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Consider n-dimensional affine square root SDE:

(Vi 0

Vie :=0;(Xy) = a; + @:TXt-

e In the literature there are conditions imposed to assure that the

volatilities V; stay positive.
e What happens if we violate these conditions?
e Do the volatilities then get negative eventually?

e If so, is that a problem? (instead of v/V; maybe we can use

VvVi V0 or \/W)



Sufficient condition for general case: look at SDE for V;; whenever a
volatility V; becomes zero, it should hold that

e the diffusion part of dV;; becomes zero;

e The drift part becomes positive.
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Consider two-dimensional square root SDE with one volatility process

dXt = (aXt + b)dt -+ E\/ ‘/t th

To see whether V; > 0 for all ¢, we look at the SDE for V;:
dV, = B dX, = 8" (aX, + b)dt + B' ©+\/V; dW,

If dV; > 0 whenever V; = 0, then V; can never become negative.

Sufficient condition:
For all x € R? such that v(z) = 0 it holds that 3' (az + b) > 0.




Why do we need the conditions from the literature?
e to prove volatilities stay positive

e to rewrite the SDE for X in Canonical form, which can be used

— to prove pathwise uniqueness for the SDE (which implies

existence of a strong solution)

— to prove that in an affine term structure model, the
bond-price equals D; 7 = exp(A(T —t) + B(T —t) ' X3),



Canonical representation

n-dimensional affine square root SDE with m < n “independent”

volatilities:

dViy = (a11Vie +aaVor + ... + a1 Vine + b1)dt + / ViedW1y
dVor = (a1 Vit + agaVor + ... + agm Vine + b2)dt + / Vor dWoy

dvmt — (amlvlt + am2‘/2t + ...t ammvmt + bm)dt + \V/ thdWmt

where a;; > 0 for ¢ # j and b; > 0.



The remaining volatilities V; with j > m are linear combinations of

these (“dependence”):
Vie = aj + Zﬁjin‘t
i=1

with a; > 0 and 3;; > 0, so that V;; > 0 since V;; > 0 for : < m.
J J J



Short rate term structure model

A zero coupon bond is a contract which guarantees a payment of one
unit of money at a given time 7' in the future. The bond price at
time ¢ is defined to be

T
Dy =E(e” /i rd%| Fy),

with 7, = r(X4), the short rate, is a function of a state factor X,

which satisfies a certain SDE
dXt = ,LL(Xt)dt —+ O'(Xt)th

In an affine term structure model this SDE is an affine square
root SDE, and r is an affine transformation of X:

re =1(X¢) =60+ ' Xo.



Term structure equation
e State factor X satisfies SDE dX; = u(X;)dt 4+ o(Xy)dWy;
e Short rate r; = r(X}) is a function of X;

e We want to determine the bond price
F(t,z) = E(e™ i mds| X, = 2).

Standard trick: differentiate the martingale

E(e™ Jo rads| X)) = e~ Jo rsds (¢, X,) =: Ry F(t, X;) = RF(shorthand notation)

dRF = RdF + FdR

= ... (Ito calculus)

1
—R(—rF+F, +Fyu+ 512,1,][,,(;2) dt + RF,cdW.
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So the bond price F' satisfies the PDE

1
—rF 4+ F 4+ Fyu+ 5Fma? =0
F(T,z)=1

(t,xz) € 10,T) x D,

under the assumption that F' is smooth.

For an affine term structure model this PDE can be solved by
F(t,x) =exp(A(T —t) + B(T —t) ' z),

where A and B on their turn satisfy the (Riccati) ODE’s

1
A =bTB— . Sj Sjj S;Biszikzjkak — g, A(0)=0

B'=a'B- % > NS BBSuY b — 6, B(0) =0.
g3 k



The above argument doesn’t seem to need that the volatilities stay
positive. Moreover, we still have to prove that F' is smooth. Under
the assumption that F' is smooth, we have proved that

F(t,z) = exp(A(T —t) + B(T —t) ' z),

which is smooth, but that doesn’t mean that the assumption

necessarily holds true.

Alternatively, we can use the Feynman-Kag approach, which
represents solutions to particular PDE’s (namely the Cauchy
problem) as a (conditional) expectation.



Cauchy problem

Consider an n-dimensional SDE dX; = u(Xy)dt + o(X¢)dW;. We
define a differential operator £ by:

0 1 0?

The Cauchy problem is the problem of finding a (unique) solution u

for the backward partial differential equation
ur + Lu=ku—g, u(T,-)=7f.

If u solves the Cauchy problem and u can be stochastically
represented as a conditional expectation (using X ), then we say that

u admits a Feynman-Kac representation



In our case we have u(t,z) = exp(A(T —t) + B(T —t) ' x).
ug + Lu =ru, u(T,-)=1.

Then u admits a Feynman Kag representation, i.e.
u(t,z) = E(exp(— ft $)ds)| Xy = x), if u satisfies the growth
condition

sup |u(t, z)| < K(1+|x|¢), for some K > 0, ¢ > 2 and all x in domain D of X
t<T

This is not obvious from the formula

u(t,z) = exp(A(T —t) + B(T —t) ' z)



Suppose r; > 0 almost surely for all ¢. Then
T
0 < E[exp(—/ rsds)| Xy = x| <1, for all x € D
t

Hence we expect that 0 < u(t,z) < 1 for x in domain D of X, which

is (more than) sufficient. Therefore, we have to prove that A(t) <0
and B(t)'2 <0 for all t and all z € D.

1
A'=b"B+ > NN BB RS kar — by, A(0) =0
T 7k

B'=a'B+ % YN N BB Sy b — 9, B(0)=0.
gk

This is still not obvious.



Simplify ODE’s by using canonical representation. Consider for
example 2-dimensional affine square root SDE and canonical form

Vi = (8.11V1 + ao Vo + bl)dt + v/ VidW1;
Vo = (321V1 + a9 Vo + bg)dt + v/ VodWsy

with A;j = 0 for ¢+ # 5 and b; > 0. Take r = dg + 01 V1 + 02 V5, with
d; > 0 so that » > 0. Then ODE’s for A and B reduce to

A" = b1 By + byBs — &y, A(0) =0
1

Bi = a1131 + a21B2 + 53% — 51, Bl(O) =0
1

B, = aj3B; +axBs + 533 — 02, DB2(0)=0.

Now it is obvious that A(t) < 0, B1(t) < 0 and By(t) < 0 for all ¢.
Since X = (V1,V5) € |0,00) x [0,00) we are done.



Conclusions

While the conditions from literature might be relaxed to assure

positive volatilities (as the simulation suggests), they seem to be
necessary

e to prove pathwise uniqueness of the SDE for X;

e to prove Feynman-Kac formula
B(e™ I "% Xy) = exp(A(T — 1) + B(T — ) T X,.

using the Canonical representation of the SDE for X.



