\inf_{h\in\mathbb{H}:\|h-w_0\|_\infty$$

Hence for $w_0 \in C^{\alpha}[0,1]$ the prior mass condition $\phi_{w_0}(\varepsilon_n) \leq n\varepsilon_n^2$ holds for

$$\varepsilon_n \sim \begin{cases} n^{-1/4} & \text{if } \alpha \ge 1/2 \\ n^{-\alpha/2} & \text{if } \alpha \le 1/2. \end{cases}$$

(日) (日) (日) (日) (日) (日) (日) (日)

How about the entropy and remaining mass conditions? 💽

Lemma. If $w_0 \in C^{\alpha}[0,1]$, $\alpha > 0$, then

$$\inf_{h\in\mathbb{H}:\|h-w_0\|_{\infty}<\varepsilon}\|h\|_{\mathbb{H}}^2\lesssim\varepsilon^{-(2-2\alpha)/\alpha}.$$

Hence for $w_0 \in C^{\alpha}[0,1]$ the prior mass condition $\phi_{w_0}(\varepsilon_n) \leq n\varepsilon_n^2$ holds for

$$\varepsilon_n \sim \begin{cases} n^{-1/4} & \text{if } \alpha \ge 1/2 \\ n^{-\alpha/2} & \text{if } \alpha \le 1/2. \end{cases}$$

How about the entropy and remaining mass conditions? 💽

They are automatically fulfilled!

Let X_1, X_2, \ldots, X_n be a sample from a density θ on [0, 1].

Prior distribution on θ : law of

$$t\mapsto rac{e^{W_t}}{\int_0^1 e^{W_t}\,dt},$$

with W a Brownian motion

Theorem.

Suppose $\log \theta_0 \in C^{\alpha}[0,1]$. Then the posterior contracts around θ_0 at the rate

$$arepsilon_n \sim egin{cases} n^{-1/4} & ext{if } lpha \geq 1/2 \\ n^{-lpha/2} & ext{if } lpha \leq 1/2 \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Concentration of Gaussian measures

Abstract formulation:

Let \mathbb{B} be a separable Banach space with norm $\|\cdot\|$. Let W be a Borel measurable random element in \mathbb{B} , centered and Gaussian (i.e. $b^*(W)$ is Gaussian and centered for $b^* \in \mathbb{B}^*$).

Consider $S : \mathbb{B}^* \to \mathbb{B}$, $Sb^* = \mathbb{E}Wb^*(W)$. Reproducing kernel Hilbert space (RKHS) \mathbb{H} associated with W: closure of $S\mathbb{B}^*$ with respect to the inner product

$$\langle Sb_1^*, Sb_2^* \rangle_{\mathbb{H}} = \mathbb{E}b_1^*(W)b_2^*(W).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Always $\mathbb{H} \subset \mathbb{B}$.

Example:

Let W be a Borel measurable centered and Gaussian random element in $\mathbb{B} = C[0, 1]$ with norm $\|\cdot\|_{\infty}$.

 $\mathbb{B}^* = \{ \text{finite signed measures} \} \text{ and for } \nu \in \mathbb{B}^*$

$$(S
u)_t = \mathbb{E} W_t \int_0^1 W_s \,
u(ds).$$

It follows that $\mathbb{H} = \{t \mapsto \mathbb{E}W_t H : H \in \text{first chaos of } W\}$,

$$\langle t \mapsto \mathbb{E}W_t G, t \mapsto \mathbb{E}W_t H \rangle_{\mathbb{H}} = \mathbb{E}GH.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

Support of W: smallest closed subset \mathbb{B}_0 of \mathbb{B} such that $\mathbb{P}(W \in \mathbb{B}_0) = 1$.

Fact:

The support of W is the closure of \mathbb{H} in \mathbb{B} .

```
(Consequence of Hahn-Banach.)
```

Much more precise: Borell's inequality.

 \mathbb{B}_1 , \mathbb{H}_1 : unit balls in \mathbb{B} , \mathbb{H} .

$$\phi_w(\varepsilon) = \inf_{h \in \mathbb{H}: \|h-w_0\| < \varepsilon} \|h\|_{\mathbb{H}}^2 - \log \mathbb{P}(\|W\| < \varepsilon).$$

Borell (1975):

$$\mathbb{P}(W \not\in \varepsilon \mathbb{B}_1 + M \mathbb{H}_1) \leq 1 - \Phi(\Phi^{-1}(e^{-\phi_0(\varepsilon)}) + M).$$

Kuelbs and Li (1973):

 \mathbb{H}_1 is compact in \mathbb{B} , metric entropy related to small ball probability $\phi_0(\varepsilon)$.

