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Consider n-dimensional affine square root SDE:

dXt = (aXt + b)dt+ Σ
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Vit := vi(Xt) := αi + β>i Xt.

• In the literature there are conditions imposed to assure that the

volatilities Vi stay positive.

• What happens if we violate these conditions?

• Do the volatilities then get negative eventually?

• If so, is that a problem? (instead of
√
Vt maybe we can use√

Vt ∨ 0 or
√

|Vt|)



Sufficient condition for general case: look at SDE for Vi; whenever a

volatility Vi becomes zero, it should hold that

• the diffusion part of dVit becomes zero;

• The drift part becomes positive.



Consider two-dimensional square root SDE with one volatility process

dXt = (aXt + b)dt+ Σ
√

Vt dWt

X0 = x0

Vt := v(Xt) := α+ β>Xt

To see whether Vt ≥ 0 for all t, we look at the SDE for Vt:

dVt = β>dXt = β>(aXt + b)dt+ β>Σ
√

Vt dWt

If dVt ≥ 0 whenever Vt = 0, then Vt can never become negative.

Sufficient condition:

For all x ∈ R
2 such that v(x) = 0 it holds that β>(ax+ b) ≥ 0.



Why do we need the conditions from the literature?

• to prove volatilities stay positive

• to rewrite the SDE for X in Canonical form, which can be used

– to prove pathwise uniqueness for the SDE (which implies

existence of a strong solution)

– to prove that in an affine term structure model, the

bond-price equals Dt,T = exp(A(T − t) +B(T − t)>Xt),



Canonical representation

n-dimensional affine square root SDE with m ≤ n “independent”

volatilities:

dV1t = (a11V1t + a12V2t + . . .+ a1mVmt + b1)dt+
√

V1tdW1t

dV2t = (a21V1t + a22V2t + . . .+ a2mVmt + b2)dt+
√

V2tdW2t

...

dVmt = (am1V1t + am2V2t + . . .+ ammVmt + bm)dt+
√

VmtdWmt

where aij ≥ 0 for i 6= j and bi ≥ 0.



The remaining volatilities Vj with j > m are linear combinations of

these (“dependence”):

Vjt = αj +

m∑

i=1

βjiVit

with αj ≥ 0 and βji ≥ 0, so that Vjt ≥ 0 since Vit ≥ 0 for i ≤ m.



Short rate term structure model

A zero coupon bond is a contract which guarantees a payment of one

unit of money at a given time T in the future. The bond price at

time t is defined to be

Dt,T = E(e−
∫

T

t
rsds|Ft),

with rt = r(Xt), the short rate, is a function of a state factor X,

which satisfies a certain SDE

dXt = µ(Xt)dt+ σ(Xt)dWt

In an affine term structure model this SDE is an affine square

root SDE, and r is an affine transformation of X:

rt = r(Xt) = δ0 + δ>Xt.



Term structure equation

• State factor X satisfies SDE dXt = µ(Xt)dt+ σ(Xt)dWt;

• Short rate rt = r(Xt) is a function of X;

• We want to determine the bond price

F (t, x) = E(e−
∫

T

t
rsds|Xt = x).

Standard trick: differentiate the martingale

E(e−
∫

T

0
rsds|Xt) = e−

∫
t

0
rsdsF (t,Xt) =: RtF (t,Xt) = RF (shorthand notation)

dRF = RdF + FdR

= . . . (Itô calculus)

= R (−rF + Ft + Fxµ+
1

2
Fxxσ

2)
︸ ︷︷ ︸

0

dt+RFxσdW.



So the bond price F satisfies the PDE

−rF + Ft + Fxµ+
1

2
Fxxσ

2 = 0

F (T, x) = 1

(t, x) ∈ [0, T )×D,

under the assumption that F is smooth.