Theorem. Let w be in the support of W and $\varepsilon_n > 0$ such that $n\varepsilon_n^2 \to \infty$ and

$$\phi_w(\varepsilon_n) \leq n\varepsilon_n^2.$$

Then for all C > 1 there exist measurable $B_n \subset \mathbb{B}$ such that

$$\begin{split} \log N(3\varepsilon_n, B_n, \|\cdot\|) &\leq 6 C n \varepsilon_n^2, \\ \mathbb{P}(W \not\in B_n) &\leq e^{-C n \varepsilon_n^2}, \\ \mathbb{P}(\|W - w\| < 2\varepsilon_n) &\geq e^{-n \varepsilon_n^2}. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Rates of convergence in various settings

 X_1, X_2, \ldots, X_n : i.i.d. from density θ w.r.t. a measure ν on \mathcal{X} .

Prior distribution on θ : law of $x \mapsto e^{W_x} / \int_{\mathcal{X}} e^{W_x} \nu(dx)$, with W a centered, Borel measurable Gaussian process on \mathcal{X} with uniformly bounded sample paths.

Theorem.

Suppose $w_0 = \log \theta_0$ is in the support of W. Let $\varepsilon_n > 0$ be such that $n\varepsilon_n^2 \to \infty$ and $\phi_{w_0}(\varepsilon_n) \le n\varepsilon_n^2$ (with the uniform norm). Then, relative to the Hellinger metric, the posterior concentrates around θ_0 at the rate ε_n .

 $X^{(n)}$: sample path of the process

$$X^{(n)}_t=\int_0^t heta(s)\,ds+rac{1}{\sqrt{n}}B_t,\quad t\in[0,1],$$

with B a Brownian motion.

Prior on θ : law of a centered Gaussian process W with sample paths in $L^2[0, 1]$.

Theorem.

Suppose θ_0 is in the support of W. Let $\varepsilon_n > 0$ be such that $n\varepsilon_n^2 \to \infty$ and $\phi_{w_0}(\varepsilon_n) \le n\varepsilon_n^2$ (with the L^2 -norm). Then, relative to the L^2 -norm, the posterior concentrates around θ_0 at the rate ε_n .

Similar results can be derived for

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- classification
- regression
- ergodic diffusion
- . . .

Gaussian process priors for smoothness classes

Let X_1, X_2, \ldots, X_n be a sample from a distribution with a positive, continuous density θ on [0, 1].

Prior distribution on θ : take a centered Gaussian process W_t and let Π be the law of the random density

$$t\mapsto rac{e^{W_t}}{\int_0^1 e^{W_t}\,dt}.$$

Suppose that $\log \theta_0 \in C^{\alpha}[0,1]$ for $\alpha > 0$.

Which Gaussian process W leads to the optimal rate $n^{-\alpha/(1+2\alpha)}$?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Candidate: Riemann-Liouville process

$$W_t = \int_0^t (t-s)^{\alpha-1/2} \, dB_s.$$

For $\alpha - 1/2$ integer: W is $(\alpha - 1/2)$ -fold repeated integral of B. For other α : use fractional calculus.

Intuition: good model for α -smooth functions.

Known results for the RL-process:

Li and Linde (1998):

$$-\log \mathbb{P}(\|W\|_{\infty} < arepsilon) \sim arepsilon^{-1/lpha}$$

RKHS is $I_{0+}^{\alpha+1/2}(L^2)$,

$$\|I_{0+}^{\alpha+1/2}f\|_{\mathbb{H}} = \frac{\|f\|_{L^2}}{\Gamma(\alpha+1/2)}.$$

Modified RL-process with parameter $\alpha > 0$:

$$W_t = \sum_{k=0}^{\underline{lpha}+1} Z_k t^k + \int_0^t (t-s)^{\alpha-1/2} dB_s.$$

Theorem.

The support of the process W is C[0,1]. For $w \in C^{\alpha}[0,1]$ we have $\phi_w(\varepsilon) = O(\varepsilon^{-1/\alpha})$ as $\varepsilon \to 0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let X_1, X_2, \ldots, X_n be a sample from a distribution with a positive, continuous density θ on [0, 1].

Prior distribution on θ : take a modified RL-process W_t with parameter $\alpha > 0$ and let Π be the law of the random density

$$t\mapsto \frac{e^{W_t}}{\int_0^1 e^{W_t}\,dt}.$$

Theorem.

Suppose $\log \theta_0 \in C^{\alpha}[0,1]$. Then, relative to the Hellinger metric, the posterior concentrates around θ_0 at the rate $n^{-\alpha/(1+2\alpha)}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Alternative Gaussian process priors:

- fractional Brownian motion
- truncated series expansions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- wavelet expansions
- . . .

Concluding remarks

Additional questions:

- Concrete priors: priors on functions of several variables, ...
- Scaling: W and cW lead to the same rate. How to choose c?

- Adapting to smoothness: When does mixing over the smoothness parameter work?
- Non-Gaussian processes: Lévy processes, ...