For an affine term structure model this PDE can be solved by

F (t, x) = exp(A(T − t) +B(T − t)>x),

where A and B on their turn satisfy the (Riccati) ODE’s

A′ = b>B − 1
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BiBjΣikΣjkαk − δ0, A(0) = 0

B′ = a>B − 1

2
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k

BiBjΣikΣjkβk − δ, B(0) = 0.



The above argument doesn’t seem to need that the volatilities stay

positive. Moreover, we still have to prove that F is smooth. Under

the assumption that F is smooth, we have proved that

F (t, x) = exp(A(T − t) +B(T − t)>x),

which is smooth, but that doesn’t mean that the assumption

necessarily holds true.

Alternatively, we can use the Feynman-Kaç approach, which

represents solutions to particular PDE’s (namely the Cauchy

problem) as a (conditional) expectation.



Cauchy problem

Consider an n-dimensional SDE dXt = µ(Xt)dt+ σ(Xt)dWt. We

define a differential operator L by:

Lu =
∑

i

µi

∂u

∂xi

+
1

2

∑

i

∑

j

σiσ
>
j

∂2u

∂xi∂xj

,

The Cauchy problem is the problem of finding a (unique) solution u

for the backward partial differential equation

ut + Lu = ku− g, u(T, ·) = f.

If u solves the Cauchy problem and u can be stochastically

represented as a conditional expectation (using X), then we say that

u admits a Feynman-Kaç representation



In our case we have u(t, x) = exp(A(T − t) +B(T − t)>x).

ut + Lu = ru, u(T, ·) = 1.

Then u admits a Feynman-Kaç representation, i.e.

u(t, x) = E(exp(−
∫ T

t
r(Xs)ds)|Xt = x), if u satisfies the growth

condition

sup
t≤T

|u(t, x)| ≤ K(1+|x|c), for some K > 0, c ≥ 2 and all x in domain D of X

This is not obvious from the formula

u(t, x) = exp(A(T − t) +B(T − t)>x)



Suppose rt ≥ 0 almost surely for all t. Then

0 ≤ E[exp(−
∫ T

t

rsds)|Xt = x] ≤ 1, for all x ∈ D

Hence we expect that 0 ≤ u(t, x) ≤ 1 for x in domain D of X, which

is (more than) sufficient. Therefore, we have to prove that A(t) ≤ 0

and B(t)>x ≤ 0 for all t and all x ∈ D.

A′ = b>B +
1

2

∑

i

∑

j

∑

k

BiBjΣikΣjkαk − δ0, A(0) = 0

B′ = a>B +
1

2

∑

i

∑

j

∑

k

BiBjΣikΣjkβk − δ, B(0) = 0.

This is still not obvious.



Simplify ODE’s by using canonical representation. Consider for

example 2-dimensional affine square root SDE and canonical form

V1 = (a11V1 + a12V2 + b1)dt+
√

V1dW1t

V2 = (a21V1 + a22V2 + b2)dt+
√

V2dW2t

with aij ≥ 0 for i 6= j and bi ≥ 0. Take r = δ0 + δ1V1 + δ2V2, with

δi > 0 so that r ≥ 0. Then ODE’s for A and B reduce to

A′ = b1B1 + b2B2 − δ0, A(0) = 0

B′
1
= a11B1 + a21B2 +

1

2
B2

1
− δ1, B1(0) = 0

B′
2
= a12B1 + a22B2 +

1

2
B2

2
− δ2, B2(0) = 0.

Now it is obvious that A(t) ≤ 0, B1(t) ≤ 0 and B2(t) ≤ 0 for all t.

Since X = (V1, V2) ∈ [0,∞)× [0,∞) we are done.



Conclusions

While the conditions from literature might be relaxed to assure

positive volatilities (as the simulation suggests), they seem to be

necessary

• to prove pathwise uniqueness of the SDE for X;

• to prove Feynman-Kaç formula

E(e−
∫

T

t
rsds|Xt) = exp(A(T − t) +B(T − t)>Xt,

using the Canonical representation of the SDE for X.


